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ABSTRACT
Representation learning has always played an important role in in-
formation retrieval (IR) systems. Most retrieval models, including
recent neural approaches, use representations to calculate similar-
ities between queries and documents to find relevant information
from a corpus. Recent models use large-scale pre-trained language
models for query representation. The typical use of these models,
however, has a major limitation in that they generate only a single
representation for a query,whichmayhavemultiple intents or facets.
The focus of this paper is to address this limitation by considering
neural models that support multiple intent representations for each
query. Specifically, we propose the NMIR (Neural Multiple Intent
Representations) model that can generate semantically different
query intents and their appropriate representations. We evaluate
our model on query facet generation using a large-scale dataset of
real user queries sampled from the Bing search logs.We also provide
an extrinsic evaluation of the proposed model using a clarifying
question selection task. The results show that NMIR significantly
outperforms competitive baselines.
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1 INTRODUCTION
Neural network approaches have shown promising results in many
information retrieval (IR) tasks [21], including but not limited to ad
hoc retrieval [20], web search [47], personal search [75], and con-
versational search [23, 55, 74]. An emerging recipe for achieving
state-of-the-art effectiveness in neural IR models involves utiliz-
ing large pre-trained language models (LLMs), e.g., BERT [14] and
BART [39], for representing user inquiries and documents [43]. Al-
though these representations benefit fromwell-designed attention
mechanisms and have led to significant performance improvements
in many IR and NLP tasks, they have their own shortcomings in
deployment for some certain tasks. For instance, in query represen-
tation learning, which is a core IR problem, the current common
practice is to use the query text as the LLM’s input and produce a
single representation for the query, e.g., see [28, 72]. However, as
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is widely accepted [60], each query may be associated with multi-
ple intents.1 Intuitively, learning a single representation for each
query is equivalent to learning a centroid representation of all po-
tential query intents. We argue that the centroid representation is
not necessarily representative of either individual query intents or
the query itself as a whole. This is because the single representation
strategy causes information loss for individual query intents and
cannot be semantically inclusive for all query intents. Consequently,
it cannot be optimal for many IR applications, including query facet
generation, query disambiguation, search result diversification, and
clarification in web and conversational search engines.

In this paper, we address this issue by proposing a general frame-
work for learningmultiple far-flung andwidely distributed represen-
tations for a query such that each representation addresses one of
its potential intents. Our framework, called NMIR, is designed based
on a neural encoder-decoder architecture, and is optimized such
that the generic query representations produced by the encoder are
transformed to multiple remotely distributed representations, each
associated with a query intent. We study both parametric and non-
parametric variations of the framework. In the former, the model
assumes that the number of representations per query is given,while
the latter dynamically identifies the number of representations for
each query.
We optimize our framework based on the following hypothe-

sis: if the query encoder can accurately learn multiple query intent
representations, therefore the decoder should be able to accurately
generate all intent descriptions. On this basis, the training objective
in NMIR is to maximize the likelihood of generating the query in-
tent descriptions (or facets). In order to improve the efficiency of
our framework, we introduce an asynchronous training strategy in
which one process is responsible for model training and another
one adjusts the enforcement conditions that obligates the model to
generate widely distributed representations.
NMIR has applications in a wide range of IR tasks reviewed in

Section 4.Weperformextensive experiments for extrinsic evaluation
of the model in two real-world downstream tasks: query facet gener-
ation and search clarification. We demonstrate significant improve-
ments compared to competitive baselines using offline evaluation on
reusable test collections in addition to manual pairwise comparison
with the baseline using three trained annotators.

2 RELATEDWORK
Learning accurate query representations is a core problem in neural
information retrieval. It has applications to query-level tasks, such
as query classification [42, 77], query re-writing [24], query auto-
completion [3, 51, 69], and query suggestion [12]. It is also an impor-
tant component in late combination neural ranking models [13, 21],
such as DSSM [25], SNRM [79], ColBERT [28], andANCE [72]. Exist-
ing neural ranking models learn a single representation for a given

1In this paper, query intent and facet are used interchangeably.
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search query. However, search queries often carry multiple intents.
Therefore, such models theoretically summarize all the query intent
representationsby their centroid representation.Webelieve thatneu-
ralmodels should gobeyonda single query representation in order to
effectively address various information retrieval tasks. Inmoredetail,
this paper proposes a new task of learning far-flung representations
for a query input in order to model its various intents. In this section,
we review prior research on related topics including query represen-
tation learning, query facet generation, and query reformulation in
addition to search result diversification and search clarification.

2.1 Query Representation.
Query representation is at the core of IR models. For instance, in
vector space models based on termmatching [59], queries are rep-
resented based on term occurrences and frequencies in the queries
and general statistics of the collection. Several models have focused
on improving this representation, mainly with a focus on addressing
the vocabulary mismatch problem [18], for example through query
expansion and (pseudo-) relevance feedback [8, 37, 58, 83].

In machine learning based approaches, query representations are
often learned. Latent semantic indexing (LSI) [11] is an early unsu-
pervised method for query and document representation learning
that uses singular value decomposition over a matrix of term fre-
quencies in the given texts to embed them into a latent space. The
same basic concepts are also used inmany neural text representation
learning models. For instance, word2vec [46] and GloVe [52] learn
unsupervised word representations by predicting words given their
adjacent words or vice versa in a large text collection. Early attempts
to use word embedding models for information retrieval mainly
focused on query expansion [34, 76] and document expansion or
language model smoothing [19].

Zamani andCroft [77] proposed the firstmodel for deriving query
representations from the learned embedding vectors of individual
query terms. They introduced a theoretical framework for query
representation and showed that a maximum likelihood optimiza-
tion approach for query representation would lead to averaging the
embedding vectors of query terms, if no more information is avail-
able. In their follow up work [78], the authors suggested to learn
IR-specific word and query embeddings by predicting the words ap-
pearing in (pseudo-) relevant documents in response to each query.
Diaz et al. [15] alternatively suggested to train word2vec models
on local context, i.e., the top retrieved documents in response to
the query. Later on, Zhang et al. [85] showed that the relevance-
based word embedding of Zamani and Croft [78] can be further
trained on clicked documents obtained from a search engine’s log,
and proposed a generic query representation model that is trained
using various implicit feedback signals, e.g., clicks, with multi-task
learning. More recently, large-scale contextual embedding models,
such as BERT [14], are used to represent queries and documents for a
rangeof IR tasks [43]. Thesemodels require furtherfine-tuningusing
supervised signals for the downstream task to perform effectively.

All the query representation learning methods pointed out in this
section produce a single representation for each query. This single
representation can be a single vector and/or a single vector per query
term.Therefore, they cannot beused for representing andgenerating
different query intents. This paper, on the other hand, introduces a
model that learns multiple representations per query. This would
lead tomultiple applications that cannot be solved using the existing
techniques (see Section 4).

2.2 Query Facet Extraction and Generation.
Early work on facet extraction and/or generation [9, 29, 35, 40,
64] focused on applications like e-commerce and digital libraries,
where facets can be extracted from existing metadata or taxonomies.
These approaches are not practically extendable to large-scale open-
domain settings.

Besides leveraging taxonomies and external resources, somemod-
els extract facets by global analysis of the entire search corpus [9, 64].
However, the heterogeneous nature ofmany search collections, such
as theweb content,makes such approaches not adoptable [66]. To ad-
dress this issue, approachesbasedon local analysiswere invented [16,
30, 31]. They extract query facets from the top retrieved documents
in the search result list for the query. Notably, Kong andAllan [30, 31,
32] developed a graphical model based approach for facet extraction.
They showed that the optimization of their model is an NP-hard
problem and thus proposed two approximations (called QFI andQFJ)
based on different simplifying assumptions on computing the joint
probabilities in the proposed graphical model. Later on, Dou et al.
[17] introducedQDMiner that extracts facetswith ahybrid approach.
Although query facet generation models do not explicitly learn

query representations, they are in root related to representing dif-
ferent query intents. Therefore, we used query facet generation in
one of our experiments to evaluate our model. We compare against
the state-of-the-art QFI, QFJ, and QDMiner variations [17, 32] and
demonstrate the effectiveness of the proposed solution.

2.3 Search Result Diversification,
Query Reformulation, and Clarification.

Search queries do not always clearly express the users’ information
needs. IR scientists categorized these types of queries into two types;
ambiguous and underspecified queries [10]. Ambiguous queries
have more than one interpretation, while, underspecified queries
have one interpretation but with several sub-topics. Search result
diversification and intent clarification are two major approaches for
addressing ambiguous and underspecified queries.
Search result diversification re-ranks the result list in order to

cover as many query intents as possible. Hence, many query intents
can be addressed by a single result list. To do so, most of the existing
methods perform an initial retrieval and then select some documents
from top 𝑘 retrieved set based on some criteria [62]. These meth-
ods can be categorized in two groups of “implicit” and “explicit”
approaches. Implicit approaches choose documents different from
those which have been chosen previously without the explicit mod-
eling of facets [4, 84]. Maximal marginal relevance (MMR) [4] is a
simple yet effective greedy algorithm for implicit diversification.
On the other hand, explicit approaches attempt to model query sub-
topics, which are closer to our work. For example, Agrawal et al.
[1] used taxonomy, and several other researchers [56, 61, 73] used
query reformulations tomodel query sub-topics. Alternatively, Dang
et al. [10] generated query reformulations by using anchor texts, and
Carterette and Chandar [5] focused on the retrieved documents for
explicit diversification by adopting relevance and topic models.

As an alternative to diversification, search engines can clarify the
users’ information needs by asking clarifying questions. This has
applications in both web search with the traditional “ten blue link”
interface [80, 82] and conversational search with limited bandwidth
interfaces where search result diversification is impractical [2].
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Learning multiple query intent representations has applications
in both search result diversification and intent clarification. In our ex-
periments,wealso extrinsically evaluate ourmodel usinga clarifying
question selection task.

3 METHODOLOGY
Training query representation learning models that are able to pro-
duce multiple widely distributed representations for each search
query has not yet been explored. This is a challenging task, espe-
cially when the number of representations varies across queries.
In this section, we propose a general framework for this task with
an optimization solution that has roots in cluster-based IR models
studied for decades [26, 33, 38, 44, 68]. Unlike priorwork,NMIR takes
advantage of clustering during asynchronous training in order to
learn far-flung and widely distributed representations. The NMIR
framework can be further employed in a wide range of downstream
IR applications. Some of them are reviewed in Section 4. Task-based
fine-tuning can be adopted for each downstream task.

3.1 Task Description and Problem Formulation
The task is to learn multiple widely distributed representations for
each search query. We use the top retrieved documents in a search
result list in response to the query as a source of evidence to find
various intents of the query for representation learning. For train-
ing the model, we assume that a textual description of each query
intent is available. In Section 3.3, we discuss potential solutions on
obtaining such descriptions.
Before formalizing the task, we introduce our notation. Let𝑄 =

{𝑞1, 𝑞2, ... , 𝑞𝑛} be a training query set with 𝑛 queries, and 𝐷𝑖 =

{𝑑𝑖1,𝑑𝑖2,...,𝑑𝑖𝑚} be the top𝑚 retrieved documents in response to the
query𝑞𝑖 usinga retrievalmodel𝑀 .Moreover, let𝐹𝑖 = {𝑓𝑖1, 𝑓𝑖2, ..., 𝑓𝑖𝑘𝑖 }
denote the set of all textual intent descriptions associated with the
query𝑞𝑖 .𝑘𝑖 is thenumberofquery intentsandcanvaryacrossqueries.
The task is to learn 𝑘𝑖 representations 𝑅𝑖 = {𝑅𝑖1, 𝑅𝑖2, ..., 𝑅𝑖𝑘𝑖 } for the
query 𝑞𝑖 , where 𝑅𝑖 𝑗 is the 𝑗 th representation learned for the query.

3.2 NMIR Framework: AHigh-Level Overview
Onestraightforwardsolution for the task isusinganencoder-decoder
architecture that leverages the query 𝑞𝑖 (and the top retrieved doc-
uments) as the input and generates multiple query intent descrip-
tions of the query by taking the top 𝑘𝑖 most likely predictions, e.g.,
using beam search. However, previous work in a number of NLP
tasks [67, 70] showed that these generations are often synonyms or
refer to the same concept, which is in contrast to the goal of our task:
learning widely distributed representations, each associated with
a query intent. This solution generates different but semantically
similar outputs, which are only related to one query intent. Hence,
this approach would not serve the purpose.

Anotherstraightforwardsolution is to lookat the taskasasequence-
to-sequenceproblem, similar tomachine translation, andgenerate all
the query intent descriptions concatenated with each other (and sep-
arated using a special token). The concern regarding this approach
is that different intent representations are not distinguishable in
the last layer of the model. In addition, most existing effective text
encoding models are not able to represent long sequences of tokens,
such as a concatenation of the top𝑚 retrieved documents.
The NMIR framework addresses these issues. Let 𝜙 (·) and𝜓 (·)

denote a text encoder and decoder pair, respectively. For every query

𝑞𝑖 in the training set, NMIR assumes that the top retrieved docu-
ments 𝐷𝑖 are relevant to the query and they may be relevant to
different query intents. NMIR assigns each learned document rep-
resentation to one of the query intent descriptions 𝑓𝑖 𝑗 ∈ 𝐹𝑖 using a
document-intent matching algorithm𝛾 :

C∗
𝑖 =𝛾

(︁
𝜙 (𝑑𝑖1),𝜙 (𝑑𝑖2),...,𝜙 (𝑑𝑖𝑚),𝜙 (𝑓𝑖1),𝜙 (𝑓𝑖2),...,𝜙 (𝑓𝑖𝑘𝑖 )

)︁
where C∗

𝑖
= {𝐶∗

𝑖1,𝐶
∗
𝑖2,...,𝐶

∗
𝑖𝑘𝑖

} is a set of document sets. Each𝐶∗
𝑖 𝑗
is a

set of documents from𝐷𝑖 that are assigned to 𝑓𝑖 𝑗 by𝛾 .
NMIR then transforms the encoded general query representation

to its intent representations through a query intent encoder 𝜁 . In
more detail, the representation for the 𝑗 th query intent is obtained
using 𝜁 (𝑞𝑖 ,𝐶∗

𝑖 𝑗
;𝜙). The implementation details of components 𝜙 ,𝜓 ,

𝛾 , and 𝜁 are presented in Section 3.3.
NMIR’s training for a mini-batch 𝑏 is based on a gradient descent-

basedminimization ofL(𝑏)= 1
|𝑏 |

∑︁
𝑞𝑖 ∈𝑏𝐿(𝑞𝑖 ), where𝐿(𝑞𝑖 ) is defined

as follows:

𝐿(𝑞𝑖 )=
1
𝑘𝑖

𝑘𝑖∑︂
𝑗=1

𝐿CE (𝑓𝑖 𝑗 ,𝜓 (𝜁 (𝑞∗𝑖 𝑗 ,𝐶
∗
𝑖 𝑗 ;𝜙)))

where 𝑞∗
𝑖 𝑗
= “𝑞𝑖 𝑓𝑖1 𝑓𝑖2 ...𝑓𝑖 𝑗−1 <mask>...<mask>” is a concatenation of

the query string, the first 𝑗−1 intent descriptions, and 𝑘𝑖 − 𝑗 mask
tokens. There is a special separation token between each of these
strings. Therefore, 𝐿(𝑞𝑖 ) basically calculates the loss for generating
each textual intent description, given the associated cluster𝐶∗

𝑖 𝑗
and

the encoded query text plus the past 𝑗−1 intent descriptions. This
helps themodel avoid generating the previous intent representations
and learn widely distributed representations.

In the above loss function, 𝐿CE is the cross-entropy loss borrowed
from the sequence-to-sequence model [65]:

−
|𝑓𝑖 𝑗 |∑︂
𝑡=1

log𝑝
(︂
𝑓𝑖 𝑗𝑡 |𝜓 (𝜁 (𝑞∗𝑖 𝑗 ,𝐶

∗
𝑖 𝑗 ;𝜙)),𝑓𝑖 𝑗1,𝑓𝑖 𝑗2,...,𝑓𝑖 𝑗𝑡−1

)︂
where 𝑓𝑖 𝑗𝑡 is the 𝑡 th token in the given intent description 𝑓𝑖 𝑗 .
Inference. Using NMIR at inference time is partly different from
the way it is used during training. To be precise, the 𝑞∗

𝑖 𝑗
s are con-

structed differently. At training, they are constructed by concate-
nating the query and the previous intent descriptions in order to
generate the next one. While at inference, we do not have access
to the intent descriptions, therefore we should construct 𝑞∗

𝑖 𝑗
s based

on the model’s output. Therefore, for the query 𝑞𝑖 , we first feed
“𝑞𝑖 <mask>...<mask>” to the model (the number of mask tokens is
equal to |C∗

𝑖
|) and applybeamsearch to thedecoder’s output to obtain

the first intent description 𝑓 ′
𝑖1. We then use the model’s output to

iteratively create the input for the next step “𝑞𝑖 𝑓 ′𝑖1 <mask>...<mask>”
and repeat this process for |C∗

𝑖
| times. As mentioned earlier, similar

to the model training, the reason for including previous outputs is
to avoid generating repetitive intent descriptions.

3.3 Model Implementation and Training
This subsection describes the detailed implementation of our frame-
work for each of its components. We implemented our model using
the PyTorch Lightning platform.2

The encoding and decoding components 𝜙 and𝜓 .As depicted
in Figure 1a, we use Transformer encoder and decoder architectures
for implementing 𝜙 and𝜓 , respectively. We initialize their param-
eters with the pre-trained BART model [39]. BART is a denoising
2https://www.pytorchlightning.ai/

https://www.pytorchlightning.ai/
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(a) The network architecture of NMIR.
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Figure 1: (a) The network architecture ofNMIR. Same background colors indicate parameter sharing.White backgroundmeans
that the component does not have learnable parameters. The encoder and decoder parameters (𝜙 and𝜓 ) are initialized by BART
pre-trained parameters [39] consisting of𝑁 Transformer layers and are fine-tuned. (b) The asynchronous training of theNMIR
framework. These two steps (above and below the dashed line) are executed on two different GPUs, and the model parameters
are only updated in one of the steps, using a gradient descent-based optimizer. 𝜙𝑠−1 represents the encoder whose parameters
are fixed and obtained from amodel snapshot at step 𝑠−1.

autoencoder for pretraining sequence-to-sequence models. It uses
standard Transformer-based encoder-decoder architecture and has
been pre-trained based on adding noise to the input text and recon-
structing it. In extreme cases, where the input text is corrupted to
the extent that there is no information left from the original format,
BART is equal to language models. We use the BART’s implemen-
tation delivered by the HuggingFace’s Transformer library [71].3
In NMIR, the decoder’s cross attention is the output of the intent
encoder 𝜁 for each query intent (see Figure 1a).

The intent encoding component 𝜁 .As shown in Figure 1a, the in-
tent encoding component 𝜁 (𝑞∗

𝑖 𝑗
,𝐶∗
𝑖 𝑗
;𝜙) is implemented using 𝑁 ′ lay-

ers of the recently developedGuided Transformermodel of Hashemi
et al. [23]. Guided Transformer is used for influencing an input rep-
resentation by the guidance of some external information. In our
case, we use 𝜙 (𝑞∗

𝑖 𝑗
) as the input representation and 𝜙 (𝑑) :∀𝑑 ∈𝐶∗

𝑖 𝑗

as the external information. In fact, Guided Transformer uses self
attention on the input tokens (the query), self attention on each exter-
nal resource (each document in𝐶∗

𝑖 𝑗
), and a cross attention from the

document representations to the query representation. This cross
attentionmechanism enables themodel transform the generic query
representation to a query intent representation.

3https://huggingface.co/transformers/

Thedocument-intentmatchingcomponent𝛾 . Inspiredbywork
onmulti-senseword embedding [41, 48], for document-intentmatch-
ing based on the encoded representations, we develop an algorithm
that clusters the learned representations and assigns each cluster
to an intent description. In more details, NMIR encodes all the top
retrieved documents and creates 𝑘𝑖 clusters, using a clustering algo-
rithm. Therefore, we have:

C𝑖 ,M𝑖 =cluster(𝜙 (𝑑𝑖1),𝜙 (𝑑𝑖2),...,𝜙 (𝑑𝑖𝑚))
where C𝑖 = {𝐶𝑖1,𝐶𝑖2, ... ,𝐶𝑖𝑘𝑖 } denotes a set of clusters and each
𝐶𝑖 𝑗 contains all the documents in the 𝑗 th cluster associated with
the query 𝑞𝑖 . 𝑀𝑖 = {𝜇𝑖1,𝜇𝑖2, ...,𝜇𝑖𝑘𝑖 } is a set of all cluster centroids
such that 𝜇𝑖 𝑗 = centroid(𝐶𝑖 𝑗 ). In our implementation, we use K-
Means [22] for clustering in this step, due to its simplicity and ef-
ficiency. K-Means has been successfully used in a number of IR
applications [26, 33, 44, 68]. Note that K-Means requires the number
of clusters as input. The number of clusters for𝑞𝑖 at the training time
is given by the number of intent descriptions (i.e., 𝑘𝑖 ). However, this
value is unknown at inference time. In our experiments, we consider
two cases. In the first case, we assume that the number of clusters at
test time is equal to a tuned hyper-parameter𝑘∗ for all queries. In the
second case, we replace the K-Means algorithm by a non-parametric
versionofK-Means [45]. This algorithmbasically startswith creating
oneclusterbasedonaminimumdocument similarity threshold.Once

https://huggingface.co/transformers/
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the first cluster is created, the sameprocesswould be repeated for the
rest of documents that are not yet assigned to any clusters. For more
information on non-parametric K-Means, we refer the reader to [45].

The component𝛾 requires a one-to-one assignment between the
cluster centroids and the query intents in the training data. The
assignment needs to be one-to-one, since otherwise all clusters may
be assigned to a single most dominant query intent, and thus the
model would not learn to generate far-flung query representations.
Therefore, NMIR uses the following injective surjective function,
called the intent identification function I:

I(𝑀𝑖 ,𝐹𝑖 )=arg max
𝑀′∈perm(𝑀𝑖 )

𝑘𝑖∑︂
𝑗=1

sim(𝜙 (𝑓𝑖 𝑗 ),𝜇 ′𝑗 )

where perm(·) returns all permutations of a given set and each
𝑀 ′= [𝜇 ′1,𝜇

′
2,...,𝜇

′
𝑘𝑖
] denotes a permutation of cluster centroids in𝑀𝑖 .

The function sim(·, ·) denotes a similarity function. We use inner
product to compute the similarity between an intent representation
and a cluster centroid. Therefore, let𝑀∗

𝑖
= [𝜇∗

𝑖1,𝜇
∗
𝑖2, ...,𝜇

∗
𝑖𝑘𝑖

] be the
output of I(𝑀𝑖 ,𝐹𝑖 ) and C∗

𝑖
= {𝐶∗

𝑖1,𝐶
∗
𝑖2, ...,𝐶

∗
𝑖𝑘𝑖

} be their associated
clusters. The component𝛾 returns C∗

𝑖
.

Note that the𝛾 is not differentiable and cannot be part of the net-
work for gradient descent-based optimization. Our asynchronous
training (presented below) addresses this issue by taking𝛾 out of the
optimization process and moving it to an asynchronous process (see
Figure 1b). Another important point is that there is no need to call
the function I at inference time, because the order of the clusters
does not matter, while it matters for training as it helps us compute
the loss function.

Asynchronous training.As widely known, the training speed of
deep learningmodels canbegreatly improvedbyusingGPUs,mainly
due to thehugeamountofparallel computations in large-scaleneural
networks. However, during the training of our model, we observed
that the clusteringof document representations becomeanefficiency
bottleneck, even after we deploy a K-Means algorithm that runs on
GPU. To solve this issue, we consider an asynchronous document en-
coding and clustering approach depicted in Figure 1b. In this training
approach,weuse twoGPUs:wesaveasnapshotof theencoderparam-
eters (i.e.,𝜙) at the beginning of each training step,4 and compute the
document representations for all documents retrieved in response to
all training queries. We then use the obtained cluster centroids (𝑀𝑖s)
for training the model on the second GPU.While the model is being
trained, the first GPU computes the document representations and
cluster centroids for the next step. In fact, this approach may not be
as effective as synchronous training, because the cluster centroids
at each training step is obtained from the model parameters at two
previous steps (i.e., as shown inFigure 1b, themodel parameters from
step 𝑠−1 produces the clusters for step 𝑠+1). However, the efficiency
improvement provides enough incentives to consider asynchronous
training. We do not have effectiveness comparison between the
synchronous and asynchronous training strategies, as training the
synchronous model would be impractical on a large dataset.

Training data and setup.Another challenge in training NMIR is
related to its training data and especially ground truth intent descrip-
tions. There are multiple ways of automatically creating training
data for weak supervision training of the model, for example using
query reformulation data or anchor text. In our experiments, we fol-
low a weak supervision solution based on the MIMIC-Click dataset,
4Note that each training step includes 10000 batches in our experiments.

recently released by Zamani et al. [81].5 The authors extracted and
generated the query intent descriptions by mining and predicting
them from the Bing’s search query logs. In more detail, the data is
created based on query reformulation data with the goal of finding
query reformulations that reveal different intents of the query. Since
users mostly clarify their intents by adding one or more terms to
their original query in a search session, often called query special-
ization [36], query intents can be predicted by extracting a set of
query reformulation triples (𝑞,𝑞𝑞′,𝑐) (or (𝑞,𝑞′𝑞,𝑐)), which denotes
that the query 𝑞 is followed by the query 𝑞𝑞′ (or 𝑞′𝑞) in the same
search session (i.e., immediate successive queries) with a frequency
of 𝑐 , when it is aggregated over thewhole query log data for all users.
𝑞𝑞′ is the concatenation of 𝑞 and 𝑞′, where |𝑞′ |>0. Since the mined
query reformulations may refer to the same intent, a diversification
based approach is used for identifying a diverse set of query intent
descriptions [80]. The data consists of over 400,000 unique search
queries and 2-5 intent descriptions per query.

In more detail, we use 80% of the MIMICS-Click queries for train-
ing and the rest for validation. The validation set is used for hyper-
parameter tuning and early stopping. For the top retrieved docu-
ments (i.e., 𝐷𝑖s), we used the SERP information fetched from the
Bing’s publicweb searchAPI by the creators of theMIMICS dataset.6
In our experiments, we use the document snippets as an accurate
textual representation of the retrieved documents.

We used Adam optimizer with a batch size of 8 to train our model.
The small batch sizewas selecteddue to theGPUmemoryconstraints.
We used early stopping based on the loss value on the validation
set. The number of Guided Transformer layers was set to three. The
learning rate was selected based on the validation loss from the
[1𝑒 − 6,5𝑒 − 5] interval. We report the generated facets for a few
example queries by NMIR in Table 3. The first part of the table in-
cludes some examples that the model successfully identified the
facets of the query, and the second part include two failed queries.
In the first failed query, the model could not distinguish between the
word “window” and the windows operating system. As a result, it
generated meaningless facet descriptions. The second failed query
contains some facet descriptions that may be semantically related
to the query, but are not coherent. One of the generated facets for
this query is even very long and grammatically incorrect.

4 POTENTIALAPPLICATIONS OFNMIR
NMIR is a general framework with multiple applications in a wide
range of IR tasks. For instance, NMIR can be simply used for abstrac-
tive query intent (or facet) generation. We use this task in our
experiments to demonstrate the quality of learned representations.
Another potential application of NMIR would be on search result
diversification, as multiple query intent representations can help
diversify a result list. One can imagine a clear application of NMIR in
exploratory search tasks, where different representations of the
search query can be used by the user to navigate through various
aspects of the topic. In conversational search, asking clarifying
questions has been recognized as an important and challenging task
[2]. Multiple query representations can be used for generating and
selecting clarifying questions in conversational search settings, that
is also used in our experiments.

5TheMIMICS dataset is available at https://github.com/microsoft/MIMICS.
6The MIMICS SERP data is available at http://ciir.cs.umass.edu/downloads/mimics-
serp/MIMICS-BingAPI-results.zip.

https://github.com/microsoft/MIMICS
http://ciir.cs.umass.edu/downloads/mimics-serp/MIMICS-BingAPI-results.zip
http://ciir.cs.umass.edu/downloads/mimics-serp/MIMICS-BingAPI-results.zip
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Apart fromqueryrepresentationand itsapplications, theproposed
solution can be potentially adopted for a variety of tasks related to
document representation. For instance, according to the scope hy-
pothesis [57], long documents often cover several different topics.
Therefore, learning multiple representations for each document can
be further investigated using the proposed framework. This will
have applications in document clustering and categorization.
We believe that learning multiple query and document representa-
tions together can potentially lead to improvement in document
ranking too, as the model would be theoretically able to accurately
find the closest query intent to the document.
One can even imagine applications of the proposed framework

beyond text representation. For instance, in collaborative recom-
mender systems,models learn a single representation for eachuser
and item from user-item interaction signals. However, users may
have multiple different interests and a single user representation
vectormay lead to information loss. The proposed framework can be
potentially extended to recommender systems by learning a variable
numberofuser representationsbasedondifferentuser interests. This
would further lead to recommendationprecision improvement. It can
be also used for explaining each recommendation. Such technique
would also enable users to select what profile representation would
they prefer to be used for the next recommendation, or they can be
selected automatically based on the user’s situational context [63].

5 EXPERIMENTS
We extrinsically evaluate NMIR on two different IR tasks: query facet
generation and clarification selection. Following previous work on
search clarification [2, 80], search result diversification [4, 5], and
facet generation [17, 32], we focus on multi-faceted queries.

5.1 Query Facet Generation
In our first set of experiments for evaluating the NMIR framework,
we focus on query facet generation. The task is defined as generating
a number of textual facet descriptions for a given query.

5.1.1 Evaluation Data. To evaluate this task, we use the MIMICS-
Manual dataset [81]. This public dataset consists of 2464 unique
web search queries sampled from the Bing query logs. The dataset
contains between two and five facets for each query. The quality of
each set of facets wasmanually assessed by three trained annotators.
The quality labels are either Bad, Fair, and Good. In our experiments,
we left out the Bad facet sets and considered the ones with either
Fair or Good labels as our ground truth. Note that according to Za-
mani et al. [81], the Fair label still meets the quality criteria for being
presented in a commercial web search engine. Althoughwe find this
a high-quality test collection for evaluating the performance of our
model, we still present a small follow up experiment with manual
annotation to highlight the improvements compared to the baselines
with a higher confidence.

Note that wemade sure that the intersection between the training
and the test queries is empty. Similar to training, the top retrieved
documents for eachquery in the test setwas obtained from theBing’s
Web Search API. For more information, see the training data details
and training setup in Section 3.3.

5.1.2 Evaluation Metrics. To evaluate query facet generation mod-
els,we adopt four sets of evaluationmetrics. (1) Termoverlapmetrics:
these metrics have been previously used for evaluating query facet

extraction models [30]. They include Term Precision (TP), Term Re-
call (TR), andTermF1-measure (TF).Thesemetricsbasically compute
the precision, recall, and F1-measure for the set of terms generated
by the model with respect to the terms appeared in the ground truth
data. For more information about these metrics, refer to [30]. (2)
Exactmatchmetrics: similar to term overlap, thismetric also focuses
on exact text matching but at the facet level. In other words, these
metrics compute the precision, recall, and F1-measure of generat-
ing the exact facet description appeared in the ground truth. (3) Set
BLEU scores: BLEU [50] is a widely adopted metric for text genera-
tion tasks, e.g., machine translation. However, it is defined between
a single candidate text and a set of references. In our task, we deal
with comparing two sets of text, one set is different facet descrip-
tions generated by the model (𝑅) and the other one is different facet
descriptions in the ground truth test set (𝐺). To compute Set BLEU,
we first generate all permutations of 𝑅 and then choose 𝑅∗ such that
𝑅∗=argmax𝑅′∈perm(𝑅)

1
𝑀

∑︁𝑀
𝑖=1BLEU-4(𝑅′

𝑖
,𝐺𝑖 ), where the subscript

𝑖 denotes the facet index and𝑀 =max( |𝐺 |, |𝑅 |). We then compute
the Set BLEU scores using 1

𝑀

∑︁𝑀
𝑖=1BLEU-n(𝑅∗𝑖 ,𝐺𝑖 ) for different n-

grams. (4) Set BERT-Score: BERT-Score [86] has been recently used
to compute the semantic similarity of a candidate text and a set of
reference texts using the BERT representations [14]. We define Set
Bert-Score as 1

𝑀

∑︁𝑀
𝑖=1BERT-Score(𝑅∗𝑖 ,𝐺𝑖 ). We compute this mean

performance for all precision, recall, and F1-measures computed by
the BERT-Score model.

5.1.3 Results and Discussion. We use the following baseline meth-
ods in our experiment:

• QDist [73]: QDist is a retrieval model that first generates multi-
ple query variations and reformulations of the submitted query
and learns a distribution over queries for retrieval. Even though
this approach is not implemented for facet generation, its query
variations can be seen as different query intents and can be used
as a baseline for our model.

• QFI and QFJ [32]: We use the state-of-the-art variation of the QFI
and QFJ methods [32] that were developed for facet extraction in
web search. As described in Section 2, they are based on graphical
models that estimate the probability of a hidden variable for mod-
eling the extraction probability of each facet term.We followed
the implementation details provided by the authors and selected
the parameters using the validation set described in Section 3.3.

• QDMiner [17]: This is a competitive baseline for facet extraction
from text and html documents. It is a hybrid approach that inte-
grates multiple solutions for query facet extraction.

• BART [39]:Wefine-tunedBARTbased onour training data,where
the query and the top retrieved documents are the BART inputs
and a concatenation of all query facet descriptions separated using
a special token are the BART target output for training. Sequence-
to-sequence models, like BART, provide strong performance for
reformulation and facet generation tasks [49].

We emphasize that the QFI and QFJ models are shown to out-
perform other existing query facet extraction models [32]. There
exist many methods that use metadata or taxonomies to produce
query facets, which are out of the scope of this paper. For all the
baselines, we follow the same hyper-parameter selection approach
as the proposed model. Note that the main goal of this experiment
is to provide extrinsic evaluation for the quality of the learned query
intent representations. Therefore, we do not intent to show that
NMIR is the state-of-the-art approach for facet generation, instead
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Table 1: Results for the query facet generation experiment. All the improvements observed by NMIR compared to all the
baselines are statistically significant.

# TermOverlap Exact Match Set BLEU Set BERT-Score
facets Model Prec Recall F1 Prec Recall F1 1-gram 2-gram 3-gram 4-gram Prec Recall F1

2

QDist 0.1637 0.1888 0.1676 0.0048 0.0046 0.0050 0.3841 0.1648 0.0438 0.0158 0.7649 0.7938 0.7807
QFI 0.1936 0.2202 0.2033 0.0068 0.0061 0.0062 0.4070 0.1692 0.0515 0.0178 0.8057 0.8057 0.8007
QFJ 0.2111 0.2023 0.2029 0.0072 0.0077 0.0072 0.4192 0.1835 0.0478 0.0076 0.8115 0.8020 0.8011
QDMiner 0.2546 0.2369 0.2468 0.0089 0.0088 0.0088 0.5091 0.1931 0.0538 0.0089 0.8216 0.8162 0.8109
BART 0.4621 0.5018 0.4888 0.0512 0.0500 0.0508 0.6413 0.6063 0.5709 0.5381 0.8616 0.8528 0.8540
NMIR 0.5195 0.6068 0.5539 0.1025 0.1040 0.1031 0.7333 0.6762 0.6403 0.6050 0.9170 0.9071 0.9062

3

QDist 0.0929 0.1157 0.0957 0.0049 0.0045 0.0043 0.3518 0.1447 0.0341 0.0065 0.7418 0.7862 0.7366
QFI 0.1330 0.1361 0.1337 0.0054 0.0052 0.0051 0.3868 0.1637 0.0407 0.0167 0.7916 0.8004 0.7797
QFJ 0.1604 0.1801 0.1678 0.0065 0.0061 0.0064 0.3844 0.1695 0.0459 0.0135 0.7853 0.8021 0.7798
QDMiner 0.1676 0.2024 0.2022 0.0082 0.0100 0.0084 0.4371 0.2014 0.0510 0.0169 0.7899 0.8100 0.7870
BART 0.3672 0.4650 0.4193 0.0436 0.0410 0.0414 0.6025 0.5531 0.5040 0.4621 0.8390 0.8311 0.8293
NMIR 0.4279 0.5327 0.4687 0.0739 0.0720 0.0720 0.6960 0.6336 0.5949 0.5593 0.8840 0.8976 0.8775

4

QDist 0.1725 0.2437 0.1876 0.0047 0.0044 0.0046 0.3843 0.1710 0.0543 0.0214 0.7674 0.7688 0.7769
QFI 0.1951 0.2638 0.2223 0.0068 0.0064 0.0065 0.4014 0.1874 0.0642 0.0231 0.8005 0.8072 0.7969
QFJ 0.1777 0.1454 0.1503 0.0064 0.0058 0.0060 0.3977 0.1800 0.0571 0.0212 0.7925 0.8047 0.7897
QDMiner 0.1894 0.1672 0.1987 0.0065 0.0073 0.0068 0.4862 0.2230 0.0633 0.0230 0.8044 0.8040 0.7991
BART 0.3165 0.4515 0.3896 0.0343 0.0348 0.0345 0.5940 0.5376 0.4611 0.4159 0.8222 0.8206 0.8175
NMIR 0.3898 0.5072 0.4358 0.0685 0.0677 0.0681 0.6940 0.6292 0.5899 0.5543 0.8802 0.8978 0.8775

5

QDist 0.1557 0.1593 0.1440 0.0023 0.0024 0.0023 0.3387 0.1048 0.0439 0.0176 0.7165 0.7802 0.7192
QFI 0.1605 0.1941 0.1720 0.0058 0.0050 0.0050 0.3539 0.1524 0.0523 0.0203 0.7603 0.8127 0.7584
QFJ 0.1767 0.1348 0.1451 0.0055 0.0057 0.0053 0.3735 0.1675 0.0564 0.0234 0.7731 0.8136 0.7714
QDMiner 0.2176 0.1443 0.1773 0.0069 0.0066 0.0065 0.4275 0.1826 0.0657 0.0234 0.7758 0.8036 0.7792
BART 0.3043 0.4124 0.3558 0.0282 0.0263 0.0275 0.5087 0.4406 0.3969 0.3445 0.7633 0.8017 0.7660
NMIR 0.3877 0.4559 0.4121 0.0613 0.0584 0.0596 0.6313 0.5628 0.5222 0.4871 0.8442 0.8870 0.8405

va
ria

bl
e

QDist 0.0969 0.1564 0.1195 0.0017 0.0023 0.0019 0.1999 0.1134 0.0360 0.0107 0.6772 0.6855 0.6100
QFI 0.1461 0.1748 0.1571 0.0057 0.0061 0.0059 0.2763 0.1269 0.0421 0.0140 0.7069 0.7113 0.6144
QFJ 0.1807 0.2041 0.1894 0.0069 0.0067 0.0067 0.2484 0.1065 0.0242 0.0090 0.7196 0.6708 0.5871
QDMiner 0.2060 0.2456 0.1894 0.0076 0.0083 0.0079 0.2893 0.1226 0.0301 0.0126 0.7220 0.7025 0.6285
BART 0.4307 0.4618 0.4481 0.0474 0.0516 0.0486 0.4459 0.4003 0.3896 0.3351 0.7623 0.6932 0.6558
NMIR 0.4851 0.5673 0.4968 0.0790 0.0842 0.0784 0.5187 0.4748 0.4470 0.4192 0.8003 0.7487 0.6928

Table 2: Manual annotation results for pairwise comparison
of NMIR vs. BART in facet generation.

Win Tie Loss

48% 30% 22%

the goal is to demonstrate the quality of the learned representations
through facet generation tasks.
The results are presented in Table 1. First, we observe that the

proposed model consistently outperforms both probabilistic and
neural baselines. This is true for all the evaluation metrics used in
our experiment, including termmatching, facet matching, n-gram
matching, and semantic matchingmetrics. Note that all the improve-
ments are statistically significant, according to the paired t-test with
Bonferroni correction at 95% confidence.

We note that the test set for different number of facets is different.
In otherwords, the numbers in different parts of Table 1 separated by
a solid line should not be compared as their test queries are different.
That being said,we still observe a consistent drop in the performance

as the number of facets increases, which makes sense considering
the fact that it becomes increasingly more difficult.

Another observation is the large performance gap between QDist,
QFI, QFJ, and QDMiner with the neural models (BART and NMIR).
The reason is that the former are extractive facet generation models,
while the latter are abstractive generation models. The ground truth
contains several terms for describing the facets that are not in the
result list, thus the extractive models fall short in generating them.
This explains the poor performance of the extractive models.

The next observation from the result table is that the Exact Match
performances are substantially lower than the other metrics. Exact
Match is an extremely strict metric that only focuses on generating
the exact facet description text used in the ground truth. Term Over-
lap and Set BLEU provide smoother versions of term and phrase
matching measures.

Furthermore, the results obtained by NMIR shows that it achieves
higher Term Overlap Recall than Precision, and this is consistent
across all the test sets. This shows that the percentage of generated
terms not included in the ground truth is larger than those in the
ground truth missed by the model. Moreover, we observe that the
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Table 3: Some successful and unsuccessful examples of the facets generated by NMIR. Facets are separated using the ■ symbol.

Query Generated facets

atropine sulfate drops atropine sulfate drops interactions■ atropine sulfate drops overdose■ atropine sulfate drops precautions
■ atropine sulfate drops side effects ■ atropine sulfate drops uses

best fps games best fps games for steam ■ best fps games for pc ■ best fps games for ps4 ■ best fps games for xbox
one ■ best fps games for android

accident investigation motorcycle accident ■ car accident ■ train accident ■ boat accident ■ forklift accident
awning window awning window windows 10 ■ awned window windows 7 ■ a roofing window window windows 8

■ a windowwindows vista ■windows xp
balance of payment balance of payment bank of america ■ balance of payments bank of ireland bank of germany bank of

usa ■ bank of europe bank of philippines ■ cash balance

performance of non-parametric NMIR for the variable facet number
case is closer to its performancewhen thenumber of generated facets
are equal to 2. The main reason is that the number of queries with
2-3 facets are dominated in the MIMICS-Manual dataset.
We further extend our evaluation using manual annotation. We

showed a query to the annotators and asked them reviewmultiple
pages of the result list for each query using a web search engine to
understand different aspects of each query. We then showed them
the facet descriptions generated by BART (our strongest baseline)
and NMIR for the query and asked them to decide which one is a
better facet description set,with respect to both quality and coverage.
They could select one of them or vote for a tie. The presentation
order (BART vs. NMIR) was random to reduce biases. We repeat this
process for 100 queries randomly sampled from the test set by two
annotators. In case of disagreement, we asked them to discuss and
come up with an agreement or discard the query. The results for
NMIR vs. BART are presented in Table 2. NMIR wins in 48% of the
cases and loses in 22% of queries.
We made sure that each and every component in the proposed

framework significantly contributes to the model’s performance,
however, due to space constraints, we drop the ablation study from
the experimental results. Upon acceptance, we will include these
results in an extended version of the paper on arXiv.

5.2 Clarifying Question Selection
Imagine a conversational search scenario, when users are allowed to
seek their information need through natural language conversation.
In case of ambiguous or faceted queries, the systemwould be allowed
to ask clarifying questions to achieve a clear understanding of the
user’s information need.
The task of selecting next clarifying question, as has been de-

scribed by the authors in [2] is selecting a proper clarifying question
from a pool of questions given a user-system conversation. Similar
to [2, 23], we evaluate the task based on the retrieval performance
after asking the clarifying question(s).
We believe that learning multiple query representations would

improve the task of selecting clarifying question as it provides an
accurate representation of each intent that may need to be clari-
fied. Therefore, the clarification selection task is used for extrinsic
evaluation of the proposed model.

5.2.1 Data. To evaluate this task, we used the Qulac dataset [2],
which has been constructed for search clarification in open-domain
information seeking conversations. The queries in the dataset were
borrowed from in the TREC Web Track 2009-2012 [6]. Therefore,

Qulac contains 200 topics (two of which are omitted due to lack of
relevance judgment). The queries were marked as either “ambigous”
or “faceted” by the TRECWeb Track organizers. The facets associ-
ated with each query and their relevance judgement are also given.
After obtaining this information, the authors collected a number of
clarifying question and their answers through multiple rounds of
crowdsourcing. The average facets per topic is 3.85±1.05 and Qulac
contains a total of 10,277 question-answer pairs. We refer the reader
to [2] for more information about the Qulac dataset.

5.2.2 Experimental Setup. For selecting clarifying question we re-
rank all the clarifying questions in the pool with respect to their
similarity to the conversation history up to current point. To elabo-
ratemore,we obtainmultiple representations for the user query𝑞 (or
the conversation history up to the current turn) with NMIR. For the
top retrieved documents snippet that NMIR requires for its input, we
use the top 10 documents retrieved from the ClueWeb09-Category
B, using the query likelihood retrieval model [54] with Dirichlet
prior smoothing [83]. The smoothing parameter 𝜇 was set to the
average document length in the collection. For document indexing
and retrieval, we use the open-source Galago search engine.7 The
spam documents were automatically identified and removed from
the index using theWaterloo spam scorer8 [7] with the threshold of
70%. Then, we apply the Indri snippet generation function to obtain
document snippets. The clarifying questions are represented with a
standard BART Encoder. In the last step, each representation of the
query𝑞 is concatenatedwith the clarifyingquestions representations
and is fed toa fully connected layer thatgenerates the similarity score.
Thequestionwith thehighest similarity score is selected. Themodels
are trained and evaluated using 5-fold cross validation over topics.

To be consistentwith the experiments reported in [2], we consider
up to three turns of conversations in the data, and report the average
performanceon retrieval after asking the clarifyingquestion.Consid-
ering the focus of the task is selecting the proper clarifying question,
we use query likelihood as the follow up retrieval model with the set-
ting explained earlier.All the experimental settings in this section are
consistent with thework of Aliannejadi et al. [2] who introduced the
dataset.Thehyper-parametersof themodel, suchas learningrateand
batch size, are selected based on the detailed provided in Section 3.3.

5.2.3 Evaluation Metrics. Following the literature [2, 23], we eval-
uate the task of clarifying question selection based on the retrieval
performance after the clarifying question has been asked. The ra-
tionale behind this is if a clarifying question is selected properly,
7http://lemurproject.org/galago.php
8https://plg.uwaterloo.ca/~gvcormac/clueweb09spam/

http://lemurproject.org/galago.php
https://plg.uwaterloo.ca/~gvcormac/clueweb09spam/
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it should address the user’s information need, and thus improve
the search quality. Considering the nature of conversational search
tasks, we focus on precision-oriented metrics for this experiment.
We use standard IRmetrics such asmean reciprocal rank (MRR), and
normalized discounted cumulative gain (nDCG) [27] with ranking
cut-offs of @1, @5, and @20. We report the average performance
across different conversations in the data. The statistical significant
improvements is computed using the paired t-test with Bonferroni
correction at 95% confidence intervals (i.e., p-value<0.05).

5.2.4 Results and Discussion. To evaluate our model, we compare
its performance on the Qulac dataset with the following baselines:
• OriginalQuery: This shows the retrieval performance before ask-
ing any clarifying questions. This baseline shows howmuch im-
provement we obtain by asking a clarification.

• 𝜎-QPP:We use a simple yet effective query performance predictor,
𝜎 [53], as an estimation of the question’s quality. For a candidate
clarifying question, we perform retrieval (without the answer)
and estimate the ranking performance using 𝜎 . The clarifying
question that leads to the highest 𝜎 is selected.

• LambdaMART and RankNet: These models re-rank clarifying
questions based on a set of features, ranging from the query per-
formance prediction to question templates to BERT similarities.
The exact definition of feature descriptions can be found in [2].

• BERT-NeuQS:Amodel basedonBERTused for clarifyingquestion
re-ranking proposed in [2]. Themodel concatenates the query, the
conversation history, and the candidate clarifying question and
feeds it to BERT. The obtained representation is then concatenated
with some features, e.g., 𝜎-QPP, for producing a single score for
the candidate clarifying question.

• BERT-GT: Themodel proposed byHashemi et al. [23] for clarifica-
tion selection using BERT representations and incorporating the
top retrieved documents through Guided Transformer. We used
the single-task learning variation to have a fair comparison. The
multi-task version uses the information not available to the other
baselines and the proposed model.

• BART: We used the same BARTmodel trained for facet genera-
tion in our last experiment (with k=5 and non-parametric) and
further fine-tune its Encoder using the Qulac data, similar to the
BERT-NeuQSmodel.
All the baselines and the proposed model are trained and evalu-

ated using the same procedure as suggested by the authors of Qulac
[2]. The results are reported in Table 4. The proposed solution led
to significant improvement compared to all the baselines across all
the metrics, except for nDCG@20. We also include the oracle lower-
bound and upper-bound performances to the table to provide an
insight on rooms available for improvement on this data. The results
obtained byOracle-Best Question show the tight gapwith the upper-
bound performance and the model performance, which explains
the small improvements with respect to nDCG@20. Moreover, the
results suggest that the non-parametric NMIRmodel outperforms
the one with fixed number of clusters (𝑘 =5). This might be due to
the ability of the non-parametric model to generate fewer but more
accurate representations for some queries.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we introduced NMIR, a general framework that given
a suitable resource is able to map one input sequence to widely dis-
tributed representations. NMIR learns multiple representations for

Table 4: Results for the next clarifying question selection
task, up to 3 conversation turns. ∗ indicates statistically
significant improvements compared to all the baselineswith
95% confidence interval.

Method MRR nDCG@1 nDCG@5 nDCG@20

OriginalQuery 0.2715 0.1381 0.1451 0.1470
𝜎-QPP 0.3570 0.1960 0.1938 0.1812
LambdaMART 0.3558 0.1945 0.1940 0.1796
RankNet 0.3573 0.1979 0.1943 0.1804
BERT-NeuQS 0.3625 0.2064 0.2013 0.1862
BERT-GT 0.3784 0.2279 0.2107 0.1890
BART 0.3661 0.2083 0.2049 0.1891
NMIR k=5 0.3753 0.2211 0.2194∗ 0.1903
NMIR non-param 0.3826∗ 0.2327∗ 0.2298∗ 0.1920

Oracle-Worst Question 0.2479 0.1075 0.1402 0.1483
Oracle-Best Question 0.4673 0.3031 0.2410 0.2077

each query to better represent faceted and ambiguous queries. We
implemented the proposed framework using the state-of-the-art
neural network architectures, such as BART for initializing the en-
coder and decoder parameters andGuided Transformer formapping
a generic query representation to an intent representation space.
We also introduced an asynchronous optimization approach for ef-
ficient training of the framework. Our evaluation on query facet
generation and search clarification selection tasks demonstrated
the effectiveness of the proposed solution compared to competitive
baselines. The NMIR framework has a wide range of applications in
IR and NLP. In the future, we intend to extend the applications of the
proposed framework to other major IR tasks, including document
representation learning, search result diversification and relevance
ranking. We will explore the potential of extending the proposed
framework to other domains, e.g., learning multiple user representa-
tions in collaborative recommender systems and learning multiple
representations for each node in a heterogeneous graph.
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