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Neural ranking models (NRMs) have demonstrated effective performance in several information retrieval (IR)
tasks. However, training NRMs often requires large-scale training data, which is difficult and expensive to
obtain. To address this issue, one can train NRMs via weak supervision, where a large dataset is automatically
generated using an existing ranking model (called the weak labeler) for training NRMs. Weakly supervised
NRMs can generalize from the observed data and significantly outperform the weak labeler. This paper
generalizes this idea through an iterative re-labeling process, demonstrating that weakly supervised models
can iteratively play the role of weak labeler and significantly improve ranking performance without using
manually labeled data. The proposed Generalized Weak Supervision (GWS) solution is generic and orthogonal
to the ranking model architecture. This paper offers four implementations of GWS: self-labeling, cross-labeling,
joint cross- and self-labeling, and greedy multi-labeling. GWS also benefits from a query importance weighting
mechanism based on query performance prediction methods to reduce noise in the generated training data. We
further draw a theoretical connection between self-labeling and Expectation-Maximization. Our experiments
on four retrieval benchmarks suggest that our implementations of GWS lead to substantial improvements
compared to weak supervision if the weak labeler is sufficiently reliable.
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1 INTRODUCTION

Deep neural networks have shown promising results in many retrieval tasks, including ad-hoc
retrieval [10, 25, 28, 54], conversational search [13, 33, 48], and cross-modal retrieval [9, 16]. Training
existing neural ranking models (NRMs) often requires a large amount of training data. However,
obtaining such a large training set is often difficult and expensive.

This paper focuses on training NRMs when no manually labeled data is available for training. A
straightforward solution to tackle this problem is to use large-scale pre-trained language models,
e.g., BERT [8], as zero-shot ranking models. However, since these models are not optimized for
retrieval tasks, their zero-shot performance for retrieval tasks is limited. They even perform poorer
than term-matching models, such as BM25 [37]. This is why these models are often fine-tuned
using labeled training data.
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An alternative solution to this problem is to train NRMs using noisy training signals produced
by existing (unsupervised) retrieval models. This teacher-student learning approach is called weak
supervision [7, 51], and the teacher model is often called the weak labeler. Weak supervision
addresses the data scarcity issue by leveraging unsupervised methods to infer a noisy ranked list
and uses that signal as ground truth for training a neural ranking model. In this line of research,
classical IR methods, such as BM25, are usually selected as the weak labeler [7, 53]. There exists
numerous theoretical and empirical evidence that weakly supervised models can significantly
outperform their weak labelers [7, 51, 53]. This paper generalizes the weak supervision formulation
such that a weakly supervised model iteratively becomes the weak labeler. We hypothesize that
such an approach should lead to performance improvement since the quality of weakly supervised
training data is iteratively improved. Based on this hypothesis, we propose Generalized Weak
Supervision (GWS), a generic framework for training neural ranking models with no labeled data.
We offer four implementations of this framework. The first implementation is called self-labeling,
in which one weakly supervised model iteratively produces the training data for the next iteration.
The second implementation is called cross-labeling. In this case, we use two NRMs M; and M,
exchanging information by playing the roles of teacher models for one another in weak supervision.
In other words, each model is optimized using the training data produced by the other model,
and the role of the teacher model alternates between them. The third implementation is called
joint cross- and self-labeling. As the combination of the previous two implementations, we also
have two NRMs M; and M, as teacher and student models. Different from cross-labeling, which
exchanges weak signals in each iteration, after each model alternation (i.e., cross-labeling), we apply
self-labeling to train the student model thoroughly and then repeat the cross-labeling process. The
last implementation is called greedy multi-labeling, in which we train several model checkpoints
based on weak supervision signals generated from all ranking models and pick the best one to
represent this structure as the signal provider (i.e., the teacher) for the next iteration. In other
words, the best-performing students at every iteration become the teachers for the next iteration.

This paper also draws theoretical connections between the simplest implementation of the
proposed GWS framework (i.e., self-labeling) and the Expectation-maximization (EM) algorithm, a
well-known framework for unsupervised learning which has been successfully used for a wide
range of tasks, including semi-supervised text classification [27], transfer learning [21], language
model estimation [14], and pseudo-relevance feedback [55].

We further survey techniques for enhancing the effectiveness of GWS training. To this aim, we
study query importance for the weak supervision training process. Intuitively, we would like to
train NRMs by emphasizing the queries for which the weak labeler produces high-quality results.
This will reduce the level of noise in the training set. Based on this intuition, we leverage existing
query performance prediction (QPP) models that have been studied in the information retrieval
literature for decades [5, 39, 52], and propose an in-batch weighting method of training instances
to modify the importance of queries based on the prediction of QPP models.

In our experiments, we evaluate the proposed methods using four publicly available datasets:
(1) WikiPassageQA [4], a passage retrieval dataset based on Wikipedia articles; (2) ANTIQUE
[12] a passage retrieval dataset for non-factoid questions submitted by real users to community
question answering websites; (3) NQ [20], an open domain question answering dataset for real
users’ questions and corresponding answering based on Wikipedia; and (4) MSMARCO, a large
scale passage ranking dataset. In our experiments, we follow Dehghani et al. [7] and adopt BM25
[36] as the initial weak labeler. We train two pre-trained language models, BERT [8] and RoBERTa
[22], using (generalized) weak supervision. For QPP, we use Normalized Query Commitment (NQC)
[39], a popular unsupervised QPP method for predicting the performance of the initial weak labeler
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for each training query. Further, we adopt an in-batch re-weighting training process to incorporate
NQC into the loss function.
To summarize, the contributions of this paper include:

e Proposing the Generalized Weak Supervision framework.

e Introducing four implementations of the GWS framework.

e Drawing connections between GWS and the EM algorithm.

e Enhancing GWS training by leveraging query performance prediction models for query
importance.

e Demonstrating substantial improvements in ranking quality compared to zero-shot and
weakly supervised baselines. Note that these improvements are solely observed using auto-
matic relabeling of training data with no manually labeled data.

2 RELATED WORK

In this section, we first review two of the most relevant lines of research to this paper: neural ranking
models and weak supervision. We further provide a brief review of prior work on self-labeling,
knowledge distillation, and domain adaptation. Even though these three topics are not directly
related to the contributions of this work, there are some connections that are worth exploring.

2.1 Neural Ranking Model

In recent years, several neural ranking models have been proposed for retrieval tasks. DSSM [17]
and C-DSSM [38] adopted a method to learn the representation of query and document individually
and use a matching function to score. The deep relevance matching model [10] exploits histogram
feature to represent the interaction between query and document as the input of neural ranking
architecture. DUET [25] uses two networks to learn local interaction and distributed matching
between query and document respectively.

After BERT [8] is proposed, large-scale pre-trained language models are widely applied to ranking
problems. For instance, Nogueira and Cho [28] used BERT for passage ranking and demonstrated
significant improvement. Han et al. [11] combined learning-to-rank and the ensemble of BERT
[8], RoBERTa [22] and ELECTRA [2] for passage ranking. Qu et al. [32] apply BERT for the
conversational question answering task.

The mentioned neural ranking models focus on re-ranking problems, where an efficient first-
stage retrieval model, such as BM25, provides a small list of documents for re-ranking. Zamani
et al. [53] demonstrated for the first time that neural models can be used for document retrieval
from a large collection without the need to a multi-stage cascaded retrieval architecture. This
phenomenon was later adopted and applied to dense query and document embedding with the use
of approximate nearest-neighbor search algorithms. Such dense retrieval approaches, such as DPR
[18], use a dual encoder architecture to encode queries and documents separately and compute
their similarity using simple matching functions, such as dot product or cosine similarity. Several
works [19, 34, 46, 54] were proposed based on the dense retrieval setting to move from re-ranking
to ranking.

The vast majority of recent neural ranking models are trained on large data collections, such
as MS MARCO, and do not focus on the issue of data volume. In this work, we aim to propose
a general framework for training neural ranking models without a need to ground truth labels.
Therefore, the proposed approach can potentially be applied to any of the existing neural ranking
model architectures listed above.
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2.2 Weak Supervision for IR

As the motivation of this paper, weak supervision tries to solve the problem of data volume for
neural ranking models. Dehghani et al. [7] first proposed weak supervision to train a neural ranking
model based on the labels generated by existing retrieval methods, e.g., BM25 or heuristics. They
empirically showed that weakly supervised neural ranking models can significantly improve their
weak labeler, solving an important problem in optimizing large deep learning models without
labeled data. Later, Zamani and Croft [51] provided theoretical insights into weak supervision for
information retrieval.

Several works [26, 43, 52] exploited weak supervision on specific IR tasks. Voskarides et al.
[43] used automatically generated data for fact ranking in a knowledge graph. Zamani et al. [52]
leveraged multiple weak signals for query performance prediction (QPP). Nie et al. [26] used
weak supervision to train the retrieval model with multi-level matching. Zamani and Croft [50]
used weak supervision for learning relevance-based word embeddings. Given the success of weak
supervision in IR, a number of approaches focused on strengthening the effectiveness of weak
supervision. Zhang et al. [57] applied reinforcement learning to select anchor-document pairs
for training weakly supervised neural ranking models. Some methods [24, 47] adopt pre-trained
language models like BERT as the weakly supervised ranking model. In this paper, we also follow
this setting and use pre-train language models as the retrieval model. Different from enhancing
weak supervision by switching models, improving data selection, or broadening the application,
our method aims to generalize the whole weak supervision framework. That is, GWS can cooperate
with all previous related works and further improve them.

Previous works solely rely on one or more weak labeler to train their model. In this paper,
we generalize this approach such that the weakly supervised models in each step become weak
labelers in the next step. The proposed framework is sufficiently generic to be applied to any weakly
supervised model.

2.3 Self-Labeling

Self-labeling is widely used for semi-supervised learning problems. By directly imputing ground
truth labels for unlabeled instances, self-labeling propagates labels to unknown target data. Nigam
etal. [27] applied self-labeling to semi-supervised text classification using an Expectation-Maximization
(EM) algorithm. Chen et al. [1] designed an algorithm for semi-supervised sentiment classification
by iterative imputing sentiment labels for unlabeled reviews according to the current model’s
confidence score on the data.

Among all, we found the one conducted by Li et al. [21] the most relevant to ours. The authors
trained an initial ranker from ground truth labels on a source domain and used self-labeling to label
the target domain’s data. Then, they re-trained the ranker on the target data from self-labeling and
repeated the above operation until convergence. The steps for the target domain are similar to ours.
However, their task is transfer learning, which needs large-scale ground truth labels on the source
domain. In our setting, we do not include any labeled data at any stage of our training.

2.4 Knowledge Distillation for IR

To achieve the performance of neural models with lower computational cost, a common approach is
to distill knowledge from large teacher neural models into smaller student models. For pre-trained
language models like BERT, DistilBERT, and TinyBERT are proposed to create light-weight models
when maintaining the performance on various tasks using distillation.

Due to the success of pre-trained language models on IR tasks, there are several works on
applying knowledge distillation on IR. Zeng et al. [54] proposed a curriculum learning framework
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to optimize student dense retrieval models from teacher re-ranking models. Vakili Tahami et al. [42]
proposed a new cross-encoder architecture to transfer its knowledge to a low-cost bi-encoder for
the response retrieval task. Hofstétter et al. [15] proposed a cross-architecture training procedure
to adapt knowledge distillation to the varying output score distributions from different neural
models.

Although the relationship between teacher and student models is similar to weak signals and
weakly supervised models, there are two main differences between the two tasks. First, in the
setting of knowledge distillation, label information is available especially for the teacher models’
training, and the goal is to create low-cost inference when having a supervised model. Second,
knowledge distillation uses a smaller student model to approximate the performance of a larger
one, while this is not the case in weak supervision, and some labels can even come from simple
non-ML models.

2.5 Domain Adaptation for Neural IR

Because there exist some massive IR datasets like MS MARCO as a rich source domain, domain
adaptation is also a crucial solution for neural IR to solve the high dependency on in-domain
data. Cohen et al. [3] did early work on domain adaptation for neural retrieval by cross-domain
adversarial learning, but it did not include pre-trained models from a source domain.

Recent works exploited pre-trained IR models from existing data on other retrieval tasks. Wang
et al. [44] trained doc2query T5 model and retrieval models on the source domain, used T5 to
generate pseudo-queries on the target domain, and then applied a pre-trained dense retrieval model
and a cross-encoder model to build pseudo pairwise data for training a new retrieval model on the
target domain. Sun et al. [40] not only built pseudo-labeled data on the target domain by pre-train
models on the source domain but also added a meta-learning method to learn meta weighting on
synthetic data to exploit weak supervision signals better. Different from weak supervision, Zhan
et al. [56] split a retrieval component into two modules, Relevance Estimation Module (REM) and
Domain adaptation Module (DAM), to deal with general relevance matching and adaptation to the
target domains. Even though domain adaptation focuses on solving data scarcity and sometimes
includes weak supervision, the general assumption of domain domain adaptation is to have an
initial rich data source for transferring. We deal with a different problem, which does not assume
the existence of a rich source domain with large-scale labeled data, and aim to train a feasible
model without any relevance information in all domains. However, for the works adopting weak
supervision as a part of the solution, the proposed GWS can potentially be incorporated.

3 FORMULATING WEAK SUPERVISION FOR IR

Given a query g and a document collection C, the task of ad-hoc information retrieval is to develop
a retrieval model My parameterized by 0 for retrieving documents from C with respect to their
relevance to the query q in descending order. Unsupervised approaches for ad-hoc retrieval mostly
focus on term matching between the query and document content, such as TF-IDF [35] , BM25 [37],
and query likelihood [30]. There also exist supervised ranking models that learn from a manually
labeled training set. Weak supervision is an approach for training retrieval models without any
manually labeled data. It uses unsupervised retrieval models (called the weak labeler), e.g., BM25,
to automatically annotate queries and documents for training learning to rank models.

For every training query q € Q, weak supervision uses a weak labeler M to retrieve a list of
documents D from C and creates a set of triplets Ty; = {(q. d, ﬁ(q, d)) : Vq € Q,Vd € D}. This
training set can be considered as noisy ground truth and thus can be used for training weak
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supervision models as follows:
0" = arg m@in L (M, Ty;)

where Q and £ denote the training query set and the ranking loss function, respectively. The
query set Q can be sampled from a search engine’s query logs or questions in community question
answering forums. It can also be automatically generated using autoregressive query generation
models or even by random n-gram selection from a corpus. The loss function £ can be implemented
using any of the pointwise, pairwise, and listwise ranking loss functions. Zamani and Croft [51]
proved that the weak supervision loss function .£ should be symmetric in order to be robust to the
weak supervision noise. They demonstrated that Hinge loss satisfies this property.

4 GENERALIZED WEAK SUPERVISION

In this section, we introduce the generalized weak supervision (GWS) framework for information
retrieval. GWS is a general framework for training ranking models. The model parameters in GWS
are first initialized using typical weak supervision approaches. Next, GWS runs an iterative process.
In each iteration, it re-labels the training data and uses the new training set for training another
ranking model. GWS repeats this process until a stopping criterion is met.

GWS can work with one single ranking model or multiple ranking models by changing the
re-labeling settings. In this work, we provide four different settings.

(1) Algorithm 1 introduces GWS with self-labeling, in which a single ranking model iteratively
re-labels the dataset and reuses it for optimization.

(2) Algorithm 2, on the other hand, introduces the weak labeling alternation implementation of
GWS, in which the relabeling process alternates between k weakly supervised rankers.

(3) Algorithm 3 is the combination of the above two. Ranking models also provide weak signals
to the other model in the manner of weak supervision but apply Algorithm 1 to train a model
thoroughly before exchanging.

(4) Finally, Algorithm 4 also adopts a multi-model setting, but it considers all teacher-student
combinations in each iteration and chooses the best one for a model structure as the teacher
model for the next round.

We provide a conceptual demonstration with two ranking model for all four implementations n
Figure 1. Note that the red circle in Figure 1d means the best checkpoint in the iteration. To simplify
the understanding, we only show the route starting from model 1 in Figure 1b and 1c, but the route
starting from model 2 is also conducted in parallel.

The following subsections provide in-depth details and justification for all of these implemen-
tations of GWS. We first explain the initialization of these models, which is similar in all these
four implementations. We then explain different re-labeling implementations. We also discuss the
relationship between GWS and Expectation-Maximization. We show the notations used for the
explanation in Table 1.

4.1 Initialization in GWS
The first step in GWS is to train the initial weakly supervised model using the typical weak
supervision setup introduced by Dehghani et al. [7]. All the four re-labeling algorithms demonstrate
that the initial weak labeling model is initialized by M, an existing unsupervised retrieval model,
such as BM25 [36].

Even though algorithms provide a general implementation of weak supervision, we only use the
top k retrieved documents by M instead of all documents in the collection. This has been done for
efficiency considerations. Thus, for every query q; € Q, let {d;1, diz, ..., dix } be the top k documents
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Table 1. Notations for GWS framework

Notation Definition

0 A query set

D A document set

0 Model parameters

6 Model parameters of the i neural structure

) Model parameters of the i neural structure trained on
the triplets generated from the j™ neural structure

M A ranking model

Mo A ranking model parameterized by 0

Ty A set of triplets generated by a model M

Model parameters / A model / A set of triplets from
the i™ neural structure.
Vv A validation error function

oD ; pD ;7@

retrieved by M. Therefore, the training triplets for this query include {(g;, d;1, M (qisdin)), -+
(qi, dik, M (gi> dix)) }- Therefore, the initial training set T; consists of |Q| X k query-document pairs.
Again, for efficiency reasons, we only re-score these documents in the following iterations of the
GWS framework. In the following subsections, the training data used in iteration ¢ is denoted as
Twy, » which is generated from a model My, parameterized by 6;.

4.2 Iterative Re-Labeling and Training in GWS

After building an initial model on weak supervision signals, we need to re-label the data by the
current checkpoint, i.e., re-scoring all the triplets in the training data, and train a new model on
these updated weak supervision signals.

In the ¢ iteration, we optimize the model parameter 6, based on the weakly supervised data
Twm,,_, generated from re-labeling in the previous iteration. Let the loss function be L(M, T) for the
model M and the data T, we have the following update in the training phase:

0, = arg mein L(Mg, Ty, )

Note that the update is not related to 6,_; since the operation is re-training a new model instead of
fine-tuning the last parameter. We empirically found that starting from the initial model would
lead to higher performance. The reason is that fine-tuning the last iteration is likely to overfit the
produced data.

In practice, when the training is done after n iterations, we will pick the final model from all
intermediate models based on the validation error function V:

Ofinal = arg minge (g, o,

yeen

Note that we still need a small validation set for V' to judge which checkpoints are the best ones for
our tasks. We leave the fully unsupervised judgment to the future extension.
In the following, we introduce four re-labeling algorithms described below.

4.2.1 Self-Labeling. In Algorithm 1, we exploit the intermediate model as a new weak labeler to
build new data for the next training iteration. Assume in the ' training iteration, after training on
weak supervision data T;_;, we get a ranking model Mp,. For the next iteration, we aim to build
new weak supervision data D; by Mp,. Regarding My, as the next weak labeler, we can update the
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. Model 1 | Model 1 \ _
1 - / Model 2 |

,,/'

. Model 1 | Model 1 \
e N / Model2 |

(a) Self-labeling (b) Cross-labeling

a4 < . ) .
[ Model1 | { Model1 | = weeeen | Model1 |
-\ £ \ y \ ,/’

| Model1 | [ Model2 |

T

N

(c) Joint cross- and self-labeling (d) Greedy multi-labeling

Fig. 1. Different GWS implementation for single-model and multi-model setting.

relevance score in D;_;. In summary, we have the following update in the self-labeling phase:
TM9: = {(qi, dijsMG,(qia dU))} where 1 < i < |Q|,1 < ] < k

Again, we focus on the re-ranking problem in this work and only update scores for the same pairs
as the previous data.

Instead of re-labeling by only one model (i.e., self-labeling), we can use multiple weakly supervised
models for re-labeling. The intuition is to increase the information diversity for the model in GWS.
Because the training process runs on the same dataset by the same neural architecture, the over-
fitting problem may deteriorate in iterative training. Thus, multi-model approaches aim to include
different neural architectures in GWS to avoid this problem. In the following, we will introduce
different implementations to let models be optimized and exchange their information.

4.2.2 Cross-labeling. As an alternative approach to self-labeling, Algorithm 2 aims to train m
ranking models at each iteration of GWS training and exchange the generated weak signals. In our
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Algorithm 1 Generalized Weak Supervision via Self-Labeling

1: Input (a) a set of queries Q; (b) a document collection C; (c) an unsupervised retrieval model
M; (d) a loss function L
Output a ranking model Mpy.
M —M
repeat
Initialize 0.
T«0
forg € Q do
T—TUM (q,C)
end for
0 «— argming L(Mpy, T)
M «— My
until convergence
return My

h 2 A U S i

= = e
W N = O

experiments, we show that even the simplest case where m = 2 improves self-labeling. That being
said, Algorithm 2 can be used for any m > 1 models.

Without loss of generality, consider we have two ranking models parameterized by 9,(1) and 0[(2)
at iteration t. In the re-labeling process of the t™ iteration, the two models generate two sets of
weak supervision data, as follows:

TMgt(l) = {(qi: dija M91(1) (qi, dl]))} Where 1<

A
IA
S
-
IA

~
A
=~

TMQ(Z) = {(qia dijs Mgt(z) (qi, dU))} where 1 =

A
A
S
-
IA

~
A
wn

During training, each model is trained on the data produced by the other model. Therefore, we
have:

(1 _ :
0,,; = arg rgl(ll?L(Mg(l), TMe§2> )

0,51 = argmin £ (M, Tu, )

Through the operations, two models can exchange information during learning and avoid overfitting
caused by self-labeling. In the case of two models, we easily set the supervision source as the other.
For multiple models, we can choose a random one for each model and build one-to-one matching
before training.

4.2.3 Joint Cross- and Self-labeling (JCS). Algorithm 3 combines self-labeling and cross-labeling
settings. This approach still exchanges the generated weak signals among ranking models. However,
it runs a self-labeling process for each ranking model before exchanging labels. Different from
cross-labeling, Algorithm 3 aims to exchange the label from each model after convergence through
self-labeling. As in the setting of cross-labeling, in the following, we only consider the simplest
case where m = 2,

Without loss of generality, consider we have two ranking models parameterized by Gt( Y and Ht(z)
at iteration ¢. In the re-labeling process at the ™ iteration, two models generate two sets of weak
supervision data, as follows:

TMg(l) = {(qi, dij’ Mgt(l)(qi, le))} where 1 < i < |Q|,1 < ] < k
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Algorithm 2 Generalized Weak Supervision via Cross Labeling

1: Input (a) a set of queries Q; (b) a document collection C; (c) an unsupervised retrieval model
M; (d) a loss function L.

2: Output m ranking models My, Mg, - -+ , Mgom) .
3 MO, M@ .o M jf

4: repeat

5. TO 7@ ... Tm) @

6¢:  Initialize 8V, 9 ... g™,

7: forie [1,2---,m] do

8: forg e Qdo

9 TW 7O y M (q,0)

10: end for

11: end for

12: forie [1,2---,m] do

13: 0 «— arg minguy L(Mpw, THD)
14: M(i) — Mg(i)

15: end for

16: until convergence

17: return My, My, - -+, Mgom

TMe}Z) = {(qi, dij, Mgt(Z)(Qis dij))} where1 <i<|Q|,1<j<k.

Following Algorithm 1, each model is trained on the data produced by itself. Therefore, we have:

(1) _ .
6,,, = arg I;’l(ll?L(Mg(l),TMsﬁl))

2 .
9t(+)1 = arg %'1(12? LMy, TMgt(z) )
Assume two models converge in the L;™ and L, iteration through the self-labeling process, we do
an additional update to exchange the labels as the following:

n _ :
9L1+1 = argmin L(Myw), Ty ;)
9(1) HLz

(2 _ :
9L2+l = argmin L(Mp@), Ty ), )
9(2) 9L1

After the exchange, we start a re-labeling process again as before.

4.2.4 Greedy Multi-Labeling. Greedy multi-labeling is a generalized version of cross-labeling.
Different from choosing one fixed weak signal provider for each model as in Algorithms 2 and
3, we consider all possible m models to build m weak signal sets for one model structure, train m
checkpoints and pick the best one as the signal provider for the next iteration. In other words, at
each iteration, we use all m weak labelers as teachers, train all m students, and then select the best
student models.

Consider we have two ranking models parameterized by Gt(l) and 9;2) at iteration t. In the
re-labeling of the ¢ iteration, two models generate their own weak supervision data:

TMG(I) = {(qi, dij’ Mgt(l)(qi, le))} Where 1 < i < |Q|,1 < ] < k

TMH(Z) = {(qi, dij, Met(z)(ql" dij))} where1 <i<|Q|,1<j<k.
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Algorithm 3 Generalized Weak Supervision via Joint Cross- and Self-Labeling

1: Input (a) a set of queries Q; (b) a document collection C; (c) an unsupervised retrieval model
M; (d) a loss function L.

2: Output m ranking models My, Mg, - -+ , Mgom) .
3 MO, M@ .o M jf

4: repeat

5. TO 7@ ... Tm) @

6: forie [1,2---,m] do

7: for g € Q do

8: TO «— 7O UMD (g,0)

9: end for

10: end for

11: forie [1,2---,m] do

12: 0 «— argming L (Mg, T"V)

13: MY — My

14: end for

15: forie [1,2---,m] do

16: M(;(i) « Algorithm 1(Q, C, M(’l.),L)
17: M(,i) — My

18: end for

19: until convergence

20: return Myw), Mg, -+, Mgom

In the next iteration, each model needs to be trained on all weak supervision data. Therefore, we
have m? candidate models 6’ as follows:

(1,1) 1 |
2] = arg I;I(IIEIL(MQU), Mg;n)
9(1,2) — argminL(M (1) ]M )
= o) o) 6§2>
(2,1) 1 |
2] = arg I;I(IZ?.E(MQ(Z), MH}”)

(22) _ :
0 =arg I&%?L(MG(ZM TM6£2>)

For each model structure, we choose the best one as the weak signal provider in the next iteration

as the following:

011, = argming g o,V (6)

9;_'2_)1 = arg minee{e(z,l)’e(z,z) }V(Q)

Where V is the validation error function for the candidate models. Again, we still need a small
validation set to judge which checkpoints are the best ones for our tasks.

4.3 Relationship of GWS and Expectation-Maximization

To better understand the theoretical foundation of GWS, we draw a connection between GWS
and Expectation-Maximization (EM), which has been widely explored in various machine learning
tasks. To this aim, we need to revisit GWS from the probabilistic view. For simplicity, this section
focuses on the self-labeling approach (Algorithm 1). Let R € {0, 1} be a binary random variable that
represents whether a document is relevant to a query or not. Thus, self-labeling is equivalent to
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Algorithm 4 Generalized Weak Supervision via Greedy Multi-Labeling

1: Input (a) a set of queries Q; (b) a document collection C; (c) an unsupervised retrieval model
M; (d) a loss function .L; (e) a validation error function V.

2: Output m ranking models My, Mg, - -+ , Mgom) .
3 MO, M@ .o M jf
4: repeat
5. TO 7@ ... Tm) @
6: forie [1,2---,m] do
7 Initialize (1) 92D ... g(mi)
8: end for
9: forie [1,2---,m] do
10: for g € Q do
11: TH «— 7O yMD(g,0)
12: end for
13: end for
14: forie [1,2---,m] do
15: forje[1,2---,m] do
16: 0]« arg mingq,) L(Mgay, TY)
17: end for
18: G « arg minjV(G(i’j))
19: M(i) — Mg(i,c)
20: end for
21: until convergence
22: return Mya), Mg, -+, Mgim)

inferring labels based on P(R = 1|q, d; 0) and P(R = 0|q, d; 0). For the iterative training, minimizing
a loss function L(Mp, T) can be considered as the negative log-likelihood for the current relevance
judgment in T.

Now let us focus on the EM algorithm, a general learning framework for unsupervised learning
problems. Given a joint distribution P(X, Z|0), where X is the observed data, Z is the hidden or
missing variable, and 0 is a set of model parameters, the EM algorithm aims to maximize P(X|0)
by the following steps:

(1) Initialize 6,

(2) E-step: Estimate Z by P(Z|X, 6;-1)

(3) M-step: 8, = argmin, — P(Z|X, 6;_1) log P(X, Z|6)
(4) Repeat step 2 and 3 until it converges.

Comparing the E-step and M-step of the EM algorithm with the probabilistic view of self-labeling
and iterative training, it is clear that the process of GWS could be connected to EM if we regard
R as the hidden variable Z; and Q and D as the observed data X. In other words, in Algorithm 1,
lines 6-9 can be connected to the E-Step, and Lines 10-11 can be connected to the M-Step of the EM
algorithm. However, the GWS framework behaves differently for initialization, which significantly
affects the performance of the model.

The result of EM algorithm is always affected by the initialization of parameters. For retrieval
tasks, random initialization on hidden variables (as often done in the EM algorithms), which
are relevance judgments, is not applicable because relevance judgment is always complex and
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imbalanced in the collection. On the other hand, training a ranking model on randomly generated
ranked lists may not converge to an effective parameter setting for ranking tasks.

We regard our process as an EM process with a weak supervision initialization. Through weak
supervision signals, we get non-random initialization and have noisy but useful results for the first
expectation step. Therefore, the following EM process has an excellent base to generate a feasible
model for ranking tasks.

For the other three labelings with multi-model settings, they could not be directly linked to EM
process, but we consider them as a more generic process than EM. Our experiments also show that
they perform better than self-labeling which is equivalent to EM.

4.4 Loss Function in GWS

Following the empirical results presented by Dehghani et al. [7] and the theoretical results presented
by Zamani and Croft [51], we use a pairwise loss function for optimizing GWS models. However,
as is also shown in the experiments, we observed that existing loss functions are not sufficiently
effective for GWS optimization. Because the initial weak labeler is imperfect, the poor performance
of the weak labeler on some queries is inevitable. If we assume all queries have the same importance
through our training process, the poorly performing queries are expected to have a negative impact
on the final performance. To keep up the quality of initial weak supervision data, we assign a weight
to each query based on its estimated ranking performance and integrate it into our optimization.
Assume for each query g, the corresponding importance is wg. We can use in-batch re-weighting
to normalize the importance of each training instance. For each training batch B = {(q1, dg, 1, dg,,2),

(92, dg,1,dg,2) - > q|BJ> Agp.1> dgy,2) }» our loss function is defined as follows:
|B|
I(B) = > (i, dg,1, dg,23 Mg, M)

i=1
B,

_ qi ’

= Z Tlhinge(qia dqi,h dq,»,ZQ Mo, M )
i=1 Zij=1 Vg,
1B] Wq,

= Z IB‘ l max (O’ €- Sign(M/(qi’ in,l) - Ml(qi’ dqi,Z))(MG(qi: dqi,l) - MB(QU dqi,z)))
i=1 2jog Wy

where lhinge (i, dg;,1, dg;,2; Mg, M”) is the hinge loss for the pairwise training instance (g;, dg, 1, dg, 2)
and the ranking model My. The labels come from the weak labeler M’. In hinge loss, ¢ is a margin.
We set € = 1 in our experiment.

For estimating query weights, we rely on query performance prediction (QPP). The goal of QPP is
to predict a retrieval model’s quality for a given query when neither explicit nor implicit relevance
information is available [6]. Thus, we can leverage unsupervised QPP models for estimating the
quality of a ranked list produced by the weak labeler during training and filter out noisy data in
the weak supervision signal.

Among all the available QPP methods, we choose Normalized Query Commitment (NQC) [39]
as our QPP estimator because of its robust performance and simplicity. That being said, the choice
of QPP method is orthogonal to the GWS optimization process and it can be replaced by any other
QPP method. NQC estimates the retrieval performance by computing the normalized standard
deviation of the retrieval scores assigned to the top retrieved documents. The formula is as follows:

\/% ngnﬁ,(q;c) (score(q, d) — p)?
score(q, C)

NQC(g;C, M) =

>
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14 Y.-C. Lien et al.

Table 2. Statistic of WikiPassageQA and ANTIQUE datasets.

ANTIQUE WikiPassageQA  NQ  MSMARCO

# training queries 2,466 3332 132803 808731
# validation queries - 417 - -

# testing queries 200 416 3452 6980
# training docs 27,422 194314 18060996 8841823
# validation docs 2,466 25841 - -

# testing docs 6589 23981 2681468 8841823
# label 3 13067 - - -

# label 2 9276 - - -

# label 1 8754 6260 132803 532761
# label 0 2914 - - -

where njl\‘,f, (q;C) is the top k documents retrieved by the retrieval model M’ (which is the weak
labeler in our case) in response to query gq. p is the average of the scores in ﬂj’f,l, (g;C). score(q,C)
concatenates all documents in the collection and computes the relevance score. In this work, we
directly adopt NQC(q; C, M) to estimate wy. For the ranking models based on pre-train language
models, we cannot compute score(g, C), so we ignore this normalization term for them in the
experiment, and it does not affect our computation for I(B).

For optimization, we adopt the batch stochastic gradient descent algorithm. For each batch, we
compute the average loss over all document pairs in the batch and update the parameters.

5 EXPERIMENT

In this section, we introduce the experiments and discuss the results. We describe the four datasets
we used, explain the evaluation metrics, show the details of our experimental setup, and discuss
the results and additional analysis.

5.1 Data

In our experiments, we use four datasets for evaluation. The first one is ANTIQUE, which is
a dataset for non-factoid questions, created by Hashemi et al. [12] based on Yahoo! Webscope
L6. Relevance annotations are collected through crowdsourcing based on the standard pooling
technique. Relevance labels are between 0 and 3. The second dataset is WikiPassageQA [4],
which is a passage retrieval dataset from Wikipedia articles for questions generated through
crowdsourcing. WikiPassageQA provides binary relevance labels. The third dataset is NQ, which is
an open domain question answering dataset. The question set is from Google Search engine, and
annotators find corresponding answers on Wikipedia pages. We use the version from BEIR! [41] to
run our experiment. The last dataset is MSMARCO, which is a passage retrieval dataset commonly
used for research works of neural retrieval. The statistics of all datasets are reported in Table 2.
The scale of NQ and MSMARCO is much larger than WikiPassageQA and ANTIQUE, so we will
conduct retrieval tasks for all four datasets to show that GWS can deal with small and large-scale
settings, and do additional analysis on WikiPassageQA and ANTIQUE to better demonstrate GWS.

Note that, given the focus of this paper on weak supervision, none of the relevance judgments
are used for training.

Ihttps://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/
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5.2 Evaluation Metrics

To evaluate retrieval effectiveness, we report four standard evaluation metrics: (1, 2) normalized
discounted cumulative gain (NDCG) at two ranking cut-offs 1 and 10. NDCG is a standard metric
that considers graded relevance labels. (3) Mean reciprocal rank (MRR) that measures the reciprocal
rank of the first relevant retrieved document, and (4) mean average precision (MAP) that is a
standard recall-oriented metric introduced by TREC. We only consider the documents in the re-
ranking scope for measuring MAP; We do not include Precision@k and Recall@k because we
focused on reranking tasks on top-k (top 20 in most cases) results from the weak labeler in this
paper. In the reranking setting, the model does not consider documents not in top-k results and
only enhances the quality of top results, so Precision@k and Recall@k are not sensitive and fail
to show the improvement the model actually makes. As mentioned earlier, ANTIQUE provides
four-level graded relevance annotation, while the last two metrics (MRR and MAP) only take binary
labels. To convert graded relevance labels to binary labels, we followed the instructions provided
by the ANTIQUE dataset: labels 0 and 1 are non-relevant, and labels 2 and 3 are relevant.

Statistically significant differences in metric values are determined using the two-tailed paired
t-test with Bonferroni correction and 95% confidence interval (p_value < 0.05).

5.3 Experimental Setup

GWS is a framework which is compatible with any ranking architectures and initial weak labelers.
In this part, we describe the actual experimental setup of GWS. Following Dehghani et al. [7],
we choose BM25 as the initial weak labeler, which has shown robust and strong performance
across collections. In our experiments, we use Anserini’s implementation of BM25 [49]. For the
ranking architecture, we choose two pre-trained language models, BERT [8] and RoBERTa [22].
Recently, fine-tuning BERT for ranking tasks has received notable attention [11, 28]. Compared to a
neural ranking model trained from scratch, BERT and other language models improve the ranking
performance significantly. Besides, fine-tuning a pre-trained language model also decreases the
required volume of weak supervision data.

For the input of BERT, we concatenate a query and a document with a [SEP] token to compute
their relevance. For the text-matching task, the pooled output of BERT (the encoding of [CLS]
token) would be fed into a feed-forward network to compute a matching score. For the score, we
can compute the loss function for ranking and fine-tune the parameters according to the loss.
Fine-tuning BERT and optimizing the final feed-forward network with the ranking loss function is
a general method to apply BERT for learning to rank. RoOBERTa has the same usage as BERT.

All ranking models are implemented by PyTorch [29] and the HuggingFace Transformer library
[45]. For the pre-trained language models used in our experiments, we used the checkpoints for
BERT-base [8] and RoBERTa-base [22] implementations of HuggingFace. For optimization, we
adopt the AdamW optimizer [23] with the initial learning rate of 5 x 1075, f; = 0.9, , = 0.99, and
weight decay of 0.01. we set the batch size as 16, and the total training steps as 10000.

For teacher/student model selection, we rely on the performance of a held-out validation set. For
WikiPassageQA, we use the original development set for validation. However, other datasets do
not have an explicit validation set. Thus, we randomly select 300 training queries as the validation
set. We check the performance on the validation set every 1000 steps and use the best one as the
final model. The validation sets are used for all our models and all the baseline methods.

For re-ranking tasks, we need to decide the number of documents to be considered for re-ranking.
WikiPassageQA provides an explicit set of documents to be re-ranked for each query. For the other
three datasets, we re-rank the top 20 documents retrieved by BM25. The same setting is used for all
methods, including baselines. To create a weakly supervised dataset for training, we created 20
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16 Y.-C. Lien et al.

Table 3. The retrieval performance obtained by GWS and the baselines on WikiPassageQA and ANTIQUE
datasets. The superscripts * respectively denote that the improvements over the weakly supervised models
are statistically significant. The highest value in each column of the table is marked in bold.

WikiPassageQA

Model NDCG@1 NDCG@10 MAP MRR
Baselines

BM25 (initial weak labeler) 0.4087 0.5374 0.4685  0.5479

BERT - Zero Shot 0.0337 0.1102 0.1115 0.1146

RoBERTa - Zero Shot 0.0601 0.1485 0.1373 0.1534

BERT - WS 0.4928 0.6345 0.5574 0.6379

RoBERTa - WS 0.5000 0.6316 0.5879 0.6692
GWS with Self-Labeling

BERT - Self 0.5553"* 0.6895* 0.6116"  0.6938"

RoBERTa - Self 0.6058" 0.7310* 0.6588"  0.7413*
GWS with Cross-Labeling

BERT - Cross 0.5745* 0.7052* 0.6307*  0.7097%

RoBERTa - Cross 0.5673* 0.7007* 0.6248"  0.7042%
GWS with JCS

BERT - JCS 0.6611" 0.7669* 0.6995" 0.7774"

RoBERTa - JCS 0.6394* 0.7519* 0.6836"  0.7653%
GWS with Greedy Multi-Labeling

BERT - Multi 0.6490* 0.7492* 0.6805"  0.7683%

RoBERTa - Multi 0.6394* 0.7685" 0.6787*  0.7630%

ANTIQUE

Baselines

BM25 (initial weak labeler) 0.4417 0.3675 0.1540  0.5277

BERT - Zero Shot 0.3867 0.3591 0.1494 0.4818

RoBERTa - Zero Shot 0.2783 0.2727 0.1123 0.3797

BERT - WS 0.4967 0.3981 0.1753 0.5794

RoBERTa - WS 0.4617 0.3776 0.1652 0.5706
GWS with Self-Labeling

BERT - Self 0.5383" 0.4202* 0.1863"  0.6300*

ROBERTa - Self 0.5917* 0.4270* 0.1923*  0.6648"
GWS with Cross-Labeling

BERT - Cross 0.5717* 0.4285" 0.1930"  0.6446"

RoBERTa - Cross 0.5833* 0.4246* 0.1941*  0.6645%
GWS with JCS

BERT - JCS 0.5833* 0.4303* 0.1887*  0.6488*

RoBERTa - JCS 0.6067* 0.4270* 0.1936"  0.6745"
GWS with Greedy Multi-Labeling

BERT - Multi 0.5867* 0.4337* 0.1942*  0.6509*

RoBERTa - Multi 0.6250" 0.4327* 0.1957 0.6851*

pairs of documents per query. Unlike random sampling on arbitrary pairs, we adopt a policy that
regards only the top half passages in the list as positive and the other half as negative samples. We
randomly pick one passage from both sets to build a training pair.
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Table 4. The retrieval performance obtained by GWS and the baselines on Natural Questions (NQ) and
MSMARCO datasets. The superscripts * respectively denote that the improvements over the weakly supervised
models are statistically significant. The highest value in each column of the table is marked in bold.

NQ

Model NDCG@1 NDCG@10 MAP MRR
Baselines

BM25 (initial weak labeler) 0.1648 0.3055 0.2586  0.2748

BERT - Zero Shot 0.0159 0.0813 0.0749 0.0792

RoBERTa - Zero Shot 0.0313 0.1364 0.1064 0.1141

BERT - WS 0.2094 0.3615 0.3043 0.3244

RoBERTa - WS 0.2381 0.3782 0.3239 0.3463
GWS with Self-Labeling

BERT - Self 0.2210* 0.3712* 0.3134*  0.3343"

RoBERTa - Self 0.2668" 0.3988* 0.3471*  0.3710"
GWS with Cross-Labeling

BERT - Cross 0.2683* 0.4048* 0.3527*  0.3748"

RoBERTa - Cross 0.2735* 0.4110" 0.3587* 0.3819%
GWS with JCS

BERT - JCS 0.2590* 0.3925* 0.3411* 0.3635

RoBERTa - JCS 0.2636" 0.4010* 0.3472*  0.3708*
GWS with Greedy Multi-Labeling

BERT - Multi 0.2642* 0.3967* 0.3453*  0.3671*

RoBERTa - Multi 0.2801% 0.4083* 0.3569*  0.3806"

MSMARCO

Baselines

BM25 (initial weak labeler) 0.1043 0.2341 0.1902 0.1940

BERT - Zero Shot 0.0334 0.1516 0.1094 0.1117

RoBERTa - Zero Shot 0.0271 0.1132 0.0894 0.0911

BERT - WS 0.1080 0.2455 0.1980 0.2018

RoBERTa - WS 0.1110 0.2492 0.2009 0.2047
GWS with Self-Labeling

BERT - Self 0.1017 0.2402 0.1919 0.1953

RoBERTa - Self 0.1093 0.2497 0.2004 0.2044
GWS with Cross-Labeling

BERT - Cross 0.1097 0.2410 0.1961 0.1994

RoBERTa - Cross 0.1119 0.2512 0.2021 0.2059
GWS with JCS

BERT - JCS 0.1090 0.2473 0.1993 0.2027

RoBERTa - JCS 0.1039 0.2460 0.1971 0.2002
GWS with Greedy Multi-Labeling

BERT - Multi 0.1148 0.2458 0.2010 0.2043

RoBERTa - Multi 0.1116 0.2519 0.2029 0.2062
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5.4 Results and Discussion

In this section, we report and discuss the results obtained from GWS models and the baselines on
four datasets.

Baseline Results. We compare GWS with three sets of baselines: (1) the initial weak labeler
(i-e., Anserini’s BM25), (2) the BERT and RoBERTa ranking models under the zero-shot setting, and
(3) the BERT and RoBERTa models fine-tuned using the original weak supervision approach of
Dehghani et al. [7]. Table 3 and Table 4 present the results for the baselines and the models trained
via GWS.

As was also discovered by other researchers [31], large language models, such as BERT and
RoBERTa, have a poor zero-shot retrieval performance; thus, fine-tuning them with a retrieval
objective is necessary. Zero-shot retrieval has meaningful results on ANTIQUE because we focus
on only the top-20 re-ranking from BM25 results, and most of them have relevance scores from 1-3,
contributing to evaluation metrics.

That being said, once these models are fine-tuned using weakly supervised data (i.e., BERT - WS
and RoBERTa - WS), they substantially outperform their weak labeler (i.e., BM25) without any
manually labeled data. For example, BERT - WS outperforms BM25 by 18%, by 8% and by 18% in
terms of NDCG@10 on WikiPassageQA, ANTIQUE and NQ datasets, respectively. This once again
confirms the power of weak supervision training for neural ranking models that was originally
discovered by Dehghani et al. [7]. In the weak supervision setting, there is no clear winner between
BERT and RoBERTa models; RoBERTa performs better on WikiPassageQA, especially in terms
of MAP and MRR, while BERT outperforms RoBERTa on ANTIQUE with respect to all metrics.
However, seeing the results of MSMARCO, the improvement between BM25 and WS is small and
not significant in all metrics. Considering the performance of BM25 on MSMARCO is relatively
low, we think the low quality of weak supervision signals limits the effectiveness of WS. We will
show that it also restricts GWS in the following discussion.

GWS with Self-Labeling Results. Results on WikiPassageQA, ANTIQUE and NQ datasets
confirm that GWS with Self-Lebeling outperforms all the baselines, including weakly supervised
models. For example, a BERT model that is initially trained on the BM25’s weak labels and then
uses the proposed self-labeling and iterative training strategy achieves 8%, 5.5% and 2.6% higher
NDCG@10 values than BERT - WS. These improvements, for both BERT and RoBERTa models, are
statistically significant. Therefore, we can conclude that GWS with Self-Labeling leads to retrieval
performance improvements in all cases if weak supervision works on the weak labeler. It is notable that
the most impacted evaluation metrics by self-labeling are NDCG@1 and MRR. This suggests that
self-labeling most impacts the model’s behavior in identifying the first relevant document at top
positions. These metrics are often important in non-factoid question answering tasks. Interestingly,
RoBERTa benefits more from self-labeling; RoBERTa - Self outperforms RoBERTa - WS by 16% and
13% in terms of NDCG@10 on WikiPassageQA and ANTIQUE datasets, respectively. Obtaining
such substantial improvements without using labeled training data is the first evidence of the
potential impacts of GWS. On NQ dataset, the improvement is only 5.4%, which is relatively not
effective. For MSMARCO, due to the ineffectiveness of WS, we cannot observe any improvement in
self-labeling with GWS.

To better understand the behavior of GWS with self-labeling, we plot a curve of ranking perfor-
mance at each re-labeling iteration for two datasets with significant improvement. The results are
depicted in Figure 2. Note that the results for iteration 0 come from the initial weak labeler, BM25
in our experiment. The results for iteration 1 are equivalent to results obtained by the original
weak supervision approach. In WikiPassageQA, we observe that the ranking performance generally
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increases through the iterations. Although the curve sometimes drops, both models reach the best
performance after iteration 6 on all metrics, which highlights the importance of iterative re-labeling.
Overall, both the BERT and RoBERTa curves follow a similar trend on WikiPassageQA. Results in
ANTIQUE are different. Both the BERT and RoBERTa reach their best performance in the early
iterations. The performance curves for BERT remains stable in the following iterations, however,
RoBERTa observes a substantial performance drop in late iterations. That being said, RoOBERTa4, at
its best-performing iteration, outperforms BERT. Besides the importance of self-labeling, these plots
suggest that the iterative optimization behavior in GWS is dataset-dependent, and sometimes an
early stopping approach is needed. Therefore, a validation set for determining the best-performing
iteration may play a vital role.

GWS with Cross-Labeling Results. From Table 3, we observe that GWS with cross-labeling
significantly outperforms all the baselines. Compared to self-labeling, cross-labeling does not
provide a consistent improvement. For example, BERT with cross-labeling outperforms BERT with
self-labeling on WikiPassageQA, ANTIQUE and NQ datasets, however, this is not the case for
RoBERTa. RoBERTa learns better from self-labeling for WikiPassageQA, and both self-labeling and
cross-labeling strategies have a comparable impact on RoOBERTa for the ANTIQUE datasets. One
reason may be that RoBERTa plays a better role as a teacher model, thus whenever it’s a teacher,
either as a RoBERTa - Self or BERT - Cross, it leads to superior performance. Also, because both
BERT and RoBERTa with weak supervision and self-labeling bring limited impact for MSMARCO,
the multi-model setting also does not effectively improve ranking performance on MSMARCO. We
consider that the quality of weak labeler is a key factor in deciding the effectiveness of GWS based
on MSMARCO’s results. Because MSMARCO does not show significant changes in the following
two settings either, we will discuss only the other three datasets later.

GWS with Joint Cross- and Self-Labeling Results. Joint Cross- and Self-Lebeling (JCS) demon-
strates a successful performance compared to the previous implementations of GWS on WikiPas-
sageQA and ANTIQUE.The improvements brought by JCS are higher in WikiPassageQA. There is
no clear winner between BERT - JCS and RoBERTa - JCS; BERT - JCS performs better on WikiPas-
sageQA, while RoBERTa - JCS does well on the ANTIQUE dataset. However, cross-labeling still
performs better on NQ, which means it is hard to select the best implementation for GWS.

GWS with Greedy Multi-Labeling Results. The results obtained by the Greedy Multi-Labeling
approach are consistent with JCS. This approach performs better than each of the self-labeling and
cross-labeling approaches on ANTIQUE and WikiPassageQA, but not better on NQ.

In fact, there is no one absolutely best-performing GWS approach. On WikiPassageQA, our
best-performing model outperforms the initial weak labeler (BM25) by 56% and 43% in terms of
NDCG@1 and NDCG@10, respectively. On ANTIQUE, the improvements are slightly smaller; our
best-performing model respectively outperforms the initial weak labeler by 41% and 18% in terms
of NDCG@1 and NDCG@10. On NQ, our best-performing model respectively outperforms the
initial weak labeler by 70% and 34%, which are also very significant numbers.

The Impact of Query Importance Weighting on GWS.. In Table 5, we report the results with
and without query importance weighting for WikiPassageQA and ANTIQUE. We only focus on
self-labeling approach, however, our observations generalize to other GWS re-labeling approaches
too. According to the table, query importance weighting using NQC always leads to statistically
significant improvements. It helps GWS to focus on more effective examples through weak super-
vision and query importance weighting is a crucial part of GWS optimization. Future work can
explore the impact of various QPP approaches on GWS performance.
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Fig. 2. The retrieval performance obtained by GWS with self-labeling at different iterations. Results are
presented on both WikiPassageQA ((a)-(d)) and ANTIQUE ((e)-(h)) datasets. Iteration 0 denotes the weak
labeler’s performance.

Query-level Performance Analysis. For a deeper understanding of GWS performance, in
this experiment, we focus on query-level performance differences achieved by GWS. In more
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Table 5. The impact of query importance weighting in GWS training on the retrieval performance. The
superscript * denotes that the improvements obtained by query importance weighting are statistically
significant.

WikiPassageQA
Model NDCG@1 NDCG@10 MAP MRR
BERT - Self w/o NQC 0.5337 0.6637 0.5910 0.6785
BERT - Self 0.5553 0.6895 0.6116 0.6938
RoBERTa - Self w/o NQC 0.5889 0.6889 0.6183 0.7099
RoBERTa - Self 0.6058 0.7310 0.6588 0.7413
ANTIQUE
BERT - Self w/o NQC 0.5300 0.4066 0.1863 0.6188
BERT - Self 0.5383 0.4202 0.1863 0.6300
RoBERTa - Self w/o NQC 0.5433 0.4059 0.1867 0.6306
RoBERTa - Self 0.5917 0.4270 0.1923 0.6648
08
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Fig. 3. The difference of ranking performance between RoBERTa - GWS (self) and RoBERTa - WS over all
queries in terms of NDCG@10 and MAP on WikiPassageQA((a)-(b)) and ANTIQUE((c)-(d)) .

detail, we focus on the RoBERTa ranking model training using GWS with self-labeling and plot its
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Table 6. Results fine-tuned on small manually labeled data. GWS is the best model selected from Table 3 and
‘From scratch’ refers to fine-tuning a pre-trained RoBERTa model.

WikiPassageQA
Model NDCG@1 NDCG@10 MAP MRR
GWS 0.6394 0.7685 0.6787  0.7630
From scratch 0.5913 0.7097 0.6384 0.7203
GWS+fine-tuning 0.6875 0.7812 0.7103 0.7897
ANTIQUE
GWS 0.6250 0.4327 0.1957 0.6851
From scratch 0.3517 0.3337 0.1458 0.4910
GWS+fine-tuning 0.4250 0.3595 0.1655 0.5548

performance difference with RoBERTa - WS in Figure 3. Due to the smoothness of metrics, we only
plot NDCG@10 and MAP for a clear demonstration.

Regarding 0.01 as a bound for a notable amount of change, 46.1% and 43.9% of the queries are
improved over WS in terms of NDCG@10 and MAP for WikiPassageQA, respectively. Considering
the proportion of the degraded queries, 16.8% and 14.1%, the cases enhanced by GWS are more
than the deteriorated cases. For ANTIQUE, 35% and 50.5% of the queries are respectively improved
over WS in terms of NDCG@10 and MAP, with 19.5% and 25% for deteriorated queries. These plots
show that the average improvements obtained by GWS are not dominated by drastic increases in a
few queries.

Comparison to the model trained on small Data. We additionally compare the final model of GWS
to the models trained on small data of human labels. We aim to understand if large weak signals
could outperform small real data. Besides, we also check if GWS could help to build a better initial
model if we aim to conduct fine-tuning on small real data.

We take 10% queries and their relevance judgment as the representative of small data from
WikiPassageQA and ANTIQUE. In the analysis, we include three model: the best RoBERTa from
GWS, RoBERTa trained on the small data, and the best GWS model fine-tuned on the small data.
The result is shown in Table 6. We can observe that for both dataset, GWS outperforms the model
trained on the real data if the data is not sufficient. Actually, the model trained on insufficient data
has very weak performance on both datasets. Considering fine-tuning on WikiPassageQA, GWS
with small real data can further improve the ranking performance. On ANTIQUE, fine-tuning on
small data even decreases the ranking performance.

6 CONCLUSION AND FUTURE WORK

In this work, we proposed generalized weak supervision (GWS), a generic framework for training
retrieval models without requiring any manually labeled training data. Based on weak supervision,
which automatically produces training data using existing retrieval models, we generalized the
definition of weak labeler to include the weakly supervised models themselves. We provided four
implementations of the GWS framework: self-labeling, cross-labeling, joint cross- and self-labeling
(JCS), and greedy multi-labeling. We also presented the theoretical relationship between GWS
and the Expectation-Maximization algorithm. Besides, we provided a query importance weighting
based on query performance prediction for effective training of GWS models.

In the experiment, we evaluated GWS on four datasets. Our experiments showed that GWS
achieves substantial improvements compared to weak supervision if weak signals are sufficiently
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reliable. We observed larger improvements when the power of multi-model setting was applied.
Furthermore, we showed that query selection via an unsupervised query performance predictor
can have a significant impact on GWS performance. Our analysis suggested that a large portion of
test queries benefit from GWS training.

For future work, we aim to theoretically analyze how GWS affects the training of neural ranking
models. Besides, we intend to extend the GWS framework by leveraging multiple weak labelers as
well as multiple query performance predictors in order to minimize the noise introduced by the
weak labels.
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