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ABSTRACT
Most machine learning models are designed to be self-contained
and encode both “knowledge” and “reasoning” in their parameters.
However, such models cannot perform effectively for tasks that re-
quire knowledge grounding and tasks that deal with non-stationary
data, such as news and social media. Besides, these models of-
ten require huge number of parameters to encode all the required
knowledge. These issues can be addressed via augmentation with a
retrieval model. This category of machine learning models, which
is called Retrieval-enhanced machine learning (REML), has recently
attracted considerable attention in multiple research communities.
For instance, REML models have been studied in the context of
open-domain question answering, fact verification, and dialogue
systems and also in the context of generalization through memo-
rization in language models and memory networks. We believe that
the information retrieval community can significantly contribute to
this growing research area by designing, implementing, analyzing,
and evaluating various aspects of retrieval models with applica-
tions to REML tasks. The goal of this full-day hybrid workshop is to
bring together researchers from industry and academia to discuss
various aspects of retrieval-enhanced machine learning, including
effectiveness, efficiency, and robustness of these models in addition
to their impact on real-world applications.
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1 MOTIVATION
The vast majority of machine learning (ML) systems are designed to
be self-contained, with both knowledge and reasoning encoded in
model parameters. They suffer from a number of major shortcom-
ings that can be (fully or partially) addressed, if machine learning
models have access to efficient and effective retrieval models:

• Knowledge grounding:Anumber of important real-world prob-
lems, often called knowledge-intensive tasks, require access to
external knowledge. They include (among others) open-domain
question answering, task-oriented dialogues, and fact checking
[16]. Therefore, ML systems that make predictions solely based
on the data observed during training fall short when dealing with
knowledge-intensive tasks. In addition, ML models related to
non-stationary domains, such as news or social media, can signif-
icantly benefit from accessing fresh data [1, 13]. An information
retrieval (IR) system can decouple reasoning from knowledge,
allowing it to be maintained and updated independent of model
parameters at a cadence aligned with the corpus.

• Generalization: Recent work has shown that many ML models
can significantly benefit from retrieval augmentation. For in-
stance, kNN-LM [11] linearly interpolates large language model
(LM) predictions with the nearest neighbors of the given context
input. This approach does not even require further training or
fine-tuning. The authors showed substantial improvements in
terms of perplexity in both in-distribution and out-of-distribution
test sets, demonstrating the generalization of this approach. kNN-
LM together with other approaches, such as BERT-kNN [10] and
hybrid dialogue systems [12, 19], suggest that enhancing ML
models using retrieval will have a large impact on their general-
ization.

• Significant growth in model parameters: Since all the re-
quired information for making predictions is often encoded in
the ML models’ parameters, increasing their capacity by increas-
ing the number of parameters generally leads to higher accuracy
[5]. For example, the number of parameters used in LMs has
increased from 94 million in ELMo [15] to 1.6 trillion in Switch
Transformers [4], an over 16× increase in just three years (2018
– 2021). Despite these successes, improving performance by in-
creasing the number of model parameters can incur significant
cost and limit access to a handful of organizations that have the
resources to train them [2]. As such, this approach is neither
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scalable nor sustainable in the long run, and providing access to
a scalable large collection (or memory) can potentially mitigate
this issue.

• Interpretability and explainability: Because the knowledge
in training data is encoded in learned model parameters, explana-
tions of model predictions often appeal to abstract and difficult-
to-interpret distributed representations. By grounding inference
on retrieved information, predictions can more easily be traced
to specific data, often stored in a human-readable format such as
text.

The mentioned issues have been also recognized by multiple
research groups for various learning problems [11, 14, 16–18]. Exist-
ing research in this area – often referred to as retrieval-augmented,
or retrieval-enhanced ML (or REML, for short) – has thus far been
primarily driven from a machine learning perspective: developing
ML models that can more effectively leverage retrieval models for
accurate prediction. In other words, most existing efforts take the
retrieval part of REML for granted. For instance, they use term
matching retrieval models, such as BM25, or off-the-shelf dense
retrieval models for retrieving documents, and their main focus is
data augmentation based on the retrieval results.

Recent research has demonstrated that errors in many REML
models are mostly due to the failure of retrieval model as opposed
to the augmented machine learning model, confirming the well-
known “garbage in, garbage out” phenomenon [9]. Motivated by
this observation and a recent perspective paper by Zamani et al. [20],
we believe that the expertise of the IR research community is pivotal
for further progress in REML models. Therefore, we propose to
organize a workshop with a fresh perspective on retrieval-enhanced
machine learning through an information retrieval lens.

2 THEME AND SCOPE
The workshop will focus on models, techniques, data collections,
and evaluation methodologies for various retrieval-enhanced ma-
chine learning problems. These include but are not limited to:

• Effectiveness and/or efficiency of retrieval models for knowl-
edge grounding, e.g., for open-domain question answering,
dialogue systems, fact verification, and information extrac-
tion.

• Effectiveness and/or efficiency of retrieval models for gener-
alization through memorization, e.g., nearest neighbor lan-
guage models.

• Effectiveness and/or efficiency of retrieval models for mem-
ory networks.

• Effectiveness and/or efficiency of retrievalmodels for retrieval-
augmented representation learning.

• Retrieval-enhanced optimization.
• Retrieval-enhanced domain adaptation.
• Retrieval-enhanced models for multi-media and multi-modal
learning.

• Query generation for retrieval-enhanced models.
• Retrieval result utilization by machine learning models.
• Interactive retrieval-enhanced machine learning models.
• Retrieval-enhanced models for non-stationary data, such as
news, social media, etc.

3 FORMAT AND PLANNED ACTIVITIES
We plan to organize a full-day hybrid workshop. The tentative
schedule is presented in Table 1.

4 SPECIAL REQUIREMENTS
We require sufficient infrastructure for hybrid organization of the
workshop, which includes remote broadcasting of on-site presen-
tations as well as remote presentations from online participants.
At least two of the organizers will organize the workshop in per-
son. We also require poster stands during the second half of the
workshop.

5 ORGANIZERS
The organization team consists of active IR and NLP researchers
from both academia and industry with recent experience on REML
research.

Michael Bendersky Michael Bendersky is a Principal Software
Engineer / Engineering Director at Google Research. He is currently
managing a team whose mission is improving algorithms, models,
and metrics for information discovery and quality across Google
products. His recent research interests include neural ranking and
retrieval, unbiased learning-to-rank, ranking ensembles, query un-
derstanding, dynamic content understanding, and more. Michael
is a Distinguished Member of the ACM. He holds a Ph.D. from the
University of Massachusetts Amherst, and a B.Sc. and M.Sc. from
the Technion, Israel Institute of Technology. Michael co-authored
over 80 publications. He served on program and organizing commit-
tees for multiple academic conferences, and co-organized tutorials
at SIGIR 2015, SIGIR 2019, ICTIR 2019, and WSDM 2022. He co-
authored two books in the “Foundations and Trends in Information
Retrieval” series: “Information Retrieval with Verbose Queries”, and
“Search and Discovery in Personal Email Collections”.

Danqi Chen is an Assistant Professor of Computer Science at
Princeton University. Her research focuses on training, adapting,
and understanding large language models, and developing scalable
and generalizable NLP systems for question answering, information
extraction, and conversational agents. She is particularly interested
in combining large language models with knowledge retrieval. Be-
fore joining Princeton, Danqi worked as a visiting scientist at Face-
book AI Research. She received her Ph.D. from Stanford University
(2018) and B.E. from Tsinghua University (2012), both in Computer
Science. Danqi is a recipient of a Sloan Fellowship, a Samsung AI
Researcher of the Year Award, outstanding paper awards from ACL
2016, EMNLP 2017, and ACL 2022, and multiple faculty awards.
She served as the program chair of AKBC 2021 and (senior) area
chair for many NLP conferences and co-organized workshops and
tutorials at NAACL 2016, NeurIPS 2017, ACL 2018, EMNLP 2019,
ACL 2020, and EMNLP 2021.

Fernando Diaz is a research scientist at Google Research Montréal
and an incoming Associate Professor in the Language Technologies
Institute (LTI) at Carnegie Mellon University. Fernando’s research
focuses on the design of information access systems, including
search engines, music recommendation services and crisis response



Table 1: Tentative Schedule for the REMLWorkshop at SIGIR 2023.

Time Agenda Comment

9 - 9:15 Opening
9:15 - 10 Keynote Potential keynote speaker: William W. Cohen
10 - 10:30 Two invited talks Invited talks from published REML articles at major conferences.
10:30 - 11 coffee break
11 - 12:30 Five paper presentations See Section 7 for more details on paper selection.
12:30 - 1:30 Lunch break
1:30 - 2:15 Keynote Keynote speaker: to be determined.
2:15 - 3 Discussion panel - Part 1 Topic: The role of IR community in REML research, including 15 minutes Q&A
3 - 3:30 Coffee break
3:30 - 4:15 Discussion panel - Part 2 Topic: The future of REML research, including 15 minutes Q&A
4:15 - 5 Poster presentation or spotlight talks See Section 7 for more details on paper selection.

platforms. He is particularly interested in understanding and ad-
dressing the societal implications of artificial intelligence more gen-
erally. Previously, Fernando was the assistant managing director
of Microsoft Research Montréal, where he also led FATE Montréal,
and a director of research at Spotify, where he helped establish its
research organization on recommendation, search, and personaliza-
tion. Fernando’s work has received special recognition and awards
at SIGIR, CIKM, CSCW, WSDM, ISCRAM, and ECIR. He is the re-
cipient of the 2017 British Computer Society Karen Spärck Jones
Award and holds a CIFAR AI Chair. Fernando has co-organized
several NIST TREC tracks, WSDM (2013), Strategic Workshop on
Information Retrieval (2018), FAT* (2019), SIGIR (2021), and the
CIFAR Workshop on Artificial Intelligence and the Curation of
Culture (2019). He received his BS in Computer Science from the
University of Michigan Ann Arbor and his MS and PhD from the
University of Massachusetts Amherst.

Hamed Zamani is an Assistant Professor at the University of
Massachusetts Amherst, where he also serves as the Associate Di-
rector of the Center for Intelligent Information Retrieval (CIIR), one
of the top academic research labs in Information Retrieval world-
wide. Prior to UMass, he was a Researcher at Microsoft working
on search and recommendation problems. His research focuses on
designing and evaluating (interactive) information access systems,
including search engines, recommender systems, and question an-
swering. His work has led to over 80 refereed publications in the
field, including some recent work on the topic of REML [3, 6–9, 20].
His research has received a few Best Paper and Honorable Mentions
from SIGIR, CIKM, and ICTIR. He is a recipient of the NSF CAREER
Award and Amazon’s Alexa Prize grants. He is an Associate Editor
of the ACM Transactions on Information Systems (TOIS), has or-
ganized multiple workshops at SIGIR, RecSys, WSDM, and WWW
conferences, and served as a PC Chair at SIGIR 2022 (Short Papers).

6 POTENTIAL PROGRAM COMMITTEE
The program committee of the REML workshop consists of experts
from various communities, including IR, NLP, and ML, working
of different aspects of REML. The potential program committee
include:

• Qingyao Ai, Tsinghua University

• Andrew Drozdov, UMass Amherst
• William Cohen, Google Research
• Nick Craswell, Microsoft
• Zhuyun Dai, Google Research
• Jeff Dalton, University of Glasgow
• Mostafa Dehghani, Google Brain
• Kelvin Guu, Google Research
• Helia Hashemi, UMass Amherst
• Claudia Hauff, Spotify
• Sebastian Hofstätter, Cohere AI
• Mohit Iyyer, UMass Amherst
• Urvashi Khandelwal, Google Research
• Julia Kiseleva, Microsoft Research
• Donald Metzler, Google Research
• Rodrigo Nogueira, UNICAMP Brazil and NeuralMind
• Aleksandra Piktus, Hugging Face
• Maithra Raghu, Samaya AI
• Jason Weston, Meta AI
• Chenyan Xiong, Microsoft Research
• Andrew Yates, University of Amsterdam
• Guido Zuccon, University of Queensland

7 SELECTION PROCESS
The accepted papers will be selected through a peer review process.
Each paper will be evaluated by at least three PC members based
on their originality, significance, technical soundness, presentation
and clarity. We particularly encourage work-in-progress submis-
sions and those with innovative ideas whose follow up work can
potentially be submitted to the next major IR conferences.

The most attractive accepted papers will be given oral presen-
tation. The remaining papers will be presented during a poster
session or will be given short spotlight presentations.

The proceedings of the REML workshop will be non-archival
and authors can resubmit their work to other peer-reviewed venues.

8 EXPECTED AUDIENCE AND
ADVERTISEMENT

Specifically, given the rapid growth of interest in retrieval-enhanced
models, we expect the audience to consist of both academic and
industrial researchers involved in information retrieval and natural
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language processing research and engineering. We plan on adver-
tising the workshop through existing social media channels (e.g.,
Twitter, Mastodon) as well as email lists (e.g., SIGIR-List, Corpora-
List).

9 RELATEDWORKSHOPS
There have been numerous workshops on open-domain question
answering, dialogue systems, fact checking, and information extrac-
tion. Even though these workshops are indirectly related to REML,
they have not directly focused on REML research. The most rele-
vant workshops to REML are the recent ICML 2022 Workshop on
Knowledge Retrieval and Language Models (KRLM)1 and the
recent ACL 2022 Workshop on Semiparametric Methods in NLP:
Decoupling Logic from Knowledge (Spa-NLP).2 Unlike KRLM
and Spa-NLP, the REML workshop will focus on retrieval-enhanced
machine learning from an information retrieval perspective.
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