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ABSTRACT
Recently, several dense retrieval (DR) models have demonstrated
competitive performance to term-based retrieval that are ubiquitous
in search systems. In contrast to term-based matching, DR projects
queries and documents into a dense vector space and retrieves re-
sults via (approximate) nearest neighbor search. Deploying a new
system, such as DR, inevitably involves tradeoffs in aspects of its per-
formance. Established retrieval systems running at scale are usually
well understood in terms of effectiveness and costs, such as query
latency, indexing throughput, or storage requirements. In this work,
we propose a framework with a set of criteria that go beyond simple
effectiveness measures to thoroughly compare two retrieval sys-
tems with the explicit goal of assessing the readiness of one system
to replace the other. This includes careful tradeoff considerations
between effectiveness and various cost factors. Furthermore, we
describe guardrail criteria, since even a system that is better on av-
erage may have systematic failures on a minority of queries. The
guardrails check for failures on certain query characteristics and
novel failure types that are only possible in dense retrieval systems.
We demonstrate our decision framework on aWeb ranking sce-

nario. In that scenario, state-of-the-art DR models have surprisingly
strong results, not only on average performance but passing an ex-
tensive set of guardrail tests, showing robustness on different query
characteristics, lexical matching, generalization, and number of re-
gressions. DRwith approximate nearest neighbor search has compa-
rable low query latency to term-based systems. The main reason to
reject current DR models in this scenario is the cost of vectorization,
which is much higher than the cost of building a traditional index.
It is impossible to predict whether DR will become ubiquitous in the
future, but one way this is possible is through repeated applications
of decision processes such as the one presented here.

1 INTRODUCTION
Term-based indexes comprise of a list of terms and their locations
in a text collection. The idea of term-based indexing predates mod-
ern computers and their application can be traced back to the Bible
concordances of the 13th century [21] which were verbal indexes
to the Bible. Subsequently, the oldest printed indexes appeared in
the mid-15th century [65]. Today, term-based indexes in the form of
inverted-indexes [70] are employed in most computational search
systems, including commercial web search engines.
Boytsov et al. [5] have argued that another approach involving

nearest neighbour lookup should be revisited in the context of search.
In light of emerging neural representation learning models for re-
trieval [49], such an approach combined with learned dense vector

representations—sometimes referred to as dense retrieval (DR)—
have renewed interests in the research community. Initial attempts
at dense retrieval—both in the pre-deep learning era [25] and in
the early days of the neural information retrieval [1, 22]—suffered
heavily from off-topic false positive matches under the full retrieval
setting which typically then necessitated that dense retrieval be
combined with term-based retrieval to achieve reasonable result
quality. However, recently there have been several significant im-
provements [18, 26, 31, 67] in training methodologies for dense
retrieval models leading to many top ranking runs on public bench-
marks like MS MARCO [13] and various open-domain question
answering (QA) datasets [31]. In spite of achieving competitive per-
formancewith traditional term-based indexing on different research
benchmarks, the question remains whether these dense retrieval
systems are ready to replace existing term-based retrieval in prac-
tical search systems. The answer to that question requires more
than simply comparing these systems based on mean effectiveness
metrics on a query workload, and involves careful consideration of
tradeoffs between several different costs and effectiveness, as well
as the result quality on subsets of the query distribution.
A critical dimension that is often overlooked or under-studied

in TREC-style [11, 12] and leaderboard [13] evaluations, is the cost
of deploying these models. In production retrieval systems, cost
typically can be a combination of several factors—e.g., indexing cost,
query processing cost, and even environmental impact of training
deepmodels [4]—and should bemeasuredunder the exact conditions
in which the systemwill be deployed.
After testing two or more systems, we may have many observa-

tions in terms of cost factors and effectiveness measures. A rational
choice for deployment of a system assumes that all choices are along-
side the Pareto optimum of cost vs. effectiveness. If a candidate
system is not alongside the known Pareto optimum, it would natu-
rally fall out of consideration immediately, because there are better
options in all dimensions. However, as soon as we compare systems
along thePareto optimum,we face tradeoffdecisions and constraints.
When evaluating effectiveness of ranking models, be it at TREC

or on a leaderboard, it is also common practice to compare and rank
systems based on performancemetrics averaged over a sample set of
queries.However, themeanvalue of themetricmayunwittingly hide
critical systemic failures andmislead us on the model’s readiness for
deployment. For example, previous work [50, 66] has argued for the
need to incorporate lexical matching features in neural models to
dealwith rare terms, especiallyunder the full retrieval setting [34, 51].
It is therefore reasonable to question if dense retrieval methods on
their ownmay systemically fail to retrieve relevant documentswhen
the query contains rare terms. The dense retriever may show other
systemicweaknesses, such as under-performing on longer queries or



failing to retrieve longer documents, given theoretical constraints on
learning fixed sized embeddings for long text [36] or demonstrated
proclivity of neural retrieval models towards over-retrieving shorter
documents [28] when inspecting only the beginning of documents
for efficiency reasons. Dense retrieval models may fail on queries
that are out of distribution [9, 13, 63] with respect to the training
data. Performance on out-of-distribution queries can be critical for
real world search systems where data distributions can change over
time, or vary across locations and user demographics. It may even
be important to distinguish between different types of failures—e.g.,
retrieving non-relevant but related documents as opposed to retriev-
ing results that are completely off-topic. Such embarrassing failures
can have disproportionate impact on the system’s brand and long
term user engagement [16].
In this work, we design a decision framework to systematically

compare dense retrieval to term-based indexes to determine their
suitability of deployment in real production search systems as a re-
placement for the latter. Unlike previous work, e.g., [31], we are not
concerned about whether dense retrieval outperforms term-based
retrieval across different benchmarks. Instead, we are interested to
study if dense retrieval can be deployed in the context of a given
benchmark or application, and the various detailed considerations
that influence that specific decision. This paper has one full case
study of applying the decision framework. To almost our surprise, in
our chosen test case, carefully-designed dense retrieval models out-
perform traditional term-based retrieval in almost every dimension,
including analysis designed to highlight problems such as handling
of rare terms. However, this is only one scenario and even here, the
ultimate shipping decision is constrained by available hardware bud-
get increases and the individual importance of different cost factors.
Designing a decision framework to compare two retrieval sys-

tems with the explicit purpose of determining whether one system
should replace another is inherently challenging. We note that our
proposed framework is general and appropriate for comparing ar-
bitrary search systems. So, in addition to highlighting the efficacy
of state-of-the-art dense retrieval methods over traditional search
using inverted-indexes, an important contribution of thiswork is the
framework itself. We posit that the proposed framework can guide
rational and informed choices betweendifferent search architectures
and models, albeit, individual cases require individual weighting
decisions of which cost is more important.

Our main contributions and findings are summarized as follows:
• We propose a set of criteria to compare retrieval systems with
cost-effectiveness tradeoff considerations and guardrails to ensure
robustness against failures.

• We propose a general decision framework to guide a decision
maker in applying our criteria.

• We implement our framework on one scenario, finding state-of-
the-art DRmodels are ready to replace term-based systems, unless
cost of vectorization is the overriding concern.
The source code for our framework, experiments, and annotated

data are available at: https://github.com/anonymousURL.

2 RELATEDWORK
Neural Ranking and Dense Retrieval. Neural ranking models

(NRMs) have been widely studied in the past few years and have
led to substantial and significant improvements in terms of retrieval
effectiveness [24, 49]. Following learning to rank models and their
applications in multi-stage cascaded retrieval systems, NRMs are

mostlydesigned to re-ranka small numberof documents retrievedby
one ormore efficient early-stage retrieval models, such as BM25 [57].
Notable models of this category include DRMM [23], Duet [50],
KNRM [66], TK [27], and BERT re-ranking [53]. However, the per-
formance of these models is bounded by the recall of the early stage
retrieval models. To address this shortcoming, Zamani et al. [68]
introduced SNRM, thefirst standaloneneural rankingmodel that can
retrieve documents directly from a large-scale collection. Recently,
models use dense representations obtained from pre-trained contex-
tual language models, e.g., BERT [17]. They are often called dense
retrievalmodels. ColBERT [32], ANCE [67], RocketQA [18] and TAS-
Balanced [26] are amongnotable dense retrievalmodels. Thesedense
retrieval models have been recently used in the literature as state-of-
the-art NRMs, however, we believe that they have never been appro-
priately evaluated and studied. Prior work on dense retrieval [26, 55,
64, 67] mostly report the average retrieval performance on a query
set. Therefore, it is still an open question to what extent these dense
retrieval models can replace the established and robust termmatch-
ingmodels that use inverted indexes for efficient retrieval. This paper
introduces a comprehensive evaluation framework, which can be
applied to make the replacement decision in a given scenario.

Axiomatic Analysis. The proposed evaluation framework is
slightly related to the axiomatic analysis literature. Axiomatic anal-
ysis is a study of retrieval models using a set of well-defined and
easy-to-measure constraints (called axioms) and the intuition is
that every model should satisfy those axioms. Therefore, axiomatic
analysis can provide guidelines for further development of models
by highlighting the unsatisfied axioms. Fang et al. [20] introduced
axiomatic analysis to information retrieval with the goal of improv-
ing term-based retrieval models, such as BM25. Their approach has
been further extended to a wide range of models, such as pseudo-
relevance feedback [8, 52] and query performance prediction [42]. It
has alsobeenemployed for improvingneural rankingmodels [56, 58].
Moreover, Busin and Mizzaro [6] went beyond retrieval models and
brought axiomatic analysis to study evaluation metrics, called ax-
iometrics. They suggest a set of axioms that a metric should satisfy.
Similar to this body of work, our evaluation framework also consists
of a number of criteria or axioms. We believe that making decisions
on the use of dense retrieval in search engines requires analysis of
multiple proposed criteria. The criteria we introduce in this paper
are novel and unlike prior work on axiomatic analysis, some of the
criteria we propose may introduce a tradeoff and system designers
should make decision based on their needs.

Efficiency-EffectivenessTradeoffin IR. IR systemsmainly aim
at retrieving relevant documents from large-scale collections, effi-
ciently. Even though published research mostly focuses on either
effectiveness or efficiency considerations, taking both of them into
account is at the heart of IR systems. There have been numerous
efforts for developing and evaluating IR systems from both of these
perspectives [14, 48, 70]. For instance, Asadi and Lin [2] studied
efficiency-effectiveness tradeoffs in candidate generation for multi-
stage cascaded retrieval systems. Later on, Clarke et al. [7] extended
this work to end-to-end multi-stage systems and developed a model
that does not require relevance judgement information. Refer to the
tutorial by Lucchese and Nardini [37] on the tradeoffs of multi-stage
cascaded systems for more detail. Optimizing retrieval systems by
considering both effectiveness and efficiency measures is a multi-
objective optimization problem. A natural approach to address this
optimization problem is to use the Pareto frontier [29, 39, 40].

https://github.com/anonymousURL


Unlike previous work in this area which mainly focused on multi-
stage cascaded systems, we study dense retrieval as a standalone
retrieval model. The efficiency-effectiveness tradeoff in dense re-
trieval models is relatively unknown and this work will provide
suggestions on the practical use of dense retrieval in search engines.

3 DECISIONCRITERIA
Our goal is to decidewhether to replace an old systemwith a new sys-
tem.Our case study in this paper considers dense retrieval as the new
systemwith traditional indexing as the old system. This wouldmean
replacing a well-studied and proven retrieval system with a promis-
ing, but less understood retrieval system. Dense retrieval has some
known potential ‘deal breakers’, which could make it unusable in
practice. The cost of vectorization and nearest-neighbor search may
be toohigh.Despite good average effectiveness, theremaybe subsets
of queries where results are extremely bad, perhaps when dealing
with rare query terms that were not seen during training. If there is
data drift after deployment, the improvements in performance may
disappear. To handle these concerns, as in any given application, we
suggest identifying a set of application-specific decision criteria.

3.1 Overall Criteria
The starting point when comparing retrieval systems is the mean
effectiveness [18, 26, 31, 67] onadataset thatmatches the target appli-
cation. We apply statistical tests to determine if there is a significant
difference in means, adopting the following notation.

The operator ≫
𝑠𝑖𝑔.𝑇

means statistically significantly larger, as tested

with a test𝑇 , for two results𝑋 &𝑌 :
𝑋 ≫

𝑠𝑖𝑔.𝑇
𝑌 (1)

C-Effective Usingametric (f.e.NDCG@10) thenewsystemBshould
be significantly better than system A: 𝐵 ≫

𝑠𝑖𝑔.𝑇
𝐴.

We can also require a margin of improvement, to eliminate tiny
but significant improvements, which may be possible in some cases.

Among our overall decision criteria, some could require a signifi-
cance test, as in Eq. 1. However, other quantities are less suitable for
significance testing, such as the size of the index. If the new system
requires a much larger index, this can be captured by an absolute
threshold (the index size must not exceed 20GB in production) or ra-
tio (the index shall notgrowbya factoroffive). Such limits, definedby
the decisionmaker, may be of great practical importance, depending
on the scenario. It is also possible to define a criterion that combines
statistical significance and practical significance, to discount small-
but-significant improvements, that may not be worth deploying.

Our decision framework in Section 4 tells us how to make a deci-
sion based onmultiple criteria. Still, the cost of deploying the system
may include a variety of different aspects, such as query latency,
indexing throughput, and storage requirements. The decisionmaker
may decide that a particular cost factor is the most important one,
for example that query latency is important, but indexing costs can
be ignored. Another option is to apply a comparative transformΦ to
each cost factor, to put them on the same scale, and use a weighted
combination to summarize the cost factors.

The comparative transformΦ can takemany forms, involving any
monotonic function, but a simple version is a scaled fraction com-
paring the new approach’s performance 𝑥 to baseline performance
𝑦 with importance weight 𝛼 :

Φ(𝑥,𝑦)= 𝑥

𝑦
∗𝛼 (2)

By transforming several cost measurements and summing, the de-
cision maker can summarize several cost factors as a single number.
C-Efficient The cost of the newmodel B should not exceed the cost

of the old model A by more than a certain factor (𝑁
times) or more than a certain margin (𝐷 distance).

This can be applied on individual cost factors or a transformed
and combined cost factor. Once the decision maker has chosen
application-specificcriteria foroverallC-EffectiveandC-Efficient,
they can consider some criteria that do not measure overall perfor-
mance: robustness criteria.

3.2 Robustness Criteria
Overall improvements in effectiveness, particularly when some
query performances become a lot better, can hide systematic prob-
lems in smaller sub-groups of queries. For example, a system that
is better overall might be much worse at handling queries with rare
words. This could be a deal breaker, if this makes it impossible to
retrieve certain content. Users may notice that they can not search
for a person by name, if the person’s name has rare words that were
not seen during model training, and they may reject the new system
outright.
C-Robust The new system B should not exhibit systematic failure

patterns compared to system A; which might be hidden in
the aggregated metrics.

Observing the resultmetric𝑅 for a certain subsetofmodel indepen-
dently selected queries �̂� , there should be no statistically significant
loss:

NOT

(
𝑅𝐵 (�̂�) ≪

𝑠𝑖𝑔.𝑇
𝑅𝐴 (�̂�)

)
(3)

Now, we are able to define various subsets of our query distribu-
tion to study these systematic model differences. The new system B
should not categorically fail on specific query characteristics, such
as length or term rarity, even if those queries are underrepresented
in the data.

In IRwehave a rich history of studying query characteristics, com-
mon dimensions include the query token length. For C-Lengthwe
define a set of queries with specific token length between𝑚 and𝑛 as:

�̂� = {𝑞 |𝑚< 𝑙𝑒𝑛(𝑞)<𝑛,𝑞 ∈𝑄} (4)
Another common categorization of queries is to utilize the query
token frequency. We define C-Frequency as a set of queries with
specific minimum token frequency𝑇𝐹 between𝑚 and 𝑛 as:

�̂� = {𝑞 |𝑚<min𝑇𝐹 (𝑞)<𝑛,𝑞 ∈𝑄} (5)
Selecting regions of the query distribution is not limited to these

two examples. Any slice of queries is possible, albeit it is important to
select them system independently. If the selection depends directly
or indirectly on the quality of one of the participating systems, the
criterion in Eq. 3 losses its expressiveness.
C-Lexical Novel types of possible failures from a new system B need

to be specifically tested to show that B is robust.
In the case of DRmodels, one such novel failure type can be de-

termined by the subset of queries, which contains a query if the top
ranked (up to 𝑟 ) passages 𝑝 contain only up to 𝑛 token overlaps (as
defined by the set intersection ∩):

�̂� =
{
𝑞
�� 𝑛= |𝑞∩𝑝 |,𝑟𝑎𝑛𝑘 (𝑞,𝑝)<𝑟,𝑝 ∈𝑃,𝑞 ∈𝑄}

(6)
C-Memory If a system relies on machine learning it should be able

to handle the open nature of the retrieval problem: Out of
distribution query types and topics during inference.



Given a measure of query similarity𝐶 , we can determine for ev-
ery training and evaluation query their distance, to observe if very
different queries in the evaluation set𝑄 (here𝑄𝐸𝑣𝑎𝑙 for readability) ,
as defined by the threshold 𝜖 , to the training set𝑄𝑇𝑟𝑎𝑖𝑛 , still provide
similar retrieval performance for the set:

�̂� = {𝑞
��𝐶 (𝑞𝑇 ,𝑞)>𝜖,𝑞 ∈𝑄𝐸𝑣𝑎𝑙 ,𝑞𝑇 ∈𝑄𝑇𝑟𝑎𝑖𝑛} (7)

The query similarity𝐶 can range from simple word count overlaps
to more sophisticated vector semantic models. A requirement is to
incorporate the two query sequences (with potential statistics about
all queries𝑄) and output a single value measuring the similarity.

C-Robust is not limited to our defined sets (Eq. 4, 5, 6), as many
other approaches fit into its definition. Mackie et al. [41] create a
special set of hard queries from the TREC DL Track ’19 & ’20, with a
combination of automatic and manual hardness classification.
C-Margin The new system B should only regress results on queries

up to a threshold compared to the old system A.
Formally defined, as the threshold 𝑡 between the result metric

with at least a distance margin 𝛿 per query of the old system 𝑅𝐴 (𝑞)
and new system 𝑅𝐵 (𝑞) over all queries𝑄 as:

𝑡 ≥
��{𝑅𝐴 (𝑞)−𝑅𝐵 (𝑞) ≥𝛿 , 𝑞 ∈𝑄}

��
|𝑄 |

(8)

We define a minimum result change margin to be able to focus on
embarrassing failures and not small differences explainable by noise
in the evaluation. This is closely related to Robustness Index (RI) [10].

Additional Important Criteria. Even though the mentioned
criteria are extensive, theymay not be fully sufficient for the full con-
sideration of deploying a system. In Section 6, we review a number
of additional criteria that decision makers should take into account.

4 DECISION FRAMEWORK
After the decision maker has chosen a set of criteria that are suitable
for their application, and gathered observations against the crite-
ria, they can apply our decision framework. We would first ask the
decision maker to classify each criterion as primary or secondary.
Among the primary criteria, we need to see at least one significant
improvement to justify launching a new system. A secondary cri-
terion is a ‘guardrail’ or ‘deal breaker’, where we do not require an
improvement but a significant regression would cause us to decide
against the new system.

Although we cannot tell the decision maker which criteria to use,
we believe our proposed dense retrieval criteria are comprehensive,
probing for known weaknesses of dense retrieval systems. Other
dense retrieval studies could apply the same criteria, but with their
own query workload and corpus. For other kinds of information re-
trieval deployment decision, the decision maker can choose criteria
that are appropriate for their setting.

Our decision framework has a significance rule that takes into ac-
count primary and secondary criteria, and a Pareto rule that focuses
on tradeoffs between primary criteria. To be deployed, a new system
must satisfy both rules.

Significance Rule. We summarize the results for each criterion
as awin/tie/loss for the new system, denoted by✓/≈≈≈/✗. This is deter-
mined via statistical significance tests (e.g. improved mean NDCG)
and/or tests of practical significance (e.g., 0.01NDCG improvement,
or20%query latency reduction).Westrongly suggest using statistical
significance tests for measurement of system effectiveness, but not

for a criterion that is a single number, such as index size. The prac-
tical significance test can check whether the index size has grown
above some limit (✗).We can also create a combined criterion, which
requires both a statistically significant gain and sufficient magni-
tude of gain (✓). In this case, a small but statistically significant gain
would be considered≈≈≈.

Given the per-criterion outcome ✓/≈≈≈/✗, the significance rule con-
siders primary and secondary criteria. For primary criteria, there
should be some improvement (✓), to make the change worthwhile,
and no loss (✗). For example, a statistically significant improvement
in NDCG could be enough to satisfy this rule. For secondary criteria,
we are looking at ‘deal breaker’ or ‘guard rail’ cases. We do not re-
quire a win but there should be no losses (✗). In summary, a system
passes the significance rule if it has an improvement on a primary
criterion, and no losses on any primary or secondary criteria.

ParetoRule. ThePareto rule considers tradeoffs between criteria
without considering significance, making it complementary to the
significance rule. Under Pareto analysis, we can consider the old and
new system, but can also consider several parameterizations of the
new system. In Pareto analysis, if system B is better on one criterion
than system A, without being worse on any other, then B is a Pareto
improvement over A, sowe do not need to consider A. If no system is
better than system B on any criterion without being worse on some
other, then B is Pareto optimal. The set of Pareto optimal systems
is the Pareto frontier.

For example, if a system has both higher NDCG and lower query
latency than another system, thenwe can discard the latter system, if
we are only considering those two criteria. If one system has higher
NDCG and lower latency, while the other has higher latency and
lower NDCG, then we should not discard either. Both are on the
Pareto frontier.

If theold system isnot on thePareto frontier, it is Paretodominated
by the new systems. In any case, we should choose a Pareto optimal
system, since otherwise it is possible to do better on a criterion with-
out doing worse on any others. One way of doing so is to transform
each criterion into a comparable scale, by selecting an appropriate
monotonic transform Φ, then we can simply choose the alternative
furthest from the origin. A related option is to consider the change in
total cost of running the search system, and trade this off against the
magnitude of the NDCG improvement. This requires the decision
maker to have some notion of the value of an NDCG improvement,
but having some feel for this is probably fundamental to making any
decision related to search quality, sowe leave it to the decisionmaker
to consider the return on investment in their application setting.

5 CASE STUDY
In this section, we showcase our framework in a case study on dense
retrieval models usingMSMARCO and TRECDeep Learning Tracks
data. Since we expect dense retrieval to have better search effective-
ness but with higher cost, our primary criteria are NDCG@10 (re-
quiring a statistically significant difference with a two-tailed paired
t-test; 𝑝 < 0.05; C-Effective ✓) and an aggregated cost that com-
bines query latency and indexing costs (Eq. (11)).

Making decisions about cost factors is not as general as effective-
ness results.Different practitioners are likely constrained in different
ranges, therefore we use our decision framework to showcase dif-
ferent decision makers, without making a general claim. Providing
a single answer to the questionAre we there yet (as a community)?,
however convenient is simply not possible, due to the diverse nature



of the retrieval settings. However, we provide the tools to answer
specific use cases and settings for the question:Are we there yet (in
our setting)? We carry out a Pareto analysis on our primary criteria,
considering several alternative new systems for our specific use case.
We also consider several robustness criteria, which we count as

secondary, where we are looking for failures rather than improve-
ments (C-Robust ✗).

The Dense Retrieval Model. In our experiments, we use the
BERTDOT model as the dense retrieval system. It uses two indepen-
dent BERT computations (each time pooling the CLS vector output)
to obtain the query 𝑞1:𝑚 and passage 𝑝1:𝑛 representations. It then
computes the retrieval score based on the dot product similarity of
the two representations:

®𝑞=BERT( [CLS;𝑞1:𝑚])
®𝑝 =BERT( [CLS;𝑝1:𝑛])
BERTDOT (𝑞1:𝑚,𝑝1:𝑛)= ®𝑞 · ®𝑝

(9)

This architecture decouples the costly encoding from the search.
We can store every passage in an (approximate) nearest neighbor
index 𝐼 for direct vector-based retrieval. The retrieval of the top 𝑘
hits for a given query 𝑞 is then formalized as:

top𝑘
{
®𝑞 · ®𝑝

�� ®𝑝 ∈ 𝐼 } (10)
In this study, we use the Standalone and TAS-Balanced trained

instances of BERTDOT, developed by Hofstätter et al. [26]. The Stan-
dalone version is trained with binary relevance labels from MS
MARCO [3]. The TAS-Balanced retriever is trained with pairwise
and in-batch negative knowledge distillation using topic-aware sam-
pling to compose batches. It is currently a state-of-the-art training
technique for dense retrieval [63].

Term-basedRetrievalBaselines. WeuseBM25[57]and theneu-
ral augmented indexes DeepCT [15], DocT5query [54], and Deep-
Impact [44] using both Lucene [35] as well as highly tuned results
with PISA [45] reported byMallia et al. [44].

Datasets. We conduct our experiments on the MS MARCO-v1
and TREC 2019-20 Deep Learning Track collections with 9 million
passages and 3 million documents. Following Xiong et al. [67], for
the document collection we utilize two approaches: (1) taking only
the first passage of a document (FirstP), and (2) using the maximum
passage score as document score (MaxP).

5.1 Primary Criteria
Wefirstapply thedecision frameworktoourprimarycriteria,NDCG@10
and aggregated cost.

Study Goal. Identify a solution that has a significant NDCG@10
gain (significance rule) and the right tradeoff of NDCG@10 improve-
ment and aggregated cost (Pareto rule). Since the tradeoffdepends on
the decision maker’s priorities, we consider a decision maker that is
willing to make a tradeoff (➊) and one that is very cost-sensitive (➋).

Study Design. We utilize the mentioned TAS-Balanced trained
dense retriever with three search approaches: (1) exhaustive search;
and (2) the approximate nearest neighbor (ANN) method based on
Hierarchical Navigable Small World graph (HNSW) [43]; and (3) the
ANN method based on Inverted Files (IVF) [60]. We use the Faiss
library [30] for conducting our experiments. We modulated HNSW
and IVFwith different hyper-parameter settings that guide the inter-
nal tradeoff between cost and quality (i.e., the number of graph-node
neighbors and the number of lookup clusters). For measuring cost,
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Figure 1: TREC-DL passage retrieval comparison of the cost-
effectiveness tradeoff for term-based and dense retrieval.

we use encoding & indexing time (using a GPU), storage require-
ment, and single average query latency (using aCPU). Formeasuring
effectiveness, we use NDCG@10 averaged over the TREC-DL query
sets. We conducted our experiments on a systemwith a 16 core Intel
Xeon E5 and TITAN RTX GPU.

The aggregation of cost factors – such as latency 𝑙 , indexing time 𝑖 ,
and storage 𝑠 – is highly dependent on the scenario:whetherwehave
a high query workload, a high document update frequency, or other
requirements. Here, we instantiate our cost side of C-Tradeoffwith
an exemplary balanced aggregated cost (AC) anchored to BM25 per
method𝑚:

𝐴𝐶𝑚 =
𝑙𝑚

𝑙𝐵𝑀25
∗𝛼+ 𝑖𝑚

𝑖𝐵𝑀25
∗𝛽+ 𝑠𝑚

𝑠𝐵𝑀25
∗𝛾 (11)

where 𝛼 , 𝛽 , and𝛾 control the importance of each cost component. In
Figure 1, we set 𝛼 to 10, and 𝛽 &𝛾 to 1. As this weighting has major
impact on the decision and conclusion, we also provide alternative
weighting results in Appendix A.Wemodel a decision maker who
cares much more about relative increases in response time, since
these affect users directly, than they do about increases in index-
ing costs, perhaps because they already have sufficient available
resources to handle a new systemwith moderate requirements.

Study Analysis. For the passage dataset, we show our findings
combined in Figure 1. Each subfigure shares the effectiveness on
the x-axis. All improvements over BM25 are statistically significant
(C-Effective ✓), making many systems viable on that criterion.
We will discuss cost factors then move on to our efficiency criterion.



Table 1: Document retrieval results for TREC-DL query sets.
Line # superscript indicates stat.sig. improvement; paired
t-test (𝑝 <0.05). nDCG cutoff at 10, Recall at 100.

Model TREC’19 TREC’20 Index
MRR Rec. nDCG Rec. Size

1 BM25 .523 .581 .507 .706 2.3 GB
2 DocT5Query .597 .599 .589 .759 2.5 GB

3 DR+Full: FirstP .630 .556 .598 .705 5 GB
4 DR+Full: MaxP .6361 .6105 .63915 .7575 10 GB

5 DR+HNSW: FirstP .607 .542 .586 .684 8 GB
6 DR+HNSW:MaxP .606 .561 .6301 .7605 18 GB

On top in Figure 1 (a) we compare the effectiveness with the log-
scaled query latency for a single query (on CPUs). Query latency is
one of the most common used cost metrics in IR and highly influen-
tial for user satisfaction [33, 68]. Here, we observe DRwith HNSW
approximation is Pareto dominant over other DR approaches. If we
imagine a decision maker whomainly cares about the NDCG@10
and latency, they would be likely to select HNSW 128.
If we instead look at indexing time and index storage require-

ments in Figure 1 (b) and (c) respectively, HNSW exhibits much
higher cost than a simple inverted index or the alternative ANN
method IVF. Concurrently with this work, compression techniques
have been proposed to reduce the required storage [38, 69], how-
ever they also follow a tradeoff pattern, reducing their effectiveness
as well. DocT5Query & DeepImpact (which uses DocT5Query) are
magnitudes slower (with 19,200 minutes) than all other approaches
at indexing time, therefore they are not visible in Figure 1 (b) & (d).
We show combined costs with our exemplary aggregation for-

mula in Eq. 11 in Figure 1 (d). Here, we added two decision lines
(marked with ➊ and ➋) for our two exemplary types of decision
makers. Each line indicates a set of solutions that the decisionmaker
would consider equally good, intersecting with the Pareto frontier.
A decision maker that is willing to make some tradeoff ➊ would
choose the bottom right point, which is HNSW-128 (C-Efficient
✓). However, if absolutely no cost increase is allowed, as in scenario
➋, then all neural approaches would be rejected (C-Efficient ✗).
For the document dataset, we are particularly interested in the

recall of dense retrieval methods, as both the FirstP and MaxP ap-
proaches used cut off the text (at 512 and 4000 tokens respectively)
and do not index every single word, as the term-based indexes do.
Our results on the TREC-DL query sets in Table 1 show a similar
trend to our passage retrieval in Figure 1: Dense retrieval, both in
full and approximate (HNSWwith 128 neighbors) settings, outper-
forms term-based indexes in most cases. Looking at the recall, we
observe that a MaxP approach is needed to substantially outperform
term-basedmethods. However,MaxP naturally increases the storage
requirements compared to FirstP, as more vectors need to be stored.
To conclude, in our application setting with MS MARCO data,

dense retrieval models with the right ANN hyper-parameter choice
can deliver both an equally low query latency and higher effective-
ness than term-based methods. However, this comes at the cost of
increased indexing and storage resource requirements. The deci-
sion to replace term-based retrieval with dense retrieval is therefore
constrained based on individual budgets and constraints. Next we
consider secondary significance criteria.
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Figure 2: Comparison of MRR@10 effectiveness results on
MSMARCO-DEV-49K by query characteristic.

5.2 Robustness by Query Characteristic
The mean effectiveness gains of dense retrieval (even with ANN
search) compared to term-based approaches are large. DR could
completely fail on a large subset of queries and still perform better
than a baseline on average. However, this can be a practical deal-
breaker. Therefore, we make use of our secondary guardrail criteria
to evaluate retrieval models by query characteristics.

Study Goal. We address the following question: Do DR models
struggle on certain queries categorized by length or term frequency?

Study Design. We utilize the criterion C-Robust to compare
approaches by query characteristic, specifically we make use of
length based C-Length and frequency based C-Frequency. We eval-
uate term-based and exhaustive TAS-Balanced DR on the large
MSMARCO-DEV-49K passage query set (with almost 49 thousand
queries; distinct from the training set) in terms of MRR@10. The
reason for switching from TREC-DL to MSMARCO-DEV for this
experiment is that we benefit from using as many test queries as
possible to reduce noise with uncommon characteristics. Note that
the TREC-DL data contains less than 100 queries.

Study Analysis. We present the analysis by query length in Fig-
ure 2a and by minimum term frequency in Figure 2b. In both cases,
we observe dense retrieval performing better than term-based alter-
natives. This is especially surprising for queries with very rare terms
(Figure 2b). Even in cases where a query term is essentially unseen
during training, the TAS-Balanced approach which does explicitly
match terms is outperforming term-based approaches. These are
positive results showing that DR is consistent in the improvements
and therefore DR does not fail our C-Robust tests (≈≈≈).

5.3 Lexical Match Robustness
Retrieving passages from an unconstrained vector space opens up a
new failure scenario that term-based retrieval models cannot suffer
from: returning passages without any term overlaps.

Study Goal. We aim at answering the following question:How
well do different DR training approaches solve the lexical matching
task? Wemeasure the extent of queries, where a DRmodel returns
a top passage with low or no lexical text overlap. We constrain the
problem to the first returned passage and the P@1metric. For this
case study, we instantiate our guardrail criteria C-Lexical.

Study Design. We use Eq. 6 to select a set �̂� of queries, using the
highest ranked passage by our dense retrieval models. We assume
that cases without any (𝑛 = 0) or only one (𝑛 = 1) subword-token
overlap between the query and the highest ranked passage represent
hard-failures of missing lexical matches.

Using exhaustive search, we compare three different methods: (1)
a pre-trainedDistilBERTmodelwithout fine-tuning; (2) a standalone



Table 2: Annotation analysis of queries from MSMARCO-DEV-Large (49K queries) with zero or one subword overlap on the
top-1 retrieved passage by the BERTDOT dense retrieval model. Δ P@1 shows the difference to the DEV-7K set.

Training Common Queries Query Tokens Our Annotations
Tokens@1 # % Total Subwords P@1 Δ P@1 4-Graded Relevance Distribution

None (Pre-trained) 0 22,600 46.50 % 6.0 15% .000 – 100%
1 14,640 30.12 % 6.9 13% .000 – 100%

Standalone 0 163 0.33 % 5.0 16% .313 -.435 21% 10% 13% 55%
1 1824 3.75 % 4.3 7% .580 -.168 45% 13% 16% 26%

TAS-Balanced 0 37 0.01 % 4.0 8% .622 -.173 43% 19% 11% 27%
1 1284 2.64 % 3.9 3% .715 -.080 57% 14% 14% 14%

Table 3: Training and test set MRR@10 results for TAS-
Balanced using different training cluster-splits. Line # super-
script indicates stat.sig. improvement; paired t-test (𝑝 <0.05).

Training Ratio Train (400K) Test (49K)
Data All C-Sub. All C-Subset

1 BM25 – .172 .173 .194 .190

2 All 1.0 .3451345 .346135 .340134 .338134

3 Uniform Reduction 0.1 .29914 .3001 .31514 .3101

4 Subset-Clusters 0.1 .2801 .4291235 .2981 .32113
5 Non-Subset-Clusters 0.9 .343134 .3021 .339134 .334134

fine-tunedmodel; and (3) thementioned dense retrievalmodel based
on TAS-Balanced. To receive robust results, we again conduct this
study on the largeMSMACRO-DEV-49K set. Furthermore, wemanu-
ally judged all selected queries and their first retrieved passages (for
thenon-finetunedbaselinewe sampled 100queries). The judgements
were conducted by non-expert annotators on a 4-graded relevance
scale, following the TREC-DL definition (Relevant: Perfect & Par-
tial; Non-Relevant: Topic &Wrong). The annotators had to select
relevant text spans for the two relevant classes, reducing the chance
of inadvertent false positives. With this we can confidently draw
conclusions from this study thatwould not be possiblewith the noisy
incomplete relevance judgements fromMSMARCO.

Study Analysis. In Table 2, we report the resulting query set
sizes as well as our annotation results. First, we observe that our
pre-trained only baseline completely fails - returning an irrelevant
top-1 result with zero or one matching token for the majority of
queries. This shows that there is indeed no guarantee that dense
retrieval can do token matching or term (token n-gram) matching.
However, when we turn towards the fine-tuned models with rel-
evance data, we see that the standalone training already reduces
the ratio of queries without matches to .33%. The state-of-the-art
TAS-Balanced retriever reduces this number further to .01% and
the number of queries with a single match to 2.64%. Our annota-
tions show that the true failures of these query sets are even smaller,
because the P@1, while lower than the average P@1 of a random
query sample, is still above .622 (no common tokens) and .715 (1
common token) for TAS-Balanced. To conclude, we only observe a
practically insignificant fraction of queries where a missing term
match is the cause of a non-relevant top retrieved passage, therefore
TAS-Balanced does pass our C-Robust tests (≈≈≈).

5.4 Memorization vs. Generalization
In contrast to many other traditional retrieval models which only
have a few hyper-parameters to tune on a collection, dense retrieval
models contain millions of parameters and require large-scale train-
ing data. This opens the possibility that DRmodels just memorize
the query distribution (even if the test queries are technically distinct
from the training set) andwhat looks like generalization across differ-
ent query sets is actuallymemorization, as posited byus inC-Memory.

Study Goal. We aim to observe the robustness of dense retrieval
to reduced training data and answer the question: Does the effective-
ness of DR models come frommemorization or a mix with generaliza-
tion capabilities?

Study Design. We utilize the topic-cluster-guided training of
TAS-Balanced as query-similarity measure to reduce the training
to different cluster subsets. Queries are assigned a cluster using a
baseline DR representationwith dot-product similarity.We compare
the following training splits in Table 3: training on all 2000 query
clusters (row2); trainingon10% randomly selected queries, but using
all clusters (row 3); and then our cluster-subsets with training on
10% of clusters (row 4), as well as training on the remaining 90% (row
5). We then evaluate these model instances on the training and the
test set (both split in all available queries and queries associatedwith
the 10% subset clusters).

Study Analysis. In Table 3 we see in rows 1, 2, & 3 that BM25
and training on all clusters produces stable results with lowmargins
between all and c-subset for both training and testing. As before
we observe DR to vastly outperform BM25, albeit slightly reduced
when we only train on 10% of the training data. Even the strongly
reduced-training DR instances pass our C-Robust tests (✓) com-
pared to BM25. If we only train on a 10% cluster-subset (row 4) we
see that it strongly memorizes the training set, outperforming the
other DRmethods substantially on the trained clusters. But on the
test set it is outperformed on the same query clusters by the full
training (row 2). Similarly, the 10% cluster-subset training is also
outperformed by more training data that does not contain queries
from the evaluated clusters (row 5). To conclude,we do observe a ten-
dency to memorize the training set, if the number of queries is small.
A 10% cluster-subset would fail our C-Robust tests (✗) compared to
the other DR instances, but not to BM25 (✓). A 10% drift in the query
distribution from train to test (row 5) is as robust as no drift at all (≈≈≈).

5.5 Per Query Robustness of Improvement
Commonly in IR, the wins and losses on a query level between two
competitive systems will always have some queries on both sides.
The important factor is howmany losses are tolerated, as we set in



Table 4: Failure analysis ofqueries selected fromMSMARCO-
DEV (49K queries) with BM25 having an RR=1 and dense
models RR=0 on sparse judgements. We annotated the top-1
retrieved result from the densemodels.

Training Queries Our Annotations
# % P@1 4-Graded Relevance Distribution

Standalone 911 1.87% .528 37% 16% 28% 19%

TAS-Bal. 472 0.97% .638 48% 16% 27% 9%

C-Margin. Once a system is over a given threshold ofmissed queries,
we need to reconsider deployment.

Study Goal. In the previous studies (Sec. 5.2, 5.3, 5.4) we sliced
dense retrieval results by query characteristics and effectiveness
independent result properties. Now, we start our study from the
other side and select queries using evaluation metrics. We want to
answer: How large is the query set with the highest failure margin
between DR and term-based models?

Study Design. We select the queries fromMSMARCO-DEV-49K
with the largest RR@10margin between BM25 and BERTDOT. For
our analysis we set 𝛿 = 1 in Eq. 8, the maximum possible margin.
Furthermore, to gain clarity on the actual result quality, without
sparse label noise, we follow our labelling approach from Section
5.3 to annotate the relevance of the first retrieved passage.

Study Analysis. In Table 4, we show the results for standalone
and TAS-Balanced trained dense retrieval models. BM25 shows a
RR@1 and P@1 of 1 for the selected queries. The number of queries
whereBM25outperformsBERTDOT is 1.87%usinga standalone train-
ing and 0.97% for TAS-Balanced. Judging from the sparse labels, this
would already be a small number, albeit it could cause concern if the
new search system fails on that many queries. However, our annota-
tions show that while not all queries are answered, the true P@1 loss
compared to BM25 for this query set is even smaller. The difference
between standalone and TAS-Balanced shows that the small number
of failures against BM25 are not endemic to dense retrieval, rather
they can be even reduced further by better training techniques.
If we set the threshold of allowed failures to a reasonable, albeit

arbitrary, 1% of queries we observe that TAS-Balanced passes our
C-Robust tests (≈≈≈) compared to BM25.

5.6 Overall Decision
WhenprobingTAS-Balancedon theMSMARCOdatasets,wesurpris-
ingly find that it passed all our robustness tests that were designed
to target suspected flaws in dense retrieval.
The main drawback of dense retrieval is the cost of vectoriza-

tion and building the ANN index. In an application that needs to
run at extremely low cost, the decision maker might put a higher
weight on indexing size and time than theydoon latency. Theymight
also choose a point on the Pareto frontier, which loses significant
NDCG@10 in order to greatly reduce cost. If 100minutes of indexing
and 22GB is impossible, for example on a very low-cost application,
then the decision maker may choose the traditional index (tradeoff
➋). However, we think that in many real applications the cost in
minutes and gigabytes is affordable, so for our case study we would
expect the decision maker to mostly choose to replace term-based
indexing with the new DR approach (tradeoff ➊).

6 ADDITIONALCRITERIA
In addition to the criteria introduced in Section 3, there are many
other important considerations, ranging from critical externalities
to technical debt, that should be emphasized in any deployment de-
cision. In this section, we review several of these additional criteria
that decision makers should pay attention to. These considerations
are also important in the context of dense and term-based retrieval
systems and should be studied in future work.
C-Bias Search engines, like other large-scale information access sys-
tems, act as gatekeepers to the world’s information. The ranking of
results that these systems produce directly influences what informa-
tion and content users are exposed to.When deploying new systems,
it is therefore important to also consider potential representational
and allocative harms that may result from biases encoded in these
socio-technical systems. For example, large deep learningmodels are
known to not only pick up historical societal biases present in most
training datasets, but can often amplify them, leading to harmful
stereotyping of and promote negative sentiments towards marginal-
ized groups [4]. Biases in the models can also raise concerns around
user-side and producer-side fairness [19, 47]. Therefore any system
deployment decisions must ascertain that all benefits of the new
systemmust be equitably distributed across different demographic
groups and does not introduce any significant new societal harms.
C-EnvironmentAs the worldwide scientific community rings the
warning bell on critical dangers of continuing climate change [46]
and different institutions, commercial and otherwise, move towards
more ambitious reduction of their carbon footprint and negative
ecological impact (e.g., [61]), the environmental cost becomes an
increasingly critical criteria to be considered in any deployment deci-
sions. The research community has recently raised various concerns
on the environmental impact of large-scale deep learningmodels [4].
Same arguments also holdwhen thesemodels are applied to retrieval
models. Therefore, the environmental impact, e.g., carbon footprint,
of the deployed system should be also considered in the decision
making process. Many of these impacts are measurable, e.g., see [62].
C-MaintainabilityCommercial search engines are large and com-
plex systems often deployed over large-scale distributed cloud in-
frastructure. In this paper, we have focused on the cost and benefit of
a new systemmeasured at the point of deployment,whichmisses the
additional cost associated with maintaining and further improving
the system post deployment. For a machine-learned dense retrieval
system, this includes the cost of incremental updates to the index as
new documents are discovered and added to the collection, as well
as old document contents are refreshed and re-indexed. Over time,
as the volume and the distribution of documents in the collection
and the query workload naturally evolve, it may become necessary
to periodically re-train and re-deploy the machine-learned models.
This introduces additional efficiency-effectiveness tradeoffs associ-
ated with future maintenance of any deployed system that decision
makers must account for. Neglecting these considerations can result
in build up of technical debts inmachine learning based systems [59].

7 CONCLUSIONS
Given the recent popularity of dense retrieval models, this paper
takes a deeper look to evaluate these models and provide tools to
answer the main question: Are we there yet? Can we switch from a
term-based to a dense retrieval system? We described a general frame-
work for evaluating retrieval models based on multiple criteria that
cover effectiveness, efficiency, and robustness measures.



In our case study, we observed that state-of-the-art ANNmodels
can provide significantly higher effectiveness with similar query
latency to term-based models. However, they have substantially
higher cost in terms of storage usage and indexing time. Surpris-
ingly, we observed that dense retrieval models deliver consistently
better search results for querieswith different length, different query
term frequency, and robust lexical match capabilities.

More broadly for the field and in practical applications, the answer
to the question are we there yet, will be determined by many evalua-
tions,many case studies. The proposed decision framework provides
a guideline for systematic evaluation of new retrieval models which
canbeusedby searchenginepractitioners tomake informeddecision
about new retrieval models before deploying them into production.
To saywhetherDR becomes a ubiquitous solution, perhaps even sup-
planting traditional indexing, requires many decisions to be made
and many application-specific scenarios. We are certainly not there
yet, but through many such studies we will find out.
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A APPENDIX: IMPACTOF COSTWEIGHTING
In Section 5.1, we define a simple cost aggregation function (see Eq.
11) with three parameters that control the weight of latency, index-
ing time, and storage requirement costs. In Figure 3, we showcase
additional weighting combinations in addition to the scenario in
Figure 1. Many of the benchmarked methods have diametrical cost
behaviors. While HNSW trades indexing time and storage space for
lower latency, IVF does the opposite. The two methods based on T5
(DocT5Query & DeepImpact) have enormous indexing times with
very low latency and storage requirements.

Wefind that bymodulating theweighting, a decisionmakerwould
come to different conclusions, as the combined Pareto frontier is
set by different methods in Figure 3. Note that these parameters are
collection- and task- and domain-specific and should be carefully
selected by domain experts and decision makers.
• Figure 3 (a) repeats the results of Figure 1 (d) for easier compari-
son. It models an emphasis on query latency, and equally includes
indexing time and storage.

• Figure 3 (b) increases the emphasis on indexing time. This is
important for scenarios with many updates and index refreshes.
We demonstrate that in this case the IVF method shows a better
tradeoff than HNSW.

• Figure 3 (c) sets all weights to 1, which again favors IVF over
HNSWandthedifferencebetweenBM25andtheneuralapproaches
becomes stronger, requiring a greater permissible cost increase
factor for a selection of dense methods.

• Figure3 (d) showsa scenarioof a static collection,where indexing
isadismissible (and therefore ignored)one-timecost.Theonlycost
factors that matter are storage space and latency. Now, the neural
augmented term-based methods become much more viable to se-
lect, as theirmain drawback is the slow inference over all passages.
This analysis again shows howwe will not arrive at a single gen-

eral recommendation for or against deploying a certain system. It
depends strongly on the individual situation. Our framework pro-
vides the guidance for informed decision makers.
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