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The effectiveness of clarification question models in engaging users within search systems is currently constrained, casting doubt on
their overall usefulness. To improve the performance of these models, it is crucial to employ assessment approaches that encompass
both real-time feedback from users (online evaluation) and the characteristics of clarification questions evaluated through human
assessment (offline evaluation). However, the relationship between online and offline evaluations has been debated in information
retrieval. This study aims to investigate how this discordance holds in search clarification. We use user engagement as ground truth
and employ several offline labels to investigate to what extent the offline ranked lists of clarification resemble the ideal ranked lists
based on online user engagement. Contrary to the current understanding that offline evaluations fall short of supporting online
evaluations, we indicate that when identifying the most engaging clarification questions from the user’s perspective, online and offline
evaluations correspond with each other. We show that the query length does not influence the relationship between online and offline
evaluations, and reducing uncertainty in online evaluation strengthens this relationship. We illustrate that an engaging clarification
needs to excel from multiple perspectives, and SERP quality and characteristics of the clarification are equally important. We also
investigate if human labels can enhance the performance of Large Language Models (LLMs) and Learning-to-Rank (LTR) models
in identifying the most engaging clarification questions from the user’s perspective by incorporating offline evaluations as input
features. Our results indicate that Learning-to-Rank models do not perform better than individual offline labels. However, GPT, an
LLM, emerges as the standout performer, surpassing all Learning-to-Rank models and offline labels.
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1 INTRODUCTION

When a user submits a query to a search engine like Bing, in addition to the results page, the search engine sometimes
presents a multi-choice clarification question. This clarification question aims to help users specify their information
needs. Although multiple clarification questions can be generated for a single query, only one is typically presented to
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2 Tavakoli et al.

the user. Despite the advancements in generating clarification questions in search systems, the success rate of users
engaging with such clarification questions remains low [78]. An analysis of the largest search clarification dataset,
MIMICS [78], demonstrates that users tend to engage more with certain clarification questions than others for a given
query. Furthermore, many clarifications are left unengaged, regardless of how many times they are presented to users
(e.g., only about 17% of query-clarification pairs in the MIMICS-Click dataset, a subset of the MIMICS dataset, received
positive engagement). This indicates that users are not easily engaged with clarification questions, and clarifications are
not equally engaging from users’ perspectives raising questions about the overall effectiveness of the search clarification
question models.

An engaging clarification question should encourage users to actively participate in the search process and interact
with the system. This interaction can lead to a more personalised and satisfying search experience and save time by
quickly guiding them toward relevant results [76, 82]. User engagement has emerged as a crucial metric in interactive
information retrieval studies. This is particularly significant for both commercial entities like search engines and
e-commerce businesses, as well as educational institutions such as libraries, who are now placing emphasis on acquiring
and keeping their customers [49]. To attain a high level of user engagement for a clarification model, it is essential
to employ evaluation techniques that consider both user behaviour and the characteristics of engaging clarification
questions. The typical evaluation process in deploying new models in search engines involves (1) offline evaluation with
labelled test collections and (2) online evaluation through user interactions, often using A/B testing. A reliable offline
evaluation dataset is crucial for continuous research iterations and the refinement of models and features. Researchers
commonly base their online experiments on findings from offline evaluations due to the resource-intensive nature
of online assessments. However, the relationship between offline and online evaluations in search clarifications is
relatively unexplored. For example, Zamani et al. [77] introduced three distinct models for generating clarification
questions in an open-domain information-seeking system. Nevertheless, the evaluation of these models’ performance
relied solely on human annotation, without investigating how they perform in real-world scenarios. To bridge this
knowledge gap, we investigate the relationship between user engagement (online evaluation) and the characteristics of
clarifications that are manually evaluated (offline evaluation) by studying the following two primary research questions:

• RQ1: How well do offline evaluations correspond with online evaluations in search clarification?

Following the study conducted by Zamani et al. [78], we focus on clarification panes, each consisting of a clarification
question and up to five candidate answers. Figure 1 shows an example of a clarification pane presented to users on the
Bing search engine. The ground truth in this study is the ideal ranked list of clarification panes generated based on user
engagement. An ideal ranked list of clarification panes is a list that has the most engaging clarification pane (MECP)
at the first position, and the rest of the clarification panes are sorted based on the Engagement Level in descending
order. We aim to determine two aspects: (i) whether the offline labels can successfully position MECP at the top of
the ranked list, and (ii) to what extent the ranked lists generated by the offline labels resemble the ideal ranked lists
for clarification panes. We initially evaluate the effectiveness of an oracle1 clarification selection model. This model
has access to every offline label, and its performance in terms of the similarity of generated ranked lists with the ideal
ranked lists is evaluated. Offline labels are different characteristics of clarification panes such as quality, coverage,
diversity and importance order of candidate answers annotated by the human judgement, and the online label is real
user engagement level. The details of the labels will be discussed in Section 3. We move beyond the assumption that

1In machine learning, an oracle typically refers to an idealised entity or concept that provides perfect information or answers to a given problem. It is
often used as a theoretical reference point to establish performance bounds or to measure the efficiency and effectiveness of an algorithm.
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Online and Offline Evaluation in Search Clarification 3

Fig. 1. A clarification pane shown after a user query [78].

the offline labels are independent of each other and delve into their combination by utilising Learning-to-Rank (LTR)
models to determine if these combinations align better with online evaluation. Additionally, we use a large language
model (LLM) to predict online user engagement with clarification, considering the provided offline labels as the input
for the model. Motivated by Zamani et al. [79], who showed user behaviour is different in short queries (often keyword
queries) and long queries (often natural language questions), we further investigate the impact of query length on the
relationship between online and offline evaluations in search clarification.

Uncertainty in collected online evaluations, much like in any form of assessment, has far-reaching implications. It not
only undermines the trustworthiness of the online evaluation results and the inferences that can be drawn from them,
but it also introduces a potential variable that can disrupt the alignment between online and offline evaluations. This
inquiry is pivotal to shed light on strategies to mitigate the impact of uncertainty in online assessments. To examine
this phenomenon, we aim to address the following research question:

• RQ2: How does uncertainty in the online evaluation impact the relationship between online and offline
evaluation?

Here, we control uncertainty in the online labelling based on the number of times a clarification question is presented
to users, known as Impression Level. The higher the Impression Level, the more reliable (thus less uncertain) online labels
based on click-through rate are.

In contrast to the widely held notion that online and offline evaluations do not always coincide regarding retrieval
quality [17, 19, 23, 23, 60], our study shows that offline evaluations align with online evaluations in search clarification.
However, certain essential factors should be considered. This study also enhances our comprehension of the performance
of LLMs in predicting online user engagement with clarifications when offline labels are employed as input for themodels.
The insights gained from our investigation will aid in refining the evaluation methodology for search clarification,
resulting in improved user search experiences and more effective decision-making when implementing clarification
models.

2 RELATEDWORK

We present a summary of previous works on clarification questions and online and offline evaluations in information
retrieval.
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4 Tavakoli et al.

2.1 Search Clarification

The use of clarification questions to improve user satisfaction has been investigated in different areas such as search
engines [55, 79], conversational search systems [40], chat bots [54], question-answering forums [66], and spoken
dialogue systems [22]. Generating and selecting clarification questions, two areas of interest [10, 40, 66], are discussed
here, and they are followed by a summary of available search clarification datasets.

2.1.1 Clarification question generation. Clarification question generation is a relatively new research area in
information retrieval. In 2019, Rao and Daumé III [58] proposed an adversarial training approach for generating
clarification questions. Their study inspired further research by Zamani et al. [77] and Shwartz et al. [62], who focused
on designing clarification systems. Zamani et al. [77] explored generating clarification questions for open-domain
search by proposing three different models. Shwartz et al. [62] proposed an unsupervised framework using self-talk
to generate natural language clarification questions and answers. The evaluation of these models primarily relied on
offline human judgements, leaving a knowledge gap regarding their performance from an online user’s perspective.

2.1.2 Clarification question selection. Several studies investigated the clarification question selection. Rao and
Daumé III [57] developed a neural network model that taught machines to ask clarification questions in uncertain
situations. Aliannejadi et al. [5] explored asking clarification questions in open-domain information-seeking con-
versational systems. They showed that their model outperformed baselines and improved user satisfaction. Ou and
Lin [50] proposed a clarification question selection system for recalling and ranking such questions. Kumar et al.
[41] investigated asking clarification questions in StackExchange and demonstrated the high performance of BERT
representations on this task. Recent works by Sekulić et al. [61] and Zamani et al. [79] have further contributed to the
development of clarification question selection systems, focusing on response understanding, user interaction analysis,
and user engagement prediction.

2.1.3 Search clarification datasets. Several search clarification datasets have been created over the last few years [3–
5, 53, 73, 78]. However, most of them are yet underdeveloped and few user-system interactions recorded for evalua-
tion [56]. For example, Xu et al. [73] created CLAQUA, a clarification dataset of 40,000 open-domain examples to enable
systems to ask clarification questions in open-domain question answering. This dataset supported three tasks: given
a question, check whether clarification is needed; if yes, generate a clarification question; and then predict answers
based on user feedback. Aliannejadi et al. [5] collected a clarification dataset through crowd-sourcing named Qulac.
This dataset was built on top of the TREC Web Track 2009-2012 data and contained over 10,000 question-answer pairs
for 198 TREC topics with 762 facets. Inspired by Qulac, Aliannejadi et al. [3, 4] crowd-sourced new datasets to study
clarification questions that were suitable for conversational settings and in open domain dialogues focusing on single
and multi-turn conversations. Penha et al. [53] created a dataset that focused on the interaction between an agent and a
user, including clarification questions. The researchers presented a conceptual model and provided baseline results for
conversation response ranking and user intent prediction tasks.

The largest search clarification dataset, MIMICS, was introduced by Zamani et al. [78] and was extracted from Bing

search engine. Each clarification was generated by a Bing production algorithm and contained a clarification question
and up to five candidate answers. Compared to other datasets, MIMICS contains realistic queries and user interaction
signals and covers many clarification types. MIMICS also contains search engine results pages (SERPs) of up to ten
retrieved documents, including a title, URL, and snippet for each query. The MIMICS data collection consists of three
datasets of MIMICS-Click, MIMICS-ClickExplore, and MIMICS-Manual.
Manuscript submitted to ACM
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Online and Offline Evaluation in Search Clarification 5

The most recent search clarification dataset, built as an extension of the pre-existing MIMICS-ClickExplore dataset,
was called MIMICS-Duo and introduced by Tavakoli et al. [65]. It contains 306 unique queries with multiple clarification
panes (1,034 query-clarification pairs), interactions of real users, and graded quality labels including multiple clarification
panes rating, overall quality labelling for clarification panes and their candidate answers and labels for different aspects
of clarification panes. Contrary to other search clarification datasets,MIMICS-Duo contains online and offline evaluations
created through crowd-sourcing. This dataset enables us to analyse the relationship between the online and offline
evaluations in search clarification, addressed in the current publication.

2.2 Online and Offline Evaluation Approaches

To understand what makes a clarification question engaging from a user’s point of view, the relationships between
various characteristics of the clarification questions, labelled by human judgement, and explicit user interaction, known
as user engagement, need to be investigated. Such studies are known as online–offline evaluations, and we review the
previous works on this topic now.

There are two approaches in general to evaluate retrieval quality: (i) manual judgements of the relevance of
documents to queries provided by trained annotators (offline evaluation) [16] and (ii) user behaviour observations
when presenting the search results (online evaluation) [11]. While offline evaluations are performed on pre-collected
datasets, online evaluations involve testing the system in real-time using actual users. Both approaches have advantages
and disadvantages, and the choice of which method to use depends on various factors, such as the type of system
being evaluated and the available resources. The effectiveness of using human judgements in quality retrieval analysis
has been demonstrated before [69]. Offline evaluations are often used before deploying new ranking policies, which
help to run A/B testing2 more safely and intelligently [15, 42]. However, such an evaluation has two limitations. First,
human annotations may not be capable of reflecting the actual relevance and cannot reliably estimate the user’s actual
information need simply based on the query issued and inaccurately reflect user utility [1, 12]. This comes from the fact
that different users may issue the same textual query with different information needs or intents [67]. Moreover, It was
understood that users’ emotion control (EC) interacts with search tasks and influences the search behaviour which may
not be captured by the annotators [37]. Second, the cost of conducting offline evaluations, such as hiring annotators
or setting up infrastructure, is typically substantial. Additionally, offline evaluations usually take considerable time
to complete, ranging from days to weeks or even longer. These factors limit offline evaluations’ benefits for many
organisations or projects, as the expenses and time required may be too burdensome. Consequently, alternative, more
cost-effective, faster evaluation methods, such as online evaluations, are often preferred. These online metrics are based
on observable user behaviour [11, 35] and include: Click Through Rate (CTR) and the ranks of clicked documents [32]
as well as their extensions (e.g., A binary value representing click) [15], Precision at Lowest Click (PLC) (i.e., number of
clicks divided by the position of the lowest click) [24]), dwell time including query dwell time, time to first click, the
average of click dwell time [29, 75], query reformulations, response times, how the session was terminated (e.g., by
closing the browser window or by typing a new Internet address) [21], mouse movement and per-topic reading time [38].
Online evaluations can be grouped into two classes of absolute metrics and pairwise preferences [46]. Contrary to
absolute metrics that provide an overall assessment of the retrieval performance based on predefined criteria, pairwise
preference methods such as interleaving assume that the better of two (or more) options can be identified based on
user behaviour. For example, clicked results are preferred over results previously skipped in the ranking [34]. Despite

2A randomised experiment that usually involves two variants (A and B), shown to users, and statistical analysis is used to determine which variation
performs better) [39].
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the enormous value of click-through data, it is inherently biased and very noisy [70]. There are multiple sources of
bias, including position bias [33], presentation bias (e.g., the position of results in the ranking) [64], and trust bias [51].
Such noisy data may lead to biased training data that negatively affects the downstream applications [30]. There are
also some other factors, such as educational level, intelligence, and familiarity with Information Retrieval systems that
impact the decision of user satisfaction and the click-through data [2, 27, 43] making the data difficult to interpret. This
agrees with observations by Zheng et al. [81] that click-through data and relevance do not always correlate and CTR
should be used with precaution.

Substantial discrepancies between the offline and online evaluations have been reported in the literature. Cremonesi
et al. [17], Ekstrand et al. [19], Garcin et al. [23], Said and Bellogín [60] identified several inconsistencies when
investigating recommendation methods using online and offline evaluations. Yi et al. [74] investigated the performance
of predictive models for search advertising using online and offline evaluation metrics and showed that some offline
metrics like AUC (the Area Under the Receiver Operating Characteristic Curve) and RIG (Relative Information Gain)
could be misleading and result in a discrepancy in online and offline metrics. Such discrepancy was also observed and
stated by Beel et al. [8] and Beel and Langer [7]. In another study, Garcin et al. [23] investigated news recommenders
and showed that in an offline setting, recommending popular stories is a winning strategy, but in an online setting, it
was the poorest.

Online evaluations can also be misleading. Zheng et al. [81] and later Garcin et al. [23] showed that CTR, an adopted
and widely accepted metric in online evaluations, overestimates the impact of popular items. In fact, recommending
items with higher CTR does not necessarily imply higher relevance of two items, and factors like item popularity, item
serendipity or the placement/order of recommendations may also influence a user’s click behaviour.

Chen et al. [13] conducted a meta-evaluation of a series of existing online and offline metrics to study how well they
predict actual search user satisfaction in different search scenarios. They showed both types of evaluation noticeably
correlate with user satisfaction, but they reflect satisfaction from different perspectives and for different search tasks.
They observed a strong correlation between top-weighted offline metrics and user satisfaction in homogeneous search
(i.e. ten blue links), whereas online metrics outperform offline metrics when vertical results are federated. They also
understood that incorporating mouse hover information into existing online evaluation metrics better aligns with
search user satisfaction than click-based online metrics. Liu and Yu [44] believed users often seek different goals at
different search moments, which may evaluate system performances differently. Therefore, achieving real-time adaptive
search evaluation and recommendation would be difficult. They meta-evaluated a series of online and offline evaluation
metrics through a user study. Their results showed that the performance of query-related and online features had large
variations across different task states. However, offline evaluation metrics generally had stronger correlations with user
satisfaction. In another study, Rossetti et al. [59] showed that with the same set of users, the ranking of algorithms
based on offline accuracy measurements contradicts the results from the online study. Later, a comparison of online
and offline assessments for Query Auto Completion was carried out by Bampoulidis et al. [6], and it showed a large
potential for significant bias if the raw data used in an online experiment is re-used for offline evaluations. It is worth
noting that a lack of correlation between offline and online evaluations in voice shopping traffic and Web image search
was also reported by Zhang et al. [80] and Ingber et al. [28].

While prior works have offered insight into how well online and offline evaluations correlate in retrieval quality,
there is no extensive study on this controversial topic in search clarification. The only available study was conducted
by Zamani et al. [78], who examined the MIMICS dataset and investigated correlations between online and offline
evaluations using a single offline label. They concluded that no correlation was observed between the two evaluation
Manuscript submitted to ACM
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methods. The focus of our study is to investigate the relationship between online and offline evaluations in terms
of ranking multiple clarification panes and identifying the most engaging clarification pane for a given query. Next,
we group the query-clarification pairs based on the query length and Impression Level for a more detailed study.
Furthermore, we investigate if the combination of offline labels aligns better with the online label using a series of LTR
models. Finally, the performance of an LLM in predicting user engagement with and without incorporating the offline
labels as the model input is studied.

3 METHODOLOGY

First, we describe the dataset used in our experiments in Section 3.1, including the online and offline labels. We then
explain the experimental design in Section 3.2, including our approach to investigating the relationship between the
online and offline evaluations. Finally, we specify the evaluation metrics used in Section 3.3.

3.1 Dataset

In this study, we use the MIMICS-Duo dataset that contains both online and offline evaluations for 1,034 query-
clarification pairs. To ensure the accuracy of the collected labels, Tavakoli et al. [65] conducted extensive quality
assurance and attention measures in addition to pilot surveys, which led to a success rate of higher than 90% for the
data collection. The dataset details and labels used in this study are now discussed.

3.1.1 Online labels. Online labels in the MIMICS-Duo dataset include Engagement Level and Impression Level. The
Engagement Level is constructed based on the click-through rate of real user interactions with clarification panes in
Bing [78]. In general, click behaviour can represent user attention and satisfaction [14]. An equal-depth method was
used for Engagement Level, dividing all the positive click-through rates into ten bins. Hence, the Engagement Level is
an integer between 1 to 10 presenting the level of total engagement received by users in terms of click-through rate.
Moreover, an Engagement Level of 0 was assigned to clarification panes with no clicks. According to Tavakoli et al.
[65], collected queries have different topics and intents, and they attempted to keep a balance between the number of
query-clarification pairs with different Engagement Levels. The second online label is the Impression Level, computed
based on the number of times a given query-clarification pair was presented to users. Every query-clarification pair in
the dataset was shown at least ten times to search engine users. The Impression Level has three quality values (low,
medium, and high) and correlates with the query frequency. This study uses this online label to group the clarification
panes for the experiments in Subsection 4.2.

3.1.2 Offline labels. Offline labels in the MIMICS-Duo dataset include a series of crowd-sourcing labels consisting of
(i) List-wise Preference, (ii) Quality Labelling, and (iii) Aspect Labelling.

The List-wise Preference was collected based on crowd-sourced worker preferences. Workers were simultaneously
shown all generated clarification panes (varied between three to eight depending on the query) for a given query. They
were asked to rate the clarification panes using a 5-point rating (five means highest preference, and one means lowest
preference). The nature of this label is different from other labels. For this label, all clarification panes for a given query
were relatively rated with respect to each other at the same time. However, for the other two labelling tasks, workers
were shown one clarification pane and asked to annotate only one characteristic of the clarification pane in isolation.

The Quality Labelling consists of two quality measures, the Overall Quality of the complete clarification panes and
Option Quality, that is, the quality of individual options (clarification pane candidate answers). Crowd-source workers
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8 Tavakoli et al.

Fig. 2. An overview of variables used in this study from the MIMICS-Duo dataset.

rated the clarification panes and the quality of their options with a 5-point rating (five means very good quality, and
one means very bad quality).

Aspect Labelling consists of four sub-labels, that is, Coverage (i.e., the extent to which the clarification pane covers
every potential aspect of the query), Diversity (i.e., the extent to which the clarification pane does not contain redundant
information), Understandability (i.e., the extent to which the clarification pane is digestible and meaningful), and
Importance Order (i.e., the extent to which the most relevant and important candidate answers are positioned from left
to right). Workers were asked to label a clarification pane for these aspects through a 5-point rating (e.g., five means the
worker strongly agreed that the clarification pane had high coverage, and one means the worker strongly disagreed that
the clarification pane had a high coverage). Detailed evaluation of offline labels was discussed by Tavakoli et al. [65].

3.2 Experimental Design

We showed that each clarification pane has two types of labels, online and offline. We use one online label (i.e.,
Engagement Level) and five offline labels (i.e., List-wise Preference, Overall Quality, Coverage, Diversity, and Importance

Order) to investigate the relationship between online and offline evaluations in search clarification. In the MIMICS-Duo

dataset, Overall Quality and Option Quality labels have a very high correlation. This is understandable as the clarification
question in more than 95% of the clarification panes in the dataset is the general question of “Select one to refine your
search”. Therefore, the overall quality of a clarification pane is mainly based on the quality of its options. Hence, this
study only focuses on Overall Quality. We also do not investigate the Understandability label in this study. The mean
value of Understandability across the MIMICS-Duo dataset is 4.6 (out of 5), showing that more than 90% of the workers
agreed that the clarification panes were highly understandable. Therefore, this characteristic has a minor impact on our
evaluations. Figure 2 shows an overview of variables used in this study from the MIMICS-Duo dataset.

3.2.1 Overall relationship between online and offline evaluations. The main aim of this research is to compare
the clarification ranked lists created using offline labels with the ideal clarification ranked lists created using the
Engagement Level (i.e., the ground truth), in general, and to compare the top-rated ones in the ranked lists, in particular.
Figure 3 shows an example of ranking three clarification panes [𝐴, 𝐵,𝐶] for a given query “the boy who harnessed the
wind” if the corresponding online Engagement Levels, based on CTR and the Coverage label, scored by annotators are
[8, 4, 0] and [4, 5, 4], respectively. We can see from this example that the offline label, here Coverage, was not completely
successful in replicating the ideal ranked list, except for the clarification pane C.
Manuscript submitted to ACM
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Fig. 3. Two ranked lists of clarification panes for the query “the boy who harnessed the wind”. The left online ranked list is based on
the Engagement Levels from Bing users and acts as our ground truth. The ranked list on the right is an example of an offline rank list
based on Coverage.

In this study, we first investigate the relationship between online and offline labels on all 306 queries in the MIMICS-

Duo dataset in terms of similarity of the ranked-list of clarifications without applying any filtering or grouping on
the dataset. In the next step, we investigate if collected offline labels can be used as input features in LTR models
to understand whether the combination of offline labels can produce ranked lists of clarification panes more similar
to ideal ranked lists, compared to when the ranked lists are created using individual offline labels. To comprehend
the interdependency of the offline labels, Tavakoli et al. [65] examined the correlations among offline labels. They
discovered that there was only a week correlation between Coverage and Diversity, while the remaining labels displayed
negligible to low correlations. We use four offline labels of Overall Quality, Coverage, Diversity, and Importance Order,
as well as the number of candidate answers in each clarification pane as input features in the LTR models. The features
are linearly normalised based on their min/max values. Considering its different nature, we do not use the List-wise
Preference label. While other labels offer insights into various aspects of clarification panes, this label is based on the
relative rating of all clarification panes generated for a given query. We employ four LTR models, including Mart,
RandomForests, RankBoost, AdaRank that are implemented in RankLib [18]. We also utilise SVM-rank [31]3 with a linear
kernel. We use 5-fold cross-validation to evaluate our models. In each fold, the dataset is split into training and testing
sets by the ratio of 4:1.

Ultimately, we leverage the potential of GPT-3.5, an advanced Large Language Model, to predict online user en-
gagement with the clarification panes. We use GPT-3.5-turbo model.4 The task assigned to GPT-3.5 is to predict the
Engagement Level within a range of 0 to 10. Initially, we incorporate the offline labels as input for the model. The prompt
that we use to feed the GPT model contains (1) a query, (2) a clarification pane that includes Clarification Question

and associated Options (Candidate Answers) and (3) four offline labels similar to LTR models. GPT-3.5 generates text
by predicting the next word or token based on the input prompt. It uses its extensive training data to make informed
predictions. Subsequently, we conduct the experiment once more, this time excluding the use of offline labels as the

3https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
4Last accessed on the 29𝑡ℎ of May 2023.
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10 Tavakoli et al.

model input. This will help determine if the inclusion of offline labels indeed boosts the model’s efficacy in predicting
user engagement. Our initial experiments explored various prompts that focused on the same task. We noted that
when attempting to include offline labels as input, there were cases where GPT-3.5 encountered difficulty in generating
the Engagement Level. In some instances, it presented the information in a quantitative format rather than within the
specified range of 0 to 10. The most successful prompt templates utilised in this study are shown in Figures 4 and 5.5

We prompt the model to generate an Engagement Level for 1,034 query-clarification pairs. We conduct experiments
using various temperature settings, specifically, temp = {0.0, 0.5, 1.0}. The temperature parameter regulates the degree
of randomness in the generated text. During text generation, the model generates a probability distribution over the
next word or token, and the temperature parameter influences the shape of this distribution. A higher temperature
value, such as 1.0, results in a more uniform distribution and increases the randomness in the generated output. This
can lead to a wider range of diverse and creative responses but may also introduce more errors or nonsensical text. On
the other hand, a lower temperature value, such as 0.2, sharpens the distribution, making it narrower and less random.
This tends to produce more focused and deterministic responses. Choosing the appropriate temperature value depends
on the desired balance between randomness and coherence in the generated text. By experimenting with different
temp values, we aim to identify the optimal setting for aligning online and offline evaluations in search clarification.
Nevertheless, we need to consider the sources of uncertainty in the analysis including the inherent randomness in
the model’s text generation process, especially at higher temperatures, differences in the nature and context of the
query-clarification pairs, and potential inconsistencies or noise in the offline labels used for training. Subsequently, we
rank the clarification panes for each query based on the predicted Engagement Level by GPT-3.5 and compare these
rankings against the ideal ranked lists, created using actual Engagement Level.

Next, we investigate the impact of query length on the relationships between online and offline evaluations in search
clarification. While there is no universal definition of what constitutes a short or long query, some researchers have
used a threshold of 3–5 words for short queries and 6 or more words for long queries. For example, Bendersky and
Croft [9] defined short queries as those containing up to four words and long queries as those containing five or more
words. In another study, Huston and Croft [26] used thresholds of 2, 4, and 5 words to distinguish between very short,
short, and long queries. The MIMICS-Duo contains queries with a length of 1 to 9 words. However, the number of
queries in the dataset for each query length varies. For instance, there are 45 queries with one word, while only 7
queries with 9 words. To investigate the impact of the query length and keep a balance between the groups in terms
of the number of queries and query-clarification pair, we assume a query is short if the length is between 1–4 words
(126 queries with 415 query-clarification pairs) and it is long if the length is between 5–9 words (180 queries with
619 query-clarification pairs). Studying the impact of query length on the relationships between online and offline
evaluations in search clarification is essential for several reasons:

• User Intent and Query Complexity: Short Queries: Typically represent more general or ambiguous user intent.
Users might be in the early stages of information seeking. Long Queries: Often indicate more specific and
detailed user intent. Users may have a clearer idea of what they are looking for.

• Clarification Necessity: Short Queries: These might require more clarification due to their ambiguous nature.
Understanding user needs with limited context can be challenging. Long Queries: Provide more context, which
can help in better understanding and addressing the user’s specific needs, potentially requiring less clarification.

5The prompt template used in this study, along with other versions of prompts, is publicly accessible at https://github.com/Leila-Ta/On_Off-Eval-
Search_Clarification.
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Fig. 4. The prompt template used to feed the GPT model when offline labels were used as the model input.

• Interaction Patterns: Short Queries: Users might engage more with clarification panes as they seek to refine
their search intent. Long Queries: Users might engage less with clarification panes if the query already provides
sufficient context.

• Impact on Model Performance: Different Performance Metrics: The effectiveness of models in predicting
engagement and aligning offline and online evaluations might vary with query length. Model Adaptability:
Understanding how the model performs with varying query lengths can help in optimizing it for different types
of user queries.

• Search Engine Optimisation: Tailoring Results: Insights from query length studies can help in tailoring search
results and clarifications based on the length and complexity of user queries. Improving User Experience:
Enhancing user satisfaction by providing more relevant clarifications and results based on query length.

3.2.2 Impact of uncertainty in online labelling on corresponding with offline evaluations. Here, we group
the clarification panes based on the Impression Level and discard any query-clarification pair with a low Impression

Level. As mentioned in Section 3.1.1, there is a three-step Impression Level per query-clarification pair (i.e., low, medium,
Manuscript submitted to ACM
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Fig. 5. The prompt template used to feed the GPT model when offline labels were not used as the model input.

high). The Impression Level was computed based on the number of times the given query-clarification pair was shown
to users. Hence, the Impression Level correlates with the query frequency. Query-clarification pairs with low impression
levels have been shown to fewer users, resulting in limited data. This small sample size can lead to higher variability
and lower reliability in engagement measurements. Removing these pairs helps ensure that the data used for analysis
is statistically significant and more robust, reducing the impact of outliers and noise. With fewer impressions, the
engagement level metrics might not accurately reflect true user engagement. More impressions generally provide a
clearer picture of user behaviour and preferences. Moreover, low impression data can introduce bias, as it may not
be representative of broader user interactions. This can skew results and lead to incorrect conclusions about user
engagement. By focusing on query-clarification pairs with higher impression levels, the study targets more frequently
encountered scenarios, which are likely to have a greater impact on overall user experience. Finally, insights derived
from high Impression Level data are more likely to be applicable and beneficial in real-world search environments where
user engagement patterns are critical.

This part of the study helps us to focus on more reliable data. Removing the query-clarification pairs with the low
Impression Level leaves the dataset with 212 queries and 703 query-clarification pairs with medium and high Impression

Level and with one further step of filtering by removing the query-clarification pairs with medium Impression Level, 70
queries with 287 query-clarification pairs remain.

3.3 Evaluation Metrics

As previously stated, this study encompasses two primary objectives: firstly, to assess the effectiveness of offline labels
in prioritising the MECP at the top of the list, and secondly, to determine the degree of similarity between the ranked
lists produced by the offline labels and the ideal ranked lists for clarification panes. Similar to any other studies, it is
important to choose the most appropriate evaluation metrics to be able to draw concise conclusions. Since the aim
of any clarification selection model is to show the MECP to the users (i.e., selecting the most engaging pane among
multiple generated clarification panes for a given query), it does not matter whether the clarification pane with the
Engagement Level of 10 is the top-rated or with the Engagement Level of 4. Hence, metrics such as precision at position
one (P@1) or mean reciprocal rank (MRR) are appropriate for evaluating the position of the MECP in the ranked list,
Manuscript submitted to ACM
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without taking into account the specific Engagement Level. We define P@1 as shown in Eq. 1:

𝑃@1 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)

where true positive (TP) and false positive (FP) are the total numbers of clarification panes that are correctly and
incorrectly top-rated, respectively, for all queries.

To measure MRR, we calculate the reciprocal rank at which the MECP is retrieved in a ranked list of clarification
panes and calculate the mean value across all queries. We also measure normalised discounted cumulative gain at
position one (NDCG@1) that considers the relevance factor (here, the Engagement Level) when evaluating the top-rated
clarification pane.

For the second objective, which involves assessing the similarity between the clarification ranked lists, we use
NDCG@3. The choice of a cutoff at 3 is based on the observation that approximately 70% of queries consist of only
three clarification panes. Furthermore, for queries with four or more clarification panes, around 50% of those panes
receive no user engagement. Hence, NDCG@3 ensures a fair evaluation of all clarification panes at a consistent depth.

We also calculate rank-biased precision (RBP) [47, 48] and ranked-biased overlap (RBO) [71] that consider a binary
relevance factor in the evaluation of the top-rated clarification pane in the list. RBP measures the utility rate that is
gained by a user at a given degree of persistence (p), representing an aspect of user behaviour. Moffat and Zobel [48]
assumed that a user inspects the first document and proceeds from the ith document to the i+1th with fixed conditional
probability p. For instance, if p=0.5, the user obtains a high average per document utility, which means there is a relevant
document in the first one or two rank positions. The RBP equation (Eq. 2) is proposed below:

𝑅𝐵𝑃 = (1 − 𝑝)
𝑑∑︁
𝑖=1

𝑟𝑖 .𝑝
𝑖−1 (2)

where 𝑟𝑖 indicates the binary relevance of the ith ranked document scored as either 0 (not relevant) or 1 (relevant).
The RBP metric was introduced to measure the effectiveness of a ranked list retrieved for a query and varies between

0 and 1. However, RBP cannot be used directly in this study as only one clarification pane is shown to a user at a time,
not a list of clarification panes. To employ RBP in this study, we assume: (1) regardless of the value of Engagement Level,
if there is a positive Engagement Level for a given clarification pane, 𝑟𝑖=1 and if not, 𝑟𝑖=0, and (2) since only one pane is
shown to a user, we assume p=0.05, which means the probability of a user checking the second clarification pane (if it
exists) is roughly 5%. We also calculate RBP for p values of 0.5 and 0.7 to investigate the clarification pane ranked lists
at deeper depths. We calculate RBP for every ranked list generated by each offline label and report the average RBP for
each label.

The second rank-biased metric is RBO, developed by Webber et al. [71] and is a similarity measure to compare two
ranked lists, quantifying how far the observed ranking deviates from the ideal ranking. It has the same assumptions as
RBP and can be calculated using the Eq. 3:

𝑅𝐵𝑂 = (1 − 𝑝)
∞∑︁
𝑘=1

𝑝𝑘−1
��𝐴1:𝑘 ∩ 𝐵1:𝑘

��
𝑘

(3)

where A and B are two ranked lists, k is the depth of comparison,
��𝐴1:𝑘 ∩ 𝐵1:𝑘

�� is the size of intersection between two
lists at depth k.

RBO varies between 0 and 1; 1 means both ranked lists are identical, and 0 means they are completely disjoint. It is
evident that RBO investigates the overlap and ordering between two ranked lists (the number of identical documents
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Table 1. Relationships between the ranked lists of clarification panes created by the Engagement Level and created by offline labels.

Engagement Metric
Level vs. NDCG@1 NDCG@3 P@1 MRR RBP RBO

List-wise Preference 0.459 0.729 0.559† 0.749† 0.520 0.339

Aspect

Overall Quality 0.433 0.724 0.562† 0.760† 0.503 0.301
Coverage 0.448 0.725 0.569† 0.747† 0.510 0.329
Diversity 0.454 0.731 0.523† 0.726† 0.515 0.323
Importance Order 0.412 0.706 0.484† 0.710† 0.455 0.275
Mean 0.438 0.723 0.535 0.736 0.496 0.307

Random Ranker 0.403 0.706 0.307 0.561 0.469 0.285
† Significantly different from the Random Ranker baseline (Tukey HSD test, p<0.05).

shared between two ranked lists). The current RBO definition cannot be used in this study as the clarification panes
for a given query in the ranked lists generated by any two labels are always the same. Therefore, RBO in the current
definition is always 1. To adopt RBO in this study, we define the size of the intersection of two ranked lists based on the
number of panes that have the same positions in both lists. We calculate RBO between the ideal ranked list generated
by Engagement Level and ranked lists generated by offline labels.

4 RESULTS

We present the results of experiments on online–offline evaluations in search clarification in the following subsections.

4.1 Overall Relationship Between Online and Offline Evaluations

First, the offline labels were used individually to create the clarification ranked lists and then the offline labels were
employed as input features for LTR and GPT-3.5 models to create the ranked lists. In the following step, we repeated the
experiments on the short and long queries. To assess the performance of the offline labels in comparison to a baseline,
we additionally ranked the clarification panes for each query using a Random Ranker.6 For the sake of reproducibility,
our results and codes are publicly available.7 We performed Tukey honestly significant difference (HSD) [68] to find the
means that were significantly different from each other for each column in the tables. The Tukey HSD test is a post
hoc test used when there are equal numbers of subjects in each group for which pairwise comparisons of the data are
made [63]. The highest-performing label is highlighted in bold within each column in all presented tables.

4.1.1 Offline labels. Table 1 shows the relationships between the ranked lists of clarification panes created by the
Engagement Level and the ranked lists created by offline labels on all queries. We can observe that (1) the MECPs
were more likely to have the highest Overall Quality and Coverage compared to other clarification panes; (2) all offline
labels performed noticeably better than a Random Ranker (e.g., Coverage showed 85% improvement over a Random
Ranker in presenting the MECP for a given query at the top of the ranked list). However, Importance Order evaluation
methodology showed the poorest performance among all offline methods. These findings were derived from the P@1
and MRR metrics analysis, revealing statistically significant differences between them. The slight improvements over a
Random Ranker shown by other metrics (i.e., NDCG@1, NDCG@3, RBP, and RBO) were not significant. This indicates
that the metrics used to compare online and offline evaluations in search clarification have noticeable influences on

6Random Ranker is repeated 1000 times, and the mean values are reported.
7https://github.com/Leila-Ta/On_Off-Eval-Search_Clarification
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Fig. 6. Variations of (a) RBP and (b) RBO at a depth of 3 for different values of p.

the result justifications. For instance, P@1 and MRR are unconcerned about the user Engagement Level and they only
check the rank of the MECP. While for NDCG@1, if an engaging clarification that is not the MECP is ranked top, it still
receives a score. Such an evaluation increases the chance of a Random Ranker showing a better performance than when
the evaluation is only based on the position of the MECP. As indicated in Section 3.3, we also calculated RBP and RBO
for two higher p values (i.e., 0.5 and 0.7) in addition to 0.05 that are shown in Table 1 to investigate the similarity in the
ranked lists at deeper depths. We observed that the performance of offline labels merged toward a Random Ranker by
increasing the p value (see Figure 6).

We also considered the Kendall (𝜏) [36], and Spearman (𝑟𝑠 ) [72] rank correlations between online and offline ranked
lists generated for each query but did not observe correlations. The majority (70%) of the ranked lists only had three
clarification panes, and such a correlation analysis may not be accurate enough to draw conclusions. However, a less
sensitive analysis using Pearson correlations [52] across all query-clarification pairs captured weak correlations between
two offline labels of Overall Quality and List-wise Preference with the Engagement Level (i.e., 𝜌=0.304 between Overall

Quality and Engagement Level and 𝜌=0.316 between List-wise Preference and Engagement Level).

4.1.2 LTRmodels. During the second phase of the experiments, our objective was to investigate how the combinations
of offline labels impact the relationship between online and offline evaluations. We formulated this experiment as an
LTR task and incorporated the offline labels as input features for the models. The performances of the LTR in ranking
the clarification panes are shown in Table 2. It is evident that SVM-rank exhibited better performance compared to
other LTR models. However, its superior performance was not significantly different from the other LTR models. When
evaluating the effectiveness of LTR models using P@1 and MRR and comparing them to the Overall Quality or Coverage
labels in Table 1 (two outperforming offline labels based on the same metrics), it becomes apparent that LTR models that
incorporated the offline labels as input features did not outperform the individual offline labels in accurately ranking
the MECPs at the highest position in the lists. However, the performances of SVM-rank and AdaRank were significantly
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better than the Random Ranker, presented in Table 1. It seems the complexity of the LTR models may not be adequate
to capture the underlying patterns present in the data. Furthermore, the characteristics and size of the training data can
also impact the performance of LTR models, posing a challenge for the models to effectively learn robust patterns and
generalise effectively.

4.1.3 Large language model. Table 2 also indicates the performance of GPT-3.5 in predicting user engagement and
ranking clarification panes. We examined GPT-3.5 using three different temperature settings: 0.0, 0.5, and 1.0. Comparing
Table 1 and 2 reveals that not only GPT-3.5 outperformed LTR models in terms of P@1 and MRR when a temperature of
0.0, 0.5 and 1.0 are utilized, but it also showed significantly better performance compared to the individual offline labels
of Overall Quality and Coverage when a temperature of 0.0 is used. Obtaining the best results with a temperature value
of 0 suggests that GPT-3.5 has achieved optimal performance by using a deterministic approach. This is a significant
advantage when consistency is crucial, such as in search clarification. However, it is important to note that using
a temperature of 0 may lead to overly rigid and repetitive outputs, as the lack of randomness can result in a lack
of diversity. When the temperature value is set to 0, it means that the output generated by GPT-3.5 is determined
solely by the model’s confidence scores. In other words, the model selects the most probable word or token at each
step without any randomness or variation. This finding emphasises the efficacy of GPT-3.5 in predicting online user
engagement and hence, accurately identifying the MECPs when incorporating the offline labels as the model input.
However, similar to LTR models and offline labels, GPT-3.5 fell short of significantly surpassing the performance of
the Random Ranker in ranking multiple clarification panes for given queries (no significant differences were observed
between the performances of GPT-3.5 and the Random Ranker in terms of NDCG@3.

We also observed that when GPT-3.5 was provided with high-quality human-annotated labels of clarification
characteristics, it showed better performance compared to the List-wise Preference labelling approach conducted by
crowd-source workers. In the crowd-sourcing task, all the generated clarification panes for a given query were presented
to workers simultaneously, and the workers were asked to rate all the panes based on their preferences (without having
access to the Aspect labels). Although GPT-3.5 could not predict the relative Engagement Level among the panes and
evaluated each pane independently, its user engagement prediction resulted in more successful identification of the
MECPs compared to the List-wise Preference labelling method.

4.1.4 Impact of query length on the relationship between online and offline evaluations. Table 3 shows
the calculated metrics for short (1–4 words) and long (5–9 words) queries. If a query is short, the List-wise Preference
evaluation performs better than other offline labels in placing the MECP at rank one (i.e., obtaining the highest P@1,
MRR and RBO). However, if the query is long, selecting the MECP from a pool of clarification panes generated for a
query can be carried out using Overall Quality and Coverage evaluations. Similar to the previous table, no conclusion
can be drawn about the impact of the query length on the similarity of the ranked lists, as they did not show any
significant improvement over a Random Ranker (no significant differences were measured in NDCG@3 between offline
labels and the Random Ranker). We also performed a Tukey HSD test on the calculated P@1 and MRR values for short,
long, and all queries. The results indicate that there are no significant differences, suggesting that the length of the
query does not have an impact on the relationship between offline evaluations and online evaluations in the context of
search clarification.

Manuscript submitted to ACM



833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Online and Offline Evaluation in Search Clarification 17

Table 2. Evaluation of three GPT-3.5 configurations across varying temperature settings and five LTR models, utilising offline labels
to generate ranked lists of clarifications.

Metric
Engagement Level vs. NDCG NDCG P@1 MRR RBP RBO@1 @3

RandomForests 0.473 0.739 0.357†‡£ 0.611†‡£ 0.507 0.358
AdaRank 0.472 0.736 0.426†‡£§ 0.673†‡£§ 0.498 0.340
MART 0.468 0.733 0.341†‡£ 0.609†‡£ 0.508 0.342
RankBoost 0.459 0.733 0.364†‡£ 0.639†‡£ 0.486 0.345
SVM-rank 0.456 0.741 0.427†‡£§ 0.698†‡£§ 0.495 0.346
GPT-3.5 (temp = 0.0) 0.460 0.734 0.663†§∗ 0.830†§$ 0.525 0.382
GPT-3.5 (temp = 0.5) 0.439 0.718 0.588§ 0.778§ 0.487 0.363
GPT-3.5 (temp = 1.0) 0.468 0.732 0.539§ 0.751§ 0.523 0.386
†, ‡, £ Significantly different from GPT-3.5 with temp = 1.0, temp = 0.5, and temp = 0.0, respectively.
§ Significantly different from the Random Ranker baseline (Table 1).
∗ Significantly different from Coverage, the best performing label in terms of P@1, Table 1.
$ Significantly different from Overall Quality, the best performing label in terms of MRR, Table 1.

Table 3. Impact of the query length on relationships between the ranked lists of clarifications created by the Engagement Level
and created by offline labels. (Short Query: 126 queries with 415 query-clarification pairs; LongQuery: 180 queries with 619 query-
clarification pairs.)

Metric
Engagement Level vs. NDCG NDCG P@1 MRR RBP RBO@1 @3

Sh
or
tQ

ue
ry

(1
–4

) List-wise Preference 0.461 0.721 0.561† 0.751† 0.495 0.368†

Aspect

Overall Quality 0.408 0.707 0.539† 0.748† 0.495 0.280
Coverage 0.412 0.702 0.539† 0.737† 0.473 0.317
Diversity 0.455 0.725 0.533† 0.737† 0.511 0.362†

Importance Order 0.371 0.680 0.478† 0.710† 0.422 0.269
Mean 0.412 0.704 0.522 0.733 0.475 0.307

Random Ranker 0.376 0.684 0.289 0.550 0.422 0.259

Lo
ng

Q
ue
ry

(5
–9

) List-wise Preference 0.458 0.740 0.556† 0.745† 0.549 0.300

Aspect

Overall Quality 0.469 0.748 0.595† 0.777† 0.490 0.325
Coverage 0.498 0.758 0.611† 0.762† 0.554 0.348
Diversity 0.452 0.741 0.508† 0.712† 0.512 0.270
Importance Order 0.472 0.743 0.492† 0.710† 0.503 0.293
Mean 0.473 0.748 0.552 0.740 0.515 0.309

Random Ranker 0.441 0.739 0.333 0.578 0.516 0.302
† Significantly different from the Random Ranker baseline (Tukey HSD test, p<0.05).

4.2 Impact of Uncertainty on the Relationship Between Online and Offline Evaluations

Here, we separated the query-clarification pairs based on the Impression Level and repeated the experiments (i.e.,
assessing the position of the MECPs in the created ranked lists and the similarity of the ranked lists). We learned
from Zamani et al. [78] that a clarification pane with high Impression Level was shown to the users more than a
clarification pane with low Impression Level. Therefore, the obtained Engagement Level by a clarification pane with a
high Impression Level is likely to be more reliable. In other words, the uncertainty in the collected online data is less.
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Table 4. Impact of the Impression Level on relationships between the ranked lists of clarifications created by the Engagement Level
and created by offline labels.

Metric
Engagement Level vs. NDCG NDCG P@1 MRR RBP RBO@1 @3

H
ig
h

List-wise Preference 0.617 0.837 0.614† 0.781† 0.701 0.417

Aspect

Overall Quality 0.667 0.860 0.729†§ 0.848†§ 0.793 0.475
Coverage 0.657 0.849 0.657† 0.785† 0.765 0.461
Diversity 0.649 0.842 0.649† 0.782† 0.740 0.449
Importance Order 0.577 0.818 0.614† 0.764† 0.714 0.305
Mean 0.638 0.842 0.661 0.795 0.753 0.423

Random Ranker 0.626 0.841 0.429 0.644 0.751 0.360

M
ed
iu
m
–H

ig
h

List-wise Preference 0.524 0.765 0.623† 0.789† 0.588 0.427

Aspect

Overall Quality 0.533 0.776 0.665†§ 0.816†§ 0.606 0.405
Coverage 0.535 0.772 0.618† 0.775† 0.613 0.404
Diversity 0.528 0.772 0.613† 0.773† 0.597 0.409
Importance Order 0.446 0.734 0.519† 0.731† 0.499 0.303
Mean 0.511 0.764 0.604 0.774 0.579 0.380

Random Ranker 0.473 0.744 0.401 0.634 0.553 0.357
† Significantly different from the Random Ranker baseline.
§ Significantly different from the same metric calculated on all query-clarification pairs in Table 1.

Table 4 shows the calculated metrics for all offline labels for the query-clarification pairs with high Impression Level (top
section) and with medium and high Impression Levels (bottom section). Table 4 indicates that when query-clarification
pairs with low Impression Level were removed from the dataset (i.e., eliminating uncertainty from online evaluation),
the clarification panes with the highest Overall Quality were likely to be the MECPs (obtaining high values of P@1 and
MRR). However, no significant differences over a Random Ranker were observed for NDCG@3, showing that the offline
labels were unable to produce clarification ranked lists better than a Random Ranker.

By simultaneously examining Tables 1, 3, and 4, it becomes evident that the Importance Order had the poorest
relationship with the online label compared to other offline labels. This implies that the engagement of users with the
clarification pane was not significantly influenced by the order of candidate answers. Moreover, comparing Tables 1
and 4 shows much higher values for P@1 and MRR when we removed the query-clarification pairs with low Impression

Level from the dataset. We performed a Tukey HSD test on the calculated P@1 and MRR values for Overall Quality
between high Impression Level query-clarification pairs (top section in Tables 4) and all query-clarification pairs (Table 1)
and between medium and high Impression Level query-clarification pairs (bottom section in Tables 4) and all query-
clarification pairs (Table 1). The results indicated a significant difference between the two. This suggests that offline
evaluation aligned more closely with online evaluation when the uncertainty in online evaluation was minimal, and the
observed differences were unlikely to be random occurrences due to the sample size.

Additionally, we conducted GPT prompts using query-clarification pairs that only had a high Impression Level (top
section in Table 5). We then compared the model’s performance in predicting the Engagement Level with the results
obtained when using all query-clarification pairs (bottom section in Table 5). We only measured P@1, MRR, NDCG@1
and NDCG@3 here as the metrics of RBP and RBO did not show the required capabilities for such comparisons. The
results indicated a significant improvement in GPT-3.5 performance, particularly when using temp = 0.0, compared
Manuscript submitted to ACM
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Table 5. Impact of the Impression Level on the performance of three GPT-3.5 configurations across varying temperature settings.)

Metric
Impression Engagement NDCG NDCG P@1 MRRLevel Level vs. @1 @3

High
GPT-3.5 (temp = 0.0) 0.658† 0.860† 0.786† 0.890†

GPT-3.5 (temp = 0.5) 0.648† 0.844† 0.657 0.821
GPT-3.5 (temp = 1.0) 0.614† 0.828† 0.529 0.749

Low–Med.–High
GPT-3.5 (temp = 0.0) 0.460 0.734 0.663 0.830
GPT-3.5 (temp = 0.5) 0.439 0.718 0.588 0.778
GPT-3.5 (temp = 1.0) 0.468 0.732 0.539 0.751

† Significantly different from GPT-3.5 with the same temp when using all query-
clarifictaion pairs.

to when using all query-clarification pairs. According to the findings presented in Table 5, when there is reduced
uncertainty in the online evaluation, the performance of GPT-3.5 in predicting online user engagement improves when
the GPT prompt includes offline labels.

In the final phase of comprehending the relationship between online and offline assessments in search clarification,
we employed GPT-3.5 to predict the Engagement Level without using offline labels as input for the model. We conducted
this experiment initially on all 1,034 query-clarification pairs, and subsequently on 287 pairs with a high Impression

Level. Tables 6 and 7 showcase GPT’s performance in predicting the Engagement Level, both with and without the
incorporation of offline labels as model inputs. It is evident that integrating offline labels as input for GPT-3.5 enhances
its capacity to anticipate user engagement. Despite outperforming individual offline labels and LTR models in predicting
user engagement when integrated with offline labels, GPT’s performance notably declined in identifying the MECPs
and generating ranked lists of clarification similar to ideal ranked lists when used independently (not using offline
labels as the model input). Surprisingly, it even demonstrated lower effectiveness compared to certain offline labels.
This observation underscores the significance of offline labels in predicting online user engagement, emphasising that
despite the recent enhancement in language models, they still cannot entirely replace human assessments, especially
in tasks requiring subjective evaluation and contextual understanding. The superior performance with high-quality
human-annotated labels suggests that investing in the creation of accurate and detailed labels can significantly enhance
model performance. This is crucial for tasks requiring nuanced understanding and evaluation, such as user engagement
prediction. The decline in performance when offline labels are not used suggests that a hybrid approach, combining
both offline and online assessments, may be the most effective strategy. This integration can leverage the strengths of
both human judgment and automated predictions to achieve better overall performance.

4.3 The Most vs. the Least Engaging Panes

To enhance our understanding of how the offline labels correspondwith the online label inMECPs, we compared themost
engaging clarification panes with the least engaging clarification panes (LECPs) for queries that their clarification panes
had high Impression Level. High Impression Level query-clarification pairs were chosen to ensure that the uncertainty
in the low Engagement Level obtained by the LECPs is minimal. We observed that the Overall Quality of MECPs was
higher than of the LECPs for more than 51% of the MECPs and it agrees with our observations in Table 4 (see Figure 7).
Although the percentage of the MECPs with higher Coverage, Diversity and the number of candidate answers were also
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Table 6. Impact of offline labels on the performance of three GPT-3.5 configurations across varying temperature settings on the entire
dataset.

Metric
Model Engagement NDCG NDCG P@1 MRRInput Level vs. @1 @3

Using Offline Labels
GPT-3.5 (temp = 0.0) 0.460† 0.734† 0.663† 0.830†

GPT-3.5 (temp = 0.5) 0.439† 0.718† 0.588† 0.778†

GPT-3.5 (temp = 1.0) 0.468† 0.732† 0.539† 0.751†

Not Using Offline Labels
GPT-3.5 (temp = 0.0) 0.346 0.626 0.587 0.703
GPT-3.5 (temp = 0.5) 0.338 0.618 0.448 0.607
GPT-3.5 (temp = 1.0) 0.390 0.649 0.340 0.623

† Significantly different from GPT-3.5 with the same temp but without using offline labels as input
for the model.

Table 7. Impact of offline labels on the performance of three GPT-3.5 configurations across varying temperature settings on only
query-clarification pairs with High Impression Level.

Metric
Model Engagement NDCG NDCG P@1 MRRInput Level vs. @1 @3

Using Offline Labels
GPT-3.5 (temp = 0.0) 0.658 0.860 0.786† 0.890†

GPT-3.5 (temp = 0.5) 0.648† 0.844 0.657† 0.821†

GPT-3.5 (temp = 1.0) 0.614 0.828 0.529† 0.749†

Not Using Offline Labels
GPT-3.5 (temp = 0.0) 0.609 0.825 0.600 0.720
GPT-3.5 (temp = 0.5) 0.552 0.816 0.404 0.717
GPT-3.5 (temp = 1.0) 0.621 0.837 0.404 0.615

† Significantly different from GPT-3.5 with the same temp but without using offline labels as input
for the model.

Characteristic of Clarification Pane
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Fig. 7. Variations of Overall Quality (OQ), Coverage (Cov), Diversity (Div) and the number of candidate answers (# Ans) in the MECPs
when compared to the LECPs.

higher than the LECPs, but the observed higher percentages were not significantly different according to Student’s t-test.
This indicates the Overall Quality of a clarification pane contributed to making it engaging from a user’s perspective.
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Table 8. Example queries and their most and least engaging clarification panes.

Query Pane Clarification Options
Option 1 Option 2 Option 3 Option 4 Option 5

yucca MECP yucca valley yucca mountain yucca desert yucca lake yucca canyon
LECP yucca benefits yucca nutrition facts yucca powder yucca for sale null

why is my MECP hp why is my printer offline dell null null null
printer offline LECP in windows 10 windows 8 windows 7 windows xp null

Table 9. Examples queries with online and offline labels.

Query Pane Engagement Level Overall Quality Coverage Diversity

yucca MECP 3 4 4 3
LECP 1 5 3 4

why is my MECP 8 3 2 2
printer offline LECP 0 5 2 3

4.4 Manual Clarification Pane Inspection

To explore the scenarios where a clarification pane with low quality might engage users more than a high-quality pane,
we conducted a manual inspection of two queries. For these queries, the online and offline labels did not align well with
their MECPs and LECPs. The details of this analysis can be found in Tables 8 and 9.

In the case of the first query, “yucca”, the term can potentially refer to either a shrub or Yucca Mountain in Nevada,
USA. The MECP is associated with the mountain, whereas the LECP is related to the plant. Upon analysing the
clarification options for the MECP, we observed that they predominantly focused on a single intent and exhibited
limited diversity. Specifically, terms such as “mountain”, “valley”, and “canyon” represented similar aspects of Yucca
Mountain. Conversely, the clarification options for the LECP encompassed aspects of the yucca plant, indicating a
greater diversity in the coverage of relevant information (see Tables 8).

According to Tavakoli et al. [65], in the data collection process, the workers were initially presented with the query
and eight associated retrieved documents before annotating a label. Each retrieved document included a title and
snippet. The workers were instructed to review these documents to understand various aspects related to the query
before proceeding with the labelling task. In the case of the “yucca” query, we noticed that all the retrieved documents
shown to the workers focused on the shrub, with no documents about the mountain. It is speculated that the workers
inferred the query’s intent based on the content they reviewed in these documents and performed the labelling task
with that intent in mind. However, the users recorded in the online data got more engaged with a different clarification
pane, which covered the query’s intent not reflected in the retrieved documents (see Table 9). This suggests that as long
as a clarification pane addresses an aspect of the query that is absent in the retrieved documents, users are likely to
engage with it, irrespective of its quality.

For the second query, “why is my printer offline”, the MECP asked for the printer brand, while the LECP requested
clarity from a software point of view. The coverage and diversity labels for both clarification panes were shallow and
correctly rated by the human annotators. However, the annotators believed that the LECP had higher quality than
the MECP as it perhaps provided more options than the MECP, with only two options. Upon reviewing the retrieved
documents, it becomes evident again that all of them are focused on printer issues occurring on various versions of
Windows. None of the documents provide information specifically related to the brand of the printer.
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Examining these two examples underscores the significance of soliciting clarification questions from users when the
quality of retrieved documents is subpar. Moreover, it reveals that the accuracy of offline labelling is greatly influenced
by the information provided to the workers before the labelling process and their knowledge about the query in some
instances.

5 DISCUSSION

We showed that the evaluation of retrieval quality through online and offline assessments often produces contrasting
results, as observed in previous studies on this topic [17, 19, 23, 60]. Specifically, the findings of our current research
differ from those of a prior study focused on search clarification [78]. Zamani et al. [78] examined the MIMICS dataset
and investigated correlations between online and offline evaluations using a single offline label. They concluded that no
correlation was observed between the two evaluation methods. In contrast, the current study analysed the MIMICS-Duo

dataset utilising various online and offline labels. We observed a relationship between online and offline evaluations in
the context of search clarification when the aim is to identify the most engaging clarification pane among multiple
generated panes for a given query. However, our research supports previous studies by revealing a discrepancy between
online and offline evaluations regarding ranking clarification panes for a given query.

We manually examined various panes to understand why users might engage more with lower-quality clarification
panes. We observed that while the human annotation was carried out accurately based on the available information, it
does not always guarantee that the annotators can accurately capture the user’s intent. This finding helps to explain
the contradictions observed between online and offline evaluations.

In attempting to explain these discrepancies, we consider two explanations proposed by Teevan et al. [67] and Liu et al.
[45]. Teevan et al. [67] suggested that different users who issue the same textual query may have distinct information
needs or intentions, leading to varying evaluations. This implies that users’ subjective preferences and expectations
play a significant role in assessing the quality of clarification panes. Liu et al. [45], on the other hand, proposed that
there may be notable disparities between assessors’ judgements and users’ assessments due to differences between
satisfaction prediction and document relevancy prediction. To some extent, satisfaction is subjective, as different users
may have varying opinions on what constitutes a satisfying experience.

Apart from the reasons mentioned here, it is essential to acknowledge that the information provided to annotators
can impact the correlation between online and offline evaluations. When determining the MECPs, it is essential to
assess the SERP and clarification pane quality as well as their relation to each other. Evaluating either component
independently may lead to misleading conclusions in certain scenarios.

This study demonstrates the value of using collected offline labels for predicting online user behaviour and identifying
the MECP within generated panes for a query, particularly when employing Language Models for task formulation.
Despite having identical input features, we observed different performances between the GPT-3.5 and LTR models. The
observations can be attributed to several factors:

• Model Complexity and Training Data: GPT-3.5 is a highly complex language model with 175 billion parameters.
It has been trained on a large and diverse corpus of text from the internet, which gives it a broad understanding
of natural language. This extensive training data allows it to make nuanced judgements about relevance [20].
However, the LTR model had no access to such a vast and diverse dataset. Moreover, The LTR model might have
been trained on a dataset that introduced some biases or limitations that affected its performance. GPT-3.5’s
extensive pre-training on diverse internet text might have helped it overcome some of these biases.
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• Contextual Understanding: GPT-3.5, with its deep transformer architecture, has been trained to generate human-
like text based on context. It can learn from vast amounts of data and this context awareness might enable it to
better understand the relationship between queries, clarification questions, options, relevance labels and user
engagement.

• Model Architecture: GPT-3.5 and LTR models have different architectures and underlying principles. GPT-3.5 is
a transformer-based language model that excels at capturing semantic and contextual information in text. On
the other hand, LTR models, such as AdaRank or RankBoost, are specifically designed for learning to rank tasks
and may have different assumptions and optimisations.

• Learning Approaches: GPT-3.5 utilises unsupervised learning through language modelling objectives, which
allows it to capture a wide range of language patterns and contexts. In contrast, LTR models often rely on
supervised learning techniques with explicit relevance labels or features specific to ranking tasks.

• Evaluation Metric: The metric used to evaluate performance might favour GPT-3.5’s capabilities. If the task relies
heavily on natural language understanding and generation, GPT-3.5’s strengths would be more pronounced.

• Generalisation Ability: GPT-3.5 is designed to generalise well across a wide range of tasks without task-specific
fine-tuning. This means it can handle a diverse set of queries and situations effectively, including those it wasn’t
explicitly trained for.

The observations and findings in this research have several theoretical and practical implications as following:

• By investigating the relationship between online and offline evaluations specifically in the context of search
clarification, we contribute to a deeper theoretical understanding of how offline assessments relate to real-time
user engagement.

• By understanding which characteristics contribute most to engagement, developers can tailor their approaches
to better meet user needs and preferences.

• Insights from our study can inform the development of evaluation methods for search systems. By considering
both online and offline evaluation approaches and understanding their relationship, researchers and practitioners
can design more comprehensive evaluation frameworks that capture the nuanced aspects of user engagement.

• The finding that Large Language Models outperform Learning-to-Rank models and individual offline labels
suggests practical implications for model selection and integration in search systems. Integrating human labels
into model training can enhance the performance of LLMs, leading to more accurate identification of engaging
clarification questions from the user’s perspective.

6 CONCLUSIONS AND FUTUREWORK

How well online and offline evaluations correspond to each other in search clarification is the knowledge gap that was
addressed in this study by answering the research questions below:

RQ1: How well do offline evaluations correspond with online evaluations in search clarification?

Offline evaluations can complement online evaluations in identifying the most engaging clarification pane for
a given query. This suggests that offline evaluation methodologies can be useful for assessing the effectiveness of
search clarification models in terms of user engagement. We have demonstrated that clarification panes must excel in
multiple aspects to be considered engaging from a user’s perspective. Merely having high Coverage or Diversity does
not guarantee engagement. However, when ranking multiple clarification panes for a given query, offline evaluations
do not outperform a Random Ranker. This implies that current offline evaluation methodologies may not be well-suited
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for evaluating the ranking performance of search clarification models. We also showed that some offline labels, in
particular, Overall Quality and Coverage perform better than others in corresponding with user engagement.

We automated the ranking of clarification panes to identify the MECP from a user’s perspective for a given query
using GPT-3.5 and LTR models. We utilised the offline labels as the input for the models and compared the performance
of the models with the offline labels. The LTR models did not demonstrate advantages over individual offline labels. On
the other hand, GPT-3.5 surpassed both the LTR models and offline labels in successfully placing the MECP in the top
position for a given query, showcasing its superior performance in this task when the offline labels were used the the
model input. However, we observed that in the absence of the offline labels as the input for GPT-3.5, its performance
dropped dramatically. This highlights that despite the recent advancements in LLMs, they are still unable to completely
substitute human evaluations in all circumstances.

The impact of query length on the relationship between online and offline evaluations in search clarification is
minimal. The evaluation metrics obtained from offline evaluations remain in the same order regardless of query length.
However, the highest-performing offline label differs between short and long queries, indicating that different evaluation
criteria may be more relevant depending on query length.

RQ2: How does uncertainty in the online evaluation impact the relationship between online and offline evaluation?

The reliability of online evaluation data influences the strength of the relationship between online and offline
evaluation. When online data is more reliable, a stronger correspondence with offline evaluation is expected. This
suggests that ensuring the quality of online evaluation data is crucial for obtaining meaningful insights.

Furthermore, we employed six distinct evaluation metrics and found that the specific choice of metrics can influence
the relationship between online and offline evaluations in search clarification. Suppose the goal is to examine both
online and offline evaluations to identify the most engaging clarification for a given query. In that case, we suggest
focusing on the Precision at Rank 1 (P@1) and Mean Reciprocal Rank (MRR) metrics as top priorities. Metrics such as
RBO and RBP that consider binary relevance are inappropriate for comparing online and offline evaluations in search
clarification.

Despite the valuable insights provided by this study, certain limitations should be acknowledged. The limitations
include:

• It was shown that offline evaluations may not always align fully with online evaluations in certain instances.
Enhancing the information given to annotators can improve the consistency between online and offline
assessments.

• The study primarily focused on five specific offline evaluation approaches. While these approaches provided
valuable insights, other potential methodologies or variations of existing approaches may exist that were not
explored in this study.

• The study’s findings were based on specific evaluation metrics. Moreover, the observations were based on
the experiments conducted on the MIMICS-Duo dataset. MIMICS-Duo is the only publicly available search
clarification dataset containing online and offline evaluations. Larger and more diverse datasets are required to
expand the conclusions. The generalisability of the results to other domains or search clarification scenarios
also requires additional investigation.

• User engagement is subjective, and users may have varying preferences. While the study considered multiple
aspects of user engagement, individual preferences and subjective interpretations of engagement may not be
fully captured.
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In our study, while acknowledging the potential influence of dataset size, the statistically significant differences
we observed in our analysis provide a solid basis for drawing trustworthy conclusions. We have employed rigorous
statistical methods to ensure the reliability of our findings, and the observed effects are unlikely to have occurred by
chance alone. Based on the conclusions drawn from this study, here are some potential directions for future work:

• Expand and refine offline labels and evaluation metrics: This study focused on five offline evaluation methodolo-
gies, but there is room for exploring additional aspects. Future work could also involve developing and testing
new evaluation metrics or adapting existing metrics from related fields. This would help in obtaining a more
comprehensive understanding of search clarification models.

• Investigate other factors: While the study addressed the impact of query length on the relationship between
online and offline evaluation, other factors are worth exploring. Future research could investigate how query
intent, topic, or clarity/difficulty influence the relationship between online and offline evaluations. Understanding
these factors would provide deeper insights into the effectiveness of search clarification models.

• Apply the Wizard of Oz approach: Conducting experiments using the Wizard of Oz approach [25], where
clarification questions are directly asked from users, can provide valuable insights into what factors contribute
to making a clarification engaging. This approach involves simulating the functionality of search clarification
models through human operators. By studying user interactions and preferences in this setup, researchers can
better understand the key elements that make clarifications effective and engaging.

• Improve annotation guidelines: Providing more information to annotators can enhance the correspondence
between online and offline evaluations. Future work should focus on developing improved annotation guidelines
that provide clearer instructions and examples to annotators. Well-defined guidelines would help ensure
consistent and reliable annotations, leading to more accurate offline evaluations.

• Explore other user engagement metrics: We focused on evaluating the effectiveness of search clarification
models based on a click-through measurement, future research could explore additional metrics. For instance,
sentiment analysis could assess user satisfaction or frustration levels. Integrating suchmetrics into the evaluation
framework would provide a more comprehensive understanding of the impact of search clarification on user
experience.

By focusing on these areas of future work, researchers can further advance the understanding of search clarification
systems, leading to improved user experiences and more effective communication in various domains.
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