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ABSTRACT
Benefiting from transformer-based pre-trained language models,
neural ranking models have made significant progress. More re-
cently, the advent of multilingual pre-trained language models
provides great support for designing neural cross-lingual retrieval
models. However, due to unbalanced pre-training data in differ-
ent languages, multilingual language models have already shown
a performance gap between high and low-resource languages in
many downstream tasks. And cross-lingual retrieval models built
on such pre-trained models can inherit language bias, leading to
suboptimal result for low-resource languages. Moreover, unlike the
English-to-English retrieval task, where large-scale training collec-
tions for document ranking such as MS MARCO are available, the
lack of cross-lingual retrieval data for low-resource language makes
it more challenging for training cross-lingual retrieval models. In
this work, we propose OPTICAL: Optimal Transport distillation
for low-resource Cross-lingual information retrieval. To transfer a
model from high to low resource languages, OPTICAL forms the
cross-lingual token alignment task as an optimal transport prob-
lem to learn from a well-trained monolingual retrieval model. By
separating the cross-lingual knowledge from knowledge of query
document matching, OPTICAL only needs bitext data for distilla-
tion training, which is more feasible for low-resource languages.
Experimental results show that, with minimal training data, OPTI-
CAL significantly outperforms strong baselines on low-resource
languages, including neural machine translation.
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1 INTRODUCTION
In the Cross-Lingual Information Retrieval (CLIR) task, the user
submits the query in one language, and the systems respond by
retrieving documents in another language. Different from themono-
lingual retrieval model, in addition to the ranking component, the
CLIR model needs an extra component of language translation to
map the vocabulary of the query language to that of the documents’
language. Therefore, the performance of a CLIR model depends on
both the knowledge of query document matching and the ability to
bridge the translation gap between query and document languages.

Pre-trained Transformer-based languagemodels, such as BERT [9],
have shown promising performance gains for monolingual infor-
mation retrieval. This success is mainly due to two key factors:
(i) The unsupervised pre-training of context-aware transformer
architectures with an enormous number of parameters over large
corpora. (ii) The fine-tuning for the downstream learning-to-rank
task with a relatively large collection of relevance judgments, such
as the MS MARCO passage ranking dataset [28]. The multilingual
versions of pre-trained Transformer-based language models, such
as mBERT [9] and XLM-R [7], provide the possibility of jointly
learning many languages with the same model. Because tokens in
different languages are projected into the same space, fine-tuning
these models with a cross-lingual retrieval dataset, similar to the
monolingual setting, enables cross-language information retrieval.

However, both factors leading to the success of monolingual
information retrieval have defects in the cross-lingual setting. First,
due to the unbalanced pre-training data in different languages, mul-
tilingual pre-trained models have already shown a performance gap
between high and low-resource languages in many downstream
tasks [39, 41]. Cross-lingual retrieval models built on such pre-
trained models can inherit the language bias, leading to suboptimal
results for low-resource languages. Second, compared with the
English-to-English retrieval task, the lack of cross-lingual IR train-
ing data with reliable relevance judgment, i.e., human relevance
judgments, especially for low-resource languages, makes it more
challenging to learn cross-lingual retrieval models.

Studies have attempted to address the data scarcity problem in
CLIR. Sasaki et al. [35] proposed a large cross-lingual retrieval col-
lection, WikiCLIR, based on the linked foreign language articles
from Wikipedia pages. Because the Wikipedia articles in a specific
language are edited mainly by native speakers, the cross-lingual
contents in WikiCLIR are of high quality. But the relevant judg-
ments are synthetically generated based on mutual links across
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pages. On the other hand, Bonifacio et al. [4] built a multilingual
passage ranking dataset, mMARCO, by translating the queries and
passages in MS MARCO into the target language using the neural
machine translation (NMT) models. Because MS MARCO is gen-
erated from query log, the relevant judgments in mMARCO are
more credible than WikiCLIR. Still, the automatically generated
cross-lingual contents created by NMT models are not comparable
to human writers, especially for resource-lean languages.

In this work, we present OPTICAL, a novel Optimal Transport-
based knowledge distillation framework for low-resource CLIR
task. From the modeling perspective, our approach separates the
learning of query document matching from the learning of cross-
lingual vocabulary mapping. More specifically, starting from the
multilingual pre-trained encoder, we first train a bi-encoder English-
to-English retrieval model, similar to the ColBERT architecture [18],
as the teacher model. This model can take full advantage of the
MS MARCO triples to learn the knowledge for query document
matching. Suppose the CLIR task is to search English documents
with non-English queries. To devise a complete student model for
this CLIR task, we reuse the teacher model’s document encoder,
and train a new student query encoder. Given parallel queries,
the non-English token representations generated by the student’s
query encoder are similar to the English token representations
generated by the teacher’s query encoder. In this step, the student
model distills the retrieval knowledge from the teacher model in a
cross-lingual setup. We form the distillation training as an optimal
transport problem where the cost matrix is the cross-lingual token
cosine distance, and the optimal transportation plan serves as a soft
token alignment. The loss is then defined as the Frobenius inner
product of the transportation plan and the cost matrix. Because the
teacher model already learns the knowledge of query-document
matching and the distillation training only needs to focus on the
translation knowledge as a general textual encoder, we can use
bitext data to train the student query encoder, which is more feasible
for low resource languages.

We performed extensive experiments on seven language pairs
for CLIR training and evaluation, including four low-resource lan-
guages from diverse linguistic families and three medium or high-
resource languages as a comparison. In terms of mean average
precision (MAP), our proposed method significantly outperforms
several strong baseline methods on low-resource languages, includ-
ing a 13.7% improvement over a method based on neural machine
translation. Further analysis demonstrates that the knowledge dis-
tillation step in OPTICAL is an effective and data-efficient method
to transfer the knowledge of retrieval from monolingual into cross-
lingual settings.

2 RELATEDWORK
2.1 Neural Matching Models for CLIR
There are two sub-taskswithin CLIR: translation and query-document
matching. One approach is to translate the query into the language
of the document collection and then apply a monolingual match-
ing model to determine relevance. The translation could be ac-
complished by statistical machine translation (SMT) [3] or neural
machine translation (NMT) [32]. While this two-step approach of
translate-then-retrieve is popular, the emergence of bilingual word

representation [38] and multilingual pre-trained language mod-
els [7, 9] create the opportunity to skip the translation step and
match the query and document in different languages in a shared
representation space. Because the token representation generated
bymultilingual pre-trained languagemodels is contextualized based
on other tokens in the sequence, once finetuned, they are effective
across various tasks, including CLIR [21, 22, 44, 45].

Learning neural matching models requires cross-lingual rele-
vance knowledge for effective matching, whether based on mul-
tilingual word embeddings or pre-trained language models. The
ideal data used for training CLIR models is expected to have both
retrieval knowledge (query-document relevance) and translation
knowledge (semantics across languages). Sasaki et al. [35] con-
structed a large-scale, weakly supervised CLIR collection based on
the linked foreign language articles fromWikipedia pages. They use
the first sentence of a Wikipedia page as the query and all linked
foreign language articles as the relevant documents. Zhao et al.
[47] leveraged parallel sentence data to create weakly supervised
relevant judgments. They use a sentence from one language as the
document and randomly translate a word from that sentence as
the query. These CLIR collections contain the correct translation
knowledge, but their retrieval knowledge is synthetically gener-
ated. On the other hand, some CLIR collections are created by
translating a query from a commercial search engine into the target
languages using NMT models [4, 19]. The relevance judgments are
more credible in these collections since they are extracted from the
query log. However, their translation knowledge is compromised,
especially in low-resource languages where the NMT models are
not performing well. Besides cross-lingual relevance data, external
knowledge, such as word-level translation knowledge, is also uti-
lized to close the language gap in CLIR. Bonab et al. [3] showed
that dictionary-oriented word embeddings can improve the perfor-
mance of a DRMMmodel [13] when fine-tuned with relevance data.
Huang et al. [16] proposed a mixed attention transformer archi-
tecture to learn jointly from relevance judgments and word-level
translation knowledge.

Different from these approaches, we build a CLIR model with
both translation knowledge and retrieval knowledge in two steps.
First, a teacher model learns the retrieval knowledge via a mono-
lingual retrieval collection. That knowledge is then transferred
from the teacher model to a student model through knowledge
distillation using bitext data.

2.2 Knowledge Distillation
Proposed by Hinton et al. [14], knowledge distillation is a method
to train a model, called the student, using valuable information
provided by the output of another model, called the teacher. This
way, the teacher model’s knowledge can be transferred into the
student model. The idea of knowledge distillation is wildly used in
the field of computer vision [20, 42, 46], natural language process-
ing [31, 34] and information retrieval [15, 19, 25]. Our method is
also an extension of knowledge distillation. A typical framework
for knowledge distillation relies on a teacher model to directly gen-
erate a target distribution [12, 26]. Our method is different since
the target distribution is determined by the optimal transport plan
based on the cost matrix estimated by a teacher model.



For the CLIR task, Li et al. [19] proposed a cross-lingual distil-
lation framework to build a CLIR model from an English retriever.
They use relevance score distillation. To compute the score in both
teacher and student models, their method still requires retrieval-
based data (i.e., parallel query) in the target language. Unlike their
approach, we use the distance of token representation as a distilla-
tion signal. Thus, data with cross-lingual knowledge is adequate to
train the student model in our approach. And such data (i.e., bitext
data) is much easier to acquire.

2.3 Optimal Transport
Optimal Transport (OT) is a theory that studies the optimal allo-
cation of resources between two probability distributions. Given a
cost function, in order to compute the optimal transportation plan
between two distributions, Cuturi [8] leveraged the Sinkhorn’s
matrix scaling algorithm with an entropic regularization term to
create a fast OT solver. Xie et al. [43] improved the Sinkhorn algo-
rithm based on the proximal point method and constructed an IPOT
solver which is robust to the parameter selection. In our method,
we consider the estimation of the distance between two sets of
token representations as an OT problem and adapt the IPOT solver
to compute the optimal transportation plan.

The definition of OT has been applied to many areas, such as do-
main adaptation [11], generative models [6, 33] and self-supervision
learning [24, 40]. For tasks involving cross-lingual settings, Nguyen
and Luu [29] employed OT distance as a part of the loss function in
a knowledge distillation framework for improving the cross-lingual
summarization. Alqahtani et al. [1] incorporated OT as an align-
ment objective to improve the multilingual word representations.
In this work, we explore transferring the retrieval knowledge in a
cross-lingual setting via OT.

3 METHODOLOGY
Our goal is to incorporate the knowledge of query document match-
ing from a well-learned monolingual retrieval model into a multilin-
gual transformer-based retrieval architecture, such that it is capable
of generating contextual representations under the cross-lingual
setting and thus performing query document matching in different
languages. In this section, we first introduce the monolingual re-
trieval model as the teacher model. Then we present the optimal
transport knowledge distillation framework and the training of the
student model. Finally, we combine the components from both the
teacher and student models into a CLIR model. Due to space limita-
tions, we focus on the CLIR case of searching an English collection
with a non-English query as an example to describe our method.

3.1 Teacher Model
Khattab and Zaharia [18] discovered that instead of requiring both
query and document to be present simultaneously at the beginning
of the encoding process, the matching mechanism could be deferred
until the contextualized representation computation is complete.
Therefore, they proposed ColBERT, a bi-encoder retrieval model
that first encodes the query and document separately and then
scores based on late interaction between the token representations.
Because query and document encoders are relatively independent

of each other, the ColBERT architecture in CLIR task has the po-
tential to expand to a new language only for one type of encoder
(i.e., query encoder) while leaving another one intact. For instance,
when dealing with CLIR tasks between high and low resource lan-
guages, such as searching an English collection with a non-English
query, adopting the bi-encoder separation design enables the model
to reuse one component that is already well-trained using high
resource monolingual retrieval data (i.e., document encoder). To
leverage such modeling flexibility, we choose the teacher model in
OPTICAL to follow the similar model architecture of ColBERT.

The teacher model𝑀 contains two components: query encoder
𝐸𝑀𝑞

and document encoder 𝐸𝑀𝑑
. Given a query 𝑞 and a candidate

document 𝑑 , the score of matching between 𝑞 and 𝑑 , 𝑆𝑞,𝑑 , is then
computed as the:

𝑆𝑞,𝑑 =

|𝑞 |∑︁
𝑖=1

|𝑑 |
max
𝑗=1

𝐸𝑀𝑞
(𝑞𝑖 ) · 𝐸𝑇𝑀𝑑

(𝑑 𝑗 ) (1)

where 𝐸𝑀𝑞
(𝑞𝑖 ) is the 𝑖-th token representation of the query and

𝐸𝑀𝑑
(𝑑 𝑗 ) is the 𝑗-th token representation of the document. Because

the output token representations from the encoders are normalized
to unit length, the dot product is equivalent to cosine similarity. The
scoring function applies themaxsim operation on each query token
to softly search against all document tokens to find the best token
that reflects its context and then sums over all the query tokens. The
primary goal of the teacher model is to provide knowledge of query
document matching regardless of the language. Therefore, we select
the dataset in the language that has the highest retrieval data quality
to train the teacher model. Considering the quality and scale, we
choose the English MS MARCO passage ranking dataset for teacher
model training. Similar to ColBERT, we prepend special tokens
[Q] and [D] to query and passage tokenization, respectively, and
expand the query to a fixed length 𝐿 using the [MASK] token. Unlike
ColBERT, we initialize the teacher model using a multilingual pre-
trained model, mBERT instead of BERT. Since mBERT has a larger
vocabulary that covers a more diverse set of languages, the student
can benefit from the multilingual pre-trained token representation.

3.2 Optimal Transport Knowledge Distillation
The student model shares the same architecture as the teacher. Note
that if the document collection for the CLIR task remains in Eng-
lish, then the document encoder of the student model 𝐸𝑆𝑑 can be a
copy of the teacher’s document encoder, 𝐸𝑀𝑑

. Here, we focus on
the design of the query encoder of the student model, 𝐸𝑆𝑞 , which
handles non-English queries. Assume that 𝑞 is an English query
and 𝑞 is a non-English parallel query. The token representation of
𝑞 generated by 𝐸𝑀𝑞

contains rich knowledge for query document
matching. If we could let 𝐸𝑆𝑞 “behave” like 𝐸𝑀𝑞

, namely, if the
output of 𝐸𝑆𝑞 with 𝑞 is close to the output of 𝐸𝑀𝑞

with 𝑞, then the
token representations generated by 𝐸𝑆𝑞 can have a similar retrieval
performance to the teacher model. Therefore, the training objective
of knowledge distillation is to reduce the distance between the
outputs of the teacher and student query encoders given parallel
inputs (sentences). Next, we define the distance from 𝑞 to 𝑞 in the
vector space of 𝐸𝑆𝑞 and 𝐸𝑀𝑞

. Because words that are translations
of each other from different languages tend to have a smaller dis-
tance in the hyper-space after the multilingual pre-training step,



Algorithm 1: IPOT algorithm
Input: Probability mass function of source and target {𝜇𝑠 , 𝜇𝑡 }, cost

matrix C and step size 𝛽 .
Output: Approximated OT matrix ˜γ

1 Function IPOT(𝜇𝑠 , 𝜇𝑡 ,C, 𝛽):
2 𝒃 ← 1

𝐿
1𝐿 , γ(1) ← 11𝑇

3 G← exp(C/𝛽)
4 for 𝑡 = 1, 2, 3 . . . 𝑁 do
5 Q← γ(𝑡 ) ⊙ G // Hadamard product

6 for 𝑘 = 1, . . . 𝐾 do // Set 𝐾 = 1 in practice
7 𝒂 ← 𝜇𝑠

Q𝒃 , 𝒃 ←
𝜇𝑡

Q𝑇 𝒂

8 end
9 γ(𝑡+1) = diag(𝒂)Qdiag(𝒃)

10 end
11 ˜γ← γ(𝑁 +1)

12 return ˜γ

we initialize the student query encoder’s parameters weights using
the same multilingual pre-trained language model as the teachers.
Suppose the byte-pair encoding (BPE) tokenizer tokenizes 𝑞 into
𝐿𝑞 tokens and 𝑞 into 𝐿𝑞 tokens, we expand them to the same length
𝐿 by appending [MASK] tokens. After encoding by 𝐸𝑆𝑞 and 𝐸𝑀𝑞

, 𝑞
and 𝑞 are represented by a bag of vectors of size 𝐿, respectively. We
define the distance from 𝑞 to 𝑞 as follows:

𝐷 (𝑞, 𝑞) = argmin
𝑓J1 ..𝐿K↣J1 ..𝐿K

1
𝐿

𝐿∑︁
𝑖=1

1 − 𝐸𝑆𝑞 (𝑞𝑖 ) · 𝐸
𝑇
𝑀𝑞
(𝑞𝑓 (𝑖) ) (2)

where 𝑓 is a bijective (one-to-one correspondence) function which
maps the token index from 𝑞 to 𝑞. Intuitively, the distance defi-
nition is equivalent to finding a token mapping from 𝑞 to 𝑞 that
minimizes the average of cosine distance among 𝐿 token pairs. De-
spite the same semantics of 𝑞 and 𝑞 as a whole, different languages
have different token arrangements. When 𝐿 increases, using brute
force to find the mapping 𝑓 becomes computationally intractable.
Therefore, we approximate the calculation of 𝐷 (𝑞, 𝑞) as an optimal
transport problem. First, we assign equal mass to the tokens in 𝑞

and 𝑞 by defining a uniform source probability distribution, 𝜇𝑠 , on
𝑞 and a uniform target probability distribution, 𝜇𝑡 , on 𝑞: 𝜇𝑠 (𝑖) = 1

𝐿

and 𝜇𝑡 ( 𝑗) = 1
𝐿
where 1 ≤ 𝑖, 𝑗 ≤ 𝐿.

The set of transportation plans between these two distributions
is then the set of doubly stochastic matrices P defined as

P = {γ ∈ (R+)𝐿×𝐿 | γ1𝐿 = 𝜇𝑠 , γ
𝑇 1𝐿 = 𝜇𝑡 } (3)

where 1𝐿 is a 𝐿-dimensional vector of ones and γ is called a trans-
portation plan. We redefine distance between 𝑞 and 𝑞 as a Wasser-
stein distance between distribution 𝜇𝑠 and 𝜇𝑡 . Then the computation
of such distance become an optimal transport (OT) problem:

γ0 = argmin
γ∈P

〈
γ,C

〉
𝐹

(4)

where
〈
·, ·
〉
𝐹
is the Frobenius inner product, γ0 is the optimal trans-

portation plan (or OT matrix) and C ≥ 0 is a 𝐿 × 𝐿 cost function
matrix of term 𝐶 (𝑖, 𝑗), reflecting the “energy” needed to move a
probability mass from 𝑞𝑖 to 𝑞 𝑗 . In our setting, this cost is chosen as
the cosine distance between two tokens:

𝐶 (𝑖, 𝑗) = 1 − 𝐸𝑆𝑞 (𝑞𝑖 ) · 𝐸
𝑇
𝑀𝑞
(𝑞 𝑗 )

In general, the linear programming solution to find γ0 has a typical
super𝑂 (𝑛3) complexity that is still computationally intractable [8].
To overcome such intractability, we employ the Inexact Proximal
point method for Optimal Transport (IPOT) [43] algorithm to com-
pute the OT matrix. Specifically, the IPOT algorithm iteratively
solves the OT problem by adding a proximity metric term to the
original OT definition. At step 𝑡 , we have:

γ(𝑡+1) = argmin
γ∈P

{〈
γ,C

〉
𝐹
+ 𝛽 · B(γ,γ(𝑡 ) )

}
where B(γ,γ(𝑡 ) ) = ∑𝐿

𝑖,𝑗 γ𝑖 𝑗 log
γ𝑖 𝑗

γ
(𝑡 )
𝑖 𝑗

− ∑𝐿
𝑖,𝑗 γ𝑖 𝑗 +

∑𝐿
𝑖,𝑗 γ

(𝑡 )
𝑖 𝑗

is the

Bregman divergence used as a proximity metric term to penalize
the distance between the solution and the latest approximation. It
provides a tractable iterative scheme toward the exact OT solution
where the step size is controlled by 𝛽 . The implementation details
for IPOT are in Algorithm 1. Using the approximated OT matrix,
we define the loss of the distillation as the total transportation cost:

𝑙𝑜𝑠𝑠 :=
〈
˜γ,C

〉
𝐹

(5)

During training, we retain the teacher query encoder by remov-
ing its parameters from the computational graph and use the loss
to update the student query encoder. Given each pair of 𝑞 and 𝑞,
minimizing the loss will lead the model to reduce the cosine dis-
tance between tokens according to the transportation plan. And
because 𝐸𝑀𝑞

is fixed, the essence of knowledge distillation is to push
non-English token representations generated by 𝐸𝑆𝑞 towards their
corresponding English token representations generated by 𝐸𝑀𝑞

.
Moreover, though designed as the query encoder, the textual data
of 𝑞 and 𝑞 used for distillation do not have to be the query from a
CLIR dataset. A group of parallel sentences with a broad vocabulary
coverage is adequate to train the student query encoder. Compared
to the CLIR data, which often require human relevant judgments,
bitext data are easier to acquire, especially for low-resource lan-
guages. And any improvements regarding the knowledge of query
document matching in monolingual retrieval performance (teacher
model) can be easily transferred to the cross-lingual setting (student
model) using bitext data with the OPTICAL framework.

3.3 Cross-lingual Query Document Matching
In this section, we focus on a CLIR task of searching English docu-
ments using a non-English query to introduce the OPTICAL frame-
work. The document encoder in the student model can be directly
copied from the teacher model (𝐸𝑆𝑑 ←𝐸𝑀𝑑

). At test time, the match-
ing score of 𝑞 and 𝑑 is calculated based on equation (1) using 𝐸𝑆𝑞
and 𝐸𝑆𝑑 . A complete overview of the model building pipeline is
shown in Figure 1. In fact, OPTICAL can be extended to different
language settings in the CLIR task. For example, suppose the task
requires searching non-English documents using an English query.
In this case, the student model can reuse the teacher’s query en-
coder and train a non-English document encoder using knowledge
distillation. More generally, if the query is in 𝑋 and the collection is
in 𝑌 , where 𝑋 and 𝑌 are both non-English languages, we can build
the student model by training two knowledge distillations: 𝑋 to
English for query encoder and 𝑌 to English for document encoder.



Figure 1: Model building pipeline for OPTICAL. This figure is based on CLIR task between Swahili query and English documents.

4 EXPERIMENTAL SETUP
4.1 CLIR Settings and Dataset
CLIR Settings. We focus on searching English collections with
queries in low-resource languages. We consider four low-resource
languages in our experiments: Swahili, Somali, Tagalog, andMarathi.
According to linguistic classification1, they belong to four different
language families: Niger-Congo (Swahili), Afro-Asiatic (Somali),
Austronesian (Tagalog), and Indo-European (Marathi). To fully eval-
uate the performance of the proposed method, we also include three
medium to high-resource languages: Finnish, German and French.

Evaluation data. We create a unified evaluation dataset for all
language pairs considered in our experiments. The data are from the
Cross-Language Evaluation Forum (CLEF) 2000-2003 campaign for
bilingual ad-hoc retrieval tracks [5]. The query is a concatenation of
the title and description fields of the topic files. In total, there are 151
queries from the CLEF C001 – C200 topic (queries with no relevant
judgment are removed). The collection of English documents is the
Los Angeles Times corpus comprised of 113k news articles. For
Finnish, German, and French, their queries are provided by CLEF
campaign. For low-resource languages, Bonab et al. [2] provided
Somali and Swahili translations of English queries. And we hire
bilingual human experts from Gengo2 service to translate English
queries into Tagalog and Marathi.

Retrieval training data. To guarantee a consistent performance
of the teachermodel on themonolingual retrieval task, we randomly
sample a subset of 7 million triples from the MS MARCO passage
ranking dataset for the training of the teacher model. The baselines,
which involve synthesizing the CLIR dataset with different methods,
all use the same subset of triples.

Bitext training data. To support the cross-lingual knowledge
distillation, we use the parallel sentences from the CCAligned
dataset [10]. In section 5.2, for the main result table, the distillation
is trained based on a random sample of up to 2 million parallel
sentences for each language pair. In section 5.4, we study the effect
of bitext data size on the performance of the student model. Note
that for Somali and Marathi, the total number of parallel sentences
in CCAligned is less than 2 million. Thus, we use all the parallel
sentences available for these two languages (360K for Somali and
750K for Marathi). Moreover, there are other parallel corpora for

1https://en.wikipedia.org/wiki/List_of_language_families
2https://gengo.com

the languages studied in our experiments that could help us to
create larger training data. We only use CCAligned to ensure the
consistency of the data quality.

4.2 Implementation Details
We initialize the ColBERT query and document encoder compo-
nents in both teacher and student models using the multilingual
pre-trained BERT model (mBERT, base, uncased). We set the max
length of all query encoders at 𝐿 = 32 and truncate the document at
180 tokens. There are two model training tasks in our experiments.
One is the retrieval training task. This is the main task of training
the teacher model and the other neural baselines. Given a query,
relevant passage, and non-relevant passage triplet, the models are
trained using pairwise cross-entropy loss with a learning rate of
3×10−6 and a batch size of 64 for 200K iterations. The other training
task is knowledge distillation. In this task we train the student
model using bitext data. We set the step size to 𝛽 = 0.5 and number
of iterations to 𝑁 = 100 for the IPOT algorithm. We use the cost of
the optimal transportation as the loss and build a batch size of 256
with gradient accumulation. The student model is trained with a
learning rate of 5 × 10−5 for 3 epochs of the available bitext data.
All the experiments are implemented using Python 3 and PyTorch
1.8.1. The pre-trained model weights, including the neural machine
translation models, are accessed from HuggingFace3. Regarding
to the NMT models used in some of our baseline methods, we use
the off-the-shelf OPUS-MT [36] from the Helsinki NLP group4. All
the NMT models use the Marian-NMT [17] as the base architecture
and are trained using the OPUS corpus5.

Evaluation.While we train models on passages for the retrieval
task, our goal is to rank documents whose length is usually longer
than 180 tokens. We split large documents into overlapping pas-
sages of fixed length with a stride of 90 tokens and compute the
score for each query passage pair. Finally, we select a document’s
maximum passage score as its document score [27]. For evalu-
ating retrieval effectiveness, we follow prior work on the CLEF
dataset [3, 23] and report mean average precision (MAP) of the
top 100 and precision of the top 10 (P@10) ranked documents. We
determine statistical significance using the two-tailed paired t-test
with p-value less than 0.05 (i.e., 95% confidence level).

3https://huggingface.co/models
4https://huggingface.co/Helsinki-NLP
5https://opus.nlpl.eu/
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Table 1: Size of language data resource and OPUS-MT model performance.

NMT Models
Low Resource Languages Medium or High Resource Languages

Swahili (SW) Somali (SO) Tagalog (TL) Marathi (MR) Finnish (FI) German (DE) French (FR)
Train./eval. data available 9M/386 0.8M/4 8M/2,500 5M/10,369 45M/10,690 86M/17,565 180M/12,681
Translation direction EN-SW SW-EN EN-SO SO-EN EN-TL TL-EN EN-MR MR-EN EN-FI FI-EN DE-EN EN-DE EN-FR FR-EN
BLEU scores 26.0 31.3 16.0 23.6 26.5 35.0 18.2 29.8 40.4 50.9 47.3 55.4 50.5 57.5

Table 2: First-Stage Retrieval Comparison. For Recall columns, the highest value is marked with bold text. Note that the first
row is reported as an upper bound reference.

First-Stage
Retrieval

Low Resource Languages Medium or High Resource Languages
Swahili Somali Tagalog Marathi Finnish German French

MAP Recall MAP Recall MAP Recall MAP Recall MAP Recall MAP Recall MAP Recall
Human+BM25 0.4569 0.7621 0.4569 0.7621 0.4569 0.7621 0.4569 0.7621 0.4569 0.7621 0.4569 0.7621 0.4569 0.7621
SMT+BM25 0.2184 0.4359 0.1948 0.4254 0.1636 0.6195 0.1059 0.3289 0.3052 0.6049 0.3906 0.6946 0.4037 0.7541
NMT+BM25 0.2135 0.4934 0.1466 0.3670 0.3501 0.6799 0.1795 0.4277 0.3753 0.7248 0.4087 0.7420 0.4315 0.7585

4.3 Compared Methods
4.3.1 First-Stage Retrieval. We employ a two-stage retrieval ap-
proach for addressing the CLIR problem, where first we obtain an
initial set of candidate documents using a lexical matching retrieval
technique (e.g., Okapi BM25) and then re-rank the initial set of can-
didate documents using a neural re-ranker. We select Recall@100 as
our primary evaluation metric for the first-stage retrieval to collect
the most relevant documents. We investigate different strategies
for our initial ranking stage that we elaborate in the following:
• SMT+BM25: We translate the query based on a statistical ma-
chine translation (SMT) method. More specifically, we first build
a translation table from parallel corpora for each language pair
using the GIZA++ toolkit. Then we select the top 10 translations
from the translation table for each query term and apply Galago’s
weighted #combine operator to form a translated query. Finally,
we run BM25 with default parameters to retrieve documents.
• NMT+BM25: Neural machine translation models based on the
encoder-decoder architecture are empirically better than SMT in
terms of translation quality. Thus, we build this baseline by first
translating the query into English using an NMT model. Then
we run BM25 with default parameters to retrieve documents.
• Human+BM25: For a comprehensive comparison, we also pro-
vide an empirical upper bound on the initial ranking stage. We
use CLEF English query as the human translations and apply
BM25 as the retrieval technique.

4.3.2 Neural Re-ranking. In the second retrieval stage, to provide
the best initial rank list for neural re-ranking, we select the rank
list from either SMT+BM25 or NMT+BM25 based on their Recall
for each CLIR language pair. Including the proposed method, all
the neural models rerank the top 100 documents of the initial rank
list. We compare OPTICAL with the methods in the following:
• mColBERT: Because the encoders in the teachermodel are based
on amultilingual pre-trained languagemodel, after training using
EnglishMSMARCO triples, we can directly run the teachermodel
on the CLIR evaluation data in a zero-shot setting.
• Code-Switch: There are data augmentation methods that can
help the training of cross-lingual tasks. Qin et al. [30] proposed a
code-switching framework to transform themonolingual training
data into data in mixed languages. Bonab et al. [3] proposed a
shuffling algorithm to inject and mix the translated terms into

the query. We apply the code-switch method to the queries in
MS MARCO triples. More specifically, we randomly switch 50%
of the English query words into their translations in the target
language according to the Panlex dictionary and then train the
ColBERT retrieval model using the code-switched data.
• Translate-Train: Bonifacio et al. [4] built a multilingual pas-
sage ranking dataset, mMARCO, by translating MS MARCO
into target languages using the correspondent OPUS-MT mod-
els [36]. Nair et al. [27] showed that retrieval models trained using
this synthetically generated CLIR dataset could outperform BM25
with query translation and the zero-shot neural approach in high
resource languages. We adopt this method as another baseline.
For languages that are not covered by mMARCO, we follow the
same data generation procedure to build training data.
• Translate-Test: Like NMT-BM25, we can first let the NMTmodel
translate the evaluation query into English and then perform
English-to-English query documentmatching using awell-trained
monolingual neural retrieval model (i.e., the teacher model).
• Human+ColBERT: We also provide an empirical upper bound
on the re-ranking stage. We use human translations of the evalu-
ation query and apply the teacher model to re-rank the top 100
documents from the rank lists generated by the Human+BM25.

5 EXPERIMENTAL RESULTS
5.1 First-Stage Retrieval Comparison
Table 2 shows the results of our first-stage retrieval methods. We
can see that the NMT+BM25 approach outperforms SMT+BM25
in Recall@100 for all languages except Somali. Referring to the
evaluation in Table 1, the failure of NMT+BM25 on Somali is mainly
due to the poor translation quality. Moreover, human translation
performs better than machine translation, and the margin is larger
in low-resource than high-resource languages, indicating higher
difficulty in building machine translation systems in low-resource
languages. Based on recall, we choose the rank lists from NMT +
BM25 for the reranking step for all languages except Somali, for
which we use SMT+BM25 as the initial retrieval method.

5.2 Re-ranking Comparison
Table 3 lists the evaluation results of both the first-stage retrieval
methods and neural re-ranking models. For the zero-shot setting,



Table 3: A comparison of model performance. ⊲ are reported as the upper bound reference. The highest value is marked with
bold text. Statistically significant improvements are marked by † (over Translate-Train) and ‡ (over Translate-Test).

Retrieval
Methods

Low Resource Languages Medium or High Resource Languages
Swahili Somali Tagalog Marathi Finnish German French

MAP P@10 MAP P@10 MAP P@10 MAP P@10 MAP P@10 MAP P@10 MAP P@10
⊲ Human+BM25 0.4569 0.3940 0.4569 0.3940 0.4569 0.3940 0.4569 0.3940 0.4569 0.3940 0.4569 0.3940 0.4569 0.3940
SMT+BM25 0.2184 0.2152 0.1948 0.1865 0.1636 0.0934 0.1059 0.0984 0.3052 0.2821 0.3906 0.3437 0.4037 0.3772
NMT+BM25 0.2135 0.2113 0.1466 0.1380 0.3501 0.3179 0.1795 0.1795 0.3753 0.3583 0.4087 0.3580 0.4315 0.3881
⊲ Human+ColBERT 0.5019 0.4344 0.5019 0.4344 0.5019 0.4344 0.5019 0.4344 0.5019 0.4344 0.5019 0.4344 0.5019 0.4344
mColBERT 0.1953 0.1795 0.1355 0.1212 0.3414 0.2960 0.1448 0.1556 0.3791 0.3272 0.4509 0.3807 0.4512 0.3868
Code-Switch 0.2420 0.2258 0.1845 0.1682 0.3542 0.2934 0.1573 0.1662 0.3831 0.3404 0.4553 0.3827 0.4589 0.3993
Translate-Train 0.2234 0.2185 0.1707 0.1649 0.3692 0.3252 0.1619 0.1722 0.4043 0.3576 0.4713 0.3967 0.4666 0.4020
Translate-Test 0.2643 0.2530 0.2126 0.2086 0.3827 0.3339 0.2141 0.2258 0.4418 0.4024 0.4811 0.4080 0.4984 0.4318
OPTICAL 0.3129†‡ 0.2901†‡ 0.2477†‡ 0.2365†‡ 0.4188†‡ 0.3623†‡ 0.2414†‡ 0.2384† 0.4228 0.3874† 0.4832 0.4067 0.4764 0.4119

we can see that mColBERT can improve the initial ranking on
high-resource languages while failing on low-resource languages.
Similar to other downstream tasks [39, 41], the CLIR model based
on a multilingual pre-trained language model also inherits the lan-
guage bias in the pre-training step, causing the performance gap
between low and high resource languages in document ranking.
Using dictionary knowledge for cross-lingual data augentation, the
Code-Switch method performs better than mColBERT. However,
the word-level translation knowledge used in Code-Switch does
not consider the context of the switched terms, which could cause
the semantics of the code-switched data to diverge from the orig-
inal one. Comparing Code-Switch to Translate-Train, we can see
that Translate-Train outperforms Code-Switch in high-resource lan-
guages. With the support of the NMT model, the Translate-Train
method can generate better query translations in high-resource
languages, which leads to a higher quality of CLIR training triples
than the Code-Switch method. However, in low-resource languages
Swahili and Somali, Translate-Train cannot consistently outper-
form Code-Switch. This is because the NMT model does not have
enough training resources, and the generated query translations
are of lower quality. Instead of building a CLIR dataset for model
training, the Translate-Test method translates the query to English
using an NMT model and then ranks the document based on a
monolingual neural retrieval model. With the help of two neural
models at test time (translation and document ranking), this two-
step approach becomes the strongest baseline in our experiment.

Finally, we can see the supremacy of OPTICAL in low-resource
languages. Our method consistently and significantly improves the
first-stage retrieval results. In low-resource languages, OPTICAL
substantially outperforms all baselines, including the Translate-
Test method. In high-resource languages, OPTICAL also achieves
solid performance. It outperforms the Translate-Train method in all
three languages. And it is a surprise to us that OPTICAL exceeds the
Translate-Test on German in terms of MAP. Moreover, the results
of OPTICAL in Table 3 are only based on a maximum of 2M parallel
sentences (there are only 360K for Somali and 750K for Marathi).
No cross-lingual relevance judgment is used in the distillation step,
making OPTICAL data feasible and easy to build. At the same time,
we can see that using human translation with a neural ranking
model (Human+ColBERT) still leads the CLIR setting with the same
model architecture by a large margin in low-resource languages.

5.3 Analysis of Knowledge Distillation
To study how the student model behaves after distillation by the
OPTICAL framework, we compare the token representations of the
same query generated by different models.

Student query encoder in low-resource language.We con-
sider three types of token representations. First, we encode the
English query using the mColBERT query encoder. Note that the
mColBERT query encoder is the same as the OPTICAL teacher
encoder, which provides the knowledge to the student query en-
coder during the distillation. Then we encode the same correspond-
ing Tagalog query using both mColBERT and OPTICAL student
query encoders. Finally, we use t-SNE [37] to project these high-
dimensional vectors to two-dimensional space. Figure 2a visualizes
an example query. In English, the query is “What is the schedule
predicted for the European single currency?” The parallel Tagalog
query is “Ano ang hinuhulaang iskedyul para sa iisang uri ng pera
sa Europa?” Figure 2b provides an overview of all test queries in
both English and Tagalog. We can see that when used in zero-shot
setting, the English and Tagalog token representations generated
by teacher model have a clear language boundary. Although start-
ing from a multilingual pre-trained language model, mColBERT is
only trained on MS MARCO English data so that only English to-
kens have the knowledge of query document matching. Therefore,
we observe a large retrieval performance gap on the same model
between the English query (i.e., Translate-Test) and the query in
the low-resource languages (i.e., mColBERT). On the other hand,
Tagalog token representations generated by the student encoder are
much closer to English token representations. More importantly, by
reducing the transportation cost of the parallel sentences, OPTICAL
can push Tagalog words toward their corresponding English words.
Eventually, Tagalog words that are close to their English transla-
tions can also obtain retrieval knowledge because the English token
representations are generated by the teacher model. This matches
the design purpose of OPTICAL.

Student query encoder in high-resource language.We re-
peat the same analysis but for French queries. Figure 2c shows the
t-SNE visualization of the same query in French. Figure 2d provides
the overview of all test queries in both English and French. Dif-
ferent from low-resource languages, we can see that English and
French words are already mixed in the representation space so that
there is no clear language boundary. Tokens in French are already
close to their translations in English. This explains why the effect of



(a) Example query comparison. (b) Overview of all test queries.

(c) Example query comparison. (d) Overview of all test queries.

Figure 2: t-SNE visualisation of query tokens.

Figure 3: Performance with respect to bitext data size.

knowledge distillation from OPTICAL is more significant Tagalog
than it is in French.

5.4 Effect of Bitext Data Size
OPTICAL results in Table 3 are based on a maximum of 2M bitext
data used for training distillation. In this experiment, we study the
effect of bitext data size on OPTICAL. We select two low-resource
languages with a relatively larger collection of parallel sentences
in CCAligned: Swahili (2M) and Tagalog (6.6M). Then we train
OPTICAL using different sizes of the bitext data: 100K, 500K, 1M,
2M, and for Tagalog, we also experiment on 4M bitext data. Figure 3
shows the MAP performance with respect to the size of bitext
data. As expected, more bitext data with larger vocabulary size and
broader semantic coverage lead to better reranking performance.
For Swahili, OPTICAL exceeds the Translate-Test method with a
set of only 100K parallel sentences. For Tagalog, starting from 500K,
OPTICAL performs better than Translate-Test. This demonstrates
that OPTICAL is data-efficient.

5.5 Reduce High-resource to Low-resource
We hypothesize that the strong performance of the Translate-Test
method on high-resource languages is mainly because of the excel-
lent translation quality from the NMT models. Yet a large amount

Table 4: Performance comparison of reducing high-resource
to low-resource language.

Retrieval
Methods

Limited size of NMT model training
French German

5M 10M 5M 10M
Translate-Test 0.3820 (-19.8%) 0.4525 (-5.0%) 0.3971 (-17.8%) 0.4667 (-3.4%)
OPTICAL (2M) 0.4764 0.4832

of training data is a prerequisite for the success of NMT. In this
experiment, we turn high-resource to low-resource language by
limiting the training data size of the NMT models. For French and
German, we follow the same architecture of the OPUS-MT model
but only use subsets with sizes of 5M and 10M pairs, respectively,
from the OPUS corpora for training. We compare Translate-Test
with the suboptimal NMT models and OPTICAL in Table 4. The
drops on MAP of Translate-Test indicate the performance of the
Translate-Test heavily relies on the NMT model which is data-
hungry. Moreover, the knowledge distillation step in OPTICAL and
the training of the NMT model use the same type of data, i.e., the
bitext data. Therefore, for learning the translation knowledge in the
CLIR task, OPTICAL is more data efficient than the NMT model.

6 CONCLUSION
In this paper, we propose OPTICAL, an optimal transport knowl-
edge distillation framework for CLIR task involving low-resource
languages. OPTICAL builds CLIR models by separating the retrieval
knowledge from the translation knowledge. First, the teacher model
learns the retrieval knowledge in a monolingual setting. Then we
design a knowledge distillation loss based on the optimal trans-
port costs to transfer the retrieval knowledge to the student model
in a cross-lingual setting. Because of separating the retrieval and
translation knowledge, OPTICAL greatly reduces the data require-
ments for building a CLIRmodel, especially for CLIR tasks involving
low-resource languages. Our comprehensive experimental results
show that OPTICAL significantly outperforms other baselines in
low-resource languages, including the NMT models. Further analy-
sis demonstrates the effectiveness and high data efficiency of the
knowledge distillation step in OPTICAL. For future work, we are
interested in extending OPTICAL to transfer other monolingual
task-specific knowledge into multilingual space.
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