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ABSTRACT

NEURAL APPROACHES TO FEEDBACK IN
INFORMATION RETRIEVAL

SEPTEMBER 2021

KEPING BI

B.E., NANKAI UNIVERSITY

M.S., PEKING UNIVERSTIY

M.S., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor W. Bruce Croft

Relevance feedback on search results indicates users’ search intent and preferences.

Extensive studies have shown that incorporating relevance feedback (RF) on the top

k (usually 10) ranked results significantly improves the performance of re-ranking.

However, most existing research on user feedback focuses on word-based retrieval

models such as the vector space model (VSM) and language model (LM) for infor-

mation retrieval (IR). Recently, neural retrieval models have shown their e�cacy in

capturing relevance matching in retrieval but little research has been conducted on

neural approaches to feedback. This leads us to study di↵erent aspects of feedback

with neural approaches in the dissertation.

RF techniques are seldom used in real search scenarios since they can require

significant manual e↵orts to obtain explicit judgments for search results. However,
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with mobile or voice-based intelligent assistants being more popular nowadays, user

feedback of result quality could be collected potentially during their interactions with

the assistants. Due to the limit of display space or voice bandwidth, these scenarios

argue for retrieval on answer passages instead of documents and iterative feedback on

one result at a time rather than feedback on a batch of results. To this end, we study

iterative feedback versus top-k feedback with a focus on answer passages. Moreover,

we study both positive and negative RF to refine the re-ranking performance. Al-

though e↵ective, positive feedback is not always available since relevant results may

not be ranked at the top, especially for di�cult queries. Also, in most cases, it is

more beneficial to find the first relevant result compared with finding additional rel-

evant results. Thus, incorporating only negative feedback to identify relevant results

is an important research topic. However, it is much more challenging to find relevant

results based on negative feedback than positive feedback since relevant results are

usually similar while non-relevant results could vary considerably.

We focus on the tasks of text retrieval and product search to study the di↵er-

ent aspects of incorporating feedback for ranking refinement with neural approaches.

Our contributions are: (1) we show that iterative relevance feedback (IRF) is more

e↵ective than top-k RF on answer passages and we further improve IRF with neural

approaches; (2) we propose an e↵ective RF technique based on neural models for

product search; (3) we study how to refine re-ranking with negative feedback for con-

versational product search; (4) we leverage negative feedback in user responses to ask

clarifying questions in open-domain conversational search. Our research improves re-

trieval performance by incorporating feedback in interactive retrieval and approaches

multi-turn conversational information-seeking tasks with a focus on positive and neg-

ative feedback.
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CHAPTER 1

INTRODUCTION

The essential target of an Information Retrieval (IR) system is to find the pieces

of information that can satisfy a user’s information need. Users may not express their

search intent precisely with queries that usually consist of several words, especially

when they have complex information needs. Their feedback on retrieved results is

a strong signal to indicate their search intent and helps IR systems di↵erentiate

relevant information from non-relevant ones. Extensive studies have been conducted

on extracting beneficial terms from the top k results with relevance judgments to

expand the initial query and re-ranking based on the new query model [117, 119, 166,

127, 20, 43]. These relevance feedback (RF) techniques are shown to be much more

e↵ective compared with retrieval based on initial queries.

Most existing feedback approaches, however, are based on conventional retrieval

models built on top of bag-of-words representations, such as the vector space model

[120] and language model (LM) for information retrieval (IR) [103], which can some-

times fail to capture semantic meanings during relevance matching. In recent years,

neural models and embeddings have shown their superiority in representing and

matching semantics and have achieved state-of-the-art performance in many natu-

ral language processing (NLP) and retrieval tasks [93, 80, 125, 24, 44]. Words with

similar meanings have similar dense representations in the semantic space. Afterward,

research e↵orts on modeling relevance matching have moved from feature engineer-

ing to neural architecture designing. There has been significant progress in building

e↵ective neural models for document and answer retrieval [65, 54, 147, 98]. However,
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little research focuses on neural approaches that incorporate feedback information.

In this dissertation, we study how to e↵ectively incorporate user feedback with neural

approaches to facilitate various information retrieval tasks.

Despite their e↵ectiveness, feedback techniques are seldom used based on relevance

assessments in real search scenarios since they can require significant manual e↵orts

to obtain explicit judgments from users on their search results. Also, research in this

direction has become scarce in recent years. However, it is still feasible to collect

user feedback in some scenarios. User behaviors such as clicks and skips on the

search results pages (SERPs) can be collected easily. They indicate the result quality

and can be considered as implicit feedback [69, 165, 172]. In addition, as intelligent

assistants such as Siri and Cortana become more popular, user feedback about result

quality could potentially be obtained during users’ interactions with the assistants.

A retrieval system can ask for user feedback on not only the quality of retrieved

documents or passages but also clarifying questions and the potential reasons for

an unfavorable result. Following reasonable conversation paradigms, the system can

collect various types of user feedback naturally. The display space or voice bandwidth

in such a system leads to severe limitations on the length and number of results shown

in a single interaction. Thus, these scenarios argue for collecting feedback on text of

short length and iteratively with one result at a time.

There are mainly two types of techniques incorporating user feedback, which are

positive feedback and negative feedback. Most existing research focuses on relevance

feedback where a topic model is constructed based on results with positive feedback

to retrieve more relevant results. Non-relevant results can also be used in relevance

feedback techniques to distill the relevant topic model [117, 20]. When both positive

and negative feedback are available, judged relevant results play a more important role

than non-relevant results in identifying other relevant results [1]. Negative feedback

approaches usually build models with only non-relevant results to retrieve the first
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relevant results. Relevant results are usually similar while the reasons for a result to

be non-relevant can be varied. Research on negative feedback has been sparse [139,

140, 71] compared to positive feedback since it is more challenging to find relevant

results with non-relevant ones than using known relevant ones.

In this dissertation, we study di↵erent aspects of incorporating user feedback for

ranking refinement in various interactive IR scenarios. We start with how to ef-

fectively incorporate positive feedback. We compare iterative feedback with top-k

feedback (one-shot reranking based on top k results) and investigate how to improve

iterative ranking performance for various retrieval models. Then we dig into the

more challenging direction of how to use negative feedback to identify user intent

and retrieve satisfactory results. In the following sections, we introduce various as-

pects of incorporating feedback in di↵erent IR scenarios and give an overview of our

contributions.

1.1 Positive Feedback

Positive feedback aims to find more relevant results given some known relevant

results confirmed by users. It is beneficial in the cases when one relevant result is

not enough to satisfy user needs such as a user searches for existing literature on a

research topic or applicable laws to a certain scenario, etc. These tasks emphasize

the recall of retrieved results and try to find more information related to the target

topic. When a topic is ambiguous or has multiple subtopics, users’ positive feedback

on results regarding a certain meaning or subtopic indicates their search intent. A

retrieval system could be able to tailor the results shown to the users next based on

their positive feedback.

Non-factoid question answering and product search are two IR tasks where pos-

itive feedback is potentially beneficial. In contrast to factoid questions that can be

answered with a number or entity and a single correct answer can satisfy the infor-
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mation need, non-factoid questions need answer passages that cover details about

the topic and multiple relevant answers are usually preferable to provide more in-

formation. For example, for the question “What are the methods to control type ii

diabetes?”, multiple answers from di↵erent sources or that cover varied methods could

be beneficial. In product search, user purchases depend on not only product relevance

but also user preferences. A user may like items that have certain characteristics and

he/she purchases one from them finally. Take the query “women swimsuits” for ex-

ample, the user likes swimsuits that are one piece with boy legs and could browse

several such types of items before making an order. User clicks during browsing indi-

cate their preferences and can be considered as implicit positive feedback. Showing

more items that match user preferences according to their positive feedback could be

helpful.

Existing studies on relevance feedback (RF) mainly focus on using positive feed-

back on top k documents and have achieved compelling performance in adhoc docu-

ment retrieval [117, 114, 119, 1, 68, 12, 118, 79, 166, 43, 20]. However, how they would

perform in new scenarios such as mobile search and product search is unknown. To

adapt to the scenarios where user feedback can be potentially obtained, we explore

iterative feedback on answer passages and implicit feedback on products.

Previous RF methods are mainly built upon word-based retrieval models since

they were proposed before neural models have become a prevailing way to approach a

variety of NLP and IR tasks. As a first step, we investigate how to build e↵ective RF

models based on conventional retrieval models leveraging the advantages of neural

embeddings in an unsupervised way. Then we study how to refine neural ranking

models with the positive feedback information by learning a supervised model. In the

following subsections, we introduce the tasks of answer passage retrieval and multi-

page product search for which we study iterative feedback versus top-k feedback and
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propose neural feedback models on top of word-based retrieval models and neural

retrieval models.

1.1.1 Iterative Relevance Feedback for Answer Passage Retrieval

Most RF techniques are originally designed for document retrieval and they aim

to build a more informative query model by introducing expansion terms and re-

weighting the original query terms based on the documents with relevance judgments.

It is essential to have su�cient text for the accurate estimation of word weights in the

RF models. In iterative RF, the information available to extract expansion terms is

much less compared to standard top-k feedback, which may harm the model accuracy.

Moreover, they contain even less content for existing RF methods to estimate word

weights accurately. However, on the one hand, answer passages are usually more

focused than documents, which may reduce noise during model estimation. Thus, it

is worth investigating whether iterative feedback is e↵ective for document and answer

passage retrieval.

To counteract the limitation of less text in iterative answer retrieval and further

improve the performance of IRF in answer passage retrieval, we introduce comple-

mentary information from semantic space to help estimate a more accurate RF model.

Dense vector representations of words and paragraphs in distributed semantic space,

called embeddings, [93, 80, 125, 40, 24], have been e↵ectively applied on many natural

language processing (NLP) tasks, such as sentiment analysis and word analogy. Em-

beddings have been used in some previous research on pseudo relevance feedback based

on documents [161, 112], but their impact in iterative and passage-based feedback is

not known. Moreover, they only use semantic similarity at the term level and do not

consider semantic matching of larger granularity. Paragraph vectors [80, 125, 24],

specially designed to represent the topic of a paragraph in the semantic space as a

whole, o↵er a new way to measure the similarity between answer passages in terms of
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larger granularity. This has led us to focus on designing techniques of IRF for answer

passage retrieval with paragraph embeddings to improve upon word-based IRF and

other embedding-based IRF using term-level semantic similarity.

In this dissertation, we investigate whether iterative feedback based on di↵erent

frameworks is e↵ective relative to RF with a list of top k (k=10) results on both

document and answer passage retrieval. To further improve the performance of iter-

ative RF on answer passages, we leverage paragraph vectors to capture passage-level

semantics. We study whether passage-level semantic matching is beneficial to word-

based RF models, whether it is more e↵ective than term-level semantic matching, and

whether the semantic information from both granularities complements each other.

1.1.2 An End-to-end Neural Relevance Feedback Model for Product Search

In product search, users need to pay money for their purchased products, which

costs much more than clicking on links in Web search. Thus, in contrast to Web

search where people check results on the first search result page (SERP) most of the

time, users are more likely to be patient and browse items in multiple SERPs before

deciding which one to purchase. Their clicks in previous SERPs can reflect their

preferences, based on which the system can refine the results in subsequent SERPs

accordingly. From the analysis of Amazon search log [19], we observe that in about

5% to 15% of the search tra�c, users browse and click results in the previous pages

and purchase items in the later result pages. Thus, we study how to incorporate

positive feedback in the task of multi-page product search.

Existing RF techniques can also be used in multi-page product search if we con-

sider user clicks as positive feedback on items. These methods, however, are designed

specifically for text retrieval, which could not be e↵ective for products. Product

search has significant di↵erences from text retrieval. Texts are unstructured data

while products are structured data that has many aspects such as brand, color, size,
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etc. In product search, relevance is not enough to measure result quality as the

goal is to elicit user purchases which also depend on user preferences. Moreover, as

conventional retrieval models, existing RF methods are mostly unsupervised with-

out the need for labeled data for training. Since each query requires annotations of

a large number of documents, most document retrieval collections have only a few

hundreds of queries. The unsupervised RF models are competent on these collec-

tions. Contrariwise, in product search, user purchases can be obtained from search

logs automatically without the need for manual annotation. The su�cient amount

of ground-truth data argues for a more e↵ective supervised model guided by user

purchases for the task. With this regard, we propose to learn a supervised end-to-end

neural relevance feedback model based on a neural retrieval model for product search.

In this dissertation, we leverage user clicks as implicit positive feedback to provide

users with more tailored results in product search. Concretely, we reformulate prod-

uct search as a dynamic ranking problem, i.e., when users request the next SERPs,

the remaining unseen results will be re-ranked based on the user clicks in the previous

SERPs. We introduce several context dependency assumptions for the task to cap-

ture users’ short-term and long-term, and long-short-term preferences. User feedback

within a query session is considered as short-term context and user identifiers across

all the query sessions are the long-term context. We propose an end-to-end context-

aware neural embedding model that can represent each assumption by changing the

coe�cients to combine long-term and short-term context. We investigate whether

user feedback is beneficial to the retrieval model without using feedback, how user

feedback as short-term context performs compared to long-term context, and whether

our end-to-end neural feedback model is better than unsupervised RF methods.

7



1.2 Negative Feedback

Research on negative feedback focuses on identifying relevant results based on the

non-relevant results collected from user feedback. The target is to promote the first

relevant result to higher positions so that users can see them within fewer iterations.

An e↵ective negative feedback technique would bring more benefit to a retrieval sys-

tem than positive feedback since it is more valuable to show the first relevant result

to users compared to showing additional relevant results to users. In many cases,

one relevant result is enough to satisfy a user need, such as when the user wants

to know the definition of a slang word or the eligibility to get a COVID-19 stimu-

lus check. Moreover, negative feedback is more often available than positive feedback

since non-relevant results are much more common than relevant ones, especially when

the search query is too di�cult for the system to retrieve relevant results at the top.

Despite the value of negative feedback, there have been many fewer existing studies

on it compared to positive feedback [139, 140, 71]. This is probably due to the

greater challenge to e↵ectively leverage negative feedback for ranking refinement.

Relevant results often share common characteristics while the reasons for a result to be

non-relevant could be varied. Existing negative feedback approaches were originally

proposed to improve the performance of di↵erent queries in document retrieval, for

which none of the top k documents are relevant. They typically extract negative topic

models from the non-relevant documents and give lower scores to the results that are

similar to the negative topic models during re-ranking. However, such methods have

limited gains due to the large amount of non-relevant results and the lack of ability in

measuring semantic similarity using word-based retrieval models. In conversational

search systems that prefer short texts and showing one result at a time to users, results

with negative feedback have many fewer words for negative topic model estimation,

which makes it even harder for existing negative feedback methods to e↵ectively filter

out similar results.
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To improve upon the previous negative feedback methods, we explore two ways of

obtaining feedback in di↵erent scenarios and propose neural models that can incorpo-

rate the feedback accordingly. First, when users provide negative feedback to a result,

we further ask users about the fine-grained feedback on the detailed aspects of the

result and use the detailed feedback instead of the result-level feedback for re-ranking

refinement. Since products are naturally structured and have aspects such as mate-

rial, color, brand, etc., and associated values, we study breaking result-level negative

feedback to aspect-value-level feedback in conversational product search. Second,

instead of collecting feedback on retrieved documents, we explore asking clarifying

questions about an aspect or subtopic of user queries for feedback before showing

retrieval results. Based on the negative feedback to the clarifying questions, the sys-

tem aims to ask questions on other aspects. The intent space under a query is much

smaller than the space of documents and we can leverage contextual neural language

models pretrained with large-scale data such as BERT [44] to better measure seman-

tic similarity. Thus, it can be promising to ask clarifying questions based on negative

feedback and we study this problem on open-domain conversational search.

In the following subsections, we introduce the tasks for which we study negative

feedback, i.e., conversational product search based on negative feedback, and asking

clarifying questions based on negative feedback in information-seeking conversations.

1.2.1 Conversational Product Search based on Negative Feedback

In product search, when users do not like an item, they may still favor some

aspects of the item although they are not satisfied with the item’s certain attributes

for sure. If we only consider negative feedback on the item level, potential ideal

items may be filtered out as well when they share some common characteristics with

the non-satisfactory item. Since products are structured and user preferences are

based on their aspects and associated values, a conversational system can ask for
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users’ detailed preferences on the item’s aspect-values after they provide negative

feedback to an item. For instance, when a user says he/she does not like a presented

mobile phone, it is easy to gather their feedback on the aspect-value pairs such as

“brand-Huawei”, “screen-curved”, and “battery-removable”. In this way, the result-

level negative feedback can be further decomposed to aspect-value-level positive and

negative feedback, which could be much more indicative of user preferences.

As existing relevance or negative feedback techniques are designed for text data,

it argues for a novel model architecture to leverage the aspect-value-level feedback on

the products. The feedback model should be able to incorporate both the fine-grained

positive and negative feedback with the ranking model e↵ectively. It is challenging to

do so since the semantics of product aspects and values need to be captured, such as

“battery-replaceable” versus “battery-removable”, and “appearance-stylish” versus

“style-fashionable”. Negative feedback is especially di�cult to use for its opposite

e↵ect in matching an item compared to positive feedback. In Chapter 5, we study

how to build an e↵ective feedback model based on a state-of-the-art product search

method and compare its performance with methods without using feedback and only

using item-level negative feedback.

1.2.2 Asking Clarifying Questions Based on Negative Feedback in Information-

Seeking Conversations

Another way of collecting user feedback for ranking refinement is to ask questions

about the meanings or subtopics of a query to clarify user intent before showing

retrieved results. In an open-domain information-seeking scenario, for example, given

a user query “rice”, the system can ask “Are you looking for information about Rice

University?”, “Are you looking for the types of rice?”, or “Do you want to know recipes

about rice?”. When the user provides negative feedback, the next question to ask

should have a di↵erent meaning or cover other subtopics from the previous one. The
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negative feedback to such clarifying questions usually indicates an information need

about certain meanings or subtopics. This is more helpful to demote non-relevant

information than negative feedback to a passage or document that can be too specific

to filter out general information. The intent space under a query is much smaller than

the space of documents, which makes it possible for negative feedback to be e↵ective

in identifying user intent.

For the target of asking a question about di↵erent intents from previously asked

questions, it is essential to measure the semantic similarity between questions. Using

question words alone for measuring similarity cannot take semantic matching into

account and is not accurate. Similar to what we do in iterative RF, we again need

to leverage neural models to capture the semantics of the questions. Pretrained

contextual language models such as BERT [44], XLNet [157], and GTP3 [21] have

shown good abilities to understand language. They are pretrained with a large scale

of documents such as Wikipedia Webpages so that they see enough texts of diverse

topics and various contexts of each word. The word representations in such models

depend on their contexts and are dynamic, di↵erent from the static word embeddings

in models like Word2Vec [93] and Glove [101]. By fine-tuning the models with local

corpora, they have achieved state-of-the-art performance in many NLP tasks. To use

negative feedback e↵ectively to ask clarifying questions, we also leverage the power

of these advanced embeddings. In Chapter 6, we introduce how to build an e↵ective

negative feedback model based on BERT to select clarifying questions, how the model

performs compared to conventional negative feedback methods as well as state-of-the-

art baselines that are also based on BERT but do not process negative feedback in

user responses specifically, and how the asked questions impact the performance of

the associated document retrieval task.
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1.3 Contributions

The contributions of this dissertation are as follows:

• We convert standard top-k RF techniques to iterative models and show that

iterative feedback is at least as e↵ective as standard methods for document re-

trieval and more e↵ective for answer passage retrieval. To e↵ectively find more

relevant passages with users’ explicit positive feedback, we propose an unsuper-

vised passage embedding-based IRF method rather than the term level which

most previous work focuses on. We show that passage-level semantic match-

ing can produce significant improvements compared to di↵erent word-based RF

methods and is more e↵ective than term-level semantic matching in IRF. The

semantic match information from both granularities are complementary to each

other and lead to even better performance together (Chapter 3).

• We reformulate conventional one-shot ranking in product search to dynamic

ranking, i.e., multi-page search, based on user clicks, to study leveraging im-

plicit positive feedback to find users’ ideal items. We introduce di↵erent context

dependency assumptions for a product search query session and the short-term

context dependency indicates user clicks in a query session before the user re-

quests for another search result page. We propose a simple yet e↵ective end-to-

end embedding model to capture di↵erent types of dependency. The model can

act as both a retrieval model without using feedback and a feedback model that

can incorporate user clicks for finding ideal items. Based on the data collected

from real search logs, our experimental results confirm the e↵ectiveness of the

supervised end-to-end feedback model in incorporating user clicks as short-term

context. It significantly outperforms competitive word-based feedback models

and the neural retrieval models that either use only long-term context or no

context (Chapter 4).
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• We propose a paradigm for conversational product search based on negative

feedback, where the system identifies users’ preferences by showing results and

collecting feedback on the aspect-value pairs of the non-relevant items. To

incorporate the fine-grained feedback, we propose an aspect-value likelihood

model that can cope with both positive and negative feedback on the aspect-

value pairs. It consists of the aspect generation model given items, and the

value generation model given items and aspects. One multivariate Bernoulli

(MB) distribution is assumed for the aspect generation model, and two other

MB distributions are assumed for the generation of positive and negative values.

Experimental results show that our model significantly outperforms the state-

of-the-art product search baselines without using feedback and baselines using

item-level negative feedback (Chapter 5).

• We propose an intent clarification task grounded on yes/no questions where

the objective is to select the correct questions covering user intents within the

fewest conversation turns using negative feedback. We leverage the pretrained

contextual language models - BERT to help di↵erentiate semantic meanings

of questions and propose a maximum-marginal-relevance-based BERT model

(MMR-BERT) to incorporate negative feedback in the conversation history for

clarifying question selection. We show that MMR-BERT significantly outper-

forms state-of-the-art baselines and conventional negative feedback methods in

both the intent clarification task and the associated document retrieval task

(Chapter 6).
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CHAPTER 2

RELATED WORK AND BACKGROUND

There are four strands of research topics related to the dissertation. They are

relevance modeling, feedback modeling, conversational information retrieval, and the

IR applications we study feedback approaches on.

2.1 Relevance Modeling in Information Retrieval

Retrieval models are the foundation of IR systems and the basis for feedback mod-

els to incorporate feedback information. Relevance is the most important criterion

for retrieval models to score results. Their history dates back to the mid-1900s. Con-

ventional retrieval models are usually based on word matching. In recent years, deep

learning techniques have shown compelling performance in various domains, inspiring

the IR community to explore neural approaches for retrieval models. We introduce

some related studies on conventional word-based and recent neural retrieval models

in this section.

2.1.1 Conventional Retrieval Models

There are mainly three types of retrieval models: the Vector Space Model (VSM)

[120], the probabilistic model[88, 113], and the Language Modeling (LM) approach

for IR [103].

Vector Space Model. The vector space model [120] generally assumes that

each word represents a dimension in the space and documents or queries are points

in the space represented with vectors. A typical weighting scheme to determine the
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value for each dimension is the term frequency-inverse document frequency (TF-IDF).

The relevance between a document and a query can be measured with the similarity

between the two vectors, such as their cosine similarity.

Probabilistic Model. The probabilistic models rank documents according to

their posterior probability of relevance [88, 113, 116]. They assume that relevance

is a basic, dichotomous, criterion variable independent of IR systems. Let R be the

binary random variable for relevance, then the probability of a document d being

relevant to a query q can be represented by P (R|q, d). By using the Bayes rule, we

have P (R|q, d) = P (d|R, q)P (R|q)/P (d|q). A typical way to rank documents is using

the ratio of P (R|q, d)/P (R|q, d) [88, 113], where R denotes irrelevance. Thus, it is

essential to compute P (d|R, q) to produce ranking scores. A well-known model in the

probabilistic framework is the Binary Independent Retrieval model (BIR) [158], which

assumes that documents are binary vectors and term occurrences are conditionally

independent in the set of relevant or irrelevant documents. The relevance information

of the query is not known in advance, so numerous techniques have used the statistics

about the collection of documents to estimate the P (t|R, q) and P (t|R, q), where t is

a term in d [63, 158, 115, 116]. Among them, BM25 [116] is the most popular, which

assumes that term frequencies follow the mixture of two Poisson distributions. Since

probabilistic models also use bag-of-words representations, they can be treated as an

instance of VSM. Instead of ranking with P (t|R, q) and P (t|R, q), some studies use

probabilistic assumptions to estimate term weights and similarity functions such as

dot product between the query and document vectors for ranking [158, 114, 116].

Language Modeling Approach for IR. Ponte and Croft [103] proposed the

Language Modeling (LM) approach for IR (LMIR) in the late 1990s, which motivated

a new direction of research in this framework. The LM approach does not model

relevance separately as the probabilistic models do. Instead, it ranks a document d

according to the probability it is generated from the query q, i.e., P (d|q), which can be
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computed by P (d|q) = P (q|d)P (d)/P (q). Since P (q) is the same for all the documents

and the prior distribution of P (d) is often treated as uniform, we can simply rank

results according to P (q|d). The query is assumed to be generated based on a set of

unigrams from a multinomial distribution, and P (q|d) is computed based on maximum

likelihood estimation. The original LMIR cannot handle the case when query words

do not occur in documents. Noticing the problem, Zhai and La↵erty [167] have studied

various smoothing methods to account for the absent query words. Some work has

extended the unigram assumption in the original LM approach for IR to bigrams

and trigrams [52, 91, 15]. For instance, Gao et al. [52] built a dependence language

model that computes the probability of generating queries based on bigrams. Metzler

and Croft [91] proposed to combine the language models of unigrams and bigrams in

ordered and unordered windows with Markov random field (MRF). Bendersky and

Croft [15] extended the MRF model by finding and dynamically weighting concepts

in queries. These methods have achieved compelling performance in ad-hoc retrieval

by only considering exact term matching.

In Chapter 3, we convert various RF techniques in the VSM and LMIR framework

to iterative versions and conduct extensive comparisons between our proposed IRF

models and baselines in both VSM and LMIR framework.

2.1.2 Neural Approaches to Information Retrieval

Embedding-based Approaches. Initial attempts on using deep learning tech-

niques for IR focused on incorporating embeddings of words or passages to con-

ventional models so that semantic matching can also be captured during relevance

modeling. Word embeddings, also referred to as distributed representations of words,

are dense vectors that are mapped from the vocabulary space V to a d-dimensional

latent space, where d is much smaller than |V |. Words with similar meanings are

mapped to nearby points in the embedding space. Word2Vec [93, 92] and Glove [101]
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are two well-known word embedding techniques. They have similar ideas of learn-

ing word embeddings by predicting its context words or using the embeddings of its

adjacent words to predict itself. However, Word2Vec [93] is based on a feedforward

neural network while Glove [101] decomposes a global word co-occurrence matrix.

To also measure semantic match during relevance modeling, similarities of word

embeddings can be used to compute the transition probabilities between words [51,

112, 162, 161, 55] and incorporated with the conventional retrieval models. For in-

stance, Ganguly et al. [51] refined the original language modeling approach for IR

(LMIR) [103] by smoothing document language models using the semantic similari-

ties between terms in the vocabulary. Zheng and Callan [173] learned a supervised

model to estimate term weights with distributed word vectors and refine the original

LMIR [103] or BM25 [116].

Paragraph Vectors (PV) [80, 40, 125, 24] generalize the idea of Word2Vec [93]

to learn the representation for documents, i.e. a target word is predicted using the

document alone or together with the context words. Ai et al. [6, 5] use the generative

probability of a word given the paragraph vector of a document to smooth the original

word-based language model in ad-hoc retrieval. Our studies on iterative RF for answer

passages in Chapter 3 also leverage paragraph vectors to obtain passage-level semantic

matches.

Neural Ranking Models. Besides incorporating embeddings to conventional re-

trieval models, there have been studies on neural ranking models that are trained end-

to-end with relevance labels as guidance. The emerging of such models has switched

the e↵orts of feature engineering to the careful design of neural architectures. Ini-

tially, the models focused on representing queries and documents and calculated the

ranking score with their cosine similarity. DSSM [65] that uses feed-forward networks

and C-DSSM [122] that refine the representations with convolutional neural networks

are two examples. However, such models are usually e↵ective on short texts and
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have much less compelling performance on long documents. Guo et al. [54] pointed

out the necessity of building models that focus on interactions between query and

document terms instead of learning embedding vectors of queries and documents and

matching their similarities. Their insight has shed light on the following work in this

direction. Lu and Li [84] proposed DeepMatch that considers localness and hierarchy

when modeling the interactions. Xiong et al. [147] applied various kernel functions

to the query-document term interaction matrix in a model called KNRM. Dai et al.

[42] further extended KNRM by capturing soft matching of n-grams with convolu-

tional neural networks and named the updated model as Conv-KNRM. Pang et al.

[98] proposed DeepRank that divides documents into passages with a sliding window

and aggregates the signals of all the query-passage matching to model relevance. Fan

et al. [50] introduced a hierarchical neural matching model that learns passage-level

relevance signals and makes the global decision based on both individual and accu-

mulative passage relevance. More information about neural ranking models can be

found in the comprehensive survey paper [56].

More recently, contextual neural language models that represent words dynami-

cally according to their context have achieved compelling performance on a wide range

of natural language processing tasks (NLP), such as ELMo [102], BERT [44], XLNet

[157], and GPT3 [21]. ELMo [102] is based on recurrent neural networks (RNNs) while

most other models [44, 157, 21] are based on the transformer [134] architecture. With

a tremendous number of parameters pretrained with enormous data, they have shown

good abilities to understand language. Inspired by this, several studies have explored

leveraging BERT in IR tasks as well. Nogueira and Cho [96] have shown BERT’s

e↵ectiveness on passage ranking. Dai and Callan [41] demonstrated that BERT can

leverage language structures better and enhance retrieval performance on queries in

natural languages. Wu et al. [144] proposed a passage cumulative gain model that

applies a sequential encoding layer on top of the BERT output of a query-passage
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pair to score a document. We also employ BERT to facilitate our studies on asking

clarifying questions based on negative feedback in Chapter 6.

2.2 Feedback Modeling in Information Retrieval

We review the related work on feedback modeling from three aspects: relevance

feedback (RF), negative feedback, and iterative feedback.

2.2.1 Relevance Feedback

In general, previous research has used three main types of relevance feedback

methods for ad-hoc retrieval 1, which are based on the VSM [120], the probabilistic

model [88], and the LMIR [103]. Most of them extract expansion terms from anno-

tated relevant documents and re-weight the original query terms to estimate a more

accurate query model to retrieve better results.

Rocchio [117] is generally credited as the first RF technique, developed using the

VSM. It refines the vector of a user query by bringing it closer to the average vector of

relevant documents and further from the average vector of non-relevant documents.

Ide [67] extended Rocchio by only considering top non-relevant documents for feed-

back. These techniques originally used all terms in relevant documents for query

expansion. However, Harman [60] showed that it was more e↵ective to use only se-

lected terms from relevant documents than all the terms. Robertson and Jones [114]

proposed the first method based on the distribution of query terms in relevant and

non-relevant documents. This method only reweighs query terms without adding any

expansion terms. Harper et al. [62] proposed to expand a query by adding all the

terms directly connected to each query term in a maximum spanning tree built with

term-term clustering. Harman [61] confirmed the importance of query expansion in

1Due to the e↵orts required in true RF, numerous studies have switched to pseudo RF where top
k results are assumed to be relevant. Some of these pseudo RF methods can also be applied to true
RF, so we also introduce some of the pseudo RF models that are applicable to true RF.
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addition to term reweighting for a probabilistic RF model. Cox et al. [35] proposed

an RF method for image retrieval using the Bayes rule to predict the probability

distribution over possible image targets rather than refining query. Vinay et al. [135]

investigated the performance of VSM-based and probilistic RF models proposed in

[117], [114], and [35] on Web search. They showed significantly various upper bound

performance of the three techniques. Salton et al. [119] studied and compared various

RF techniques based on the VSM and probabilistic model on six collections. Many

other variations are also introduced in [118], which includes a comprehensive survey

of feedback approaches in IR.

More recently, feedback techniques have been investigated extensively based on

the LM approach, among which the relevance model [79] and the mixture model [166]

are two well-known examples that empirically perform well. In a typical version of the

relevance model (RM3) [79], the probabilities of expansion terms are estimated with

occurrences of the terms in feedback documents. The mixture model [166] considers

a feedback document to be generated from a mixture of a corpus language model and

a query topic model, which is estimated with the EM algorithm. Some recent work

[85, 20, 43] extends the mixture model by considering additional or di↵erent language

models as components of the mixture. Specifically, Lv et al. [85] used relevant, non-

relevant, and unlabelled documents to estimate the relevance model. Brondwine et

al. [20] proposed a distillation model that distills the relevance topic model from the

mixture using non-relevant documents. Dehghani et al. [43] considered each feedback

document is generated from the mixture of significant words model, general model,

and specific model.

Other aspects of relevance feedback have also been studied. Allan [11] claimed

that RF performs better with the best-matched passages in relevant documents than

with full documents. Lv and Zhai [86] proposed learning an adaptive coe�cient for

combining the original query and feedback model instead of using a fixed value. Diaz
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[46] re-ranked documents with score regularization, i.e., forcing scores of documents

related to relevant documents to be high and those related to non-relevant documents

to be low. Tan et al. [127] proposed to collect feedback directly on terms instead

of documents. Can et al. [22] incorporated relevance feedback to do query-specific

modification in a learning-to-rank model. Rabinovich et al. [107] studied RF on

document lists which comprise several intermediate retrieved lists fused. Vassilvitskii

and Brill [133] used the web-graph distance between documents to rerank results

rather than using query refinement in Web search.

Neural Approaches to RF. Initial exploration of neural approaches to RF can

be found in the 1990s. Crestani [36] used a 3-layer feedforward neural network to

map query representations to relevant document representations for RF. Queries and

documents are represented with binary vectors using the query and relevant document

vocabularies. The learned mapping matrices were then used on test queries to obtain

new query representations. Later, Crestni [37] compared this neural RF method with

the probabilistic RF models, concluding that this method is less e↵ective. With the

progress of hardware that highly improves computation e�ciency, more recent studies

have explored neural models for RF. Similar to the neural retrieval models introduced

in Section 2.1.2, recent studies also explored word embeddings to build RF models or

building neural ranking models incorporating feedback information. Rekabsaz et al.

[112] built a generalized translation model of BM25 based on cosine similarity between

word embeddings and uses the expansion terms generated from Rocchio. Zamani

and Croft [161] used the similarity of word embeddings to compute the transition

probabilities between words which are then incorporated with the relevance model

[79] to solve problems of term mismatch. Similar to the non-neural methods, these

RF approaches also try to extract expansion terms. The di↵erence is that they use

semantic match at the word level to adjust the probability of choosing expansion

terms. Li et al. [81] proposed an end-to-end neural RF framework for document
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retrieval, where neural IR models could be used as building blocks and no terms

are extracted for expansion. Montazeralghaem et al. [95] explored a reinforcement

learning method built on policy networks to estimate expansion term weights from

the relevant documents.

2.2.2 Negative Feedback

Negative feedback has been studied mostly together with positive feedback in RF

techniques, such as [117, 20, 87, 85, 150, 149]. In [117, 150, 87, 149], a document is

ranked based on its dissimilarity to the known non-relevant documents and similarity

to relevant documents. Rocchio [117] models feedback in the vector space model,

[149] is based on a probabilistic model [151], and the others are based on the language

model. Specifically, Ma and Lin [87] extracted positive and negative topic models from

both relevant and non-relevant documents. Xu and Akella [149] modeled the positive

feedback documents as a mixture of the feedback relevant and background noise

models, and the negative feedback documents as a mixture of the feedback relevant,

feedback non-relevant, and background noise models. In contrast, Brondwine et al.

[20] proposed a distillation model that distills the relevant topic model from the

relevant results given the non-relevant ones and ranks documents based on the relevant

topic model. However, negative feedback is much less e↵ective than positive feedback

in finding more relevant results since the relevant space for a query is much smaller

than the non-relevant space [1].

There has been also some research on studying negative feedback alone which

mainly focused on document retrieval for di�cult queries. Wang et al. [139] proposed

to extract a negative topic model from non-relevant documents by assuming that they

are generated from the mixture of the topic model of the background corpus and the

negative topic model. Wang et al. [140] studied negative feedback methods based

on the language model and vector space model (VSM). Later, Karimzadehgan and
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Zhai [71] further improved the performance of negative feedback by building a more

general negative topic model. These methods typically demote the results similar to

the judged non-relevant results and produce limited improvements since the space

of non-relevant results is very large. Peltonen et al. [100] introduced a novel search

interface, where keyword features of the non-relevant results are provided to users,

and they are asked for feedback on the keywords. Then a probabilistic user intent

model is estimated to refine re-ranking.

Negative feedback has also been studied for the recommendation task. Zagheli et

al. [160] also proposed a language model based method to avoid suggesting results

similar to the document users dislike for text recommendation. Zhao Et al. [172]

leverage reinforcement learning to learn the optimal strategies by recommending trial-

and-error items and collecting feedback from users. Skipped items are considered as

negative feedback and combined with positive feedback to facilitate training.

2.2.3 Iterative Feedback

In contrast to most RF systems that ask users to give relevance assessments on a

batch of documents, Aalsberg et al. [1] proposed the alternative technique of incre-

mental RF. Users are asked to judge a single result shown in each interaction, then

the query model can be modified iteratively through feedback. This approach showed

higher retrieval quality compared with standard batch feedback. Later, Lwayama et

al. [68] showed that the incremental relevance feedback used by Aalsberg et al. works

better for documents with similar topics, while not as well for documents spanning

several topics. Allan [12] showed the e↵ectiveness of incremental RF based on Roc-

chio for information filtering, where documents arrive continuously rather than being

static in a collection and queries are long-term rather than one-shot. We plan to

investigate how IRF performs on retrieval of answer passages instead of documents

using more recent retrieval models.
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Some recent TREC tracks [153, 53] have made use of iterative and passage-level

feedback, but they focus on document retrieval with di↵erent objectives and require

a large amount of user feedback. The Total Recall track [153] aims at high recall,

where the goal is to promote all of the relevant documents before non-relevant ones.

The target of the Dynamic Domain track [53] is to identify documents satisfying all

the aspects of the users’ information need with passage-level feedback. Both tasks

focus on document retrieval and need a large amount of feedback information, which

might be impractical in a real search scenario.

In this dissertation, we study neural approaches to iterative positive feedback in

answer passage retrieval (Chapter 3), implicit positive feedback in multi-page product

search (Chapter 4), leveraging fine-grained feedback when only negative feedback is

available in conversational product search (Chapter 5), and asking clarifying questions

based on only negative feedback in information-seeking conversations (Chapter 6).

2.3 Conversational Information Retrieval

Conversational IR systems help users find their target information through con-

versations. User feedback can be potentially obtained during interactions between

the system and users naturally. Thus, we based our studies on negative feedback

in the scenarios of conversational IR. In the following subsections, we introduce two

related research topics in this area: conversational search and question answering,

asking clarifying questions.

2.3.1 Conversational Search and Question Answering

The concepts of conversational search were proposed in some earliest work in in-

formation retrieval. Oddy [97] first introduced a new method of IR by manmachine

interaction in the 1970s. Then, Croft and Thompson [39] designed an intelligent inter-

mediary for information retrieval, called I3R, which communicates with users during
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a search session and reacts based on the goals stated by users and their evaluation

of the system output. Belkin et al. [14] built an interactive information retrieval

system, MERIT, that used script-based information-seeking dialogues as interaction

for e↵ective search.

With the emerging of various intelligent conversational assistants in recent years,

task-based conversations based on natural dialogues have drawn much attention.

Radlinski and Craswell [108] proposed a theoretical framework with some basic philoso-

phies for conversational information retrieval. Kenter and de Rijke [75] considered

building the representation of conversations as the process of machine reading, based

on which answers are retrieved. Vtyurina et al. [136] studied how users behave when

interacting with a human expert, a commercial intelligent assistant, and a human

disguised as an automatic system. Spina et al. [124] studied how to extract au-

dio summaries for spoken document search. Trippas et al. [130] suggested building

conversational search systems based on the commonly-used interactions from human

communication. Qu et al. [105] collected the conversations from an online forum on

Microsoft products and labeled the utterance intents. Yang et al. [156] conducted

response ranking based on external knowledge given a conversation history. Alian-

nejadi et al. [10] created a dataset that consists of information-seeking conversations

based on queries with multiple subtopics and proposed to ask clarifying questions

to understand user intents better. Wang and Ai [142] propose to control the risk of

asking non-relevant questions by deciding whether to ask questions or show results in

a conversation turn.

There are also extensive studies on conversational search in recommendation and

product search. Mcginty and Smyth [90] leveraged preference and rating based feed-

back in a conversational recommender system and emphasize product diversity rather

than similarity to conduct e↵ective recommendation. Christakopoulou et al. [27] de-

veloped a framework to identify which questions to ask in order to quickly learn
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user preferences and refine the recommendations during the conversations. Zhang et

al. [168] proposed a paradigm for conversational product search, where the system

asks users their preferred values of an aspect, shows results when it is confident, and

adopts a memory network to ask questions and retrieving results. Sun and Zhang

[126] proposed a recommendation system based on a similar paradigm, which also

collects users’ preferred values for given aspects and uses a reinforcement learning

framework to choose actions from asking for the values or making recommendations

by optimizing a per-session utility function.

Conversational question answering defines the task of finding an answer span in

a given passage based on the question and answers in the conversation history such

as CoQA [111] and QuAC [26]. Qu et al. [104] extended the task by introducing

a step of retrieving candidate passages for identifying answer span. This is more

practical in real scenarios where ground truth passages that contain the answers are

often unavailable.

2.3.2 Asking Clarifying Questions

In the TREC 2004 HARD track [13], there has been research on asking searchers

clarification questions such as whether some titles seem relevant to improve the ac-

curacy of IR. In recent years, it has drawn much attention to study how to ask

clarifying questions in conversational search. Rao et al. [109] collected a clarifying

question dataset from the posts in StackOverflow and proposed to select clarification

questions based on the expected value of perfect information considering the useful-

ness of potential answers to a candidate question. Later, Ral et al. [110] extended the

work by using the utility [109] in a reinforcement learning framework in product QA

to handle cases where contexts such as product information and historical questions

and answers are available. In [168, 126], questions about users’ preferred values on as-

pects of a product are asked for conversational product search and recommendation.

26



Wang et al. [141] observed that a good question is often composed of interrogatives,

topic words, and ordinary words and devised typed encoders to consider word types

when generating questions. Cho et al. [25] proposed a task of generating common

questions from multiple documents for ambiguous user queries. Xu et al. [148] studied

whether a question needs clarification and introduced a coarse-to-fine model for clar-

ification question generation in knowledge-based QA systems. Zamani et al. [164]

extracted the facets of a query from query logs and generated clarifying questions

through template or reinforcement learning with weak supervision.

To study how to ask clarifying questions in open-domain information-seeking

conversations, Aliannejadi et al. [10] collected clarifying questions through crowd-

sourcing in a dataset called Qualc based on the ambiguous or faceted topics in the

TREC Web track [29, 30]. They proposed to select the next clarifying question based

on BERT representations and query performance prediction. Later, [64] extended

the idea of pseudo relevance feedback and leveraged top-retrieved clarifying questions

and documents for document retrieval and clarifying question selection on Qulac.

Aliannejadi et al. [9] then organized a challenge on clarifying questions for dialogue

systems that raises the questions on when to ask clarifying questions during dialogues

and how to generate the clarifying questions.

While most existing studies do not di↵erentiate responses that are confirmation or

denial, we address how to leverage negative feedback in the response to ask clarifying

questions (Chapter 6). Moreover, they evaluate models based on either the initial

query or pre-defined conversation history, i.e., the models always select the next

question based on static conversation turns instead of its previously selected questions.

In contrast, we select the next questions dynamically considering previous questions,

which is more consistent to real conversational search scenarios.
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2.4 Information Retrieval Applications

IR applications include a wide variety of tasks that seek information such as

documents, answers, products, etc. Depending on the information property, there are

unstructured and structured data. Documents and answers consist of unstructured

text 2, to which term matching and semantic matching are essential during retrieval.

In contrast, for structured data like products, various aspects and associated values

are the key to di↵erentiate user needs. We briefly review the tasks of text retrieval

and product search we base our studies on.

2.4.1 Retrieval of Unstructured Text

Text can be of various lengths such as documents, answers, questions, etc. Text

retrieval aims to return texts that are relevant to user queries or questions. Ad-

hoc retrieval, answer passage retrieval, open-domain conversational search, clarifying

question selection are all examples of text retrieval. Although retrieval models de-

signed for one task can also be used for others, each task has each own focus and

usually requires specific care in the model design. We have already introduced con-

versational search and asking clarifying questions in Section 2.3, so we introduce

ad-hoc retrieval and answer passage retrieval in this subsection.

Ad-hoc retrieval is the most well-known text retrieval task and has been stud-

ied for many years. It focuses on retrieval documents based on their relevance to

queries. The vector space model [120], probabilistic model [88, 113] and language

modeling approach for IR [103] introduced in Section 2.1.1 are all originally de-

signed for ad-hoc retrieval. Early retrieval models are mostly based on exact match-

ing of unigrams, bigrams, and trigrams considering term dependency and proximity

[103, 52, 91, 15]. Later, by taking semantic matching into account, embedding-based

2Although documents could have multi-fields such as title, heading, body, etc. that can be
considered as structured, we only discuss the work that treats a document as a whole piece of text
and does not consider document structures.

28



[51, 112, 161, 55, 6] and neural ranking models [54, 147, 98, 50] have drawn consid-

erable attention. They investigated to incorporate the semantic information in the

word-based conventional retrieval models or design neural networks to capture the

matching patterns between queries and documents.

There has also been extensive research on answer passage retrieval. Initial studies

were based on term matching [49, 31, 34] and tried to leverage data from the Web

for local corpus [32]. In recent years, retrieval of short text becomes increasingly

important in applications such as mobile and voice-based search. Keikha et al. [74,

73] developed a non-factoid answer retrieval dataset, WebAP, using TREC GOV2

collections. They showed that conventional retrieval models that perform well on

document retrieval are not e↵ective for this task. Yang et al. [155] proposed to add

some semantic and context features in a learning-to-rank framework to retrieve answer

sentences for non-factoid questions. Neural ranking models for passage retrieval have

also been explored. Wang and Eric [138] trained a bi-directional long-short term

memory model (BiLSTM) to retrieve non-factoid answers. Tan et al. [128] employed

a convolutional neural network after encoding questions and answers with a BiLSTM.

Yang et al. [154] used an attention mechanism to capture matching in the interactions

between queries and answers. Cohen and Croft [33] proposed a hybrid approach

incorporating embeddings of both words and characters for passage retrieval.

We compare standard top-k RF and iterative RF in both ad-hoc retrieval and

answer passage retrieval in Chapter 3 and we further investigate how to improve iter-

ative RF on answer passage retrieval. In the open-domain conversational information

seeking task in Chapter 6, we focus on asking clarifying questions based on nega-

tive feedback and evaluate the associated ad-hoc retrieval task using the obtained

conversations.
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2.4.2 Retrieval of Structured Products

Products have the property of entities in contrast to unstructured text. They

have common attributes such as brand, price, color, etc., and specific aspects like

battery life, screen size, and camera count. Early research mainly leverages facets for

product search. Lim et al. [82] proposed a document profile model to annotate the

semantic tags of items based on their structured aspects so that the ranking scores

can be computed by matching queries with multiple product aspects in the created

semantic tags. Vandic et al. [132] studied how to automatically select product facets

to minimize the number of steps to find the target product. However, these approaches

are for structured queries (e.g., SQL) that are hard and inconvenient for users to write.

To support free-from keyword queries, Duan et al. [48, 47] extended language-model-

based techniques by assuming that queries are generated from the mixture of one

language model of the background corpus and the other one of products conditioned

on their specifications. Word mismatch problems still exist in these approaches.

More recent studies consider that product titles, descriptions, and reviews include

informative product attributes, and have explored neural models to measure their

semantic similarities with queries. Van et al. [131] proposed to map and match

n-grams from queries and product descriptions and reviews to the latent semantic

space. In contrast to text retrieval where relevance is the most important criterion,

in product search, user purchases also depend on their preferences. Aware of the

importance of personalization in product search, Ai et al. [7] proposed a hierarchical

embedding model based on product reviews and used a convex combination of the

query and user vector to predict purchased items. Guo et al. [57] represent long

and short-term user preferences with an attention mechanism applied to users’ recent

purchases and their global vectors. From the analysis of commercial search logs, Ai

et al. [4] observed that personalization does not always have a positive e↵ect. They

further proposed a zero-attention model (ZAM) that can control the influence of
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personalization. However, the maximal e↵ect personalization can have is equal to the

query. Bi et al. [18] found this limitation and proposed a transformer model to encode

the query and historically purchased items where personalization can have none to

full e↵ect. Later, Bi et al. [17] conducted item scoring by dynamically matching

user intents and items at the review level instead of explicitly represent them in the

semantic space and match them directly.

There are also studies on other aspects such as popularity, other information

sources (e.g., images), diversity, and labels for training in product search. Long et al.

[83] incorporated popularity with relevance for product ranking. Di et al. [45] and

Guo et al. [58] investigated on using images as a complementary signal. Ai et al. [8]

proposed an explainable product search model with dynamic relations such as brand,

category, also-viewed, also-bought, etc. E↵orts have also been made to improve result

diversity to satisfy di↵erent user intents behind the same query [99, 159]. In terms of

training signals, Wu et al. [143] jointly modeled clicks and purchases in a learning-to-

rank framework and Karmaker et al. [72] compared the e↵ect of di↵erent labels such

as click-rate, add-to-cart ratios, and order rates. More recently, Zhang et al. [171]

integrated the graph-based feature with neural retrieval models for product search.

Xiao et al. [146] studied personalized product search under streaming scenarios.

Ahuja et al. [2] learned language-agnostic representations for queries and items that

can support search with multiple languages.

In the dissertation, we investigate how to leverage implicit feedback in multi-

page product search based on product titles in Chapter 4 and how to incorporate

fine-grained feedback on aspect-values using item reviews in conversational product

search in Chapter 5.
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CHAPTER 3

ITERATIVE RELEVANCE FEEDBACK FOR ANSWER
PASSAGE RETRIEVAL

3.1 Introduction

Typical relevance feedback (RF) techniques assume that users provide relevance

judgments for the top k (usually 10) documents and then re-rank using a new query

model based on those judgments. Even though this is e↵ective, there has been little

research recently on this topic because requiring users to provide substantial feedback

on a result list is impractical in a typical web search scenario. In new environments

such as voice-based search with intelligent assistants, however, feedback about result

quality can potentially be obtained during users’ interactions with the system. Figure

3.1 shows an example of an assistant interacting with a user collecting her feedback

on the provided results. Since there are severe limitations on the length and number

of results that can be presented in a single interaction in this environment, the focus

should move from browsing result lists to iterative retrieval and from retrieving doc-

uments to retrieving answers. In this chapter, we study iterative relevance feedback

(IRF) techniques with a focus on answer passage retrieval.

Although they could be applied to any text retrieval scenario, most existing RF

algorithms use word-based models originally designed for document retrieval. Answer

passages, however, are much shorter than documents, which could potentially present

problems for the accurate estimation of word weights in the existing word-based RF

methods. Moreover, the limitations on the length and number of results in IRF mean

that there is even less relevant text available at every iteration. Given these issues,

32



What are the methods to control type ii diabetes?

Here is a result. (A link or an answer)
Is it relevant? Do you want more results on this topic?

Yes, it is. Please show me more results like this.

Sure. What about this one? (Another link or answer)

It’s not what I want. 

Yes. That’s good. Thank you! 

Sorry about that. Then this one should be good.
(Another link or answer) 

Figure 3.1: An example conversation between a user and an assistant.

introducing complementary information from semantic space may help to estimate a

more accurate RF model. Some approaches have incorporated embeddings with RF

models [161, 112]. However, these techniques use semantic similarity at the term level

and do not consider semantic match at larger granularity. This has led us to incorpo-

rate passage-level semantic match in IRF for answer passage retrieval to improve upon

word-based IRF and other embedding-based IRF using term-level semantic similarity.

In this chapter, we first convert several representative feedback models to iterative

versions. Then we propose an iterative feedback model based on passage-level seman-

tic matching. In the word-based IRF experiments, we show that iterative feedback is

comparable with the top-k approach for documents and more e↵ective for answers. In

the passage embedding based IRF experiments, we observe that our proposed model

grounded on passage-level semantic match produces significant improvements com-

pared to both word-based iterative feedback models and those based on term-level

semantic similarity.
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3.2 Word-based IRF Models

In IRF, the topic model of users’ intent can be refined each iteration after a

small number of results are assessed. Therefore, re-ranking is triggered earlier in

IRF than in standard top-k RF methods. On the one hand, earlier re-ranking may

produce better results with fewer iterations, which essentially reduces the user e↵orts

in search interactions. On the other hand, having only a small amount of feedback

information in each iteration may hurt the accuracy of model estimation and cause

topic drift in the iterative process, especially for documents that often span several

topics.

We convert several representative models to iterative versions and investigate the

performance of the IRF models on answer passage retrieval. Since LM and VSM

are the two most e↵ective frameworks for RF, 1 we study iterative feedback under

these two frameworks. 2 We use RM3 [79] and the Distillation (or Distill) model

[20] to represent the LM framework, and Rocchio for VSM. RM3 [79] is a common

baseline for pseudo RF that has also been used for RF. Distillation [20] is one of

the most recent RF methods, which is an extension of the mixture model [166] by

incorporating a query-specific non-relevant topic model. As for the retrieval models

for initial ranking, we use Query Likelihood (QL) for LM, and BM25 [116] for VSM

respectively. Next, we introduce the iterative versions of RM3, Distillation, and

Rocchio.

To keep the query model from diverging to non-relevant topics, we maintain two

pools for relevant and non-relevant results, noted as RP (i) and NRP (i), which ac-

cumulate all the judgments until the ith iteration. During the ith iteration, judged

1The framework we mention in this thesis means the way of doing RF, so the probabilistic model
for RF [114, 61] is di↵erent from the probabilistic relevance models such as BM25 [116].

2We also tried iterative feedback based on the probabilistic model [114], and it showed a similar
trend with LM and VSM. However, it generally underperformed the latter two on both document
and answer passage retrieval, similar to what Salton et al. [119] reported in their RF experiments,
so we do not include it in this dissertation.
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relevant results R(i) and non-relevant results NR(i) are added to the corresponding

pool. i.e.

RP (i) = RP (i�1) [ R(i)

NRP (i) = NRP (i�1) [ NR(i)

where i > 0, RP (0) = ;, NRP (0) = ;. 3

We first introduce some notation used in the following formulations. c(w, x) is the

count of w in text x; the maximum likelihood estimate (MLE) of term w with respect

to a set S is pMLE

S
(w) =

P
x2S c(w,x)P

x2S

P
w02x c(w0,x) ; pDir

x
(w) denotes the probability of term w

from a Dirichlet smoothed unigram language model induced from x. The relevance

score between two language models, plm1(·) and plm2(·), is calculated with negative

KL divergence.

scoreKL(plm1(·), plm2(·)) = �KL(plm1(·)||plm2(·))

/
X

w

plm1(w) log plm2(w)
(3.1)

For RM3 and Distillation, the initial results given the original query Q(0) are ranked

with QL according to scoreKL(pMLE

Q(0) (·), pDir

x
(·)).

Iterative Relevance Model. Since the true relevant judgments are available,

we can estimate the true relevance model in the ith iteration (i > 1), directly with

binary weights [78, p. 69].

p(i)
relrm3

(w) =
1

|RP (i�1)|
X

x2RP (i�1)

pMLE

x
(w) (3.2)

3We also tried to incrementally represent the query model in the ith iteration with Q(i�1) and
R(i�1) and NR(i�1). However, this method performs much worse than using the original query Q(0)

and RP (i�1) and NRP (i�1). Given that, we do not include this method in the dissertation.
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The updated query language model in the ith iteration is the linear combination

of the original query language model and the true relevance model computed from

positive feedback:

prm3,Q(i)(w)
def

= �rm3p
MLE

Q(0) (w) + (1 � �rm3)p
(i)
relrm3

(w) (3.3)

Then results are ranked with scoreKL(prm3,Q(i)(·), pDir

x
(·)).

Iterative Distillation Model. The Distillation model assumes that terms

in relevant documents are generated from a mixture of a relevance topic model

preldistill(·), a query specific non-relevance topic model pMLE

NR
(·), and a background

corpus language model, pMLE

C
(·). For the ith iteration (i > 1), p(i)

rel
(·) is estimated

with the EM algorithm to maximize the log likelihood of words in RP (i�1).

X

x2RP (i�1)

X

w

c(w, x) log
�
(1 � �1 � �2)p

(i)
reldistill

(w)

+�1p
MLE

NRP (i�1)(w) + �2p
MLE

C
(w)

�
(3.4)

Note that if �1 is set to 0, Distillation is exactly the same as the mixture model [166].

Similar to RM3, the new query model for the ith iteration is computed as:

pdistill,Q(i)(w)
def

= �distillp
MLE

Q(0) (w) + (1 � �distill)p
(i)
reldistill

(w) (3.5)

Then results are ranked with scoreKL(pdistill,Q(i)(·), pDir

x
(·))

Iterative Rocchio Model. In VSM, queries and documents are represented

with vectors in high-dimensional term space. The weight of each dimension can be

calculated in many ways and a similarity measure is used to score documents. In this

work, we use the BM25 [116] 4 weight for terms in a document and dot product as

4We use the weights calculated from a probabilistic relevance model to represent documents in
VSM and use Rocchio as the method for VSM to do RF.
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the similarity measure. The BM25 weight is

(k1 + 1) · c(w, x)

k1(1 � b + b |D|
avgdl

) + c(w, x)
· log

|C| + 1

df(w)
(3.6)

where k1 and b are free parameters. The weight of a query term is set to be c(w, Q).

Then in the ith iteration (i > 0), the query vector can be updated to

~Q(i) = ~Q(0) + �
1

|RP (i�1)|
X

x2RP (i�1)

~x + �
1

|NRP (i�1)|
X

x2NRP (i�1)

~x (3.7)

If RP (i�1) or NRP (i�1) is empty, the corresponding part is omitted. The relevance

score of a document or an answer passage x with respect to a query is computed with

the dot product, i.e.

scoreV SM(Q(i), x) = ~Q(i) · ~x (3.8)

3.3 Passage Embedding based IRF Models

Word-based RF methods are initially designed for document retrieval and are

usually based on query expansion. To conduct e↵ective query expansions, we need

su�cient words to cover di↵erent aspects of relevant topics and su�cient text to

estimate the probabilities or weights of the expansion terms. However, this may be

a problem in answer passage retrieval as each result only contains a small amount of

text, which might be not enough to build a robust query expansion model. Also, the

fact that less relevant results are available in each iteration of IRF makes the problem

even worse.

To alleviate the problem of insu�cient text in each RF iteration, one possible

method is to incorporate semantic information about words and paragraphs. Recent

studies have shown that embeddings of words and paragraphs are capable of capturing

their semantic meanings [93, 92, 163, 125, 24]. These techniques could potentially help
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us build more robust IRF models by supporting semantic matching between words

and documents.

Thus we propose to use paragraph embeddings to improve the performance of

IRF for answer passage retrieval. In contrast to existing word-based and embedding-

based RF methods, this approach does not extract expansion terms to update the

query model. Instead, it represents the relevance topic from feedback passages with

embeddings. Similar to Rocchio, we assume a relevant passage should be near the

centroid of other relevant passages in the embedding space. Also, we only focus on

positive feedback as negative feedback has been shown to have little benefit for RF

in previous studies [1]. Therefore, our model can be viewed as an embedding version

of Rocchio with only positive feedback. In this section, we first describe the methods

we use to obtain the semantic representations for answer passages. Then we will

introduce the passage embedding based iterative feedback model and discuss other

design choices.

3.3.1 Passage Embeddings

Aggregated Word Embeddings. One simple way of representing passages is

to use average or weighted average embeddings of words in the paragraph. A popular

way of training word embeddings is Word2Vec [92, 93], which projects words to dense

vector space and uses a word to predict its context or predicts a word by its context.

Representing queries and documents with aggregated word vectors and incorporating

similarity of them with a word-based retrieval model has been shown to be useful

in cross-lingual IR [137]. For short text like movie reviews, representing them with

aggregated word vectors is also common in tasks such as sentiment analysis [80, 24].

So we use aggregated word embeddings trained fromWord2Vec both with and without

IDF weighting in our experiments.
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Paragraph Vectors. The other way of representing passages is using specially

designed paragraph vector models as in [80, 24, 125]. The models we use are PV-

HDC [125] with or without corruption, shown in Figure 3.2. PV-HDC is an extension

of the initially proposed paragraph vector model [80], where a document vector is

first used to predict an observed word, and afterward, the observed word is used

to predict its context words. The recent work of training paragraph representation

through corruption [24] shows advantages in many tasks such as sentiment analysis.

It replaces the original part of paragraph representation with a corruption module,

where the global context ũ is generated through an unbiased dropout corruption at

each update and the paragraph representation is calculated as the average embeddings

of the words in ũ. The final representation is simply the average of the embeddings of

all the words in the paragraph. In contrast to [24] which uses the same embeddings

for global context (marked in blue) and local context (marked in red), we consider the

embeddings for these two types of context can be di↵erent. Among our experiments,

this way outperforms the original version in most cases. Therefore, we only show

experiments under this beneficial setting in Section 3.5. 5

3.3.2 IRF with Passage-level Semantic Similarity

As an alternative to query expansion-based relevance feedback methods, we pro-

pose to represent the whole semantic meaning of a passage and a passage set with

vectors in the embedding space, thus the similarity between a relevant passage set

and a candidate passage can be calculated without explicitly extracting any expan-

sion terms. Specifically, we represent the relevance topic in the ith iteration as the

embedding of the relevant passage pool and fuse the similarity between a candidate

5We also investigate other models such as the original PV models, DM, DBOW, [80], and the
Parallel Document Context Model (PDC) [125], both with and without corruption. Most models
produce improvements, among which HDC is better than other structures in most cases. So we only
show the results of PV-HDC/PVC-HDC.
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Figure 3.2: HDC models used in our experiments. Red words are local context, and
blue words are global context.

passage and the relevance topic with other RF methods. Thus the score function is

shown as follows,

score(Q(i), d) = scorerf (Q
(i), d) + �sfscoresem(RP (i), d) (3.9)

where Q(i) is the expanded query model estimated by iterative version of RF models

such as RM3, Distillation and Rocchio; d is the candidate passage; RP (i) denotes the

relevant passage pool in the ith iteration; scorerf denotes the score calculated from

other RF models, such as scoreKL (Equation (3.1)) or scoreV SM (Equation (3.8));

�sf is the coe�cient of incorporating the passage embedding based similarity; and

scoresem is the semantic match score between two pieces of text. Here we choose

the commonly used cosine function to measure the similarity. Similar to Rocchio, we

assume the topic of a passage set is the centroid of these passages and we consider a

relevant passage pool can be represented by weighted average vectors of the passages

in it, where the importance of each passage can be estimated according to the quality

or the iteration number of it. Thus the similarity between a passage and the pool is
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scoresem(RP (i), d) = cos(
X

dr2RP (i)

w(dr)~dr, ~d) (3.10)

where ~dr is the vector representation in the embedding space, w(dr) is the weight of

each passage. 6 We use uniform weights for each relevant document in the follow-

ing experiments, and mention some investigation on the e↵ect of assigning weights

according to the iteration number in Section 3.5.4.

In addition to this embedding version of Rocchio, we also tried scoring a passage by

its average similarity to each relevant passage in the pool. The underlying assumption

is that a relevant passage should be similar to each of the other relevant passages.

This method can perform significantly better than word-based IRF baselines but is

worse than scoring a passage by its similarity with the relevance topic, represented

by the centroid of relevant results.

Our method has two advantages over existing RF methods. One is that compared

to expansion term based methods that only alleviate word-level mismatch, the se-

mantic similarity of larger granularity is captured in our method. The other is the

flexibility of combining this semantic match signal with di↵erent types of approaches

such as RM3, Distillation, Mixture, Rocchio, and other embedding-based feedback

approaches.

3.4 Experiments of Word-based IRF

In this section, we first introduce the experimental setup and then show the results

of our word-based IRF in the framework of both LM and VSM on document and

answer passage retrieval.

6We also tried to add the similarity between the original query and a candidate passage in
Equation (3.9), but this part does not help in our experiments. One possible reason is that the
similarity between a passage with judged relevant passages may already indicate their similarity
with the original queries since those relevant passages are judged according to the original queries.
The other possible reason is that in the embedding space matching a sentence-level text and a
passage-level text is not as accurate as matching two pieces of text at the passage level.
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3.4.1 Experimental Setup

Data. In our experiments, we used Robust, Gov2 for document retrieval, and

WebAP, PsgRobust for answer passage retrieval. Statistics of the datasets are sum-

marized in Table 3.1. Robust (TREC Robust Track 2004 collection) and Gov2 (TREC

Terabyte Track 2004-2006 collection) are two standard TREC collections for ad-hoc

retrieval. Robust contains high-quality news articles and Gov2 consists of “.gov”

domain web pages. The titles of topics in Robust and Gov2 are used as queries.

WebAP [155] is a web answer passage collection built on Gov2. It selected queries

that are likely to have passage-level answers from Gov2 and retrieved the top 50

documents with the Sequential Dependency Model (SDM) [91]. After that, documents

identified relevant in the TREC judgments were annotated for answer passages. In our

experiments, we used topic descriptions as questions and split the rest of documents

randomly into 2-3 sentences as non-relevant passages.

PsgRobust [16] 7 is a new collection we created for answer passage retrieval. It is

built on Robust following a similar way as WebAP but without manual annotation.

In PsgRobust, we assume that top-ranked passages in relevant documents can be

considered as relevant and all passages in non-relevant documents are irrelevant. We

first retrieved the top 100 documents for each title query in Robust with SDM and

generated answer passages from them with a sliding window of 2-3 random sentences

and no overlap. After that, we retrieved the top 100 passages with SDM again and

treated those from relevant documents as the relevant passages. Similar to WebAP,

we used the descriptions of Robust topics as questions and have 246 queries with non-

zero relevant answer passages in total. The Recall@100 in the initial retrieval process

is 0.43, which means that 43% of relevant documents for all queries on average were

included in the passage collection on average. Besides, by manually checking some

7https://ciir.cs.umass.edu/downloads/PsgRobust/
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Table 3.1: Statistics of experimental datasets.

Dataset #Docs DocLen Vocab #Query #Qrels
Robust 0.5M 504 0.6M 250 17,412
Gov2 25M 893 35M 150 26,917
WebAP 379k 45 59k 80 3,843
PsgRobust 383k 46 64k 246 6,589

randomly sampled passages marked as relevant, we found most of them are indeed

relevant passages for the questions.

We also considered other collections that have passage-level annotation such as

the DIP2016Corpus 8 [59] and the dataset from the Dynamic Domain track [153].

However, they either are trivial for relevance feedback tasks (almost all top 10 results

retrieved by BM25 are relevant in DIP2016Corpus) or have few queries (only 26 and

27 for the two domains of the Dynamic Domain track). Therefore, we only report the

results of WebAP and PsgRobust.

Model Settings. All the methods we implemented are based on the Galago

toolkit [38] 9. Stopwords were removed from all collections using the standard IN-

QUERY stopword list and words were stemmed with Krovetz Stemmer [77]. To

compare iterative feedback with typical top-k feedback in a fair manner, we fixed the

total number of judged results as 10 and experimented on 1, 2, 5, and 10 iterations,

where 10, 5, 2, 1 results were judged during each iteration respectively. Then 10Doc-

1Iter is exactly the top-k feedback. We pay more attention to the settings of one

or two results per iteration which are more likely to be in a real interactive search

scenario considering the limitation of presenting results. True labels of results were

used to simulate users’ judgments. 10

8https://github.com/UKPLab/sigir2016-collection-for-focused-retrieval

9http://www.lemurproject.org/galago.php

10We did not exclude queries that no relevant results appear in the top 10 retrieved by QL
and BM25 since the query sets they perform well at are di↵erent and removing those queries will
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All the parameters were set using 5-fold cross-validation over all the queries in

each collection with grid search, except for retrieval with QL and BM25 on Ro-

bust and Gov2, where we use the average value of 5-cross validation from Hus-

ton et al’s experiments [66]. For WebAP and PsgRobust, we tuned µ of QL in

{30, 50, 300, 500, 1000, 1500} and k of BM25 from {1.2, 1, 4, · · · , 2}, b set to 0.75 as

suggested by [94]. We scanned �1, �2 in Equation (3.4) from {0, 0.2, 0.4, · · · , 1.0} (the

sum of �1 �2 should be less than 1), �rm3 and �distill in Equation (3.3) and (3.5) from

{0, 0.2, 0.4, · · · , 0.8}, the number of expansion terms m from {10, 20, · · · , 50}, and �,

� in equation 3.7 from {0, 0.5, 1, · · · , 3.0}.

Evaluation. The evaluation should only focus on the ranking of unseen results.

So we use freezing ranking [28, 118], as in [1, 70], to evaluate the performance of

iterative feedback. The freezing ranking paradigm freezes the ranks of all results

presented to the user in the earlier feedback iterations and assigns the first result

retrieved in the ith iteration rank iN + 1, where N is the number of results shown

in each iteration. Note that previously shown results are filtered out in the following

retrieval and results retrieved in the last iteration are appended to make a longer rank

list. Then we use mean average precision at cuto↵ 100 (MAP ) and NDCG@20 to

measure the performance of results overall and on the top. As suggested by Smucker

et al. [123], statistical significance is calculated with Fisher randomization test with

a threshold 0.05.

3.4.2 Results and Discussion

The performance of the initial rank lists retrieved with QL and BM25 are shown

in Table 3.2 and the IRF experimental results are shown in Table 3.3. All the values

of feedback methods shown in Table 3.3 are significantly better than their retrieval

dramatically reduce our query numbers. We keep all the queries to show the results in di↵erent
frameworks under the same condition. Queries without relevant results in the top 10 will have the
same results with RF or not.
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baselines, i.e. RM3 and Distillation compared with QL, Rocchio compared with

BM25, in terms of both MAP and NDCG@20.

IRF on Document Retrieval. As shown in Table 3.3, for document retrieval

on Robust, in terms of both metrics, the performance of RM3 and Distillation rises

when there are more iterations; the performance of Rocchio drops a little when there

are 5 iterations and 10 iterations, but is still similar with that of top-10 feedback.

On Gov2, the MAP of RM3 and Distillation with the four iteration settings do not

di↵er much, while the NDCG@20 increases as there are more iterations. Rocchio

performs the best on 2Doc-5Iter and 1Doc-10Iter in terms of MAP , best on 5Doc-

2Iter and 2Doc-5Iter regarding NDCG@20. We can see that IRF produces significant

improvements in more cases for Robust compared to Gov2 in terms of MAP . The

reason may be that Robust is a homogeneous dataset of high-quality news articles

and shorter average document length, while Gov2 is a heterogeneous web collection of

more various topics and longer average document length. This leads to more possible

non-relevant information in the judged relevant documents in Gov2 so topic drift

is more likely to happen. Overall, the results of document retrieval show iterative

feedback with a relevant document pool does not harm the performance compared

with top-k feedback, and improves the performance sometimes, even though fewer

documents are used to estimate an accurate relevance topic model.

IRF on Answer Passage Retrieval. Table 3.3 shows, on both answer passage

collections, WebAP and PsgRobust, the MAP and NDCG@20 of RM3, Distillation

and Rocchio increase as the ten results are judged in more iterations. Performance

goes up when re-ranking is done earlier even when we have only a small number

of passages. 11 The result that IRF performs more e↵ectively in answer passage

11 On PsgRobust, BM25 and Rocchio underperform QL and Distillation respectively by a large
margin. Because the labels of PsgRobust are generated based on the top results retrieved with SDM,
this collection favors approaches in the framework of LM more than VSM.
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Table 3.2: Performance of QL and BM25.

MAP
Method Robust Gov2 WebAP PsgRobust
QL 0.215 0.166 0.076 0.248

BM25 0.217 0.167 0.081 0.191
NDCG@20

Method Robust Gov2 WebAP PsgRobust
QL 0.416 0.405 0.143 0.319

BM25 0.418 0.419 0.150 0.292

retrieval than in document retrieval is probably because answer passages are usually

focused on a single topic, while documents can span several topics. The non-relevant

topics in the relevant documents may cause topic drift compared with answer passages

when there are only a small number of feedback results. Since for RM3, Distillation

and Rocchio, MAP and NDCG@20 show similar trends using iterative feedback on

di↵erent datasets, we only show MAP in the experiments of embedding-based IRF

on answer passage retrieval in Section 3.5.2.

3.5 Experiments of Passage Embedding Based IRF

To show whether our method is e↵ective for IRF on answer passage retrieval, we

designed two groups of experiments and have both word-based and embedding-based

RF baselines. For the two groups of experiments, one is the same as in Section 3.4, i.e.

measuring the performance of each method with a di↵erent number of iterations and

10 results judged in total. The other focuses on the ability of each model to identify

more relevant passages given only one relevant answer passage. We first describe the

experimental setup and then introduce the two groups of experiments in Section 3.5.2

and Section 3.5.3.
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Table 3.3: Performance of iterative feedback on document and answer passage col-
lections. All the methods with feedback are significantly better than initial retrieval
model (Initial). The initial ranking model is QL for RM3, Distillation, and BM25
for Rocchio. ‘*’ denote significant improvements over the standard top-10 feedback
model (10 ⇥ 1) in Fish’s randomization test [123] (p < 0.05).

Dataset
Method MAP of freezing rank lists
(Doc⇥Iter) (10⇥1) (5⇥2) (2⇥5) (1⇥10)

Robust
RM3 0.268 0.274⇤ 0.274⇤ 0.276⇤

Distillation 0.265 0.275⇤ 0.277⇤ 0.282⇤

Rocchio 0.267 0.273⇤ 0.265 0.266

Gov2
RM3 0.211 0.210 0.212 0.211
Distillation 0.205 0.204 0.204 0.207
Rocchio 0.194 0.196 0.198⇤ 0.197⇤

WebAP
RM3 0.100 0.107* 0.113* 0.113*
Distillation 0.099 0.104⇤ 0.109⇤ 0.111⇤

Rocchio 0.106 0.112⇤ 0.118⇤ 0.119⇤

PsgRobust
RM3 0.293 0.299* 0.306* 0.308*
Distillation 0.292 0.299⇤ 0.311⇤ 0.313⇤

Rocchio 0.268 0.280⇤ 0.285⇤ 0.286⇤

Dataset
Method NDCG@20 of freezing rank lists
(Doc⇥Iter) (10⇥1) (5⇥2) (2⇥5) (1⇥10)

Robust
RM3 0.461 0.474⇤ 0.478⇤ 0.478⇤

Distillation 0.461 0.474* 0.480* 0.486*
Rocchio 0.465 0.473* 0.462 0.468

Gov2
RM3 0.449 0.459⇤ 0.465⇤ 0.470⇤

Distillation 0.442 0.451* 0.456* 0.466*
Rocchio 0.447 0.459* 0.455* 0.450

WebAP
RM3 0.170 0.180* 0.185* 0.187*
Distillation 0.166 0.177* 0.185* 0.187*
Rocchio 0.169 0.181* 0.190* 0.191*

PsgRobust
RM3 0.356 0.363* 0.372* 0.373*
Distillation 0.354 0.362* 0.375* 0.379*
Rocchio 0.341 0.356* 0.361* 0.364*
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3.5.1 Experimental Setup

In this part, we again use WebAP and PsgRobust for experiments. All com-

parisons are based on the LM and VSM frameworks. In particular, our methods

combined with RM3, Distillation and Rocchio are evaluated to see whether the com-

plementary semantic match information benefits in both frameworks. We also include

the Embedding-based Relevance Model (ERM) [161] as a baseline. ERM revises

P (Q|D) in the original RM3 as a linear combination of P (Q|D) computed from exact

term match and P (Q|w, D), which takes the semantic relationship between words

into account. The translation probability between words is computed with the cosine

similarity of their embeddings transformed with the sigmoid function. 12 13

Embeddings Training. Four paragraph representations are tested in the four

groups of experiments, where the base models (BM) can be RM3, ERM, Distillation

(or Distill), and Rocchio:

• BM +W2V /BM + idfW2V : uniformly or IDF-weighted average word vectors

trained with the skip-gram model [92].

• BM + PV /BM + PV C: paragraph vectors trained with the HDC structure

without corruption or through corruption with separate embeddings for the

global context.

12The original version of ERM is based on the pseudo relevance feedback version of RM3, which
uses the query likelihood score as P (Q|D). Since we do true relevance feedback and use uniform
weights for each relevant result in RM3, we revise the P (Q|D) part in ERM to be the same for
each relevant result and consistent with the RM3 baseline. In addition, using same weights for each
relevant result leads to better performance compared with using pseudo RF version weights.

13We also tried another embedding-based baseline, the true RF version of BM25-PRF-GT [112]
in the probabilistic relevance framework. It is a generalized translation model of BM25 based on
cosine similarity between word embeddings and uses the expansion terms generated from Rocchio.
We tried di↵erent types of word embeddings, trained from the smaller local corpus or larger global
corpus Wikipedia, di↵erent dimensions, and di↵erent thresholds, but still cannot make it e↵ective
on our dataset compared with pure word version RF. So we did not include the experiments here.
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Embeddings of words or paragraphs were trained with each local corpus respectively.

Words with a frequency less than 5 were removed. No stemming was done across the

collections. 10 negative samples were used for each target word. The learning rate

and batch size were 0.05 and 256. The dimension of embedding vectors was set to

100. We also tried other hyper-parameters for training embeddings, but the results

were similar under di↵erent settings. For PVC, corruption rate [24] was set to 0.9.

All the neural networks to train embeddings were implemented using TensorFlow 14.

Model Settings. We used the best settings of the baseline models and tuned

the parameters of the incorporated semantic signals with 5-fold cross-validation for

di↵erent paragraph embeddings. All the parameters of ERM are tuned in the same

range as [161] suggests. �sf in equation 3.9 is selected from {5, 10, 15, · · · , 40} for

WebAP, and {0.5, 1, 1.5, · · · , 5} for PsgRobust respectively.

3.5.2 Iterative Feedback with Embeddings

First, we conducted IRF experiments with di↵erent numbers of iterations and 10

results judged totally, as described in Section 3.4. We use MAP at cuto↵ 100 of

freezing rank lists as the evaluation metric, which is described in section 3.4.1.

Results and Discussion. We show the experimental results of using language

model baselines (RM3, ERM, Distillation) in Table 3.4 and include Rocchio as a

baseline in Figure 3.3. We can see in general the four representations of paragraphs

all can improve performance significantly over the word-based and embedding-based

baselines under most iteration settings. ERM performs similarly to RM3 on WebAP,

and our method based on RM3 and ERM also perform similarly. On PsgRobust, ERM

performs slightly better than RM3 and our method also performs slightly better com-

bined with ERM than RM3. This shows that incorporating passage-level semantic

similarity in embedding space produces improvements to both the word-based RF

14https://www.tensorflow.org/
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Table 3.4: Performance of our proposed method with di↵erent paragraph rep-
resentations compared with word-based and embedding-based RF baselines. ’⇤’
and ’†’ denote significant improvements over word-based (RM3, Distillation) and
embedding-based (ERM) baselines respectively based on Fisher’s randomization test
[123] (p < 0.05).

Method MAP on WebAP
(Doc⇥Iter) (10⇥1) (5⇥2) (2⇥5) (1⇥10)
RM3 0.100 0.107 0.113 0.113
ERM 0.101 0.107 0.113 0.116
RM3+W2V 0.107⇤† 0.115⇤† 0.117 0.116
RM3+idfW2V 0.106⇤† 0.113⇤† 0.121⇤† 0.119⇤

RM3+PV 0.102⇤ 0.113⇤† 0.123⇤† 0.123⇤

RM3+PVC 0.107⇤† 0.114⇤† 0.120⇤† 0.114
ERM+W2V 0.107⇤† 0.116⇤† 0.119⇤† 0.118
ERM+idfW2V 0.106⇤† 0.114⇤† 0.121⇤† 0.118
ERM+PV 0.103⇤ 0.115⇤† 0.122⇤† 0.121⇤

ERM+PVC 0.107⇤† 0.114⇤† 0.121⇤† 0.114

Distillation 0.099 0.104 0.109 0.111
Distill+W2V 0.106⇤ 0.114⇤ 0.120⇤ 0.113
Distill+idfW2V 0.106⇤ 0.113⇤ 0.116⇤ 0.115
Distill+PV 0.103⇤ 0.110⇤ 0.118⇤ 0.116⇤

Distill+PVC 0.105⇤ 0.112⇤ 0.120⇤ 0.120⇤

Method MAP on PsgRobust
(Doc⇥Iter) (10⇥1) (5⇥2) (2⇥5) (1⇥10)
RM3 0.293 0.299 0.306 0.308
ERM 0.294 0.301 0.310 0.310
RM3+W2V 0.298⇤† 0.303⇤† 0.312⇤† 0.312⇤

RM3+idfW2V 0.298⇤† 0.303⇤ 0.313⇤† 0.313⇤†

RM3+PV 0.298⇤† 0.305⇤† 0.313⇤ 0.314⇤

RM3+PVC 0.297⇤† 0.303⇤ 0.308 0.311⇤

ERM+W2V 0.299⇤† 0.304⇤† 0.313⇤† 0.312⇤

ERM+idfW2V 0.299⇤† 0.304⇤† 0.314⇤† 0.314⇤†

ERM+PV 0.299⇤† 0.307⇤† 0.314⇤† 0.313⇤

ERM+PVC 0.298⇤† 0.304⇤† 0.312⇤ 0.313⇤†

Distillation 0.292 0.299 0.311 0.313
Distill+W2V 0.297⇤ 0.304⇤ 0.314⇤ 0.319⇤

Distill+idfW2V 0.297⇤ 0.306⇤ 0.316⇤ 0.319⇤

Distill+PV 0.298⇤ 0.306⇤ 0.317⇤ 0.320⇤

Distill+PVC 0.297⇤ 0.304⇤ 0.315⇤ 0.317⇤
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Figure 3.3: Performance of our method with di↵erent paragraph representations com-
pared with Rocchio. ’+’ means significant di↵erence based on Fisher’s randomization
test [123] (p < 0.05)

models and the embedding-based RF model using semantic similarity at the term

level. On both WebAP and PsgRobust, PV and PVC improve the performance con-

sistently with di↵erent numbers of iterations based on the baseline models. W2V and

idfW2V generally perform better than the baselines but not very stably as they show

a little disadvantage at 1Doc-10Iter compared with PV and PVC, where sometimes

the improvements are not significant. That is probably because paragraph vectors

more accurately represent passages as they are trained with the specifically designed

structure. There is no one representation better than the others all the time, which

implies for di↵erent datasets, with di↵erent baselines, some representations show their

advantages fitting the specific property underlying the setting.

3.5.3 Retrieval Given One Relevant Passage

As we mentioned in Section 3.3, the text in answer passages may not be enough

to build word-based RF models, and the small number of results in each iteration

make this even more of an issue. The extreme case is when we have only one short

passage as positive feedback since non-relevant results do not trigger re-ranking in
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the IRF process. E↵ective re-ranking after the first positive feedback will show the

user a second relevant answer in fewer iterations. Afterward, it is less di�cult to

find a third positive answer as new relevant information is added. Therefore, it is

particularly important to find another relevant result given the first positive feedback

from users. To test our proposed models in this setting, we designed the second type

of experiment to be answer retrieval given one relevant passage.

For each query, we randomly assign a relevant passage associated with a query to

the model as positive feedback and then retrieval is conducted from the remaining

results to see the performance of di↵erent models to identify any other correct answer

passage. Since we have only a small number of queries, to make the results more

reliable without being influenced by random factors, we randomly draw a passage

from the relevant passage set for each query ten times and do ten retrievals. Then we

evaluate the performance of each model based on the overall rank lists from the ten

retrievals. We take QL and BM25 as baseline retrieval models that do not consider

feedback. Similar to the first group of experiments, we use RM3, Distillation, Rocchio

as word-based RF baselines in the framework of LM and VSM, and ERM as the

embedding-based RF baseline. We use P@1 (precision@1), MRR (mean reciprocal

rank) to evaluate the ability of a model to retrieve a second relevant passage in the

next interaction given only one positive feedback. MAP at cuto↵ 100 measures the

ability of the model to identify all the other relevant answers.

Results and Discussion. In Table 3.5, feedback methods are always better

than retrieval models without using feedback, i.e. QL, BM25, by a large margin, as

in Section 3.4.2. In general, with the four passage representations, the improvements

of MAP over the baselines are always significant; P@1, MRR can also be improved

significantly in many cases. This shows that incorporating the passage semantic

similarity can improve significantly over both the word-based RF baselines and the

embedding-based RF baseline with only term-level semantic match information.
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Table 3.5: Performance of di↵erent IRF methods on finding other relevant answers
given one relevant answer. ‘⇤’ and ‘†’ denote significant improvements over word-
based (RM3, Distillation, Rocchio) or embedding-based (ERM) baselines respectively
in Fisher’s randomization test [123] (p < 0.05).

Dataset WebAP PsgRobust
Model P@1 MRR MAP P@1 MRR MAP

QL 0.259 0.373 0.071 0.367 0.486 0.231
RM3 0.498 0.602 0.116 0.515 0.634 0.299
ERM 0.516 0.615 0.125 0.513 0.634 0.307
RM3+W2V 0.488 0.598 0.120⇤ 0.524⇤† 0.643⇤† 0.304⇤

RM3+idfW2V 0.488 0.597 0.120⇤ 0.525⇤† 0.643⇤† 0.304⇤

RM3+PV 0.525* 0.625⇤ 0.122⇤ 0.521 0.641⇤ 0.301⇤

RM3+PVC 0.524⇤ 0.635⇤† 0.123⇤ 0.526⇤† 0.644⇤† 0.303⇤

ERM+W2V 0.513 0.622⇤ 0.131⇤† 0.529⇤† 0.648⇤† 0.312⇤†

ERM+idfW2V 0.525⇤ 0.627⇤ 0.130⇤† 0.534⇤† 0.650⇤† 0.312⇤†

ERM+PV 0.556⇤† 0.648⇤† 0.131⇤† 0.531⇤† 0.649⇤† 0.311⇤†

ERM+PVC 0.556⇤† 0.658⇤† 0.134⇤† 0.534⇤† 0.653⇤† 0.313⇤†

Distillation 0.494 0.597 0.113 0.516 0.635 0.299
Distill+W2V 0.489 0.593 0.117⇤ 0.528* 0.645* 0.304*
Distill+idfW2V 0.489 0.595 0.117⇤ 0.525* 0.643* 0.304*
Distill+PV 0.519⇤ 0.621⇤ 0.120⇤ 0.514 0.638 0.297
Distill+PVC 0.534⇤ 0.638⇤ 0.123⇤ 0.524* 0.643* 0.303*

BM25 0.298 0.399 0.072 0.350 0.479 0.176
Rocchio 0.516 0.616 0.121 0.522 0.641 0.279
Rocchio+W2V 0.531 0.640⇤ 0.140⇤ 0.526 0.645* 0.282*
Rocchio+idfW2V 0.536 0.642⇤ 0.139⇤ 0.526 0.644 0.282*
Rocchio+PV 0.576⇤ 0.668⇤ 0.138⇤ 0.518 0.642 0.280*
Rocchio+PVC 0.560⇤ 0.668⇤ 0.143⇤ 0.528* 0.647* 0.281*
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In contrast to the IRF experiments, ERM performs much better than RM3 in

this task. One possible reason is that for some queries that need semantic match

information, QL cannot retrieve relevant results on the top, which in turn makes it

hard for ERM to take e↵ect at earlier iterations. The other reason is that in the IRF

experiments, there are more relevant passages for RM3 to extract expansion terms

and alleviate the term mismatch problem so that the term-level semantic match from

ERM is not very helpful. In this task, the provided information for RM3 is too little

to estimate an accurate model and ERM is e↵ective with semantic matching. Since

our method considers semantic match at the passage level, it does not overlap with

the advantage brought from term-level semantic matching.

On WebAP, our method combined with RM3 performs similarly to ERM when

using PV and PVC and worse than ERM using W2V and idfW2V. On PsgRobust,

incorporating our method to RM3 performs better than ERM in terms of P@1 and

MRR, worse than ERM regarding MAP . This shows incorporating embedding sim-

ilarity to do RF at passage level or term level alone with extreme little information

are comparable to each other. When we combine these two ways of doing RF to-

gether, the performance can be further improved, which is shown from the significant

improvements upon ERM when we adding the passage similarity signal to ERM on

both datasets. This is consistent with our claim that semantic similarity of the pas-

sage level is complementary to the term level when combined with word-based RF

models since they capture two di↵erent granularities of semantic matches.

As in the IRF experiments, the performance of W2V and idfW2V is less stable

than that of paragraph vectors. They perform the best on PsgRobust combined

with the Distillation model, while in the other cases they sometimes cannot produce

significant improvements in terms of P@1 and MRR. Among these representations,

PVC performs the most stable, since it outperforms the baselines on both datasets in

terms of all three metrics. Overall, it performs better than the other representations
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under most settings. This is probably because it provides more accurate passage

representation compared with W2V and idfW2V, and less susceptible to overfitting a

small dataset compared with PV due to much fewer parameters, i.e. vocabulary size

versus corpus size.

3.5.4 Parameter Sensitivity

Figure 3.4 shows the sensitivity of performance to �sf (in Equation (3.9)) on the

two groups of experiments. Since di↵erent methods and corpus statistics like query

length may lead to di↵erent score ranges but the cosine similarity between passages is

always between �1 and 1, the appropriate ranges of �sf are di↵erent when used with

di↵erent methods or datasets. In our experiments, the best range of �sf is from 0 to

5 on WebAP and from 0 to 40 on PsgRobust. Experiments based on Rocchio usually

have larger optimal �sf values compared with language model baselines. For the IRF

experiments based on Rocchio, best �sf is about 35 on WebAP and 4 on PsgRobust,

as shown in Figure 3.4. Figure 3.4a and 3.4b again confirm the superiority of IRF

over standard top-k feedback. The best �sf combined with LM-based methods in

the IRF experiments is 5 on WebAP and 1 on PsgRobust. We do not include the

figures of LM-based methods due to their similar trends to VSM-based methods. For

the experiments of retrieval given one relevant passage, the best performance was

achieved when �sf is 5 for LM-based methods, 30 for Rocchio on WebAP, and 1 for

LM-based methods, 3 for Rocchio on PsgRobust.

3.6 Summary

To conclude this chapter, we first investigated the performance of iterative RF

on document and answer passage retrieval. Results show that iterative RF is at

least as e↵ective as standard feedback on result lists for retrieving documents and

is more powerful in finding answers. Then we proposed using passage-level semantic
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Figure 3.4: Parameter sensitivity of the coe�cient �sf in Equation (3.9) with PVC
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similarity in iterative RF models, which can be considered as an embedding version

of Rocchio. In the IRF experiments, we show that passage-level semantic match

produces significant improvements compared to word-based IRF models and other

models based on term-level semantic similarity. The retrieval experiment based on

one relevant passage shows that in the case where feedback information is scarce,

passage-level semantic match is complementary to term-level semantic match and

incorporating both of them leads to even better performance.
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CHAPTER 4

AN END-TO-END NEURAL RELEVANCE FEEDBACK
MODEL FOR PRODUCT SEARCH

4.1 Introduction

Besides iterative answer retrieval, another feasible way to obtain user feedback

is to collect user behaviors on search result pages (SERPs) such as clicks and skips.

Although noisy, these types of implicit feedback indicate result quality and can be

used to refine the ranking of subsequent SERPs. In contrast to web search where

users mostly browse results on the first SERPs, in product search, users are more

likely to browse results on multiple SERPs before deciding which item to purchase.

There has been some research on multi-page search [69, 165], i.e., refining results in

the subsequent result pages given users’ interactions with results in previous pages.

However, these methods are designed for document retrieval, which has di↵erent

characteristics from product search. Documents consist of text while products are

essentially entities that have many aspects such as price, brand, color, and so on. In

addition, in contrast to document retrieval, where relevance is a universal evaluation

criterion, a product search system is evaluated based on user purchases that depend on

both product relevance and customer preferences. Thus, we study relevance feedback

models based on user clicks in multi-page product search, where little research has

been conducted.

Existing studies have explored eliciting user purchases by providing personalized

product search results [7, 18, 17]. They typically leverage user reviews of historically

purchased items to capture individual preferences. However, when users have not

58



logged in or the account is shared by several family members, purchase history will not

be available or may be very “noisy”. In addition, customers with little or no purchase

history do not benefit from personalized product search. Furthermore, preferences

extracted from a customer’s purchase history are usually long-term and may not

always align with her short-term interests. In contrast, feedback models based on

user clicks can leverage users’ short-term preferences and do not require additional

user information or purchase history.

Traditional relevance feedback (RF) methods extract word-based topic models

from feedback results as an expansion to the original queries to capture users’ prefer-

ences. However, they have potential word mismatch problems despite their e↵ective-

ness [161, 112]. To tackle this problem, we propose an end-to-end neural feedback

model that can incorporate both long-term and short-term context to predict pur-

chased items. In this way, semantic match and the co-occurrence relationship between

clicked and purchased items are both captured in the embeddings.

In this chapter, we study feedback models that can use user clicks as positive feed-

back in context-aware multi-page product search. We first reformulate product search

as a dynamic ranking problem, i.e., when users request next SERPs, the remaining

unseen results will be re-ranked. We then introduce several context dependency as-

sumptions for the task, which are short-term (user clicks in a query session), long-term

(user preferences across all query sessions), and long-short-term. We propose an end-

to-end context-aware neural embedding model that can represent each assumption by

changing the coe�cients to combine long-term and short-term context. We further

investigated the e↵ect of several factors in the task: short-term context, long-term

context, and neural embeddings. Our experimental results on the datasets collected

from Amazon search logs show that incorporating short-term context leads to better

performance compared to long-term context and no context, and our neural feedback

model is more e↵ective than competitive word-based feedback models.
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4.2 Context-aware Product Search

We reformulate product search as a dynamic re-ranking task where short-term con-

text represented by the clicks in the previous SERPs is considered for re-ranking sub-

sequent result pages. Users’ global interests can also be incorporated for re-ranking as

long-term context. We first introduce our problem formulation and di↵erent assump-

tions of context dependency models. Then we propose a context-aware embedding

model for the task and show how to optimize the model.

4.2.1 Problem Formulation

A query session1 is initiated when a user u issues a query q to the search engine.

The search results returned by the search engine are typically grouped into pages with

a similar number of items. Let Rt be the set of items on the t-th search result page

ranked by an initial ranker and denote by R1:t the union of R1, · · · , Rt. For practical

purposes, we let the re-ranking candidate set Dt+1 for page t+1 be R1:t+k�V1:t where

k � 1 and V1:t is the set of re-ranked items viewed by the user in the first t pages.

Given user u, query q, and the set of clicked items in the first t pages C1:t as context,

the objective is to rank all, if any, purchased items Bt+1 in Dt+1 at the top of the

next result page.

4.2.2 Context Dependency Models

There are three types of context dependencies that one can use to model the

likelihood of a user purchasing a product in her query session, namely, long-term con-

text, short-term context, and long-short-term context. Figure 4.1 shows the graphical

models for these context dependencies, where u denotes the latent variable of a user’s

long-term interest that stays the same across all the search sessions, and clicks in the

1We refer to the series of user behaviors associated with a query as a query session, i.e, a user
issues a query, clicks results, turns to other pages, purchases items, and finally ends searching with
the query.
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Figure 4.1: Di↵erent assumptions to model di↵erent factors as context for purchase
prediction.

first t result pages, i.e., C1:t, represents the user’s short-term preference. Purchased

items on and after page t + 1, i.e., Bt+1, depends on query q and di↵erent types of

context under di↵erent dependency assumptions.

Long-term Context Dependency. In this assumption, only users’ long-term

preferences, usually represented by their historical queries and the corresponding

purchased items, are used to predict the purchases in their current query sessions.

An unshown item i is ranked according to its probability of being purchased given u

and q, namely p(i 2 Bt+1|u, q). The advantage of such models is that personalization

of search results (as proposed in Ai et al. [7]) can be conducted from the very

beginning of a query session when there is no feedback information available. However,

this model needs user identity and purchase history, which are not always available.

In addition, the long-term context may not be informative to predict a user’s final

purchases since her current search intent may be totally di↵erent from any of her

previous searches and purchases.

Short-term Context Dependency. The shortcomings of long-term context

can be addressed by focusing on just the short-term context, i.e., the user’s actions

such as clicks performed within the current query session. This dependency model

assumes that given the observed clicks in the first t pages, the items purchased in the
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subsequent result pages are conditionally independent of the user, shown in Figure 4.1.

An unseen item i in the query session is re-ranked based on its purchase probability

conditioning on C1:t and q, i.e., p(i 2 Bt+1|C1:t, q). In this way, users’ short-term

preferences are captured and their identity and purchase records are not needed.

Users with little or no purchase history and who have not logged in can benefit

directly under such a ranking scheme.

Long-short-term Context Dependency. The third dependency assumption is

that purchases in the subsequent result pages depend on both short-term context, e.g.,

previous clicks in the current query session, and long-term context, such as historical

queries and purchases of the user indicated by u. An unseen item i after page t is

scored according to p(i 2 Bt+1|C1:t, q, u). This setting considers more information but

it also has the drawback of requiring users’ identity and purchase history.

We will introduce how to model the three dependency assumptions in a same

framework in Section 4.2.3. In this dissertation, we focus on the case of non-personalized

short-term context and include the other two types of context for comparison.

4.2.3 Context-aware Embedding Model

We designed a context-aware framework where models under di↵erent dependency

assumptions can be trained by varying the corresponding coe�cients, shown in Fig-

ure 4.2. To incorporate semantic meanings and avoid the word mismatch between

queries and items, we embed queries, items, and users into latent semantic space.

Our context-aware embedding model is referred to as CEM. We assume users’ pref-

erences are reflected by their implicit feedback, i.e. their clicks associated with the

query. Similar to relevance feedback approaches [79, 117] that extract a topic model

from assessed relevant documents, our model should capture user preferences from

their clicked items which are implicit positive signals. Components of CEM will be

introduced next.
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Item Embeddings. We use product titles to represent products since merchants

tend to put the most informative, representative text such as the brand, name, size,

color, material, and even target customers in product titles. In this way, items do

not have unique embeddings according to their identifiers, and items with the same

titles are considered the same. Although this may not be accurate all the time, word

representations can be generalized to new items, and we do not need to cope with

the cold-start problem. We use the average of title word embeddings of a product as

its embedding, i.e.,

E(i) =
P

w2i E(w)

|i| (4.1)

where i is the item, and |i| is the title length of item i. We also evaluated other more

complex product title encoding approaches such as non-linear projection of average

word embeddings and recurrent neural network on title word sequence, but they did

not show superior performance over the simpler one that we use here.

User Embeddings. A lookup table for user embeddings is created and used for

training, where each user has a unique representation. This vector is shared across
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search sessions and updated by the gradient learned from previous user transactions.

In this way, the long-term interest of the user is captured and we use the user em-

beddings as long-term context in our models.

Query Embeddings. Similar to item embeddings, we use the simple average

embedding of query words as the representation, which also shows the best perfor-

mance compared to the non-linear projection and recurrent neural network methods

we have tried. The embedding of the query is

E(q) =
P

w2q E(w)

|q| (4.2)

where |q| is the length of query q.

Short-term Context Embeddings. We use the set of clicked items to rep-

resent user preference behind the query, which we refer to as E(C1:t). For sessions

associated with a di↵erent query q or page number t, the clicked items contained

in C1:t may di↵er. We assume the sequence of clicked items does not matter when

modeling short-term user preference, i.e., the same set of clicked items should imply

the same user preference regardless of the order of them being clicked. There are

two reasons for this assumption. One is that the user’s purchase need is fixed for

a query she issued and is not a↵ected by the order of clicks. The other is that the

order of user clicks is usually based on the rank of retrieved products from top to

bottom as the user examines each result, which is not a↵ected by user preference in

the non-personalized search results. So we represent the set as the centroid of each

clicked item in the latent semantic space, where the order of clicks does not make a

di↵erence. A simple yet e↵ective way is to consider equal weights of all the items in

C1:t so that the centroid is simply averaged item embeddings:

E(C1:t) =

P
i2C1:t E(i)
|C1:t|

(4.3)
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where |C1:t| is the number of clicked items in set C1:t.

We also tried an attention mechanism to weigh each clicked item according to the

query and represent the user preference with a weighted combination of clicked items.

However, this method is not better than combining clicks with equal weights in our

experiments. So we only show simple methods.

Overall Context Embeddings. We use a convex combination of user, query,

and click embeddings as the representation of overall context E(St). i.e.

E(St) = (1 � �u � �c)E(q) + �uE(u) + �cE(C1:t)

0  �u  1, 0  �c  1, �u + �c  1
(4.4)

This overall context is then treated as the basis for predicting purchased items in

Bt+1. When �c = 0, C1:t is ignored in the prediction and St corresponds to the long-

term context shown in Figure 4.1. When �u = 0, user u does not have impact on

the final purchase given C1:t. This aligns with the short-term context assumption in

Figure 4.1. When �u > 0, �c > 0, �u+�c  1, both long-term and short-term context

are considered and this matches the type of long-short-term context in Figure 4.1.

So by varying the values of �u and �c, we can use Equation (4.4) to model di↵erent

types of context dependency and do comparisons.

Attention Allocation Model for Items. With the overall context collected

from the first t pages, we further construct an attentive model to re-rank the prod-

ucts in the candidate set Dt+1. This re-ranking process can be considered as an

attention allocation problem. Given the context that indicates the user’s preference

and a set of candidate items that have not been shown to the users yet, the item

which attracts more user attention will have higher probability to be purchased. The

attention weights then act as the basis for re-ranking. Predicting the probability of

each candidate item being purchased can be considered as attention allocation for

the items. This idea is also similar to the listwise context model proposed by Ai et
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al. [3]. They extracted the topic model from top-ranked documents with recurrent

neural networks and used it as a local context to re-rank the top documents with

their attention weights. The attention weights can be computed as:

score(i|q, u, C1:t) =
exp(E(St) · E(i))P

i02Dt+1
exp(E(St) · E(i0)) (4.5)

where E(St) is computed according to Equation (4.4). This model can also be inter-

preted as a generative model for an item in the candidate set Dt+1 given the context

St. In this case, the probability of an item in the candidate set Dt+1 being generated

from the context St is computed with a softmax function that take the dot product

score between the embedding of an item and the context as inputs, i.e,

p(i|C1:t, u, q) = score(i|q, u, C1:t) (4.6)

We need to train the model and learn appropriate embeddings of context and items

so that the probability of purchased items in Dt+1, namely Bt+1, should be larger

than the other candidate items, i.e. Dt+1�Bt+1. Also, the conditional probability

in Equation (4.6) can be used to compute the likelihood of the observed instance of

C1:t, u, q, Bt+1.

4.2.4 Model Optimization

The embeddings of queries, users, items are learned by maximizing the likelihood

of observing Bt+1 given the condition of C1:t, u, q, i.e., after user u issued query q, she

clicked the items in the first t SERPs (C1:t), then models are learned by maximizing

the likelihood for her to finally purchased items in Bt+1 which are shown in and

after page t + 1. There are many possible values of t even for a same user u if

she purchases multiple products on di↵erent result pages under query q. These are
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considered as di↵erent data entries. Then the log likelihood of observing purchases

in Bt+1 conditioning on C1:t, u, q in our model can be computed as

L(Bt+1|C1:t, u, q) = log p(Bt+1|C1:t, u, q) / log
Y

i2Bt+1

p(i|C1:t, u, q)

/
X

i2Bt+1

log p(i|C1:t, u, q)
(4.7)

The second step can be inferred if we consider whether an item will be purchased is

independent of another item given the context.

According to Equation (4.5), (4.6) and (4.7), we can optimize the conditional

log-likelihood directly. A common problem for the softmax calculation is that the

denominator usually involves a large number of values and is impractical to compute.

However, this is not a problem in our model since we limit the candidate set Dt+1 to

only some top-ranked items retrieved by the initial ranker so that the computation

cost is small.

Similar to previous studies [131, 7], we apply L2 regularization on the embeddings

of words and users to avoid overfitting. The final optimization goal can be written as

L0 =
X

u,q,t

L(Bt+1|C1:t, u, q) + �(
X

w

E(w)2 +
X

u

E(u)2)

=
X

u,q,t

X

i2Bt+1

log
exp(E(St) · E(i))P

i02Dt+1
exp(E(St) · E(i0)) + �

�X

w

E(w)2 +
X

u

E(u)2
� (4.8)

where � is the hyper-parameter to control the strength of L2 regularization. The

function accumulates entries of all the possible user u, query q, and the valid page

number t. User clicks are on and before page t, and their purchases are after that

page. All possible words and users are taken into account in the regularization. When

we do not incorporate long-term context, the corresponding parts of u are omitted.

The loss function captures the loss of a list and this list-wise loss is similar to At-

tentionRank proposed by Ai et al. [3]. Because of the softmax function, optimizing
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Table 4.1: Statistics of our collected datasets

Toys Garden Cell Phones
& Games & Outdoor & Accessories

Product title length 13.14±6.46 16.39±7.38 22.02±7.34
Vocabulary size 381,620 1,054,980 194,022
Query Session Splits
Train 91.21% 87.36% 86.57%
Validation 2.61% 3.66% 4.20%
Test 6.18% 8.98% 9.23%

the probabilities of relevant instances in Bt+1 simultaneously minimizes the probabili-

ties of the rest non-relevant instances. This loss shows superiority over other list-wise

loss functions such as ListMLE [145] and SoftRank [129], which is another reason we

adopt this loss.

4.3 Experimental Setup

In this section, we introduce our experimental settings of context-aware product

search. We first describe how we construct the datasets for experiments. Then we

describe the baseline methods and evaluation methodology for comparing di↵erent

methods. We also introduce the training settings for our model.

4.3.1 Datasets

We randomly sampled three category-specific datasets, namely, “Toys & Games”,

“Garden & Outdoor”, and “Cell Phones & Accessories”, from the logs of a commercial

product search engine spanning ten months between years 2017 and 2018. We keep

only the query sessions with at least one clicked item on any page before the pages with

purchased items. These sessions are di�cult for the production model since it could

not rank the “right” items on the top so that users purchased items in the second or

later result pages. Our datasets include up to a few million query sessions containing

several hundred thousand unique queries. When there are multiple purchases in a
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query session across di↵erent result pages, purchases until page t are only considered

as clicks and used together with other clicks to predict purchases on and after page

t + 1. Statistics of our datasets are shown in Table 4.1.

4.3.2 Evaluation Methodology

We divided each dataset into training, validation, and test sets by the date of the

query sessions. The sessions that occurred in the first 34 weeks are used for training,

the following 2 weeks for validation, and the last 4 weeks for testing. Models were

trained with data in the training set; hyper-parameters were tuned according to the

model performance on the validation set, and evaluation results on the test set were

reported for comparison.

Since the datasets are static, it is impossible to evaluate the models in a truly

interactive setting where each subsequent page is re-ranked based on the observed

clicks on the current and previous pages. Nonetheless, we can still evaluate the

performance of one-shot re-ranking from page t + 1 given the context collected from

the first t pages. In our experiments, we compare di↵erent methods for re-ranking

from page 2 and page 3 since earlier re-ranking can influence results at higher positions

which have a larger impact on the ranking performance. As in relevance feedback

experiments [86, 117], our evaluation is also based on residual ranking, where the

first t result pages are discarded and re-ranking of the unseen items are evaluated.

We use the residual ranking evaluation paradigm because the results before re-ranking

are retrieved by the same initial ranker and identical for all the re-ranking methods.

Similar to other ranking tasks, we use mean average precision (MAP ) at cut-

o↵ 100, mean reciprocal rank (MRR), and normalized discounted cumulative gain

(NDCG) as ranking metrics. MAP measures the overall performance of a ranker

in terms of both precision and recall, which indicates the ability to retrieve more

purchased items in the next 100 results and ranking them to higher positions. MRR
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is the average inverse rank for the first purchase in the retrieved items. It indicates

the expected number of products users need to browse before finding the ones they

are satisfied with. NDCG is a common metric for multiple-label document ranking.

Although in our context-aware product search, items only have binary labels indicat-

ing whether they were purchased given the context, NDCG still shows how good a

rank list is with emphasis on results at top positions compared with the ideal rank

list. We use NDCG@10 in our experiments.

4.3.3 Baselines

We compare our short-term context-aware embedding model (SCEM) with four

groups of baseline, retrieval model without using context, long-term, short-term, and

long-short-term context-aware models. Specifically, they are:

• Production Model (PROD). PROD is essentially a gradient boosted de-

cision tree based model. Comparing with this model indicates the potential

gain of our model if deployed online. Note that PROD performs worse on our

datasets than on the entire search tra�c since we extracted query sessions where

the purchased items are in the second or later search result pages.

• Random (RAND). By randomly shu✏ing the results in the candidate set

which consists of the top unseen retrieved items by the production model, we

get the performance of a random re-ranking strategy. This performance should

be the lower bound of any reasonable model.

• Popularity (POP). In this method, the products in the candidate set are

ranked according to how many times they were purchased in the training set.

Popularity is an important factor for product search [83] besides relevance.

• Query Likelihood Model (QL). The query likelihood model (QL) [103]

is a language model approach for information retrieval. It shows the perfor-
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mance of re-ranking without implicit feedback and is only based on the bag-

of-words representation. The smoothing parameter µ in QL was tuned from

{10, 30, 50, 100, 300, 500}.

• Query Embedding based Model (QEM). This model scores an item by

the generative probability of the item given the embedding of a query. When

�u = 0, �c = 0, CEM is exactly QEM .

• Long-term Context-aware Relevance Model (LCRM3). Relevance Model

Version 3 (RM3) [79] is an e↵ective method for both pseudo and true relevance

feedback. It extracts a bag-of-words language model from a set of feedback

documents, expands the original query with the most important words from

the language model, and retrieves results again with the expanded query. To

capture the long-term interest of a user, we use RM3 to extract significant words

from titles of the user’s historical purchased products and refine the retrieval

results for the user in the test set with the expanded query. The weight of

the initial query was tuned from {0, 0.2, · · · , 1.0} and the expansion term count

was tuned from {10, 20, · · · , 50}. The e↵ect of query weight is shown in Section

4.4.2.

• Long-term Context-aware Embedding Model (LCEM). When �c =

0, 0 < �u  1, CEM becomes LCEM by considering long-term context in-

dicated by universal user representations.

• Short-term Context-aware Relevance Model (SCRM3). We also use

RM3 to extract the user preference behind a query from the clicked items in the

previous SERPs as short-term context and refine the next SERP. This method

uses the same information as our short-term context-aware embedding model,

but it represents user preference with a bag-of-words model and only considers

word exact match between a candidate item and the user preference model.
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The query weight and expansion term count were tuned in the same range as

LCRM3. 2

• Long-short-term Context-aware Embedding Model (LSCEM). When

�u > 0, �c > 0, 0 < �u + �c  1, both long-term context represented by u and

short-term context indicated by Ct are taken into account in CEM .

PROD, RAND, POP, QL, and QEM are retrieval models that rank items based

on queries and do not rely on context or user information. These models can be used

as the initial ranker for any queries. The second type of rankers considers users’ long-

term interests together with queries, such as LCEM and LCRM3. These methods

utilize users’ historical purchases but can only be applied to users who appear in the

training set. The third type is feedback models which take users’ clicks in the query

session as short-term context and this category includes SCRM3 and our SCEM. In

this approach, user identities are not needed. However, they can only be applied to

search sessions where users click on results, and only items from the second result

page or later can be refined with the clicks. The fourth category considers both

long and short-term contexts, e.g., LSCEM. The second, third, and fourth groups of

baseline correspond to the dependency assumptions shown in the first, second and

third sub-figure in Figure 4.1 respectively.

4.3.4 Model Training

Query sessions with multiple purchases on di↵erent pages are split into sub-

sessions, one for each page with a purchase. When there are more than three sub-

sessions for a given session, we randomly select three in each training epoch. We do

so to avoid skewing the dataset with sessions with many purchases. Likewise, we ran-

2We also implemented the embedding-based relevance model (ERM) [161], which is an extension
of RM3 by taking semantic similarities between word embeddings into account, as a context-aware
baseline. But it does not perform better than RM3 across di↵erent settings. So we did not include
it.
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domly select five clicked items for constructing short-term context if there are more

than five clicked items in a query session.

We implemented our models with Tensorflow. The models were trained for 20

epochs with the batch size set to 256. Adam [76] was used as the optimizer and the

global norm of parameter gradients was clipped at 5 to avoid unstable gradient up-

dates. After each epoch, the model was evaluated on the validation set and the model

with the best performance on the validation set was selected to be evaluated on the

test set. The initial learning rate was selected from {0.01, 0.005, 0.001, 0.0005, 0.0001}.

L2 regularization strength � was tuned from 0.0 to 0.005. �q, �u in Equation (4.4)

were tuned from {0, 0.2, · · · , 0.8, 1.0} (�q + �u  1) to represent various dependency

assumptions mentioned in Section 4.2.2, and the embedding size were scanned from

{50, 100, · · · , 300}. The e↵ect of �q, �u and embedding size are shown in Section 4.4.

4.4 Results and Discussion

In this section, we show the performance of the four types of models mentioned

in Section 4.3.3. First, we compare the overall retrieval performance of various types

of models in Section 4.4.1. Then we further study the e↵ect of queries, long-term

context, and embedding size on each model in the following subsections.

4.4.1 Overall Retrieval Performance

Table 4.2 shows the performance of di↵erent methods on re-ranking items when

users paginate to the second and third SERP for Toys & Games, Garden & Outdoor

and Cell Phones & Accessories. Among all the methods, SCEM and SCRM3 perform

better than all the other baselines without using short-term context, including their

corresponding retrieval baseline, QEM, and QL respectively, and PROD which con-

3Due the confidentiality policy, the absolute value of each metric cannot be revealed.
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Table 4.2: Comparison of baselines and our short-term context embedding model
(SCEM) on re-ranking when users paginate to the 2nd and 3rd page. The number
is the relative improvement of each method compared with the production model
(PROD)3. ‘�’ indicates significantly worse of each baseline compared with SCEM
in student t-test with p  0.001. Di↵erences larger than 3% are approximately
significant.

Toys & Games
Re-ranking from 2nd Page Re-ranking from 3rd Page

Model MAP MRR NDCG@10 MAP MRR NDCG@10

PROD 0.00%� 0.00%� 0.00%� 0.00%� 0.00%� 0.00%�

RAND -25.70%� -26.83%� -29.23%� -15.45%� -17.97%� -18.96%�

POP -15.82%� -15.90%� -17.87%� -4.37%� -5.31%� -5.18%�

QL -25.78%� -27.80%� -29.73%� -14.87%� -18.31%� -19.20%�

QEM -2.57%� -3.10%� -3.85%� +12.83%� +11.07%� +14.13%�

LCRM3 -24.82%� -25.92%� -28.60%� -13.99%� -15.82%� -17.20%�

LCEM -2.57%� -3.10%� -3.85%� +12.83%� +11.07%� +14.13%�

SCRM3 +12.93%� +9.63%� +9.53%� +34.26%� +29.27%� +32.86%�

SCEM +26.59% +24.56% +26.20% +51.46% +47.57% +54.77%

LSCEM +26.59% +24.56% +26.20% +51.46% +47.57% +54.77%

Garden & Outdoor
Re-ranking from 2nd Page Re-ranking from 3rd Page

Model MAP MRR NDCG@10 MAP MRR NDCG@10

PROD 0.00%� 0.00%� 0.00%� 0.00%� 0.00%� 0.00%�

RAND -23.40%� -24.16%� -25.73%� -12.29%� -13.71%� -13.97%�

POP -9.38%� -9.51%� -9.55%� 2.09%� 1.43%� 3.49%�

QL -19.62%� -20.78%� -21.63%� -9.15%� -10.97%� -10.37%�

QEM +0.65%� -0.34%� +1.06%� +15.82%� +14.42%� +19.32%�

LCRM3 -19.33%� -20.45%� -21.28%� -9.02%� -10.73%� -10.04%�

LCEM +0.65%� -0.34%� +1.06%� +15.82%� +14.42%� +19.32%�

SCRM3 +25.15%� +23.01%� +23.15%� +49.54%� +46.60%� +51.20%�

SCEM +37.43% +35.16% +37.22% +63.79% +60.43% +67.79%

LSCEM +37.43% +35.16% +37.22% +63.79% +60.43% +67.79%

Cell Phones & Accessories
Re-ranking from 2nd Page Re-ranking from 3rd Page

Model MAP MRR NDCG@10 MAP MRR NDCG@10

PROD 0.00%� 0.00%� 0.00%� 0.00%� 0.00%� 0.00%�

RAND -20.15%� -20.93%� -22.73%� -8.75%� -10.05%� -9.55%�

POP -8.54%� -8.25%� -11.12%� -0.78%� -1.21%� -1.43%�

QL -16.14%� -16.77%� -18.00%� -4.05%� -5.21%� -3.62%�

QEM +9.96%� +9.73%� +10.58%� +28.85%� +27.60%� +33.92%�

LCRM3 -15.44%� -16.07%� -17.38%� -3.26%� -4.48%� -2.85%�

LCEM +9.96%� +9.73%� +10.58%� +28.85%� +27.60%� +33.92%�

SCRM3 +18.65%� +16.77%� +17.11%� +44.52%� +41.16%� +46.98%�

SCEM +48.99% +47.00% +50.18% +85.51% +81.72% +93.85%

LSCEM +48.99% +47.00% +50.18% +85.51% +81.72% +93.85%
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siders many additional features, showing the e↵ectiveness of incorporating short-term

context.

In contrast to the e↵ectiveness of short-term context, long-term context does not

help much when combined with queries alone or together with short-term context.

LCRM3 outperforms QL on all the datasets by a small margin when users’ historical

purchases are used to represent their preferences. We varied �u from 0 to 1 and

found that the best performance was achieved when �u = 0 for LCEM and LSCEM,

which means that LCEM and LSCEM always perform worse than QEM and SCEM

by incorporating long-term context with �u > 0. Thus, we report the numbers of

QEM and SCEM for LCEM and LSCEM respectively to represent their upper-bound

performance. Note that since only a small portion of users in the test set appear in

the training set, the re-ranking performance of most query sessions in the test set will

not be a↵ected. We will elaborate on the e↵ect of long-term context in Section 4.4.3.

We found that neural embedding methods are more e↵ective than word-based

baselines. When implicit feedback is not incorporated, QEM performs significantly

better than QL, sometimes even better than PROD. When clicks are used as context,

with neural embeddings, SCEM is much more e↵ective than SCRM3. This shows

that semantic match is more beneficial than exact word match for top retrieved items

in product search. In addition, these embeddings also carry the popularity informa-

tion since items purchased more in the training data will get more gradients during

training. Due to our model structure, there are also properties that the embeddings

of items purchased under similar queries or context will be more alike compared with

non-purchased items, and embeddings of clicked and purchased items are also similar.

The relative improvement of SCEM and SCRM3 compared to the production

model on Toys & Games is less than the other two datasets. There are two possible

reasons. First, the production model performs better on Toys & Games, compared

with Garden & Outdoor, and Cell Phones & Accessories, which can be seen from the
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larger advantages compared with random re-ranking. Second, the average clicks in

the first two and three SERPs in Toys & Games are less than the other two datasets 4,

thus SCEM and SCRM3 can perform better with more implicit feedback information.

The relative performance of all the other methods against PROD is better when

re-ranking from page 2 compared with re-ranking from page 3 in terms of all three

metrics. Several reasons are shown as follows. When purchases happen on the third

page or later, it usually means users cannot find the “right” products in the first

two pages, which further indicates the production model is worse for these query

sessions. In addition, the ranking quality of PROD on the third page is worse than

on the second page. Another reason that SCRM3 and SCEM improve more upon

PROD when re-ranking from page 3 is that more context becomes available with

clicks collected from the second page and makes the user preference model more

robust.

QL performs similarly to RAND on Toys & Games and a little better than RAND

on Garden & Outdoor, and Cell Phones & Accessories, which indicates that relevance

captured by exact word matching is not the key concern in the rank lists of the

production model. In addition, most candidate products are consistent with the

query intent but the final purchase depends on users’ preference. Popularity, as an

important factor that consumers will consider, can perform better than QL. However,

it is still worse than the production model most of the time.

4.4.2 E↵ect of Short-term Context

We investigate the influence of short-term context by varying the value of �c

with �u set to 0. The performance of SCRM3 and SCEM varies as the interpolation

coe�cient of short-term context changes since only these two methods utilize the

4The specific number of average clicks in the datasets cannot be revealed due to the confidentiality
policy.
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Figure 4.3: The e↵ect of �c, �u, embedding size on the performance of each model
in the collection of Toys & Games when re-ranking from the second SERP for the
scenarios where users paginate to page 2.
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clicks. Since re-ranking from the second or third pages on Toys & Games, Garden

and Mobile all show similar trends, we only report the performance of each method

in the setting of re-ranking from second pages on Toys & Games, which is shown

in Figure 4.3a. Figure 4.3a shows that as the weight of clicks is set larger, the

performance of SCRM3 and SCEM goes up consistently. When �c is set to 0, SCRM3

and SCEM degenerate to QL and QEM respectively which do not incorporate short-

term context. From another perspective, SCRM3 and SCEM degrade in performance

as we increase the weight on queries. For exact word matching based methods, more

click signals lead to more improvements for SCRM3, which is also consistent with the

fact that QL performs similarly to RAND by only considering queries. For embedding-

based methods which capture semantic match and popularity, QEM with queries

alone performs similarly to PROD but much better when more context information

is incorporated in SCEM. This indicates that users’ clicks already cover the query

intent, and also contain additional users’ preference information.

4.4.3 E↵ect of Long-term Context

Next, we study the e↵ect of long-term context indicated by users’ global repre-

sentations E(u) both with and without incorporating short-term context. QEM and

LCRM3 only use queries and user historical transactions for ranking; LSCEM uses

long and short-term context (�u + �c is fixed as 1 since we found that query em-

beddings do not contribute to the re-ranking performance when short-term context

is incorporated). Toys & Games is used again to show the sensitivity of each model

in terms of �u under the setting of re-ranking from the second page. Since there are

users in the test set who never appear in the training set, �u does not take e↵ect

due to the null representations for these unknown users. In Toys & Games, only

about 13% of all the query sessions in the test set are from users who also appear in

the training set. The performance change on the entire test set will be smaller due
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to the low proportion the models can a↵ect in the test set, so we also include the

performance of each model on the subset of data entries associated with users seen in

the training set. Figure 4.3b and 4.3c show how each method performs on the whole

test set and the subset respectively with di↵erent �u.

Figure 4.3b and 4.3c show that for LSCEM, as �u becomes larger, performance

goes down. This indicates that when short-term contexts are used, users’ embeddings

act like noise and drag down the re-ranking performance. �u has di↵erent impacts

on the models not using clicks. For LCRM3, when we zoom in to only focus on users

that appear in the training set, the performance changes and the superiority over QL

are more noticeable. The best value of MAP is achieved when �u = 0.8, which means

long-term context benefit word-based models with additional information, which can

help solve the word mismatch problem. In contrast, for LCEM, with non-zero �u,

it performs worse than only considering queries. Embedding models already capture

semantic similarities between words. In addition, as we mentioned in Section 4.4.1,

they also carry information about popularity since the products purchased more often

under the query will get more credits during training. Another possible reason is

that the number of customers with sessions of similar intent is low so that the user

embedding is misguiding the query sessions. Thus, users’ long-term interests do not

bring additional information to further improve LCEM on the collections.

This finding is di↵erent from the observation in HEM proposed by Ai et al. [7],

which incorporates user embeddings as users’ long-term preferences and achieves su-

perior performance compared to not using user embeddings. We hypothesize that this

inconsistent finding is due to the di↵erences in datasets. HEM was experimented on

a dataset that is heavily biased to users with multiple purchases and under a rather

simplistic assumption of query generation, where the terms from the category hier-

archy of a product are concatenated as the query string. Their datasets contain only

hundreds of unique queries and tens of thousands of items that are all purchased by
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multiple users. In contrast, we experimented on the real queries and corresponding

user behavior data extracted from real search logs. The number of unique queries

and items in our experiments is hundreds of times larger than in their dataset. There

is also little overlap of users in the training and test set in our datasets, while in their

experiments, all the users in the test set are shown in the training set.

4.4.4 E↵ect of Embedding Size

Figure 4.3d shows the sensitivity of each model in terms of embedding size on Toys

& Games, which presents similar trends to the other two datasets. Generally, SCEM

and QEM are not sensitive to the embedding size as long as it is in a reasonable

range. To keep the model e↵ective and simple, we use 100 as the embedding size and

report experimental results under this setting in Table 4.2 and the other figures.

4.5 Summary

To sum up, we study how to use user clicks as implicit feedback to refine ranking

in the subsequent result pages in multi-page product search. We observe that short-

term context, i.e., user clicks in the query session, is much more beneficial than long-

term context in multi-page product search. Also, experimental results show that our

end-to-end embedding-based feedback model is e↵ective to incorporate the implicit

feedback, indicating that averaging item embeddings is an e↵ective way to represent

user preferences (or feedback topics). This idea is simple but very e↵ective, which

indicates that feedback models do not need to be in the form of query expansion.

For a neural retrieval model, the query representation could be combined with the

representation of results with positive feedback as a new query model, where no

explicit terms need to be extracted to expand the original query.
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CHAPTER 5

CONVERSATIONAL PRODUCT SEARCH BASED ON
NEGATIVE FEEDBACK

5.1 Introduction

In Chapter 3, we focus on retrieving more relevant answer passages given some

known relevant passages judged by users in an iterative way. This is beneficial for

the scenario where multiple relevant answers are needed to satisfy the users’ needs.

In a more general scenario, one relevant answer will often satisfy the users’ need

and thus iterative relevance feedback would only bring marginal benefits by showing

extra relevant results. In this case, only negative feedback is available to help retrieve

relevant results in the next iteration. In this chapter, we will study how to retrieve

the first relevant result based on non-relevant results.

In contrast to text retrieval, the search space for product retrieval is much smaller

since there are a limited number of products while much more unstructured text can

be formed as candidates for text retrieval. In addition, products are more structured,

which have aspect-values such as “price-high”, “brand-apple” and so on. Moreover,

users usually just buy one item given a single purchase need. These properties make

it appropriate and potentially easier to study negative feedback on product search.

So we focus on the retrieval of products as the first step to study negative feedback

in information retrieval.

Compared with positive feedback, negative feedback is more challenging to refine

re-ranking since relevant results usually have similar characteristics while the reason

for a result to be non-relevant could be varied. Previous work on negative feedback
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[71, 139, 140] mainly focuses on document retrieval for di�cult queries. They extract

negative topic models from the non-relevant documents and demote the results with

high similarities to the negative topic models during re-ranking. However, result-level

negative feedback is not very informative especially when there are only a few non-

relevant results available. In product search, when a user does not like an item, it

is easy to collect their detailed feedback on certain properties (aspect-value pairs) of

the item. By breaking down the item-level negative feedback to fine-grained feedback

on aspect-value pairs, more information is available to help identify user preferences

and thus can be promising to provide better-tailored results.

In this chapter, we study how to leverage negative feedback in the scenario of

conversational product search. We first propose a conversation paradigm for product

search driven by items with negative feedback, based on which the system further

collects fine-grained feedback for ranking refinement in the next iteration. We then

propose an aspect-value likelihood model to incorporate both positive and negative

feedback on fine-grained aspect-value pairs of the non-relevant items. Experimental

results show that our model is significantly better than state-of-the-art product search

baselines without using feedback and baselines using item-level negative feedback.

5.2 Conversation Paradigm and Problem Formulation

The paradigm we propose for conversational product search motivated by negative

feedback is shown in Figure 5.1. After the user’s initial request, several items are

shown to the user. If she is not satisfied with the items, her detailed preferences on

aspect-value pairs (such as “battery-removable”) of the items are gathered. Then

based on the fine-grained feedback on the non-relevant results, the remaining items

are re-ranked in the next iteration. This process proceeds until the user finally finds

the “right” product. The whole process is formalized as follows.
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Figure 5.1: A workflow of conversational search system based on negative feedback.

A conversation is initiated with a query Q0 issued by a user u. In the k-th iteration,

a batch of results Dk are retrieved and shown to the user. When Dk does not satisfy

the user need, from all the shown non-relevant results, D1 [ D2 · · · [ Dk, denoted

as D1:k, the system extracts a set of aspect-value pairs, namely, AV (D1:k). Then

the system selects m aspect-value pairs {(ak,j, vk,j)|1  j  m} from AV (D1:k) and

asks m corresponding questions {Q(ak,j, vk,j)|1  j  m} to the user about whether

he/she likes the aspect-value pairs of the non-relevant results. After collecting the

user’s feedback to Q(ak,j, vk,j), denoted as I(ak,j, vk,j), in the k+1-th iteration, the

goal of the system is to show a list of results Dk+1, which ranks the finally purchased

item i on the top. The sequence of actions in the conversation can be represented

with

u ! Q0; D1, Q1,1, I1,1, · · · , Q1,m, I1,m; · · · ;

Dk, Qk,1, Ik,1, · · · , Qk,m, Ik,m ! i

where Qk,j and Ik,j denote Q(ak,j, vk,j) and I(ak,j, vk,j) respectively. Qk,j is a yes-

no question and Ik,j can be 1 or �1 to indicate that the answer is yes or no to

the question. In addition, reviews of u and i are available to facilitate the ranking,

denoted as Ru and Ri respectively.
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In this chapter, we focus on the scenario where only one result is retrieved during

each iteration, namely |Dk| = 1. However, the method we propose can cope with

general cases with more than one result retrieved in each iteration.

5.3 Aspect-value Likelihood Embedding Model

There are two major modules in our system to conduct product search through

conversations with users: selecting aspect-value pairs to ask for feedback and ranking

based on the fine-grained feedback. For the aspect-value pair selection, we adopt

heuristic strategies, i.e., selecting several random pairs, or pairs mentioned most in

the reviews of the non-relevant items, and leave the investigation of other potentially

better methods as future work. Then we focus on the ranking model that leverages

feedback on aspect-value pairs. We propose an aspect-value likelihood embedding

model (AVLEM) which can rank items both with and without feedback. The over-

all structure of AVLEM is shown in Figure 5.2. We introduce each component of

AVLEM in the following subsections.

5.3.1 Item Generation Model

We construct an item generation model to capture the purchase relationship be-

tween items and their associated users and queries. Similar to [7], an item i is gener-

ated from a user u and her initial request query Q0. The probability can be computed

with the softmax function on their embeddings:

P (i|u, Q0) =
exp

⇣
i ·

�
�Q0 + (1 � �)u

�⌘

P
i02Si

exp
⇣
i0 ·

�
�Q0 + (1 � �)u

�⌘ (5.1)

where Si is the set of all the items in the collection, � is the weight of the query in

the linear combination. The representations of Q0, u and i will be introduced next.
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5.3.2 Query Representation

In order to generalize the representations to unseen queries, we use the embed-

ding of query words as input and adopt a non-linear projection of the average word

embeddings as the representation of a query:

Q0 = f({wq|wq 2 Q0}) = tanh(W ·
P

wq2Q0
wq

|Q0|
+ b) (5.2)

where W 2 Rd⇥d and b 2 Rd when the size of embeddings is d, |Q0| is the length of

query Q0. This method has been shown to be more e↵ective in [7] compared with

using average embeddings of words and a recurrent neural network to encode the word

embedding sequence in the query for product search. This finding is di↵erent from

what we observe in Chapter 4, probably due to the di↵erent characteristics of the

simulated queries in our experimental datasets compared to real search queries in the

previous chapter. For this task, we constructed queries from concatenation of item

categories, e.g., “cell phone accessory international charger”, “cell phone accessory

case sleeve”, “store kindle ebook cookbook food wine bake dessert”, which are about

2 to 3 words longer than real queries on average. The averaging approach works

better than the projection on short fluent real queries but not as e↵ective on longer

concatenated simulated queries.

5.3.3 User/Item Language Model

To alleviate the potential vocabulary mismatch between queries and items, we also

adopt the user/item language model in [7] to learn the representation of users and

items by constructing language models from their associated reviews. Words in the

reviews are assumed to be generated from a multinomial distribution of a user or an

item. Take user u for example, given its embedding u (u 2 Rd) and the embedding of
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Figure 5.2: The architecture of our aspect-value likelihood embedding model
(AVLEM). The solid and dotted arrows represent the generation from a multino-
mial and a multivariate Bernoulli distribution respectively. The shaded and blank
background represents the occurrence and nonoccurrence of the target. v+ and v�

denote positive and negative values.

a word w, w(w 2 Rd), the probability of w being generated from the language model

of u is defined with a softmax function on w and u:

P (w|u) = exp(w · u)P
w02Sw

exp(w0 · u) (5.3)

where Sw is the vocabulary of words in the reviews from the corpus. Similarly, the

language model for item i is represented with p(w|i), which is the softmax over w and

i. Words are assumed to be generated from the language models of user and items

independently.

5.3.4 Aspect-Value Generation Model

In addition to the common aspects shared by all the items such as “brand”,

“color”, and “price”, there are specific aspects that pertain to certain products such

as “battery life”, “screen size”, and “collar shape”. Thus, the probabilities of various

aspects associated with an item are di↵erent. To capture the probability of an aspect-

value associated with an item, we propose an aspect-value generation model, which

can be further decomposed to aspect generation given an item and value generation
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given an aspect and an item. Both positive and negative feedback on aspect-value

pairs are incorporated into the model. We first show the assumptions of multivariate

Bernoulli distributions for generating aspects and values. Then we show how we

construct aspect-value embeddings and learn them in the aspect-value generation

model.

Multivariate Bernoulli (MB) Assumption for Aspects. We propose a mul-

tivariate Bernoulli model for aspect generation. Given a purchased item, aspects of

the item are assumed to be generated from na independent Bernoulli trials of na as-

pects, where na is the total number of available aspects and each aspect may have a

di↵erent probability of appearing in the item’s associated aspects. The associated as-

pects can be any reasonable aspect of the item, e.g., aspects collected from the item’s

meta-data or reviews. Another possible assumption is the multinomial distribution,

which is commonly used to model the documents being generated from words in the

vocabulary, such as in the query likelihood model [103]. However, this assumption is

not appropriate for aspect generation because aspects are not exclusive and the prob-

abilities of all the aspects generated from one item are not necessarily summed to

1. For example, for an item, “style”, “appearance”, and “material” are not mutually

exclusive. The higher probability of “style” should not lead to the lower probability

of “appearance” or “material”. So the MB model is more reasonable by considering

these aspects generated independently during their own Bernoulli trial.

Multivariate Bernoulli Assumption for Values. Similar to aspect genera-

tion, the values of an item’s aspect are also assumed to be generated from a MB

distribution instead of a multinomial distribution. The property that probabilities of

all the values given an item’s aspect are summed to 1 is not suitable, especially for

values with negative feedback. For example, the aspect, “battery life”, of an item can

be “short” or “terrible”, and a user shows that she does not want the battery life to
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be short. Minimizing the probability of her ideal item’s “battery life” to be “short”

in a multinomial model may lead to a higher probability of “terrible”.

Instead of modeling the generation of values with one MB distribution, we pro-

pose two independent MB models for the generation of values in positive and negative

feedback respectively. Positive values are assumed to be generated from nv indepen-

dent trials of nv values and each value has its own probability of appearing in positive

values. Negative values are assumed to be generated from a similar process based on

its own MB model. This approach is more reasonable because values without positive

feedback are not necessarily disliked by a user and values on which the user has not

provided negative feedback are not necessarily liked. A value could be valid for the

item’s aspect but does not receive positive or negative feedback since the system has

not asked for feedback on this value, or the user has vague opinions towards the value.

Our experiments also show better performance of having a separate MB model for

negative values compared with using one MB model for both positive and negative

values in Section 5.5.2.

Aspect and Value Embeddings. Words contained in the aspects and values

are also in the vocabulary of words in reviews. Since these words represent the

characteristics of items, di↵erent from words in the reviews that are generated from

the item language model, we keep separate embedding lookup tables for the words in

the vocabulary of aspects and values to di↵erentiate the properties of the same words

in the aspect-value pairs or item reviews.

Aspects of an item can be of multiple words, such as“battery life” and “touch

screen”, so we also adopt Equation (5.2) and compute the embedding of an aspect

a as a = f({wa|wa 2 a}). Positive values and negative values have two separate

groups of embeddings so that values have di↵erent representations in the MB models

for positive and negative values. Since values usually consist of one word, such as

“long”, “big”, “clear”, and “responsive”, the embedding of a value v is just its word
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embedding, i.e., v+ for v in the positive values, and v� for v in the negative values.

Note that these two embeddings are di↵erent from the representation of v as a word

in the reviews, and values with more than one word were removed from the corpus.

Aspect-Value Probability Estimation. Next, we show how to estimate the

probabilities in the multivariate Bernoulli models of aspects and values. Given the

embedding representation of items, aspects and values, the probability of aspect a

occurring in the reviews given an item i is

P (a 2 A(i)|i) = �(a · i) (5.4)

where A(i) is the set of aspects of i, and � is the sigmoid function �(x) = 1
1+e�x ;

the probability that value v occurs in the positive value set of item i’s aspect a, i.e.,

{v|I(a, v) = 1}, denoted by V +(i, a), is

P (v 2 V +(i, a)|i, a) = �(v+ · (i+ a)) (5.5)

where v+ is the embedding of v as a positive value. Then the probability that an

aspect-value pair (a, v) appears in users’ positive feedback given an item i can be

computed as:

P (I(a, v) = 1|i) = P (v 2 V +(i, a)|i, a)P (a 2 A(i)|i)

= �(v+ · (i+ a)) · �(a · i)
(5.6)

Similarly, the probability that (a, v) occurs in the negative feedback in a conversation

that leads to purchasing item i, i.e., P (I(a, v) = �1|i) can be calculated according

to:

P (I(a, v) = �1|i) = P (v 2 V �(i, a)|i, a)P (a 2 A(i)|i)

= �(v� · (i+ a)) · �(a · i)
(5.7)
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where V �(i, a) is the set values with negative feedback given i and a, and v� is the

embedding of v as a negative value.

5.3.5 Unified AVLEM Framework

With all the components introduced previously, we can learn the embeddings of

queries, users, items, aspects and values with a unified framework by maximizing the

likelihood of the observed conversations in the training set. For a conversation which

was started by user u with an initial request Q0 and leading to a purchased item i,

under the assumptions of multivariate Bernoulli distributions for aspect and values

(Section 5.3.4), we need to consider all the aspects both associated with this conver-

sation and not associated. For each aspect that is associated with the conversation,

all the values should be taken into account in the generation of both positive and

negative values. Let A(i) = {a|I(a, v) = 1} [ {a|I(a, v) = �1} be the aspects that

appear in the conversation (same as A(i) in Equation (5.4)), and Sa \ A(i) be the

aspects that have not occurred, where Sa is the set of all the aspects in the collec-

tion. Let T+
av

= {(a, v, Sv \ {v})|I(a, v) = 1} be the observed instances for positive

feedback, and T�
av

= {(a, v, Sv \ {v})|I(a, v) = �1} be the observed instances for neg-

ative feedback, where Sv is the set of all the possible values in collection and Sv \ {v}

represents all the values that did not co-occur with the corresponding aspect a. The

log likelihood of observing the conversation with the reviews of i and u, i.e., Ri and

Ru respectively, can be computed as

L(Ri, Ru, u, Q0,Sa \ A(i), T+
av

, T�
av

, i)

= logP (Ri, Ru, u, Q0, Sa \ A(i), T+
av

, T�
av

, i)
(5.8)

We assume that the probabilities of Ri, Ru, Sa\A(i), T+
av

, T�
av

given u, Q0, i are inde-

pendent. Words in Ru and Ri are supposed to be generated from the language model

of u and i respectively. So Ru is independent from i and Q0, and Ri is independent
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from u and Q0. We also assume that the positive and negative aspect-value instances,

T+
av

and T�
av
, only depend on the purchased item i. Initial query intent Q0 is consid-

ered independent from the user preference u. Then Equation (5.8) can be rewritten

as:

L(Ri, Ru, u, Q0, Sa \ A(i), T+
av

, T�
av

, i)

= logP (Ri, Ru, Sa \ A(i), T+
av

, T�
av

|u, Q0, i)P (u, Q0, i)

= log
�
P (Ru|u)P (Ri|i)

P (Sa \ A(i)|i)P (T+
av

|i)P (T�
av

|i)P (i|u, Q0)P (u)P (Q0)
�

' logP (i|u, Q0) +
X

w2Ri

logP (w|i) +
X

w2Ru

logP (w|u)

+
X

a2Sa\A(i)

log
�
1 � P (a 2 A(i)|i)

�
+ logP (T+

av
|i) + logP (T�

av
|i)

(5.9)

P (u) and P (Q0) are predefined as uniform distributions, and thus ignored in the

equation. P (T+
av

|i) and P (T�
av

|i) can be computed in a similar way. Take logP (T+
av

|i)

for instance, we can compute it as:

logP (T+
av

|i) =
X

(a,v,V)2T+
av

�
logP (v, V|a, i) + logP (a 2 A(i)|i)

�

=
X

(a,v,V)2T+
av

⇣
logP (a 2 A(i)|i) + logP (v 2 V +(a, i)|a, i)

+
X

v02V

�
1 � P (v0 2 V +(a, i)|a, i)

�⌘

(5.10)

where V =Sv\{v} and V +(a, i) is the set of positive values associated with a and i.

P (T�
av

|i) can be computed with V +(a, i) replaced by V �(a, i), i.e., the set of negative

values corresponding to aspect a of i. From Equation (5.9) & (5.10), the overall

log-likelihood of an observed conversation is the sum of the log-likelihood for the

user language model, item language model, item generation model, aspect generation

model, and value generation model.
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It is impractical to compute the log likelihood directly since it involves softmax

function to compute the probability (Equation (5.3) and (5.1)), which has the sum of

a large number of elements as the denominator. Same as [7], we adopt the negative

sampling strategy to approximate the estimation of the softmax function. Specifically,

� random samples are randomly selected from the corpus according to a predefined

distribution and used as negative samples to approximate the denominator of the

softmax function. So the log likelihood of the user language model with negative

sampling is:

logP (w|u) = log �(u · w) + � · Ew0⇠Pw [log �(�u · w0)] (5.11)

where Pw is defined as the word distribution in the reviews of the corpus, raised to 3
4

power [93]. The log likelihood of the item language model can be approximated with

u replaced by i in Equation (5.11). Similarly, the log likelihood of the item generation

model is computed as:

logP (i|u, Q0) = log �
⇣
i ·

�
�Q0 + (1 � �)u

�⌘

+ � · Ei0⇠Pi

h
log �

⇣
� i0 · (�Q0 + (1 � �)u)

⌘i (5.12)

where Pi is predefined as a uniform distribution for items.

Since the sets of aspects and values, namely Sa and Sv, are usually large but the

number of aspects and values that appear in a conversation is small, it would be

ine�cient to consider the whole set of Sa\A(i) and V (i.e., Sv\{v}) in Equation (5.9)

and (5.10). We random selected � samples from Sa\A(i) and V to represent the whole

set.

The final objective of our model is to optimize the log likelihood of all the con-

versations in the training set together with L2 regularization to avoid overfitting,

i.e.,
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L0 =
X

u,Q0,i

L(Ri, Ru, u, Q0, Sa \ A, T+
av

, T�
av

, i)

+ �
� X

w2Sw

w2 +
X

u2Su

u2 +
X

i2Si

i2 +
X

a2Sa

a2 +
X

v2Sv

(v+)2 +
X

v2Sv

(v�)2
� (5.13)

where Su is the set of users, � is the coe�cient for L2 regularization, v+ and v� are

the embeddings of v as a positive value and as a negative value respectively, kept in

two di↵erent lookup tables. All the embeddings are trained simultaneously in our

model.

5.3.6 Item Ranking with AVLEM

After we get the embeddings of words, users, items, aspects and values as positive

or negative targets, when a user u issues a new query Q0, in the first iteration, our

system ranks an item i based on P (i|u, Q0) according to Equation (5.1). In the k-th

iteration (k > 1) of the conversation, besides u and Q0, the positive and negative

feedback on aspect-value pairs collected in previous k � 1 iterations also act as the

basis for ranking. Let AV + and AV � be the aspect-value pairs with positive and

negative feedback respectively, item i is ranked according to

logP (u, Q0, AV +, AV �|i) = log
P (AV +, AV �|u, Q0, i)P (u, Q0, i)

P (i)

= log
P (AV +|i)P (AV �|i)P (i|u, Q0)P (u)P (Q0)

P (i)

rank
=

X

(a,v)2AV +

log
⇣
�
�
v+ · (i+ a)

�
· �(a · i)

⌘

+
X

(a,v)2AV �

log
⇣
�
�
v� · (i+ a)

�
· �(a · i)

⌘
+ i ·

�
�Q0 + (1 � �)u

�

(5.14)

The time complexity for item ranking is O(md|Si|), where m is the number of aspect-

value pairs used for re-ranking, d is the embedding size, and |Si| is the total number

of items in the corpus.

93



Table 5.1: Statistics of Amazon datasets.

Dataset
Health & Cell Phones & Movies &

Personal Care Accessories TV
#Users 38,609 27,879 123,960
#Items 18,534 10,429 50,052
#Reivews 346,355 194,439 1,697,524
#Queries 779 165 248
Query length 8.25±2.16 5.93±1.57 5.31±1.61
#Aspects 1,906 738 6,694
#Values 1,988 1,052 6,297
#AV pairs 15,297 7,111 82,060
#User-query pairs
Train 231,186 114,177 241,436
Test 282 665 5,209
#Rel items per user-query pair
Train 1.14±0.48 1.52±1.13 5.40±18.39
Test 1.00±0.00 1.00±0.05 1.10±0.49

5.4 Experimental Setup

In this section, we introduce our experimental settings. We first introduce the

dataset and evaluation methodology for our experiments. Then we describe the base-

line methods and training settings for our model.

5.4.1 Datasets

Dataset Description. As in previous research on product search [7, 131, 168],

we also adopt the Amazon product dataset [89] for experiments. There are millions

of customers and products as well as rich meta-data such as reviews, multi-level

product categories and product descriptions in the dataset. We used three cate-

gories in our experiments, which are Movies & TV, Cell Phones & Accessories and

Health & Personal Care. The first one is large-scale while the other two are smaller.

We experimented on these datasets to see whether our model is e↵ective on col-

lections of di↵erent scales. The statistics of our datasets are shown in Table 5.1.

Since there are no datasets that have the sequence of u ! Q0;D1, Q1,1, I1,1, · · · ,
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Q1,m, I1,m · · · , Dk, Qk,1, Ik,1, · · · , Qk,m, Ik,m ! i as a conversation during product

search, we need to construct such conversations for the datasets.

Initial Query Construction. To construct initial queries Q0 in the conversation,

we adopt the three-step paradigm of extracting queries for each item, same as the

previous work [131, 7, 168]. First, the multi-level category information of each item is

extracted from the meta-data. Then, the terms in the categories are concatenated to

form a topic string. At last, stopwords and duplicate words are removed. In this way,

there can be multiple queries extracted for each item. When a user purchased an item,

all the queries associated with the item can be considered as the initial query which is

issued by the user that finally leads to purchasing the item. The queries extracted are

general and do not reveal specific information about the purchased items. Example

queries are “health personal care dietary supplement vitamin”, “cell phone accessory

international charger”, “tv movies” for each category.

Conversation Construction. The essential part to construct a conversation

for a user-query pair is to extract the aspect-value pairs from the items. We adopt

the aspect-value pair extraction toolkit by Zhang et al. [169, 170] to extract the

pairs from the reviews of the items in each dataset. During training, random items

were selected as non-relevant results for a user-query pair (u, Q0) since few items are

relevant among the entire collection. Then all the aspect-value pairs extracted from

the non-relevant items were used to form corresponding questions. During test time,

the aspect-value pairs that were mentioned most in the non-relevant items retrieved

in the previous iterations were selected to formulate questions. Table 5.2 shows some

common aspect-value pairs extracted from the reviews of an item that corresponds

to the example query. In contrast to facets based on which filtering can be applied

[82, 132], our extracted aspects and values are more flexible and not exclusive, which

makes simple filtering not reasonable. During the conversation, positive or negative

feedback on the aspect-value pairs can be constructed.
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Table 5.2: Examples of extracted aspect-value pairs.

Query Aspect Value
color white, black, pink, red
fit snug, loose

cell phone accessory material plastic, rubbery
waterproof case plastic soft, hard, thin, thick

case flimsy, protective, sturdy
cover dark, clear

Previous works [168, 126] on conversational search and recommendation construct

users’ response to the system’s questions according to their ideal items, which show

their hidden intent. In their experiments, the system asks users their preferred values

of an aspect, and answers are constructed according to their purchased items or their

reviewed restaurants. We also simulate user feedback following the same paradigm.

For a question on an aspect-value pair, when the aspect matches an aspect extracted

from the purchased item i, if their values also match, the aspect-value pair is con-

sidered to have positive feedback, otherwise, the pair is assumed to receive negative

feedback. If the aspect in the question does not match any aspect associated with i,

no answers are collected from users.

5.4.2 Evaluation Methodology

As in [7], we randomly select 70% of the reviews for each user in the training set

and keep the other 30% in the test set. Each review indicates that a user purchases

a corresponding item. Then 30% of all the available queries are divided into the test

set. If for an item in a training set, all its associated queries are in the test set, we

randomly move one query back to the training set. This assures that each item has

at least one query in the training data and each tuple of a user, query, purchased

item in the test set is not observed in the training set. Finally, all the available

user-query pairs in the test set are used to test the performance of the corresponding

conversations. Statistics of train/test splits can be found in Table 5.1.
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To evaluate the performance of the models in the first k-th iterations in a conver-

sation, we use the freezing ranking paradigm [118, 16], which is commonly used for

evaluating relevance feedback, to maintain a rank list. Items shown to the user in

the previous k � 1 iterations are frozen, and the remaining items are re-ranked and

appended to the frozen items to form the rank list of all the items. Note that our

system does not need to show a long list to the user in each iteration; we keep the

items that are not shown in the conversations in the rank lists to avoid that most

methods have nearly zero scores for the evaluation metrics. Besides, whenever a rel-

evant item is retrieved in the previous iterations, the ranking of all the items will not

be updated in the following iterations. For models that do not utilize feedback, the

evaluation is based on the rank lists retrieved with u and Q0.

We use mean average precision (MAP ), mean reciprocal rank (MRR) at cuto↵

100, and normalized discounted cumulative gain (NDCG) at 10 to evaluate the rank

lists in each iteration. MRR indicates the average iterations the system needs to find

a relevant item. MAP measures the overall performance of a system in terms of both

precision and recall. NDCG@10 focuses on the performance of the system to retrieve

relevant results in the first 10 iterations, especially in earlier iterations.

5.4.3 Baselines

We compare our aspect-value-based embedding model with three groups of base-

lines, which are word and embedding based retrieval models that do not consider

feedback, and models using item-level negative feedback. Specifically, we have seven

representative competing baselines as follows:

• BM25. BM25 [116] is a well-known e↵ective retrieval model which scores a

document according to a function of the term frequency, inverse document fre-

quency of query terms, and document length. In our experiments, items are
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scored according to the BM25 function of their associated reviews in the train-

ing set and test queries.

• QL. The query likelihood model (QL) [103] is a language model approach for

information retrieval which ranks a result according to the log-likelihood that

the query words are generated from the unigram language model of the result.

• LSE. The latent semantic entity (LSE) model [131] conducts non-personalized

product search by representing words and items in the latent entity space. N-

grams from the item reviews are extracted and represented with the projection

of their word embeddings. Embeddings are learned by maximizing the similar-

ity between the embeddings of items and the n-grams in their reviews. Then

queries, which are also n-grams, can be represented with projected word em-

beddings, and the items are ranked according to their similarities to the query

embeddings.

• HEM. The hierarchical embedding model (HEM) [7] is the personalized prod-

uct search model that our model is based on. It has the language models of

users and items as well as the item generation model. We use the best version

reported in [7] which uses non-linear projected mean for query embeddings and

set the query weight � = 0.5 (in Equation (5.1)) in both HEM and our own

model.

• Rocchio. Rocchio [117] is a feedback model in the vector space model that

incorporates result-level positive and negative feedback. It refines the query

model by bringing it closer to the centroid of relevant results and further from

the centroid of non-relevant results. In our task where only non-relevant re-

sults are available as the basis for retrieval in the next iteration, Rocchio uses

negative feedback alone. We use the BM25 [116] weight for each term in the

implementation of Rocchio.
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• SingleNeg. Karimzadehgan and Zhai [71] proposed this method base on the

language model to incorporate negative feedback on results to improve the rank-

ing for the di�cult queries. SingleNeg extracts a language model of the negative

topic from a batch of non-relevant results by considering they are generated from

the mixture of the language model of the negative topic and the background

corpus. During re-ranking, the original retrieval score of a result is adjusted

with its Kullback-Leibler (KL) divergence with the extracted negative model.

• MultiNeg. MultiNeg is the other negative feedback method proposed by

Karimzadehgan and Zhai [71]. Di↵erent from SingleNeg, it considers each of

the negative results is generated from a corresponding negative topic model and

uses multiple negative models to adjust the original relevance score.

BM25 and QL are word-based retrieval models. LSE and HEM are embedding-

based models for non-personalized and personalized product search. Rocchio, Sin-

gleNeg, and MultiNeg incorporate item-level negative feedback collected from previ-

ous iterations. For the initial ranking, we use BM25 for Rocchio, QL for SingleNeg

and MultiNeg respectively. We get the performance of BM25 and QL using galago1

with default parameter settings. We implemented Rocchio, SingeNeg and MultiNeg

based on galago and tuned the term count for negative model from {10, 20, 30, 40, 50},

the weight for negative documents from {0.01, 0.05, 0.1, 0.2, 0.3, 0.4}.

5.4.4 Model Parameter Settings

We implemented our model and HEM with PyTorch 2 and LSE with Tensorflow

3. LSE, HEM and our model are all trained with stochastic gradient descent for 20

1https://www.lemurproject.org/galago.php

2https://pytorch.org/

3https://www.tensorflow.org/
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epochs with batch size 64. Initial learning rate is set to 0.5 and gradually decrease to

0 during training. The gradients with global norm larger than 5 were clipped to avoid

unstable updates. To reduce the e↵ect of common words, as in [93, 7], we set the sub-

sampling rate of words as 10�5 for Cell Phones & Accessories and Health & Personal

Care, and 10�6 for Movies & TV. L2 regularization strength � was tuned from 0.0

to 0.005. The embedding size d was scanned from {100, 200, · · · , 500}. The e↵ect

of embedding size will be shown in Section 5.5.3. Negative samples � in Equation

(5.11) & (5.7) were set to 5. For conversation construction during training, 2 random

items were sampled as non-relevant results, and all the positive and negative values

with matched aspects were used in the conversation. For testing, the total number of

iterations for retrieval in the conversation was set from 1 to 5. In the first iteration,

there is no feedback collected. During each iteration, the number of aspect-value

pairs, on which the feedback is provided, namely, m in Equation (5.2), is selected

from {1, 2, 3}. We only report the results of the best settings for all the methods in

Section 5.5. 4

5.5 Results and Discussion

In this section, we discuss the results of our experiments. We first compare the

overall retrieval performance of both AVLEM and the state-of-the-art product search

baselines in Section 5.5.1. Then we study the e↵ect of di↵erent model components,

feedback processes, and embedding sizes on each model in the following subsections.

5.5.1 Overall Retrieval Performance

Table 5.3 shows the retrieval performance of all the methods in the conversational

product search on di↵erent Amazon sub-datasets (i.e., Movies & TV, Cell Phones

& Accessories and Health & Personal Care). Specifically, we use BM25 and QL

4Our code can be found at https://github.com/kepingbi/ConvProductSearchNF
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Table 5.3: Comparison between baselines and our model AVLEM. Numbers marked
with‘⇤’ are the best baseline performance. ‘+’ indicates significant di↵erences be-
tween the iterative feedback models and their corresponding initial rankers in Fisher
random test [123] with p < 0.05, i.e., Rocchio vs BM25, SingleNeg and MultiNeg
vs QL, AVLEMpos, AVLEMneg and AVLEMall vs AVLEMinit. ‘†’ denotes significant
improvements upon the best baseline. The highest value in each column is in bold.

Dataset Health & Personal Care Cell Phones & Accessories Movies & TV
Model MAP MRR NDCG MAP MRR NDCG MAP MRR NDCG

BM25 0.055 0.055 0.053 0.065 0.065 0.077 0.012 0.009 0.008
Rocchio 0.055 0.055 0.053 0.065 0.065 0.077 0.012 0.009 0.009+

QL 0.046 0.046 0.048 0.063 0.062 0.076 0.016 0.012 0.015
SingleNeg 0.046 0.046 0.048 0.063 0.062 0.076 0.018+ 0.015+ 0.017+

MultiNeg 0.046 0.046 0.048 0.063 0.062 0.076 0.018+ 0.015+ 0.016+

LSE 0.155 0.157 0.195 0.098 0.098 0.084 0.023 0.025 0.027
HEM 0.189⇤ 0.189⇤ 0.201⇤ 0.115⇤ 0.115⇤ 0.116⇤ 0.026⇤ 0.030⇤ 0.030⇤

AVLEMinit 0.227† 0.227† 0.233† 0.126† 0.126† 0.130† 0.028† 0.030 0.031†

AVLEMpos 0.225† 0.225† 0.250+† 0.133+† 0.133+† 0.135+† 0.031+† 0.033+† 0.035+†

AVLEMneg 0.260+† 0.260+† 0.305+† 0.154+† 0.154+† 0.177+† 0.033+† 0.035+† 0.038+†

AVLEMall 0.236+† 0.236+† 0.258+† 0.145+† 0.145+† 0.145+† 0.034+† 0.036+† 0.042+†

as the initial models to generate the first-round retrieval results for Rocchio and

SingNeg/MultiNeg, respectively. Also, we refer to the AVLEM without feedback,

with positive feedback, with negative feedback, and with both positive and negative

feedback on aspect-value pairs as AVLEMinit, AVLEMpos, AVLEMneg, and AVLEMall,

respectively.

As shown in Table 5.3, term-based retrieval models perform worse than neural em-

bedding models. 5 Without feedback information, QL and BM25 are approximately

50% worse than LSE and HEM on all datasets in our experiments. As discussed by

previous studies [131, 7], there are no significant correlations between user purchases

and the keyword matching between queries and product reviews. Thus, term-based

retrieval models usually produce inferior results in product search. Among di↵erent

embedding-based product retrieval models, AVLEMinit achieves the best performance

5MRR and MAP are almost the same for Health & Personal Care and Cell Phones & Accessories
since users purchase only 1 item under each query most of the time in these categories (see Table
5.1).
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and significantly outperforms HEM and LSE on all three datasets. This indicates that

incorporating aspect-value information into search optimizations is generally benefi-

cial for the performance of product search systems.

After a 5-round iterative feedback process, we observe di↵erent results for dif-

ferent feedback models. For term-based negative feedback models such as Rocchios,

SingleNeg, and MultiNeg, we observe little performance improvement during the feed-

back process. Comparing to their initial retrieval models in the first iteration (i.e.,

BM25 and QL), term-based feedback models only achieve significant MRR improve-

ments on Movies & TV. For AVLEM, on the other hand, we observe consistent and

large improvements over the initial retrieval model (i.e., AVLEMinit) in all three

datasets. The performance of the best AVLEM is approximately 10% to 20% better

than AVLEMinit in terms of MRR.

Among di↵erent variations of AVLEM, AVLEMneg performs the best on Cell

Phones & Accessories and Health & Personal Care, while AVLEMall performs the

best on Movies & TV. Overall, it seems that negative aspect-value feedback tends to

provide more benefits for AVLEM than positive aspect-value feedback. In a positive

feedback scenario, feedback information is “inclusive”. In other words, all aspect-

value pairs from relevant items could be used to generate positive feedback, but this

does not mean that all relevant items should have the same property. For example,

a user who tells the system to find a “red” phone case may also be satisfied with a

“pink” phone case. In contrast, in a negative feedback scenario, feedback informa-

tion is “exclusive”. When a user says “I don’t like red”, it means that any items with

color “red” is definitely not relevant to this user. Thus, negative feedback information

could be more useful for the filtering of irrelevant products.
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Figure 5.3: The MRR of AVLEM with di↵erent components removed and parameter
sensitivity analysis of baselines and AVLEM on Cell Phones&Accessories.
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5.5.2 Ablation Study

In order to evaluate the importance of di↵erent model components, we conduct ab-

lation experiments by removing the aspect generation network (i.e., P (a 2 A(i)|i) in

Equation (5.9) & (5.10)), the value geneartion network (i.e., P (v 2 V +/�(a, i)|a, i)

in Equation (5.10)), or the negative feedback network (i.e., P (T�
av

|i) in Equation

(5.9)) for AVLEM. We refer them as AVLEM\a, AVLEM\v, and AVLEM\neg, re-

spectively. Also, we refer to the AVLEM that uses a single set of value embed-

ding representations for both v+ and v� in Equation (5.13) as AVLEM\sep. In

AVLEM\neg and AVLEM\sep, we do not have a separate embedding representations

for v 2 V �(a, i) in P (v 2 V �(a, i)|a, i). Instead, we replace P (v 2 V �(a, i)|a, i) with

1 � P (v 2 V +(a, i)|a, i) in Equation (5.13) to train and test these two models.

Figure 5.3a depicts the performance of AVLEM with di↵erent components re-

moved on Cell Phones & Accessories. We group the results here into two categories –

the model performance before feedback (i.e., AVLEMinit) and the model performance

after feedback (i.e., AVLEM). As shown in the figure, removing P (v 2 V +/�(a, i)|a, i)

in Equation (5.10) (i.e., AVLEM\v) results in a significant drop of retrieval perfor-

mance for AVLEM before feedback, which means that the relationships between

items and aspect-values are important for e↵ectively learning item representations in

product search. Also, without the aspect generation model P (a 2 A(i)|i), we ob-

serve almost no performance improvement on AVLEM\a after the incorporation of

feedback information. This indicates that understanding the relationships between

items and product aspects is crucial for the use of aspect-value-based feedback sig-

nals. Last but not least, we notice that both the removing of P (T�
av

|i) in Equation

(5.9) (i.e., AVLEM\neg) and the unifying of item embeddings in positive and neg-

ative feedback (i.e., AVLEM\sep) lead to inferior retrieval performance before and

after feedback. As discussed in Section 5.3.4, the use of negative aspect-value pairs

and the separate modeling of value embedding in di↵erent feedback scenarios are im-
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portant for the multivariate Bernoulli assumptions. By replacing P (v 2 V �(a, i)|a, i)

with 1 � P (v 2 V +(a, i)|a, i), we jeopardize the foundation of AVLEM, which conse-

quentially damages its retrieval performance in our experiments.

5.5.3 Parameter Sensitivity

E↵ect of Amount of Feedback. Two important hyperparameters control the

simulation of conversational feedback in our experiments: the number of feedback

iterations and the number of product aspects in each iteration (m). Figure 5.3c de-

picts the performance of di↵erent feedback models with respect to feedback iterations

on Cell Phones & Accessories. As shown in the figure, the performance of Rocchio

and SingleNeg does not show any significant correlations with the increasing of feed-

back iterations. In contrast, the performance of AVLEM gradually increases when

we provide more feedback information. The MRR of AVLEM with 1 product as-

pect per iteration improves from 0.126 to 0.143 after 5 rounds of feedback. Also,

AVLEM generally achieves better performance when we increase the number of feed-

back aspects from 1 to 3. This indicates that our model can e↵ectively incorporate

feedback information in long-term conversations.

To further analyze the e↵ect of multi-iteration feedback, we show the percentage

of queries influenced by AVLEM in each iteration on Cell Phones & Accessories in

Figure 5.3d. Notice that iteration 1 represents the initial retrieval of the feedback

process, and this is the reason when all queries are a↵ected by AVLEM. As we can see,

the percentages of influenced queries remain roughly unchanged (from 92% to 96%)

after each feedback iteration. This means that feedback aspects have been e↵ectively

generated by our simulation process in most cases. Also, during the feedback process,

the number of available test queries (i.e., the queries with no relevant items retrieved in

the previous iterations) gradually decreases from 665 to 531 for the best AVLEM (i.e.,
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AVLEM with 2 product aspects per feedback iteration), which means that more and

more relevant items have been retrieved.

E↵ect of Embedding Size. Figure 5.3b shows the sensitivity of both our models

and the neural product retrieval baselines (i.e., HEM and LSE) in terms of embedding

size on Cell Phones & Accessories. While we observe a slight MRR improvement for

LSE after increasing the embedding sizes from 100 to 500, we do not see similar

patterns for both HEM and AVLEM. Also, the performance gains obtained from the

feedback process for our model (AVLEM v.s.AVLEMinit) are stable with respect to

the changes of embedding sizes.

5.6 Summary

To sum up, in this chapter we study negative feedback in product search by break-

ing it down to fine-grained feedback on aspect-values pairs of results with negative

feedback. We propose a conversation paradigm that supports collecting fine-grained

feedback during human-system interactions. Then we propose an aspect-value likeli-

hood embedding model (AVLEM) to incorporate both positive and negative feedback

on aspect-value pairs. AVLEM consists of the aspect generation model given items

and value generation model given items and aspects. One multivariate Bernoulli

(MB) distribution is assumed for the aspect generation model, and two other MB

distributions are assumed for the generation of positive and negative values. Experi-

ments show that our model significantly outperforms state-of-the-art product search

baselines without using feedback and methods using item-level feedback.
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CHAPTER 6

ASKING CLARIFYING QUESTIONS BASED ON
NEGATIVE FEEDBACK IN INFORMATION-SEEKING

CONVERSATIONS

6.1 Introduction

In previous chapters, we have studied how to use positive feedback to identify

more relevant answers or an ideal product (Chapter 3 and 4). We also proposed to

ask for fine-grained feedback on a product with negative feedback to retrieve the ideal

product in fewer iterations (Chapter 5). These scenarios follow a similar conversation

paradigm, i.e., the system shows results to users first and then collects their feedback

to the previously presented results. If the results receive negative feedback, the system

may ask for detailed feedback on the results or the reason why it is non-relevant. There

is another typical conversation paradigm for intelligent assistants: asking clarifying

questions based on users’ initial queries and then showing retrieval results when they

are confident about the results to be shown. Some previous work on conversational

search in an open domain or on products follows this paradigm [126, 168, 10, 64].

In such systems, user feedback is collected based on clarifying questions instead of

previously presented results. In this chapter, we focus on how to leverage feedback

on clarifying questions to facilitate information-seeking conversations.

When user queries are ambiguous, faceted, or incomplete, conversational search

systems typically ask two types of clarifying questions to users:special questions begin-

ning with what/why/how, etc. and general (yes/no) questions that can be answered

with “yes” or “no”. In contrast to special questions that often let a user give specific

information about a query, yes/no questions usually require less e↵ort from users since
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they provide explicit options and users can easily confirm or deny by saying “yes”

or “no”. In addition, yes/no clarifying questions make it easier for the system to

decide when to show text retrieval results. Users’ a�rmative answers could enhance

the system’s confidence in the text retrieval performance. Given these observations,

we propose an intent clarification task based on yes/no questions where the system’s

target is to ask the correct questions about user intent within the fewest conversation

turns. When the user intent is confirmed, the system returns the retrieval results.

In the intent clarification task, it is essential to leverage negative feedback about

the previously asked questions in the conversation history e↵ectively to select the

next question. The principle of using negative feedback is to find a candidate that

is dissimilar to the negative results while keeping it relevant to the query. In Web

search, documents with negative judgments have limited impact on identifying rele-

vant results due to the large number of potential non-relevant results [139, 140, 71].

In contrast, the intent space of a query is much smaller, providing more opportunity

to leverage negative feedback from previous clarifying questions.

In this chapter, we study how to ask clarifying questions based on negative feed-

back in information-seeking conversations. First, we introduce the intent clarification

task based on yes/no questions and its problem formulation. Then we propose a max-

imum marginal relevance based BERT model (MMR-BERT) to leverage the negative

feedback to questions in the conversation history for clarifying question selection.

Experimental results show that MMR-BERT significantly outperforms the state-of-

the-art baselines in both the intent clarification task and the associated document

retrieval task.

6.2 Conversation Intent Clarification

In this section, we first introduce the definition of the conversation intent clarifi-

cation task. To approach the task, we propose a two-step method to ask clarifying
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Figure 6.1: A workflow of the intent clarification task.

questions in the conversation. We illustrate the model for initial clarifying question

selection in Section 6.2.2 and the model that selects the next question using negative

feedback to previous questions in Section 6.2.3.

6.2.1 Task Formulation

Figure 6.1 shows a workflow of the intent clarification task. The user issues an

initial query to the system, then the system asks yes/no clarifying questions to the

user. When the user provides negative feedback, the system asks another question to

confirm the user’s intent. Since it is impractical to ask too many questions to users,

it is common for conversational search systems to set a limit to the number of asked

questions. When the intent is confirmed or the limit of conversation turns is reached,

the system returns the document retrieval results. The task is formalized as follows:

Suppose that a user has a specific information need about an ambiguous or faceted

topic t. The user issues t as a query to the system. 1 Let h = ((q1, a1), (q2, a2), · · · , (q|h|, a|h|))

be the conversation history between the user and the system, where the system asks

the user |h| clarifying questions Qh = {qi|1  i  |h|} about the potential intents

behind the topic, and the user confirms or denies the corresponding intent indicated

1We use topic and query interchangeably in this chapter.
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<latexit sha1_base64="YHxU3AXLa51f/REbhsDt0gpZ+jw=">AAAB7HicbVBNS8NAEJ3Ur1q/oh69LBbBU0mqoAcPhV48eKho2kIayma7aZduNmF3I5TQ3+DFgyJe/UHe/Ddu2xy09cHA470ZZuaFKWdKO863VVpb39jcKm9Xdnb39g/sw6O2SjJJqEcSnshuiBXlTFBPM81pN5UUxyGnnXDcnPmdJyoVS8SjnqQ0iPFQsIgRrI3k+c27h6BvV52aMwdaJW5BqlCg1be/eoOEZDEVmnCslO86qQ5yLDUjnE4rvUzRFJMxHlLfUIFjqoJ8fuwUnRllgKJEmhIazdXfEzmOlZrEoemMsR6pZW8m/uf5mY6ug5yJNNNUkMWiKONIJ2j2ORowSYnmE0MwkczcisgIS0y0yadiQnCXX14l7XrNvajV7y+rjZsijjKcwCmcgwtX0IBbaIEHBBg8wyu8WcJ6sd6tj0VrySpmjuEPrM8fNCqORA==</latexit>

SAT2
<latexit sha1_base64="Fs/K4jzxjoK4l/9OCpu+llp2VQs=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mtgh6rXjxW7Be0y5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfeg1QcDj/dmmJkXJpxp47pfTmFldW19o7hZ2tre2d0r7x+0tUwVoS0iuVTdEGvKmaAtwwyn3URRHIecdsLxzczvPFKlmRRNM0moH+OhYBEj2FipfR9cNYNaUK64VXcO9Jd4OalAjkZQ/uwPJEljKgzhWOue5ybGz7AyjHA6LfVTTRNMxnhIe5YKHFPtZ/Nrp+jEKgMUSWVLGDRXf05kONZ6Eoe2M8ZmpJe9mfif10tNdOlnTCSpoYIsFkUpR0ai2etowBQlhk8swUQxeysiI6wwMTagkg3BW375L2nXqt5ZtXZ3Xqlf53EU4QiO4RQ8uIA63EIDWkDgAZ7gBV4d6Tw7b877orXg5DOH8AvOxze6oY6S</latexit>

[SEP ]
<latexit sha1_base64="aWIc7cyo1lbI//FK+XZoDbbznbE=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9FgUwWNF0xbSUDbbTbt0sxt2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZelHKmjet+Oyura+sbm6Wt8vbO7t5+5eCwpWWmCPWJ5FJ1IqwpZ4L6hhlOO6miOIk4bUejm6nffqJKMykezTilYYIHgsWMYGMlP3i4bYa9StWtuTOgZeIVpAoFmr3KV7cvSZZQYQjHWgeem5owx8owwumk3M00TTEZ4QENLBU4oTrMZ8dO0KlV+iiWypYwaKb+nshxovU4iWxngs1QL3pT8T8vyEx8FeZMpJmhgswXxRlHRqLp56jPFCWGjy3BRDF7KyJDrDAxNp+yDcFbfHmZtOo177xWv7+oNq6LOEpwDCdwBh5cQgPuoAk+EGDwDK/w5gjnxXl3PuatK04xcwR/4Hz+AD8vjlA=</latexit>

SBT1
<latexit sha1_base64="Sf1eN7v7xInMaeGzc3+zB8nzbb0=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ4KrtV0GOpF48V+wXtsmTTbBubTZYkK5Sl/8GLB0W8+n+8+W9M2z1o64OBx3szzMwLE860cd1vZ219Y3Nru7BT3N3bPzgsHR23tUwVoS0iuVTdEGvKmaAtwwyn3URRHIecdsLx7czvPFGlmRRNM0moH+OhYBEj2Fip/RDUm4EXlMpuxZ0DrRIvJ2XI0QhKX/2BJGlMhSEca93z3MT4GVaGEU6nxX6qaYLJGA9pz1KBY6r9bH7tFJ1bZYAiqWwJg+bq74kMx1pP4tB2xtiM9LI3E//zeqmJbvyMiSQ1VJDFoijlyEg0ex0NmKLE8IklmChmb0VkhBUmxgZUtCF4yy+vkna14l1WqvdX5Vo9j6MAp3AGF+DBNdTgDhrQAgKP8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gC6pI6S</latexit>

SAT1<latexit sha1_base64="efC1AMBbN9zZH28eCGyBkN8z2Lo=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tFoNgFe6ioIVFxMYyYr4gOY69zV6yZm/32N0TwpH/YGOhiK3/x85/4ya5QqMPBh7vzTAzL0w408Z1v5zCyura+kZxs7S1vbO7V94/aGuZKkJbRHKpuiHWlDNBW4YZTruJojgOOe2E45uZ33mkSjMpmmaSUD/GQ8EiRrCxUvs+uG4GXlCuuFV3DvSXeDmpQI5GUP7sDyRJYyoM4Vjrnucmxs+wMoxwOi31U00TTMZ4SHuWChxT7Wfza6foxCoDFEllSxg0V39OZDjWehKHtjPGZqSXvZn4n9dLTXTpZ0wkqaGCLBZFKUdGotnraMAUJYZPLMFEMXsrIiOsMDE2oJINwVt++S9p16reWbV2d16pX+VxFOEIjuEUPLiAOtxCA1pA4AGe4AVeHek8O2/O+6K14OQzh/ALzsc3t0+Oiw==</latexit>

SBT2
<latexit sha1_base64="vecdYB24IaoR/dnHGYo7WS6+M8Y=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ4KrtV0GOpF48V+wXtsmTTbBubTZYkK5Sl/8GLB0W8+n+8+W9M2z1o64OBx3szzMwLE860cd1vZ219Y3Nru7BT3N3bPzgsHR23tUwVoS0iuVTdEGvKmaAtwwyn3URRHIecdsLx7czvPFGlmRRNM0moH+OhYBEj2Fip/RDUm0E1KJXdijsHWiVeTsqQoxGUvvoDSdKYCkM41rrnuYnxM6wMI5xOi/1U0wSTMR7SnqUCx1T72fzaKTq3ygBFUtkSBs3V3xMZjrWexKHtjLEZ6WVvJv7n9VIT3fgZE0lqqCCLRVHKkZFo9joaMEWJ4RNLMFHM3orICCtMjA2oaEPwll9eJe1qxbusVO+vyrV6HkcBTuEMLsCDa6jBHTSgBQQe4Rle4c2Rzovz7nwsWtecfOYE/sD5/AG8KI6T</latexit>

BERT

ECLS
<latexit sha1_base64="YB3Z2+os1i7+UmpSOXlxX79EDpM=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DEYBA8eIpoHJCHMTnqTIbOzy8ysEJZ8hBcPinj1e7z5N06SPWhiQUNR1U13lx8Lro3rfjsrq2vrG5u5rfz2zu7efuHgsKGjRDGss0hEquVTjYJLrBtuBLZihTT0BTb9UXXqN59QaR7JRzOOsRvSgeQBZ9RYqXnTS6t3D5NeoeiW3BnIMvEyUoQMtV7hq9OPWBKiNExQrdueG5tuSpXhTOAk30k0xpSN6ADblkoaou6ms3Mn5NQqfRJEypY0ZKb+nkhpqPU49G1nSM1QL3pT8T+vnZjgqptyGScGJZsvChJBTESmv5M+V8iMGFtCmeL2VsKGVFFmbEJ5G4K3+PIyaZRL3nmpfH9RrFxnceTgGE7gDDy4hArcQg3qwGAEz/AKb07svDjvzse8dcXJZo7gD5zPH91qj0I=</latexit>

BERT-ENC(SA, SB)
<latexit sha1_base64="75+VX4uY7f5/rzOG7mg5Tsfw950=">AAACAXicbVDLSgNBEJz1GeMr6kXwshiECBp2o6DHmBDwJNE8IVmW2ckkGTL7YKZXDEu8+CtePCji1b/w5t84SfagiQUNRVU33V1OwJkEw/jWFhaXlldWE2vJ9Y3Nre3Uzm5d+qEgtEZ87oumgyXlzKM1YMBpMxAUuw6nDWdQHPuNeyok870qDANqubjnsS4jGJRkp/bbQB8gKpTuqqelm+IoU7GvTip24dhOpY2sMYE+T8yYpFGMsp36and8ErrUA8KxlC3TCMCKsABGOB0l26GkASYD3KMtRT3sUmlFkw9G+pFSOnrXF6o80Cfq74kIu1IOXUd1uhj6ctYbi/95rRC6l1bEvCAE6pHpom7IdfD1cRx6hwlKgA8VwUQwdatO+lhgAiq0pArBnH15ntRzWfMsm7s9T+cLcRwJdIAOUQaZ6ALl0TUqoxoi6BE9o1f0pj1pL9q79jFtXdDimT30B9rnDwDblUw=</latexit>

BERT-ENC(t, q)
<latexit sha1_base64="VuerEcbGoshiTg+BHJ0dKb1dySY=">AAAB/XicbVDJSgNBEO2JW4zbuNy8DAYhgoaZKOgxJAQ8SZRskAyhp9NjmvQsdteIcQj+ihcPinj1P7z5N3aSOWjig4LHe1VU1XNCziSY5reWWlhcWl5Jr2bW1jc2t/TtnYYMIkFonQQ8EC0HS8qZT+vAgNNWKCj2HE6bzqA89pv3VEgW+DUYhtT28K3PXEYwKKmr73WAPkBcqtzUTipX5VEOju+OunrWzJsTGPPESkgWJah29a9OLyCRR30gHEvZtswQ7BgLYITTUaYTSRpiMsC3tK2ojz0q7Xhy/cg4VErPcAOhygdjov6eiLEn5dBzVKeHoS9nvbH4n9eOwL2wY+aHEVCfTBe5ETcgMMZRGD0mKAE+VAQTwdStBuljgQmowDIqBGv25XnSKOSt03zh+ixbLCVxpNE+OkA5ZKFzVESXqIrqiKBH9Ixe0Zv2pL1o79rHtDWlJTO76A+0zx/I6pQi</latexit>

BERT-ENC(q1, q)
<latexit sha1_base64="BPtV/pXHfcff8Tbg19hfcH8rdOs=">AAAB/3icbVBNSwJRFH1jX2ZfU0GbNkMSGJTMWFBLUYRWYeEX6CBvnk99+ObD9+5EMrnor7RpUUTb/ka7/k1PnUVpBy4czrmXe+9xAs4kmOa3llhaXlldS66nNja3tnf03b2a9ENBaJX43BcNB0vKmUerwIDTRiAodh1O686gOPHr91RI5nsVGAXUdnHPY11GMCiprR+0gD5AVCjdVc5KN8VxZti2TocnbT1tZs0pjEVixSSNYpTb+ler45PQpR4QjqVsWmYAdoQFMMLpONUKJQ0wGeAebSrqYZdKO5rePzaOldIxur5Q5YExVX9PRNiVcuQ6qtPF0Jfz3kT8z2uG0L2yI+YFIVCPzBZ1Q26Ab0zCMDpMUAJ8pAgmgqlbDdLHAhNQkaVUCNb8y4uklsta59nc7UU6X4jjSKJDdIQyyEKXKI+uURlVEUGP6Bm9ojftSXvR3rWPWWtCi2f20R9onz/2y5TD</latexit>

BERT-ENC(q|h|, q)
<latexit sha1_base64="GIIVdCDvpxKp+5m/OW2h8BVT9Z0=">AAACA3icbVDJSgNBEO2JW4xb1JteBoMQQcNMFPQYEgKeJEo2SELo6fQkTXqWdNeIYTLgxV/x4kERr/6EN//GznLQxAcFj/eqqKpn+ZxJMIxvLba0vLK6Fl9PbGxube8kd/eq0gsEoRXicU/ULSwpZy6tAANO676g2LE4rVn9wtiv3VMhmeeWYejTloO7LrMZwaCkdvKgCfQBwnzxrnxWvClE6UE7HPVG0engpJ1MGRljAn2RmDOSQjOU2smvZscjgUNdIBxL2TANH1ohFsAIp1GiGUjqY9LHXdpQ1MUOla1w8kOkHyulo9ueUOWCPlF/T4TYkXLoWKrTwdCT895Y/M9rBGBftULm+gFQl0wX2QHXwdPHgegdJigBPlQEE8HUrTrpYYEJqNgSKgRz/uVFUs1mzPNM9vYilcvP4oijQ3SE0shElyiHrlEJVRBBj+gZvaI37Ul70d61j2lrTJvN7KM/0D5/APMIlxI=</latexit>

…

{<latexit sha1_base64="7jF/axiKQ50qck453cB+aS7CDO0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh17WL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpySDcFbfnmVtGpV76Jau7+s1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB5zSjWk=</latexit>

max
pooling

concat

{<latexit sha1_base64="7jF/axiKQ50qck453cB+aS7CDO0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh17WL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpySDcFbfnmVtGpV76Jau7+s1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB5zSjWk=</latexit>

MLP1
<latexit sha1_base64="Q/JR+ho6Pj+fA2KNZlxCnjoqpik=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kGhgmkLbSib7aRdutmE3Y1QSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOgkUwx9lohEtUKqUXCJvuFGYCtVSONQYDMc3kz95hMqzRP5aEYpBjHtSx5xRo2V/Pu7etfrlspuxZ2BLBMvJ2XIUe+Wvjq9hGUxSsME1brtuakJxlQZzgROip1MY0rZkPaxbamkMepgPDt2Qk6t0iNRomxJQ2bq74kxjbUexaHtjKkZ6EVvKv7ntTMTXQVjLtPMoGTzRVEmiEnI9HPS4wqZESNLKFPc3krYgCrKjM2naEPwFl9eJo1qxTuvVB8uyrXrPI4CHMMJnIEHl1CDW6iDDww4PMMrvDnSeXHenY9564qTzxzBHzifPwPrjik=</latexit>

MLP2
<latexit sha1_base64="1j9DAYszsxzcVECaeL+G2q6J3H0=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kGhgmkLbSib7aZdutmE3YlQSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6ZSGHTdb2dldW19Y7OwVdze2d3bLx0cNkySacZ9lshEt0JquBSK+yhQ8laqOY1DyZvh8GbqN5+4NiJRjzhKeRDTvhKRYBSt5N/f1bvVbqnsVtwZyDLxclKGHPVu6avTS1gWc4VMUmPanptiMKYaBZN8UuxkhqeUDWmfty1VNOYmGM+OnZBTq/RIlGhbCslM/T0xprExozi0nTHFgVn0puJ/XjvD6CoYC5VmyBWbL4oySTAh089JT2jOUI4soUwLeythA6opQ5tP0YbgLb68TBrVindeqT5clGvXeRwFOIYTOAMPLqEGt1AHHxgIeIZXeHOU8+K8Ox/z1hUnnzmCP3A+fwAFb44q</latexit>

MLP1
<latexit sha1_base64="Q/JR+ho6Pj+fA2KNZlxCnjoqpik=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kGhgmkLbSib7aRdutmE3Y1QSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOgkUwx9lohEtUKqUXCJvuFGYCtVSONQYDMc3kz95hMqzRP5aEYpBjHtSx5xRo2V/Pu7etfrlspuxZ2BLBMvJ2XIUe+Wvjq9hGUxSsME1brtuakJxlQZzgROip1MY0rZkPaxbamkMepgPDt2Qk6t0iNRomxJQ2bq74kxjbUexaHtjKkZ6EVvKv7ntTMTXQVjLtPMoGTzRVEmiEnI9HPS4wqZESNLKFPc3krYgCrKjM2naEPwFl9eJo1qxTuvVB8uyrXrPI4CHMMJnIEHl1CDW6iDDww4PMMrvDnSeXHenY9564qTzxzBHzifPwPrjik=</latexit>

MLP1
<latexit sha1_base64="Q/JR+ho6Pj+fA2KNZlxCnjoqpik=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kGhgmkLbSib7aRdutmE3Y1QSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOgkUwx9lohEtUKqUXCJvuFGYCtVSONQYDMc3kz95hMqzRP5aEYpBjHtSx5xRo2V/Pu7etfrlspuxZ2BLBMvJ2XIUe+Wvjq9hGUxSsME1brtuakJxlQZzgROip1MY0rZkPaxbamkMepgPDt2Qk6t0iNRomxJQ2bq74kxjbUexaHtjKkZ6EVvKv7ntTMTXQVjLtPMoGTzRVEmiEnI9HPS4wqZESNLKFPc3krYgCrKjM2naEPwFl9eJo1qxTuvVB8uyrXrPI4CHMMJnIEHl1CDW6iDDww4PMMrvDnSeXHenY9564qTzxzBHzifPwPrjik=</latexit>

SAT3
<latexit sha1_base64="OJEEiPfURhGCh/2VprmHXYsyG1Q=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9ltBT1WvXis2C9olyWbZtvYbLIkWaGU/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTDjTxnW/ndza+sbmVn67sLO7t39QPDxqaZkqQptEcqk6IdaUM0GbhhlOO4miOA45bYej25nffqJKMykaZpxQP8YDwSJGsLFS6yG4bgTVoFhyy+4caJV4GSlBhnpQ/Or1JUljKgzhWOuu5ybGn2BlGOF0WuilmiaYjPCAdi0VOKban8yvnaIzq/RRJJUtYdBc/T0xwbHW4zi0nTE2Q73szcT/vG5qoit/wkSSGirIYlGUcmQkmr2O+kxRYvjYEkwUs7ciMsQKE2MDKtgQvOWXV0mrUvaq5cr9Ral2k8WRhxM4hXPw4BJqcAd1aAKBR3iGV3hzpPPivDsfi9ack80cwx84nz+8JY6T</latexit>

SBT3
<latexit sha1_base64="19ahVWaecxstN5UVYkHJOIoDMw0=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9ltBT2WevFYsV/QLks2zbax2WRJskIp/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemHCmjet+O7mNza3tnfxuYW//4PCoeHzS1jJVhLaI5FJ1Q6wpZ4K2DDOcdhNFcRxy2gnHt3O/80SVZlI0zSShfoyHgkWMYGOl9kNQbwbVoFhyy+4CaJ14GSlBhkZQ/OoPJEljKgzhWOue5ybGn2JlGOF0VuinmiaYjPGQ9iwVOKbany6unaELqwxQJJUtYdBC/T0xxbHWkzi0nTE2I73qzcX/vF5qoht/ykSSGirIclGUcmQkmr+OBkxRYvjEEkwUs7ciMsIKE2MDKtgQvNWX10m7Uvaq5cr9ValWz+LIwxmcwyV4cA01uIMGtIDAIzzDK7w50nlx3p2PZWvOyWZO4Q+czx+9rI6U</latexit>

MMR-BERT(q, h, t)
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Figure 6.2: Our Maximal Marginal Relevance based BERT Model (MMR-BERT).

in qi with ai. For any candidate question q, its label y(q) = 2 if it covers the user’s

true intent, y(q) = 1 if it covers other intents of t, and y(q) = 0 if it is not rele-

vant to t. The system’s target is to identify the user’s true intent within the fewest

interactions, i.e., argmin(|QF = {q|y(q) = 2|). Since it is not practical to ask too

many questions, the system ends the conversation and returns the document retrieval

results whenever the user’s intent is confirmed or the limit of conversations turns k

(|h|  k) is reached.

6.2.2 First Clarifying Question Selection

The first clarifying question is especially important to elicit user interactions as

it will impact the e↵ectiveness of all the future questions and user interactions. The

information available to select the initial question is the query itself. Thus it is

essential to e↵ectively measure the relevance of a candidate question by how it matches

the user query.

Query-question Matching. In recent years, BERT [44] has shown impressive

performance in short-text matching tasks by pre-training contextual language models

with large external collections and fine-tuning the model based on a local corpus. We

leverage BERT to select questions in the intent clarification task. Specifically, we
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select the first question based on the relevance score of matching a candidate q to

topic t calculated with BERT:

s(q, t) = MLP0(BERT-ENC(q, t)) (6.1)

where BERT-ENC(SA, SB) is the output vector of matching sentence A (SA) and

sentence B (SB) as shown in Figure 6.2, MLP0 is a multilayer perceptron (MLP) with

output dimension 1. Specifically, BERT-ENC(SA, SB) inputs the token, segment, and

position embeddings of the sequence ([CLS], tokens in SA, [SEP], tokens in SB) to

the pre-trained BERT model [44] and take the vector of [CLS] after the transformer

encoder layers as output.

Loss Function. We have two ways of calculating the training loss. As a first

option, assuming that we do not have any prior knowledge about each user’s intent,

the retrieval of the first question should simply focus on retrieving questions that are

relevant to the initial query string t. Thus we collect a set of query pairs QP and each

pair consists of a relevant and a non-relevant question, i.e., QP = {(q+, q�)|y(q+) >

0, y(q�) = 0}. We consider all the questions with positive labels having the same

label 1, i.e., y0(q) = I(y(q) > 0), where I is an indicator function and equals to 1

when the input condition is true otherwise it is 0. The probability of question q in

the entry (pair) E (E 2 QP ) being relevant to query topic t is calculated with the

softmax function:

Prob(y0(q) = 1) =
exp(s(q, t))P

q02E exp(s(q0, t))
, E 2 QP . (6.2)

Then the loss function L is the cross-entropy between the binary question labels (1, 0)

of the pair and the probability distribution of (Prob(y0(q+) = 1), P rob(y0(q�) = 1)):

LBERT-INIT = �
X

E2QP

X

q2E

y0(q) logProb(y0(q) = 1). (6.3)
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In this case, the loss function is essentially pairwise loss. We refer to the model trained

with QP as BERT-INIT.

Among the relevant questions of the same query, only questions that match user

intents can receive positive feedback and have label 2. As a second option, when we

further consider which relevant questions are more likely to receive positive feedback

in a prior distribution, the multi-grade label of a question can be used for training.

We extend the set of question pairs QP to question triplets QT = {(qF, q⇤, q�)|y(qF) =

2, y(q⇤) = 1, y(q� = 0)} and still use the cross-entropy loss to optimize the model.

In other words, we train the model according to Equation (6.3) with QP replaced by

QT , i.e.,

LMBERT-INIT = �
X

E2QT

X

q2E

y(q) logProb(y(q) > 0), (6.4)

where Prob(y(q) > 0) is calculated based on Equation (6.2) with QP replaced by QT

and E is an entry of triplet, i.e.,

Prob(y(q) > 0) =
exp(s(q, t))P

q02E exp(s(q0, t))
, E 2 QT . (6.5)

As in [3], this loss function can be considered as a list-wise loss of the constructed

triplets. Since the probability of each question to be a target question is normalized

by the scores of all the three questions in the triplet, maximizing the score of question

with label 2 will reduce the score of questions with label 1 and 0. Also, questions with

larger labels have more impact to the loss. This ensures that the model is optimized

to learn higher scores for questions that have larger labels. We refer to this model as

MBERT-INIT.

6.2.3 Clarifying Intents Using Negative Feedback

While the only basis of the system’s decision is topic t in the first conversation

turn, the system can refer to conversation history in the following interactions. As
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we assume that the system will terminate the conversation and return the documents

when the user confirms the question with positive feedback, all the available informa-

tion for selecting the next clarifying question besides the topic t is negative feedback.

It means that the next question should cover a di↵erent intent from previous questions

while being relevant to topic t.

Inspired by the maximal marginal relevance (MMR) principle in search diversifi-

cation studies [23], here we propose an MMR-based BERT model (MMR-BERT) to

leverage negative feedback in the conversations. In search diversification, the basic

idea of MMR is to select the next document by maximizing its relevance to the initial

query and dissimilarities to previously selected documents. Similarly, in MMR-BERT,

we select the next question by jointly considering the relevance of each candidate ques-

tion with respect to the initial topic t and their similarities to previous questions. Let

Q be the question candidate set, and Qh = {qi|1  i  |h|} be the set of questions

in the conversation history h. Let BERT-ENC(SA, SB) be a matching function that

takes two pieces of text (i.e., SA and SB) as input and outputs an embedding/feature

vector to model their similarities. 2 As shown in Figure 6.2, MMR-BERT first ob-

tains the matching of the topic t with candidate question q, i.e., BERT-ENC(t, q)

and the matching between each previous question qi(1  i  |h|) and q, i.e., BERT-

ENC(qi, q). Then it maps the obtained vectors to lower d-dimension space (Rd) with

a multilayer perceptron (MLP) MLP1, where each layer is a feed-forward neural

network followed by Rectified Linear Unit (ReLU) activation function. The parame-

ters in MLP1 are shared across multiple matching pairs to let the condensed vectors

comparable. Formally, the final matching between x and q is:

2Here we use BERT encoder as our matching model because it has been shown to be e↵ective in
modeling the latent semantics of text data, which is important for our task since di↵erent facets of
the same topic often have subtle semantic di↵erences that cannot be captured by simple methods
such as keyword matching.
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o(x, q) = MLP1(BERT-ENC(x, q)) 2 Rd

x = t or qi, 1  i  |h|.
(6.6)

The final score of q is computed as:

MMR-BERT(q, t, h)=MLP2([o(t, q);MaxPool1i|h|o(qi, q)]), (6.7)

where MaxPool represents apply max pooling on a group of vectors, [·; ·] denotes the

concatenation between two vectors, MLP2 is another MLP for projection to R1.

Given the user’s negative feedback to the asked questions in the conversation

history h, the probability of a candidate q covering user intent is calculated according

to:

Prob(y(q) = 2|h) = exp(MMR-BERT(q, t, h))P
q02E exp(MMR-BERT(q0, t, h))

, E 2 QT , (6.8)

where QT is a set of triplets, E is a triplet of questions with label 2, 1, and 0, as in

Section 6.2.2. To di↵erentiate the questions that would receive positive feedback from

users and questions that are relevant to the topic t but do not match user intents, we

use the multiple-grade labels in the loss function, as MBERT-INIT in Section 6.2.2.

Since Prob(y(q) = 2, h) = Prob(y(q) = 2|h)Prob(h) and Prob(h) is fixed for topic t

during training. The loss function can be written as:

LMMR-BERT / �
X

E2QT

X

h2H(E)

X

q2E

y(q) logProb(y(q) = 2|h), (6.9)

where H(E) is the history set of conversation turns of length 0, 1, 2, and so on,

corresponding to triplet entry E. For example, if the questions qa,qb, and qc are

already asked for topic t, H(E) = {;, {qa}, {qa, qb}, {qa, qb, qc}}. The answers in the

history are omitted in the notation since they are all “no”. In this way, questions

that cover similar intents to historically asked questions Qh have lower labels than

the questions that have target intents and thus will be punished.
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Di↵erences from Other BERT-based Models. Most existing BERT-based

models for clarifying question selection leverage the topic(query), questions, and an-

swers in the conversation history and do not di↵erentiate answers that are confirma-

tion or denial [10, 64]. In contrast, MMR-BERT is specifically designed to leverage

negative feedback from conversation history, which means it uses previously asked

questions as input and does not use the answers in the history as they are all denial

(we assume that the system would stop asking questions when it has identified the

user intent). From the perspective of model design, existing models typically use

average BERT representations of each historical conversation turn [10] or concate-

nate the sequence of a query, question, and answer in each turn as input to BERT

models [64]. When used in the intent clarification task, these methods either do not

di↵erentiate the e↵ect of each asked question or do not consider the e↵ect of the ini-

tial query should be modeled di↵erently from the questions with negative feedback.

Following the MMR principle, our MMR-BERT model takes the task characteristics

into account and thus can more e↵ectively use negative feedback.

6.3 Experimental Setup

This section introduces the data we use for experiments, how we evaluate the

proposed models, the competing methods for comparison, and the technical details

in the experiments.

6.3.1 Data

We use Qulac [10] for experiments. As far as we know, it is the only dataset with

mostly yes/no clarifying questions in information-seeking conversations. Qulac uses

the topics in the TREC Web Track 2009-2012 [29, 30] as initial user queries. These

topics are either “ambiguous” or “faceted” and are originally designed for the task of

search result diversification. For each topic, Qulac has collected multiple clarifying
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questions for each facet (or intent) of the topic through crowd-sourcing; then for each

facet of the topic, Qulac obtained the answers to all the questions of the topic from

the annotators. The relevance judgments of documents regarding each topic-facet are

inherited from the TREC Web track.

We refined Qulac for the intent clarification task by assigning labels 2 or 1 to

the questions that receive positive or negative feedback in the answers and label 0 to

questions not associated with the topic. Many negative answers in Qulac also include

the user’s true intent, such as “No. I want to know B.” to the question “Do you want

to know A?”. It is too optimistic to assume users always provide true intents in their

answers. Also, in that case, negative feedback does not have di↵erence from positive

feedback or is even better. To test how the models performs at incorporating negative

feedback alone, we ignore the supplementary information and only keep “no” as user

answers. For questions that are not yes/no questions, we consider the answers are

negative feedback.

To check whether a model can clarify user intents based on the negative feedback

in the conversation history more su�ciently, we enlarge the dataset by including all

the questions with label 1 as a 1-turn conversation for each topic-facet. In other

words, besides letting the model select the first question, we also enumerate all the

questions with label 1 as the first question to check how a model performs under

various contexts. The original Qulac enumerates all the questions associated with a

query to construct conversations of 1 to 3 turns and only select 1 more question based

on the pre-constructed static conversation history. While we also enlarge the data

similarly, we only construct conversations with 1 turn, and select questions based on

previously selected questions.

The resulting data has 8,962 conversations in total, including 762 conversations

of 0-turn (only initial query) and 8,200 1-turn (the added conversations). With the

enlarged data, we have many more conversations with various contexts as feedback
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Table 6.1: Statistics of our revised version of Qulac.

# topics 198
# faceted/ambiguous topics 141/57
# facets 762
Average/Median facet per topic 3.85±1.05/4
# informational/navigational facets 577/185
# questions/question-answer pairs 2,639/10,277
# question with positive answers 2,007
Average words per question/answer 9.49±2.53/8.21±4.42
# expanded conversations 8,962
# conversations starting with 0/1 turns 762/8,200

to test the models and to establish the e↵ectiveness of the results. The statistics are

shown in Table 6.1.

6.3.2 Evaluation

We evaluate the models on two tasks: 1) the proposed intent clarification task

to see whether it can ask the questions covering the true user intent within fewer

conversation turns; 2) the associated document retrieval task to see whether the

asked clarifying questions can improve the document retrieval performance. Following

[10, 64], we use 5-fold cross-validation for evaluation. We split the topics to each

fold according to their id modulo 5. Three folds are used for training, one fold for

validation, and one fold for testing. For the question ranking task, we use Query

Likelihood (QL) [103] to retrieve an initial set of candidates and conduct re-ranking

with BERT-based models. For the document retrieval task, as in [10, 64], we use

the revised QL model for retrieval: replacing the original query language model with

a convex combination of the language models of the initial query (t) and all the

question-answer pairs in the conversation (h).

For the intent clarification task, we concatenate the question asked in each conver-

sation turn as a ranking list for evaluation. The primary evaluation metric is MRR

calculated based on questions with label 2, which indicates the number of turns

a model needs to identify true user intent. We also include NDCG@3 and NDCG@5

117



based on labels 2 and 0 to show how a model identifies the target questions in the

first 3 or 5 interactions. To evaluate the overall quality of the clarifying questions,

we also use NDCG@3 and NDCG@5 computed using the multi-grade labels 2, 1, and

0 as metrics. These metrics also give rewards to the questions that receive negative

feedback from users but are still relevant to the topic. We exclude NDCG@1 since

the focus of the evaluation is to see how a model leverages the negative feedback in

the context, whereas the first question is ranked based on only the original query.

Also, the initial question in most of the conversations is with label 1 in the enlarged

dataset regardless of the model used.

For the document retrieval task, we use MRR, Precision(P)@1, NDCG@1, 5,

and 20 as the evaluation metrics. MRR measures the position of the first relevant

documents. NDCG@1, 5, and 20 indicate the performance based on 5-level labels

(0-4) at di↵erent positions. Fisher random test [123] with p < 0.05 is used to measure

statistical significance for both tasks.

6.3.3 Baselines

We include seven representative baselines to select questions and compare their

performance to MMR-BERT on both the intent clarification task and the associated

document retrieval task:

• QL: The Query Likelihood [103] (QL) model is a term-based retrieval model

that ranks candidates by the likelihood of generating the query given a candi-

date, also serving to collect initial candidates.

• BERT-INIT: A BERT-based model trained with label 1 and 0 in Section 6.2.2.

• MBERT-INIT: A BERT-based model trained with label 2, 1 and 0 as men-

tioned in Section 6.2.2.
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• SingleNeg[71]: A negative feedback method that extracts a single negative

topic model from the mixture with the language model of background corpus

built with the non-relevant results.

• MMR: The Maximal Marginal Relevance (MMR) model [23] ranks questions

according to the original MMR equation proposed for search diversification as

argmaxq2Q\Qh
�f(t, q) � (1 � �)maxq02Qh

f(q0, q) (6.10)

where � is a hyper-parameter, and f outputs a similarity score for two pieces

of text SA and SB. We set f(SA, SB) = sigmoid(BERT-INIT(SA, SB)).

• BERT-NeuQS: BERT-NeuQS [3] uses the average BERT representations of

questions and answers in each historical conversation turn as well as features

from query performance prediction (QPP) for next clarifying question selection.

To see the e↵ect of model architecture alone, we did not include the QPP

features.

• BERT-GT: The Guided Transformer model (BERT-GT) [64] encodes con-

versation history by inputting the concatenated sequence of a topic (query),

clarifying questions and answers in the history to a BERT model, guided by

top-retrieved questions or documents to select next clarifying question.

QL, BERT-INIT, and MBERT-INIT only use the initial query for ranking while

the other models also consider the conversation history. SingleNeg and MMR are

based on heuristics. BERT-NeuQS and BERT-GT are state-of-the-art neural models

for clarifying question selection. We discard the numbers of other negative feedback

methods such as MultiNeg [71] and Rocchio [117] due to their inferior performance.

BERT-NeuQS uses the query performance prediction scores of a candidate question

for document retrieval to enrich the question representation. Our model significantly
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outperforms BERT-NeuQS if we also add this information. However, since we focus

on studying which method is better at leveraging the negative feedback, for fair

comparisons, we do not include this part for both BERT-NeuQS and our model.

BERT-GT works better with questions than documents in our experiments so we

only report the setting with questions. MMR-BERT uses the first question from

BERT-INIT as its initial question.

6.3.4 Technical Details

We first fine-tuned the “bert-base-uncased” version of BERT 3 using our local

documents with 3 epochs. Then we fine-tuned BERT-INIT with 5 epochs allowing

all the parameters to be updated. All the other BERT-based models loaded the

parameters of the trained BERT-INIT and fixed the parameters in the transformer

encoder layers during training. This is because the tremendous amount of parameters

in the BERT encoders can easily overwhelm the remaining parameters in di↵erent

models on the data at Qulac’s scale, which makes the model performance unstable.

The variance of model performance is huge in multiple runs if we let all the parameters

free, which leads to unconvincing comparisons. The limit of conversation turns k was

set to 5. We optimized these models with the Adam [76] optimizer and learning

rate 0.0005 for 10 epochs. The number of MLP layers that have output dimension

1 was set from {1, 2}. The dimension of the hidden layer of the 2-layer MLPs was

selected from {4, 8, 16, 32}. � in Equation (6.10) and the query weight in SingleNeg

were scanned from 0.8 to 0.99. Feedback term count in SingleNeg was chosen from

{10, 20, 30}. Top 10 questions were used in BERT-GT. The coe�cient to balance the

weight of initial query and conversation history in the document retrieval model was

scanned from 0 to 1 for each method.

3https://github.com/huggingface/transformers
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Table 6.2: Model performance on intent clarification task evaluated using only label
2 or both label 1 & 2. ‘*’ indicates the best baseline results, and ‘†’ shows the
statistically significant improvements over them.

Model
Label 2 only Label 1&2

MRR NDCG3 NDCG5 NDCG3 NDCG5
QL 0.216 0.130 0.159 0.514 0.565
BERT-INIT 0.235 0.143 0.173 0.531 0.583
MBERT-INIT 0.235 0.144 0.173 0.532* 0.584
SingleNeg 0.217 0.131 0.160 0.513 0.565
MMR 0.237 0.144 0.178 0.531 0.585*
BERT-NeuQS 0.241 0.146 0.182* 0.528 0.580
BERT-GT 0.242* 0.148* 0.178 0.530 0.580
MMR-BERT 0.248† 0.152† 0.189† 0.533 0.586†

6.4 Results and Discussion

In this section, we show the experimental results of the clarifying question selection

task and the associated document retrieval task. We give an analysis of each method’s

number of success conversations as well as the impact of topic type and facet type in

the intent clarification task. At last, we also conduct case studies on the success and

failure of our proposed model.

6.4.1 Clarifying Question Selection Results

Overall Performance. As shown in Table 6.2, MMR-BERT has achieved the

best performance to identify the target questions that cover true user intents. It

outperforms the best baselines significantly regarding almost all the metrics. Note

that the evaluation is based on 8,962 conversations and 8,200 of them have the same

first negative question in the enlarged data so all the models can refine the question

selection only from the second question for most conversations. This limits the im-

provements of MMR-BERT over the baselines. However, the improvements on about

nine thousand data points are significant.

Word-based methods (QL and SingleNeg) are inferior to the other neural meth-

ods by a large margin. Also, SingleNeg hardly improves upon QL, indicating that
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Figure 6.3: Comparison of MMR-BERT and baselines in terms of the cumulative
number of success conversations at each turn on the intent clarification task.

word-based topic modeling methods are not e↵ective to incorporate negative feed-

back in clarifying question selection, probably due to insu�cient words to build topic

models. The BERT-based methods using the feedback information can identify the

first target questions earlier than BERT-INIT and MBERT-INIT. With the simi-

larity function provided by BERT-INIT, MMR can outperform BERT-INIT. The

ability of BERT models to measure semantic similarity is essential for the MMR

principle to be e↵ective. Moreover, while BERT-NeuQS and BERT-GT improve

the metrics regarding label 2, their performance regarding questions with label 1 is

harmed. BERT-NeuQS concatenates the topic representation with the average rep-

resentations of each q-a pair and BERT-GT encode the sequence of the conversation

history (t, (q1, a1), · · · , (q|h|, a|h|)) as a whole. Thus it could be di�cult for them to

figure out which part a candidate question should be similar to and which part not.

By matching a candidate question with the topic and each historical question indi-

vidually, MMR-BERT can balance the similarity to the topic and dissimilarity to the

historical questions better.

Number of Success Conversations. Figure 6.3 shows the cumulative number

of success conversations of each method that correctly identifies user intents at the
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third, fourth, and fifth turns. We focus more on how to leverage the negative feedback

in the conversation so far rather than how to ask the first clarifying question without

feedback information. As shown in the figure, among all the 8,962 conversations,

MMR-BERT identifies user intents in 41.2%, 52.2%, and 59.2% conversations by

asking at most 3, 4, and 5 clarifying questions. The best baseline at each turn is

di↵erent while MMR-BERT always has the overall best performance across various

turns. This indicates that our MMR-BERT can leverage negative feedback more

e↵ectively than the baselines in identifying user intents.

Impact of Topic Type. In Figure 6.4a, we study how MMR-BERT performs on

queries of di↵erent types compared with other methods. As we mentioned in Section

6.3.1, query topics in Qulac are faceted or ambiguous. An example of a faceted query

is “elliptical trainer”, which has the facets such as “What are the benefits of an

elliptical trainer compared to other fitness machines?”, “where can I buy a used or

discounted elliptical trainer?”, “What are the best elliptical trainers for home use?”

and “I’m looking for reviews of elliptical machines.” An ambiguous query is a query

that has multiple meanings, e.g., “memory”, which can refer to human memory,

computer memory, and the board game named as memory. From Figure 6.4a, we

have two major observations:

1) All the methods perform better on faceted queries than on ambiguous queries.

Since QL performs worse on ambiguous queries than on faceted queries by a large

margin, the performance of other methods is limited by the quality of initial candidate

clarifying questions retrieved by QL. It also indicates that questions for ambiguous

queries in the corpus have less word matching than faceted queries.

2) The improvements of MMR-BERT over other methods are much larger on

ambiguous queries than on faceted queries. It is essential to di↵erentiate the semantic

meanings of various clarifying questions relevant to the same query when leveraging

the negative feedback. Clarifying questions of a faceted query are usually about

123



0.224

0.199

0.243

0.215

0.243

0.215

0.224

0.203

0.244

0.220

0.249

0.224

0.253

0.216

0.253

0.237

faceted ambiguous

M
RR

 o
f C

la
rif

yi
ng

 Q
ue

st
io

ns

Topic Type

QL BERT-INIT MBERT-INIT SingleNeg
MMR BERT-NeuQS BERT-GT MMR-BERT

(a) MRR of each method in the intent clarifi-
cation task in terms of topic type.

0.205

0.220

0.185

0.252

0.186

0.252

0.205

0.222

0.183

0.255

0.190

0.259

0.199

0.256

0.203

0.263

navigational informational

M
RR

 o
f C

la
rif

yi
ng

 Q
ue

st
io

ns

Facet Type

QL BERT-INIT MBERT-INIT SingleNeg
MMR BERT-NeuQS BERT-GT MMR-BERT

(b) MRR of each method in the intent clarifi-
cation task in terms of facet type.

subtopics under the small space of the query topic and the words co-occurring with

the query in each subtopic have much overlap. Again for the “elliptical trainer”

example, the latter associated 3 intents are all related to the purchase need, and the

words such as “buy”, “best”, and “reviews” can co-occur often in the corpus. Thus it

is di�cult to di↵erentiate these questions even for BERT-based models. In contrast,

clarifying questions corresponding to each meaning of an ambiguous query usually

consist of di↵erent sets of context words, e.g., human memory can have “memory

loss” and “brain” in the related texts while computer memory always co-occurs with

“disk”, “motherboard”, etc. As BERT has seen various contexts in a huge corpus

during pre-training, they have better capabilities to di↵erentiate the meanings of an

ambiguous query compared to the subtopics of a faceted query. However, BERT-

NeuQS and BERT-GT cannot fully take advantage of BERT’s ability to di↵erentiate

semantic meanings due to their architecture, either averaging the representations of

historical questions or encoding the sequence of query and the asked questions.

Impact of Facet Type. We compare each method in terms of their performance

on di↵erent types of intent facets in Figure 6.4b. Similar to the varied performance in

terms of topic type, QL performs worse on navigational facets than on informational

facets. The clarifying questions that ask about navigational intents sometimes do not

match any of the query words such as “are you looking for a specific web site?” and
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“any specific company on your mind?” In such cases, the target questions are not

included in the candidate pool for re-ranking, which leads to inferior performance on

navigational queries.

In addition, we find that neural methods perform worse than word-matching-based

methods on navigational queries. Questions that ask about navigational intents are

usually in the format of “do you need any specific web page about X (query)?” rather

than the typical format of questions about informational intents such as “are you in-

terested in Y (subtopics) of X (query)?” Also, navigational facets are much fewer than

informational facets (185 versus 577), which leads to a smaller amount of questions

about navigational facets. The supervised neural models tend to promote questions

asking about informational intents during re-ranking since they are semantically more

similar to the query (talking about their subtopics) and they are more likely to be

relevant in the training data. In contrast, word-matching-based methods treat nav-

igational and informational questions similarly since they both hit query words and

have similar length. By selecting the next question di↵erent from previous questions

and relevant to the query, MMR-BERT does not demote questions about navigational

facets and does not harm the performance on navigational facets.

6.4.2 Document Retrieval Performance

Table 6.3 and Figure 6.5 show the document retrieval performance of using the

original query alone and using the conversations produced by each method. In Table

6.3, we observe that all the question selection methods can promote relevant doc-

uments significantly by asking clarifying questions. The questions asked by MMR-

BERT achieve the best document retrieval performance, indicating that our model

can find users’ target information at higher positions by identifying user intents better.

Since the model for document retrieval is a simple word-based model, the advantage

of asking correct questions may not be reflected in retrieving documents. The cases
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Table 6.3: Document retrieval performance with conversations composed by each
model. The best baseline results are marked with ‘*’, and the statistically significant
improvements over them are marked with‘†’.

Model MMR P1 NDCG1 NDCG5 NDCG20
OriginalQuery 0.267 0.181 0.121 0.128 0.131
QL 0.292 0.209 0.146 0.142 0.141
BERT-INIT 0.299 0.210* 0.145 0.143 0.143
MBERT-INIT 0.298 0.209 0.143 0.142 0.144*
SingleNeg 0.292 0.209 0.147* 0.142 0.141
MMR 0.301* 0.210* 0.143 0.143 0.144*
BERT-NeuQS 0.296 0.209 0.145 0.145* 0.142
BERT-GT 0.294 0.206 0.141 0.145* 0.143
MMR-BERT 0.306† 0.217† 0.151† 0.146 0.146†

in Section 6.4.3 show this point. Also, as mentioned in Section 6.3.4, the methods

can ask at most 5 questions when they cannot identify user intents. These questions

could have more supplementary information than BERT-MMR in finding relevant

documents if they are of label 1. Nonetheless, MMR-BERT still achieves significant

improvements on 8,962 conversations.

Figure 6.5 confirms the advantage of MMR-BERT by showing that it can retrieve

documents relevant to user needs better at earlier turns as well. With more inter-

actions allowed, MMR-BERT can identify more true user intents and thus achieve

better document retrieval performance. Among the baselines that select questions

using negative feedback, MMR has the best evaluation results most of the time,

probably due to its better overall performance in intent clarification, shown in Table

6.2. It boosts questions with label 2 without harming the performance of questions

with label 1. Using revised QL for document retrieval, questions of label 1 can also

be more helpful than a non-relevant question.

6.4.3 Case Analysis

We extract some representative successful and failure cases of MMR-BERT com-

pared with the best baseline - BERT-GT in terms of MRR in the intent clarification
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Figure 6.5: MRR at each turn on document retrieval.

task, shown in Table 6.4. We include conversations of faceted and ambiguous queries

as well as navigational and informational facets for both good and bad cases to show

how the models perform on various types of queries and facets. In these cases, MMR-

BERT and BERT-GT have the same initial clarifying questions with negative feed-

back. These cases show how MMR-BERT and BERT-GT select the next question

based on the same previous negative feedback.

Success Cases. MMR-BERT identifies the correct user intent by selecting ques-

tions that are relevant to the query while di↵erent from previous questions with

negative feedback. In contrast, BERT-GT tends to select questions that are similar

to both the query and the previous questions. For the example query “diversity”,

the initial clarifying question asks whether the intent is to find the definition of di-

versity. MRR-BERT asks the user whether he/she needs the educational materials

about diversity in the second turn. However, BERT-GT still asks questions about

the definition of diversity twice in the following four turns. For the ambiguous query

“flushing”, given negative feedback on the first question about toilet flushing, MMR-

BERT asks about Flushing in New York in the next question while BERT-GT still

asks about the flushing of the same meaning in the second question. For another
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Table 6.4: Good and bad cases of MMR-BERT compared with the best baseline -
BERT-GT in terms of their MRR di↵erences(�MRR(CQ)) in the intent clarification
task. The maximal number of conversation turns is 5. �MRR(Doc) denotes the MRR
di↵erence of the associated document retrieval task after the conversation. Queries
are shown in the format of query(facet description); topic type; facet type.

“diversity”(“How is workplace diversity achieved and managed?”); faceted; informational

BERT-GT

are you looking for a definition of diversity? no

�MRR(CQ):
+0.500
�MRR(Doc):
+0.667

would you like the legal definition of diversity? no
would you like to know how diversity helps or harms an organization? no
do you need the definition of diversity? no
would you like to see results about diversity in a business setting? no

MMR-BERT
are you looking for a definition of diversity? no
are you looking for educational materials about diversity? yes, i need materials on achieving
workplace diversity

“flushing”(“Find information about Flushing, a neighborhood in New York City.”); ambiguous; informational

BERT-GT

would you like to see diagrams of how a toilet flushes? no

�MRR(CQ):
+0.500
�MRR(Doc):
+0.005

would you like to know about the plumbing mechanisms of flushing? no
what aspect of the flushing remonstrance would you like to learn more about? no
which battle would you like to learn about how the technique of flushing was used? no
what flushing are you interested in toilet or facial? no

MMR-BERT
would you like to see diagrams of how a toilet flushes? no
are you referring to flushing new york? yes

“the sun”(“Find the homepage for the U.K. newspaper, The Sun.”); ambiguous; navigational

BERT-GT

are you interested in the suns size? no

�MRR(CQ):
+0.500
�MRR(Doc):
+0.000

are you interested in objects orbiting the sun? no
do you want to know how far the sun is away from di↵erent planets? no
are you looking for information about how big the sun is? no
do you want to know facts about the sun? no

MMR-BERT
are you interested in the suns size? no
are you looking for the news paper the sun? yes, the uk newspaper

“raised gardens”(“Find photos of raised garden beds.”); faceted; navigational

BERT-GT
do you need information in di↵erent types that can be made? no

�MRR(CQ):
-0.500
�MRR(Doc):
-0.166

is your request related to raised garden beds? yes, find pictures of it

MMR-BERT

do you need information in di↵erent types that can be made? no
what specific supply would you like to buy for your raised garden? no
do you want to take a class about raised gardens? no
do you want to buy a book about raised? no
do you want to know how to create a raised garden? no

“rice”(“Find recipes for rice, for example fried rice or rice pudding.”); ambiguous; informational

BERT-GT
are you looking for a specific type of rice? no

�MRR(CQ):
-0.500
�MRR(Doc):
-0.000

are you looking for recipes that include rice? yes, i want recipes for rice

MMR-BERT

are you looking for a specific type of rice? no
are you looking for rice university? no
do you want to know the nutritional content of rice? no
are you referring to a person named rice? no
what type of rice dish are you looking? no

“flushing”(“Find a street map of Flushing, NY.”); ambiguous; navigational

BERT-GT
would you like directions to flushing new york? no

�MRR(CQ):
-0.500
�MRR(Doc):
-0.167

are you referring to flushing new york? yes, exactly

MMR-BERT

would you like directions to flushing new york? no
would you like to know about the plumbing mechanisms of flushing? no
do you want to know why your face is flushing? no
are you looking for a directions to the new york hall of science in flushing meadows corona
park? no
which battle would you like to learn about how the technique of flushing was used? no
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ambiguous query “the sun”, the first clarifying question is about sun size. Based

on the negative response, MMR-BERT asks about another meaning of the sun - the

newspaper named as the sun. In contrast, the next four questions BERT-GT asks

are all about the sun as a star, and the question in the fourth turn is again about the

size of the sun. Improvements in identifying the correct clarifying questions can lead

to better performance in the associated document retrieval task but it is not always

the case probably due to the simplicity of the document retrieval model.

Failure Cases. The questions asked by MMR-BERT in each conversation are

more diverse and tend to cover more intents. However, the questions that receive

positive feedback sometimes are more semantically similar to the questions with neg-

ative feedback than the other questions. In such cases, MMR-BERT fails to identify

the correct intents within fewer conversation turns by asking diverse questions. For

the faceted query “raised gardens” with intent “find photos of raised garden beds”,

the initial question does not include any query words, so emphasizing the di↵erence

from this question is not helpful and could even be harmful to select next question by

introducing noise. For the ambiguous query “rice”, the first question asking whether

the user wants a specific type of rice receives a negative response. In the following

conversations, MMR-BERT asks about other meanings of rice such as Rice University

and a person named Rice. BERT-GT selects the question that is also related to the

meaning of rice as food in the next turn. Although referring to the same meaning, the

aspect of the recipe is the true user intent. Similarly, for the query “flushing”, while

the user wants the street map of Flushing New York, the question that asks about

the direction to Flushing New York receives negative feedback. MMR-BERT selects

questions about other meanings of flushing in the next several turns including the

mechanism or technique, face flushing, and Flushing meadows corona park. However,

the true intent is another facet of the same meaning. These cases argue for other

strategies to ask questions such as clarifying meanings for ambiguous queries first
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and then asking about the subtopics under the correct meaning. We leave this study

as future work. The performance of MMR-BERT in these cases in the associated

document retrieval task sometimes is not always worse than BERT-GT, due to some

useful information contained in the conversations even though the questions do not

receive positive feedback.

6.5 Summary

In this chapter, we study how to ask clarifying questions based on negative feed-

back in information-seeking conversations. We introduce an intent clarification task

based on yes/no clarifying questions, with the goal of asking questions that can un-

cover the true user intent behind an ambiguous or faced query within the fewest

conversation turns. We propose a maximal-marginal-relevance-based BERT model

(MMR-BERT) that leverages the negative feedback to the previous questions using

the MMR principle. Experimental results on the refined Qulac dataset show that

MMR-BERT has significantly better performance than the competing question se-

lection models in both the intent identification task and the associated document

retrieval task. Analysis on the impact of topic and facet type shows MMR-BERT

outperforms the baselines mainly on ambiguous and navigational queries. Case anal-

ysis confirms that MMR-BERT tends to ask diversified questions to users.

Due to the lack of suitable datasets that consist of yes/no questions, we only con-

ducted experiments on Qulac to study intent clarification based on negative feedback.

We are aware that there could be di↵erent observations for other upcoming datasets

in the future. Also, it could be a better policy to generalize to unseen user queries

by generating clarifying questions than selecting from pre-collected candidates. We

leave collecting other datasets and generating clarifying questions as future work.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this chapter, we briefly summarize our work. We first give an overview of

our studies on various aspects of leveraging user feedback and our proposed neural

approaches to incorporate each type of feedback. Then we summarize our key conclu-

sions and findings in the previous chapters. At last, we conclude by discussing some

potential research directions in studying user feedback.

7.1 Overview of Neural Feedback Approaches in IR

User feedback on the relevance of search results, including documents, answer

passages, products, and questions, indicates their information need or preferences.

Users’ implicit feedback such as clicks is relatively easy to collect and it is also feasible

to obtain their explicit feedback during interactionsinmodern scenarios such as voice

or text-based conversational search. The feedback can help refine the reranked results

to tailor to the user intent. In this dissertation, we explore incorporating positive and

negative feedback for ranking e↵ectively. Specifically, we study the following aspects

of leveraging feedback:

1. Iterative Relevance Feedback. Mobile or voice-based search scenarios argue

for iterative feedback with one result in each interaction and passages rather

than documents due to severe limitations of space or voice bandwidth. To find

more relevant results given known relevant ones from users’ positive feedback, we

convert conventional relevance feedback (RF) techniques to iterative version and

leverage passage-level semantic match to improve the iterative RF performance
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on answer passages. The proposed unsupervised iterative RF method is a first

step to study positive feedback based on passage embeddings.

2. Implicit Relevance Feedback. User clicks indicate their preferences and can

be considered as implicit positive feedback. The system can easily collect such

data and use them for updating the unshown results when the user requests

subsequent pages. As a second step to study positive feedback, we propose a

supervised end-to-end neural model to incorporate the user clicks for multi-page

product search, which can capture both the semantics of item information and

the cooccurrence of clicked and purchased items.

3. Fine-grained Feedback. Negative feedback is more valuable than positive

feedback since it brings more gains to find a first relevant result than extra

relevant results. It is also more challenging as non-relevant results can vary

from relevant ones in numerous ways. To gather as much useful information as

possible from results with negative feedback, we propose to ask users for fine-

grained feedback based on the non-relevant results. We investigate this idea on

product search where results are structured so that we can collect feedback on

aspect-values of the non-relevant items. We propose an aspect-value likelihood

model to incorporate both positive and negative aspect-value-level feedback.

4. Intent-level Negative Feedback. In addition to showing search results and

asking for relevance judgments on them, another way of collecting feedback is to

ask clarifying questions about meanings or subtopics of a query before showing

retrieved results. The intent space of a query is usually much smaller than the

space of documents or passages, which makes it promising to leverage negative

feedback on clarifying questions to reduce the search space and identify user

intent. We propose an intent clarification task that aims to ask correct questions

about true user intent within the fewest conversation turns. We build our model
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on top of the contextual neural language models pretrained with large-scale

data, i.e., BERT, to have the ability to di↵erentiate semantic meanings and ask

diverse questions based on the negative feedback.

7.2 Summary of Experimental Results

We study each aspect of feedback mentioned in Section 7.1 on various of IR tasks

and propose neural models to incorporate the feedback accordingly in the dissertation.

The tasks include iterative relevance feedback for answer passage retrieval, leveraging

user clicks for multi-page product search, conversational product search based on fine-

grained feedback, and intent clarification in information-seeking conversations. We

summarize our key findings as follows.

Iterative Relevance Feedback for Answer Passage Retrieval. On stan-

dard TREC collections, Robust and Gov2, we observe that iterative RF is at least as

e↵ective as standard feedback for document retrieval. On answer passage collections,

WebAP [155] and PsgRobust [16], we find that iterative RF is much more power-

ful than top-k feedback in finding answers. In the IRF experiments, our proposed

passage-level semantic match method has produced significant improvements com-

pared to word-based IRF models and other RF models based on term-level semantic

similarity. The experiment on retrieval based on one relevant passage shows that in

the case where feedback information is scarce passage-level and term-level semantic

match are complementary to each other and incorporating both of them leads to even

better performance. The e↵ectiveness of our passage embedding-based model indi-

cates that feedback methods do not have to be in the way of extracting expansion

terms followed by estimating the term weights and neural approaches are promising.

Leveraging User Clicks for Multi-page Product Search. Experiments on

the data collected from Amazon search logs show that the short-term context, i.e.,

users’ implicit feedback in a query session, in multi-page product search significantly
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boosts search quality and it is better than the long-term context, i.e., users’ global

preferences across query sessions. Our supervised end-to-end feedback model that rep-

resents user preferences (or feedback topics) with average item embeddings is much

more e↵ective than word-based feedback models, again indicating that feedback mod-

els do not need to be in the form of query expansion. For a neural retrieval model, the

design of a feedback model should combine the representations of results with feed-

back and the query, where feedback information is incorporated in the latent space

without the need of extracting explicit expansion terms.

Conversational Product Search Based on Fine-grained Feedback. On

the Amazon Review dataset [89], we extracted aspect-values from product reviews

and simulate users’ fine-grained feedback based on them. Experimental results show

that our proposed aspect-value likelihood model outperforms state-of-the-art prod-

uct search methods without using feedback and baselines using item-level negative

feedback. We also observe that negative feedback at the aspect-value level is more

e↵ective than positive feedback in filtering out non-satisfactory items. This is prob-

ably because when users provide positive feedback on some aspect-values, they may

finally purchase items with other similar attributes. In contrast, when they dislike

some aspect-values, they usually do not purchase items with such attributes. Overall,

we show that obtaining and using fine-grained feedback on non-relevant results is a

promising way to leverage negative feedback.

Intent Clarification in Information-seeking Conversations. We refined the

data in an open-domain conversational information-seeking collection, Qulac [10], for

the task of asking clarifying questions based on negative feedback. We propose MMR-

BERT based on the maximal-marginal-relevance (MMR) principle [23] and pretrained

contextual embeddings to leverage negative feedback on clarifying questions. Exper-

iments on the refined Qulac show that MMR-BERT significantly outperforms the

state-of-the-art question selection models that are also based on BERT and conven-
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tional negative feedback baselines. The questions asked by MMR-BERT also lead to

significantly better performance than the competing methods in the associated docu-

ment retrieval task. Our further analysis indicates that MMR-BERT outperforms the

baselines mainly on ambiguous and navigational queries. The ability of pretrained

BERT to di↵erentiate semantic meanings is essential for MMR-BERT to e↵ectively

use negative feedback.

7.3 Future Work

As interactions between users and retrieval systems have evolved from typing key-

words in the search box to conversations, we believe that incorporating user feedback

with neural models is a meaningful and important research topic. While we have

explored some aspects of the topic towards e↵ective search, there remains some work

we are interested in and some challenges we have not discussed yet. Next, we briefly

review the directions for future work.

Larger Datasets for Neural Feedback Models. In our studies on user

feedback, a big challenge we need to tackle is the lack of data that has dynamic inter-

actions between users and systems. In Chapter 3, we create PsgRobust 1 for iterative

feedback on answer passages. In Chapter 4, we collect the data from Amazon search

logs. In Chapter 5, we extract aspect-values from item reviews and simulate the con-

versations by matching the aspect-values of a candidate item and a purchased item.

In Chapter 6, we refine Qulac [10] by removing the complementary information in the

answers that are negative feedback. Due to the limit of available data to create the

suitable collections to study our tasks, sometimes we may not have enough datasets

to experiment on and draw more general conclusions (e.g., in Chapter 6). In addition,

most datasets in text retrieval only have relevance judgments for a small number of

1https://ciir.cs.umass.edu/downloads/PsgRobust/
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queries, which limits the exploration of complex neural models with numerous pa-

rameters. For instance, BERT has hundreds of millions of parameters, and the small

local corpus can only be used to fine-tune the BERT models, which are susceptible to

overfitting. A thread of our future work is creating datasets that have more available

queries and user interactions. Query logs and Wikipedia topic hierarchies are good

resources for us to build datasets upon. On larger datasets, we can do more experi-

ments to verify our findings in the dissertations and analyze the reasons if there are

di↵erent observations.

Clarifying Question Generation. In this dissertation, we either use templates

to construct questions that ask for feedback on passages or aspect-values (Chapter

3, 5) or select questions from a collection of pre-written clarifying questions. To act

more intelligently, a system should communicate like a human with diverse sentences.

Also, pre-written questions may not fit well when users provide unexpected responses.

Thus, it argues for generating questions based on the conversation history in an ideal

intelligent retrieval system. The questions should be generated based on aspect-

values of a product, meanings of an ambiguous query, subtopics under a meaning,

etc., which can be considered as knowledge of the query. To this end, it is essential

to construct a knowledge base that captures the structured information of products

or the topic hierarchy for queries. We have extracted aspect-values of products in

conversational product search while we have not built such a knowledge base for

query topics. We can leverage the existing knowledge base, query logs, or relevant

documents, to train a model to extract such knowledge for unseen queries and generate

questions. Language generation usually requires a large amount of data for training.

Due to the expensive e↵ort of creating utterances in various conversations, we can

leverage existing questions in other tasks as weak supervision signals to train the

generation model.
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Questions to Ask for Feedback. In addition to building feedback models to

retrieve the next results (passages, products, and questions) given user feedback to

previously presented results, which we focus on in this dissertation, it is also very

important to study what questions to ask so that the user feedback can provide

maximal useful information. The questions can be on the relevance of a passage or

document, the preferences of aspect-values of a product, the relevance of meanings

or subtopics of a query, etc. There has been some work on selecting feedback doc-

uments in conventional top-k feedback based on document relevance, diversity, and

density [121, 152, 150, 149]. We aim to study similar topics in the modern search

scenarios: in passage retrieval, questions on which passages can benefit reranking

quality the most; in product search, questions on what aspect-values can help the

system know the user preferences better and identify ideal items as soon as possible;

in open-domain information-seeking conversations, from the perspective of document

or passage retrieval, what clarifying questions to ask can boost the retrieval perfor-

mance the most. It could be necessary to build a hierarchy for query topics and ask

questions from a higher level to a lower level. Also, query performance prediction

techniques can be useful for asking beneficial questions. The models that incorporate

feedback and ask questions can be learned simultaneously to complement each other.

Furthermore, it is worth studying how to balance question quality and their potential

gain since users may quit the session if the system asks unrelated questions.

Implicit Negative Feedback. Users usually skip the results they are not inter-

ested in when they browse the result lists. Their skips can be considered as implicit

feedback, similar to user clicks, and indicate their negative feedback on the results. In

multi-page product search, when users turn to the next page without click any items

on the current page, it may indicate that their ideals items are not shown yet. An

e↵ective system can leverage this information to refine the ranking of the remaining

items. Although such data can be noisy and ground-truth data is hard to collect,
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if a user purchases an item in the subsequent pages without clicking any items in

the previous pages, it is still a strong signal of negative feedback and the purchased

items are the targets. By summarizing the attributes of a batch of non-satisfactory

products, it could be promising to identify ideal items by reducing items with similar

attributes in the subsequent pages.

Negative Feedback in Free-form User Response. An ideal conversational

search assistant should understand user utterances like a human and respond accord-

ingly. In a dialogue, the user response can be free text instead of just a “yes” or

“no”. It is important to understand what kind of feedback an utterance expresses.

For example, given a query “cellphone”, the user response “Yes, but better not be

iPhone.” to the question “Do you like a cellphone that can be unlocked with face

recognition?” has negative feedback to “brand: apple” although it confirms “unlock

option: face recognition”. The system should understand the utterance and extract

the corresponding feedback information when searching and filtering items. Another

user response “It is a redundant feature” is negative feedback to the feature “unlock

option: face recognition”. However, the system needs to know that “redundant”

means unfavorable to understand this is a negative opinion. Most existing work that

leverages conversation history for retrieval does not treat utterances that express a

negative opinion specially in the retrieval model [10, 64, 106, 104]. Since term or

semantic matching is essential in retrieval models and they usually play a positive

role in scoring results, it would lead to user dissatisfaction if utterances with negative

feedback are treated the same way. An e↵ective system should understand the opin-

ions delivered in the user utterance and incorporate the negative feedback specially

in the retrieval model.
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feedback for exploratory search with visual interactive intent modeling. In
Proceedings of the 22nd International Conference on Intelligent User Interfaces
(2017), ACM, pp. 149–159.

[101] Pennington, Je↵rey, Socher, Richard, and Manning, Christopher D. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP) (2014), pp. 1532–
1543.

[102] Peters, Matthew E, Neumann, Mark, Iyyer, Mohit, Gardner, Matt, Clark,
Christopher, Lee, Kenton, and Zettlemoyer, Luke. Deep contextualized word
representations. In Proceedings of NAACL-HLT (2018), pp. 2227–2237.

147



[103] Ponte, Jay M, and Croft, W Bruce. A language modeling approach to infor-
mation retrieval. In Proceedings of the 21st annual international ACM SIGIR
conference on Research and development in information retrieval (1998), ACM,
pp. 275–281.

[104] Qu, Chen, Yang, Liu, Chen, Cen, Qiu, Minghui, Croft, W Bruce, and Iyyer,
Mohit. Open-retrieval conversational question answering. In Proceedings of the
43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval (2020), pp. 539–548.

[105] Qu, Chen, Yang, Liu, Croft, W Bruce, Trippas, Johanne R, Zhang, Yongfeng,
and Qiu, Minghui. Analyzing and characterizing user intent in information-
seeking conversations. In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval (2018), ACM, pp. 989–992.

[106] Qu, Chen, Yang, Liu, Qiu, Minghui, Zhang, Yongfeng, Chen, Cen, Croft,
W Bruce, and Iyyer, Mohit. Attentive history selection for conversational ques-
tion answering. In Proceedings of the 28th ACM International Conference on
Information and Knowledge Management (2019), pp. 1391–1400.

[107] Rabinovich, Ella, Rom, Ofri, and Kurland, Oren. Utilizing relevance feedback
in fusion-based retrieval. In Proceedings of the 37th international ACM SIGIR
conference on Research & development in information retrieval (2014), ACM,
pp. 313–322.

[108] Radlinski, Filip, and Craswell, Nick. A theoretical framework for conversational
search. In Proceedings of the 2017 conference on conference human information
interaction and retrieval (2017), pp. 117–126.
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