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ABSTRACT
Understanding why a model makes certain predictions is crucial
when adapting it for real world decision making. LIME is a popular
model-agnostic feature attribution method for the tasks of classi-
fication and regression. However, the task of learning to rank in
information retrieval is more complex in comparison with either
classification or regression. In this work, we extend LIME to pro-
pose Rank-LIME, a model-agnostic, local, post-hoc linear feature
attribution method for the task of learning to rank that generates
explanations for ranked lists. We employ novel correlation-based
perturbations, differentiable ranking loss functions and introduce
new metrics to evaluate ranking based additive feature attribution
models. We compare Rank-LIME with a variety of competing sys-
tems, with models trained on the MS MARCO datasets and observe
that Rank-LIME outperforms existing explanation algorithms in
terms of Model Fidelity and Explain-NDCG. With this we propose
one of the first algorithms to generate additive feature attributions
for explaining ranked lists.
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• Information systems→ Learning to rank.
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1 INTRODUCTION
A large number of explanation methods have been introduced in
the last few years [8, 16, 18]. While some are motivated by generat-
ing explanations of deep neural models for end users, others are
built in order to gain an understanding of unknown properties and
mechanisms of the underlying data-centric process. Explanations
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that belong to the class of additive feature attribution methods (e.g.
LIME and SHAP) have played a large role in supporting the above
goals, especially for tasks like regression and classification.

Explanation of learning-to-rank models, though, has received
little attention. Singh and Anand. [19] extended LIME to explain the
relevance of a document to a query. However they (i) do not evaluate
the quality of generated explanations, and (ii) do not explain the
reason behind the order of documents retrieved for a query by
the learning-to-rank model. Singh et al. [20] proposed a greedy
approach to identify the top features responsible for generating a
ranked list. However, their approach (i) has only been suggested
for rankers with human-engineered features as input, and (ii) does
not scale well for a large number of features. In contrast, we see
great value in a general, post-hoc ranking explanation techniques
to understand the behaviour of deep learning-to-rank models.

Existing point-wise explainers can be used to explain a ranked
list one document at a time. However, they focus on features that are
responsible for a particular document being relevant at a time. In our
early experiments, we discovered that those features could not be
used to reconstruct the original ordering reliably. Instead, a list-wise
approach has the potential to identify exactly which features are
important to achieve a particular ordering of documents. We believe
such an explanation is thus more useful to a user who wants to
understand the rationale behind an ordering (e.g., a product search
result).

We describe Rank-LIME, an approach to generatemodel-agnostic
local additive feature attributions for the task of learning to rank.
Given a black-box ranker whose architecture is unknown, a query,
a set of documents and explanation features, and a small part of
the training data, Rank-LIME returns a set of weights 𝑤𝑖 for the
most important features, measuring the relative contribution of
those features towards deciding the ordering. We focus on gener-
ating Rank-LIME explanations for transformer-based rankers (e.g.
BERT and T5), but Rank-LIME can be used to generate explanations
for other ranking models as well. We propose metrics based on
Kendall’s Tau and NDCG to compute the accuracy of the generated
explanations for learning-to-rank models and compare them with
strong baselines.

Our main contributions are (i) extending LIME to explain List-
Wise relevance functions, (ii) introducing correlation-based in-
stance perturbations, (iii) employing ranking reconstruction loss
functions in LIME, and (iv) proposing measures to evaluate feature
attributions in ranking. To the best of our knowledge this is one
of the first works on explaining listwise relevance functions using
feature attributions.
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2 RELATEDWORK
LIME [16] is one of the first steps towards model explainability in
machine learning literature. The authors propose a model-agnostic
linear explanation method where they locally approximate a classi-
fier with an interpretable model by perturbing inputs and then gen-
erating labels for the perturbed inputs. The output of their model is
a bar graph representing contributions of supporting and opposing
features. Later, Lundberg and Lee [8] propose KernelSHAP, a frame-
work similar to LIME, which satisfies properties of the classical
Shapely values.

Explanations for neural models in Information Retrieval is a rel-
atively unexplored task. One of the first works in this direction was
EXS, a local post-hoc explainability technique by Singh and Anand
[19], where they extended the general LIME-classifier explainability
model to pointwise rankers. They use it to answer three types of IR
explainability questions: 1) Why is a given document relevant to a
given query? 2) Why is document A ranked higher than document
B?, and 3) What is the query intent learnt by the ranking model?.
They do so by perturbing the inputs in the locality of the document
of interest and then generating binary relevance judgements for
these perturbed queries. These perturbed instances are fed to the
LIME explainability model and visualized as in the original.

Next, Fernando et al. [5] explore a model-introspective explain-
ability method for Neural Ranking Models (NRMs). They use the
DeepSHAP [8] model which in turn extends DEEP LIFT [18] to learn
an introspective explainable model for deep neural rankers. They
compare with NRM explanations generated by Singh and Anand
[19] and find that explanations generated by LIME and DeepSHAP
are significantly divergent.

Singh et al. [20] extend IR explainability approaches to human
engineered features, and propose two metrics: validity and com-
pleteness. They try to optimize these two metrics by greedily finding
a subset of the input model features, capping the set size at 𝐾 , such
that there is a high correlation between the rankings produced by
the selected features and the original blackbox model, i.e., high va-
lidity. At the same time they try to maximize completeness, which
they quantify as the negative Kendall’s Tau correlation between
non-explanation features and the original ranking.

Verma and Ganguly [22] propose a model-agnostic pointwise ap-
proach to compute explanation vectors, which can in turn be studied
to find positive or negative contributions of a term towards a rank-
ing decision. Sen et al. [17] extend that work to give explanations in
terms of three primal IR features: frequency of a term in a document,
frequency of a term in a collection, and length of a document as the
weights of a linear function. Most recently, Anand et al. [1] wrote a
survey paper on explainable approaches for Information retrieval,
which discussed other post-hoc explanation mediums like free-text
and adverserial examples along with feature attribution methods.
Other work [23–25] delves into generating explainable decisions
for recommender systems.

3 RANK-LIME
Let 𝑓 denote a black-box learning-to-rank model that, given a query
𝑞 and a set of documents 𝐷 = {𝑑1, . . . , 𝑑𝑁 }, returns a ranking 𝑅
of documents in 𝐷 , i.e., 𝑓 (𝑞, 𝐷) = 𝑅. The ranking model 𝑓 can be
uni-variate or multivariate [12], trained with a pointwise, pairwise,

or listwise loss function [7]. The dominant approach for learning-
to-rank models is a uni-variate scoring function [7, 9] where the
ranker scores each document 𝑑𝑖 ∈ 𝐷 individually and then sorts the
documents based on their scores. However, as our goal is explaining
a black-box ranker, we do not make any assumption on the ranker
and thus want to explain the obtained ranking 𝑅 from a black-box
learning-to-rank model 𝑓 .

Here, we focus on local explanation of the behavior of a learning-
to-rank model for a single ranked list with respect to a query as
proposed in LIME and subsequent works [8, 16]. Specifically, the
goal is to explain the ranking 𝑅𝑥 obtained from 𝑓 (.) for the sin-
gle instance 𝑥 = (𝑞, 𝐷). Explanation models usually work on inter-
pretable (or simplified) inputs 𝑥 ′ that map to the original inputs
through a mapping function as follows.

𝑥 = ℎ𝑥 (𝑥 ′) . (1)

Documents here are represented as a bag of words. For a vocabulary
of 𝑁 words, each document is represented by an 𝑁 -dimensional
vector where the 𝑖𝑡ℎ element represents the frequency of the 𝑖𝑡ℎ
word in that document.

Extending LIME for the explanation of learning-to-rank models,
we sample instances around 𝑥 ′ to approximate the local decision
boundary of 𝑓 . The perturbed instances are denoted by 𝑧′. Feed-
ing the perturbed instance 𝑧′ to ranker 𝑓 (ℎ𝑥 (𝑧′)), one obtains the
ranking 𝑅𝑧′ .

Following LIME, We define an explanation as a model 𝑔 ∈ G
where G is the class of linear models, such that 𝑔(𝑧′) = 𝑤𝑔 · 𝑧′.
The Rank-LIME explanation is then obtained by minimizing the
following objective function.

𝜉 = argmin
𝑔∈G

L(𝑓 , 𝑔, 𝜋𝑥 ′) + Ω(𝑔), (2)

where Ω(𝑔) represents the complexity of the explainable model,
and 𝜋𝑥 ′ measures the locality of perturbed instances. In LIME [16],
the loss functionL(.) is defined as the mean squared error, which is
not applicable to the output of learning-to-rank models as ranking
of documents. We discuss the choice of loss, complexity, and locality
functions in the following subsections.

3.1 Locality Function
The local kernel 𝜋𝑥 ′ in Eq. (2) defines the locality of the instance to
be explained toweight the perturbed instances. Following LIME [16],
we use an exponential kernel as:

𝜋𝑥 ′ (𝑧′) = exp(−Δ(𝑥 ′, 𝑧′)2/𝜎2), (3)

where Δ(.) denotes a distance function between the instance to
be explained and a perturbed instance in the space of explanation
features, i.e., 𝑥 ′ = (𝑞𝑥 ′, 𝐷𝑥 ′) and 𝑧′ = (𝑞𝑧′, 𝐷𝑧′). We instantiate the
distance function as:

Δ(𝑥 ′, 𝑧′) = 𝛿 (𝑞𝑥
′
, 𝑞𝑧

′
) +

∑
𝑑𝑖 ∈𝐷

𝛿 (𝑑𝑥
′

𝑖 , 𝑑
𝑧′
𝑖 ), (4)

where the function 𝛿 measures the cosine distance between the
vector representations of queries or documents based on the expla-
nation features.
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3.2 Feature Perturbations
The LIME algorithm is largely susceptible to assigning improper
attributions when its explanation features are large in number and
correlated to each other [26]. These become the largest inhibitors in
using LIME for explaining ranking decisions, where the documents
are often strongly correlated to each other. To counter this, we
compute Σ𝐶 , the covariance matrix of the features from a part of
the training dataset and incorporate them to generate perturbations
in the Rank-LIME algorithm.

Perturbations in the original LIME algorithm are random. Each
feature is sampled independently from a normal distribution centred
around the instance with 𝜇 = 0 and 𝜎 = 1. However in Rank-LIME,
we carry out perturbations in the vicinity of an instance 𝑥 , having
𝜇 = 0 and Σ = Σ𝐶 . These include both single feature perturbations
as well as group perturbations. This helps maintain the feature
correlations from the training set in the perturbed instances and
avoids noisy off-manifold or out-of-distribution perturbations [21].
This is especially important in the presence of large documents and
correlated features.

3.3 Loss Functions
The Rank-LIME explanation model needs a differentiable loss func-
tion quantifying the divergence between two ranked lists, specif-
ically the original ranking 𝑅𝑥 and the ranking 𝑅𝑧 for a perturbed
instance. The metrics generally used to compare or evaluate ranked
lists are Kendall’s Tau and normalized discounted cumulative gain
(NDCG). However, neither of these metrics are differentiable, and
hence cannot be used to train a regression model to generate ex-
planations. We thus use a proxy of the above non-differentiable
metrics in the Rank-LIME framework as follows:
ListNet [2] represents each ranked list with a probability distri-
bution – top-1 probability as an approximation of permutation
probability. It then uses cross-entropy to measure the dissimilarity
between two ranked lists.
RankNet [3] is a pairwise probabilistic loss function, aggregated
to calculate list comparison scores.
ApproxNDCG [14] is a listwise proxy loss to NDCG that replaces
the position and truncation functions of NDCG with a smooth func-
tion based on the position of documents.
NeuralNDCG [13] is a new proxy to NDCG that uses a differen-
tiable approximate alternative to the sort function in NDCG, which
is then plugged into the NDCG formula to compute relevance. Its
neural sorting function is able to sort documents with high accu-
racy and bounded error rates.
We use the allRank1 implementation for each of these loss functions.

4 EXPERIMENTS
Datasets For experiments on text-based ranking models, we con-
sider BM25, BERT [4], and T5 [15] ranking models as the black-box
rankers to be explained. BERT and T5 rankers are fine-tuned using
the MS MARCO passage ranking dataset [10] following previous
studies [11]. To conduct our experiments, we generate explanations
for queries in the test set of the dataset. We generate explanations
for the list of ten most relevant documents according to each ranker.

1https://github.com/allegro/allRank/tree/master/allrank/models/losses

Table 1: Comparing different perturbationmethods and loss
functions for Rank-LIME for word-based explanation of the
BERT-based ranker [11]. Generation Time is measured in
seconds.

Perturbation Loss Function Fidelity Gen-Time

Single-Perturbations

ListNet 0.39 240
RankNet 0.35 270

ApproxNDCG 0.43 340
NeuralNDCG 0.41 360

Group-Perturbations

ListNet 0.42 420
RankNet 0.39 440

ApproxNDCG 0.49 500
NeuralNDCG 0.46 540

We use the PyGaggle implementation of the BM25, BERT, and T5
rankers.2
Competing Methods.We compare the performance of the follow-
ing explanation algorithms. We generate explanations by assigning
linear attributions to the features chosen by each algorithm.

RANDOM assigns random weights to 𝑘 of the explanation fea-
tures, normalized to add up to 1.

Averaged-EXS is proposed by Singh and Anand [19]. This ap-
proach addresses explainability for learning-to-rank models which
use textual data as their input. They generate LIME attributions for
each query-document pair based on various document relevance
measures. We then aggregate their attributions of each document,
select top 𝑘 features and normalize them to present as an attribution
for the ranked list.

Weighted-EXS: One of the EXS methods uses LIME to attribute
why any document A is more relevant than document B. We aggre-
gate these explanations for each pair of documents and score them
in a weighted manner, such that, the weight of each attribution is
based on the difference in their document ranks in the original rank-
ing. High rank difference documents are given more weight than
low rank difference ones. The top 𝑘 features from these weighted
aggregated attributions are picked, which are then normalized such
that they add up to 1.

TopKFeatures, proposed by Singh et al. [20], introduces two
metrics, validity and completeness, to select the top 𝑘 interaction
features that contribute to decision making. This method however
does not assign a weight to each feature, based on their contribu-
tion. As a result we cannot compare this method to our proposed
method as is. Instead we assign a uniform weight value of 1

𝑘
to each

feature in the result of this method, in order to enable comparison.

Evaluation MetricsWe propose the following metrics to evaluate
the quality of explanation models. We derive intuition from similar
metrics for the tasks of classification/regression and adapt them to
suit ranking.

Model Faithfulness/Fidelity evaluates how good the explana-
tion models are in reconstructing the black-box model’s output
for the given query. We construct an explanation model’s ranking
by linearly combining the features multiplied by their weights to

2https://github.com/castorini/pygaggle

https://github.com/allegro/allRank/tree/master/allrank/models/losses
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Table 2: Comparing performance of different competing sys-
tems for word-based explanations of textual rankers based
on model fidelity and Explain-NDCG.

Ranker System Fidelity Explain-NDCG

BM25

Random 0.20 0.0014
Average-EXS 0.45 0.2145
Weighted-EXS 0.56 0.3419

Top-K 0.39 0.1998
Rank-LIME 0.61 0.4019

BERT

Random 0.19 0.0002
Average-EXS 0. 39 0.1895
Weighted-EXS 0.42 0.2109
TopKFeatures 0.38 0.1034
Rank-LIME 0.47 0.3210

T5

Random 0.16 0.0042
Average-EXS 0.32 0.1989
Weighted-EXS 0.41 0.2109
TopKFeatures 0.35 0.1487
Rank-LIME 0.48 0.3415

form an ordering. We then compute the Kendall’s Tau between the
ranking by the black-box model and this obtained ordering.

Explain-NDCG@10 also evaluates how well the explanation
model reconstructs the black-box model’s output. Unlike Kendall’s
Tau, this metric is position sensitive and yields higher scores for
models which explain top ranked documents better. We use the
scores obtained by the learning-to-rank model to assign NDCG rel-
evance to each document. However, the scores of documents might
be negative leading to an unbounded NDCG value. As a result, we
use min-max normalization on the scores to decide on relevance
labels while maintaining statistical significance, as recommended
by Gienapp et al. [6]. The higher the score, the more relevant the
document. We then compute the NDCG of the reconstructed rank-
ing with these relevance scores. We average the value of NDCG@10
across all queries to report this metric.

Experimental Settings For explanations, we define the explana-
tion feature set as words of the set of documents 𝐷 and the query 𝑞
in the instance 𝑥 to be explained. We conduct experiments where
ranking models BM25, BERT, and T5 are explained with features
derived from the words of the instance to be explained. Perturba-
tions are obtained by (i) modifying the frequency of a single feature
at a time or (ii) modifying the frequency of a group of features
at a time. The feature covariance matrix is computed using 1,000
randomly sampled documents from the training set. Each training
document is represented as a bag of words vector for Σ𝐶 to be
computed. We also compare different loss functions for different
perturbation settings in Rank-LIME and report fidelity and rela-
tive explanation generation time for each scenario. We use the
bag-of-words representation of inputs to generate explanations.
As a result the generated explanations are not position dependent.
For all experiments, we choose 50 instances from the test sets of
MS MARCO dataset to generate local explanations. We pick top 𝑘
(𝑘 = 8) features for evaluating explanations by different systems in
a fair manner.

5 RESULTS AND DISCUSSION
Rank-LIME Parameters. Table 1 shows the fidelity of Rank-LIME
in the word-based explanation of BERT-based ranker [11] when
different perturbations and loss functions are used. Single perturba-
tions refer to perturbations where we perturb a single feature value
at a time. Group perturbations refer to perturbations where we
perturb groups of features in the instance being explained at a time.
We find the ApproxNDCG loss function outperforms other listwise
loss functions proposed for generating Rank-LIME explanations
by at least 4.8%. The group perturbation setting where we mask
a subset of features at each perturbation achieves higher fidelity
than the single perturbation scenario by 13.9% but at the cost of
generation time (47% overhead). Since there is no time or budget
constraint in this scenario, we use the ApproxNDCG loss function
and group perturbation scenario for comparisons with later sys-
tems. Table 1 also depicts relative generation time for each kind
of perturbation. We do not associate any absolute metric to it as
generation time is implementation and system dependent. Figure 1
is an example Rank-LIME output corresponding to an instance of
the MS MARCO dataset.
Rank-Lime vs Competing systems. Next, we compare Rank-
LIME to competing systems in Table 2. The reported results are
computed over 50 instances randomly chosen from the test set of
the dataset. We observe that Weighted-EXS outperforms Averaged-
EXS by 24.4%. However, Rank-LIME outperforms the best baseline
by 11.9%. We see an even bigger win for Rank-LIME on Explain-
NDCG, 17.6% over the strongest baseline. A bigger win by Rank-
LIME on Explain-NDCG as compared to Kendall’s Tau (fidelity)
intuitively suggests that Rank-LIME pays more attention to ex-
plaining high scoring documents as compared to other explanation
algorithms. We also observe that explanation algorithms achieve
29.7% higher fidelity while explaining the BM25 ranker as com-
pared to while explaining the BERT ranker. This suggests that
LIME-based algorithms that generate linear explanations perform
worse at explaining neural models with complex decision bound-
aries as compared to explaining simple ranking models.

6 CONCLUSION AND FUTUREWORK
The notion of explainability and how we quantify it is largely sub-
jective. However, explanation models which are highly faithful as
well as interpretable can be passed off as good explanation models.
In this work, we presented a model-agnostic algorithm to provide
linear feature attributions for results in the task of learning to rank.
Our method is general and caters to pointwise, pairwise, and list-
wise techniques. We proposed novel feature attribution techniques
and evaluation metrics suitable for a ranking explanation task and
showed that our method outperforms competing baselines. We are
aware that there many performance-enhancing modifications to
LIME have been proposed in the machine learning community [8],
since we ran our experiments. Future work would include seeing
which of those modifications are beneficiary for ranking attribu-
tions. It would also be good to incorporate causality in explanation
generation in place of just considering correlation, since correla-
tion does not always indicate causation. Additionally, it would be
interesting to see how explanations from each of the competing
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Figure 1: A toy example depicting Rank-LIME results on a
query and three documents from the MS MARCO dataset.
The documents were initially fed to the BERT Ranker and
obtained the relevance scores, based on which they were or-
dered. Rank-LIME was later used to explain the model or-
dering and gives the bar chart shown to the right with its
relative scores. Here we report the top 8 tokens which Rank-
LIME found important in the model decision making.

systems impact human understanding of the blackbox model, via
an user study.
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