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ABSTRACT

We propose AC-CRS, a novel conversational recommendation sys-
tem based on reinforcement learning that better models user inter-
action compared to prior work. Interactive recommender systems
expect an initial request from a user and then iterate by asking ques-
tions or recommending potential matching items, continuing until
some stopping criterion is achieved. Unlike most existing works
that stop as soon as an item is recommended, we model the more
realistic expectation that the interaction will continue if the item
is not appropriate. Using this process, AC-CRS is able to support a
more flexible conversation with users. Unlike existing models, AC-
CRS is able to estimate a value for each question in the conversation
to make sure that questions asked by the agent are relevant to the
target item (i.e., user needs). We also model the possibility that the
system could suggest more than one item in a given turn, allowing
it to take advantage of screen space if it is present. AC-CRS also
better accommodates the massive space of items that a real-world
recommender system must handle. Experiments on real-world user
purchasing data show the effectiveness of our model in terms of
standard evaluation measures such as NDCG.
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1 INTRODUCTION

Conversational product search can be modeled by the following
process. First, a user specifies their interest in a product using a
query (“mobile phone”). The system either asks a question to clarify
or drill down (“Are you interested in a phone plan or buying a
phone?” or “Would you prefer Android, iOS, or something else?”)
or suggests some possible items for purchase (“‘How about a blue
Galaxy S10?”) from its massive product catalogue. This process
continues until the search is successful or the user accepts defeat.

The goal of such a system is to help the user find an item of
interest as rapidly as it can, using dialogue to winnow the set of
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candidate items to something manageable as quickly as possible:
questions that ultimately turn out to be useless should be avoided
while those that move rapidly toward an answer are to be encour-
aged; suggesting candidate items prematurely wastes time when
they are off target, yet it may turn out that showing a candidate
early may provide fruitful negative feedback.

Several studies have looked at this problem recently [1, 3, 14,
28, 34]. Each modeled the problem slightly differently in order to
develop models of increasing capability. For example, Zhang et al.
[34] used a simplified interaction model where the system asks
questions and eventually stops with a single suggested item (they
describe the possibility of continuing after that first recommenda-
tion but do not explicitly explore the ongoing interaction as part
of their work). Bi et al. [3] proposed a conversational paradigm for
product search to consider negative feedback in this task. However,
they force the system to ask a question and recommend an item
in each round of the conversation. Sun et al. [28] introduce a con-
versational recommender system based on reinforcement learning.
The tension between immediate payoff and potentially delayed
value of a question or suggestion makes reinforcement learning
[30] an appropriate framework for this task. They learn to track
the user’s belief with reinforcement learning but allowed only a
single recommendation. Furthermore, their model cannot jointly
learn the dialogue policy and the recommendation model at the
same time.

In this study, we develop and evaluate AC-CRS,! a novel con-
versational recommendation system that captures the richer task
described above, where recommendation failures do not halt the
process, where multiple simultaneous recommendations are possi-
ble, and where the massive item space suggests different selection
steps.

In order to accommodate choosing among a large number of
potential questions or items, AC-CRS adopts an end-to-end Actor-
Critic model. We propose a tree-structured Actor which reduces
the time complexity in the training. As a result, the model can
continuously update its strategies during the interactions, until the
system converges to the optimal strategy for each specific user (per-
sonalized question and recommendation). In contrast to prior work,
our model can simultaneously maximize users’ long-term prefer-
ences in asking questions and making recommendations. Since the
actual value of each question for a given target item is unknown,
the AC-CRS model predicts a specific value (the output of critic
- i.e., the action value) for them during the conversation which
helps the Actor to ask appropriate questions to satisfy users. Ask-
ing high quality and relevant questions is an important task in
conversational recommendation systems that we address here.

! Actor-Critic Conversational Recommendation System
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The AC-CRS model and our evaluation approach allow an agent
to recommend one or more items or ask a question at each step of
the conversation. AC-CRS interacts with the user to get feedback
over the taken action. By modeling a conversational recommender
system in this way, we let the model more completely explore
questions and items to improve the user’s satisfaction. Unlike most
existing works that stop as soon as an item is recommended [28, 34],
we model the more realistic expectation that the interaction will
continue if the item is not appropriate.

The core contributions of this work, presented in Section 3, are:
1) We propose a new unified model, AC-CRS, for conversation
recommendation systems, one that jointly learns the dialogue policy
and recommendation model at the same time; 2) AC-CRS appears
to be the first attempt at estimating the value of questions in the
conversational recommendation system; 3) AC-CRS introduces a
tree-structured Actor for this task, allowing it to recommend items
from a massive collection of possibilities; and, 4) In each round of
the conversation, AC-CRS can have simultaneous recommendations
if modality and screen real estate permit. Our contributions are
rounded out by a set of experiments on real-world user purchasing
data showing the effectiveness of AC-CRS in terms of standard
evaluation measures such as NDCG. We start with some helpful
background and notation as well as an overview of related work.

2 RELATED WORK

2.1 Conversational Search & Recommendation

Recently, with the emerging of intelligent conversational systems,
and the process of neural approaches in the natural language pro-
cess (NLP), conversational search and recommendation have achieved
much more attention [5, 10, 33]. Zhang et al [34] proposed a Multi-
Memory Network (MMN) architecture for conversational search
and recommendation. However, their model can only predict ques-
tions in the training data which limits its flexibility and is not
compatible with the nature of the conversational recommendation
system. In other words, the system should be able to explore all
questions to find the target item. Bi et al [3] introduced a conversa-
tional paradigm that utilizes non-relevant items in each round of
the conversation. Sun et al [28] introduced a Belief Tracker model
to extract facet-value pairs from user utterances during the conver-
sation. They also proposed an approach based on reinforcement
learning to learn ask questions related to the user needs. However,
their model suffers from two limitations. First, their model cannot
learn the dialogue policy and the recommendation model at the
same time. Second, their model stops when the system decides to
recommend an item and cannot support multiple recommendations.
Recently, Lei et al [13] showed that the interaction between con-
versation and recommendation can improve the performance of
these systems substantially. They also proposed a policy network to
decide between asking a question or recommending an item. How-
ever, their model cannot predict a specific value for each question
based on the target item and they simply considered a constant
reward for each question. Moreover, the proposed model cannot
learn to ask questions that are related to the category of the items
and they just check whether an attribute is in the item.

2.2 Reinforcement Learning

Reinforcement learning (RL) is a framework of machine learning to
optimize the behavior of an agent with respect to a desired reward
[29]. Due to the progress of the deep learning, RL algorithms have
demonstrated an impressive potential for tackling a wide range of
complex tasks, from game playing [26] to robotic manipulation [21]
and relevance feedback [16]. Google’s DeepMind research on the
game of Go is one of the most famous success of deep RL [25, 27].

The main roles in RL are the agent and the environment. The
environment is the world that is visible to the agent and that the
agent can interact with. At every step of interaction, the agent
sees observations in the environment and takes some actions based
on these observations. The agent receives a reward according to
its actions. The reward is a measure to show how good and bad
are the actions taken by the agent. The agent’s final goal is to
maximize the cumulative reward. In this study, we utilize the Actor-
Critic framework [12, 30] shown in Figure 1. In this framework, the
Actor based on the current state generates an action. The Critic
inputs this state-action pair and produces an action-value which is
a judgment of whether the chosen action matches the current state.
Finally, based on the judgment from the Critic, the Actor updates
its’ parameters.

| Actiona Action Value (Q(s, a))
fc
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Figure 1: The Actor-Critic framework.

The Actor-Critic architecture is preferred for our task since it is
suitable for large and dynamic action space. In this framework, the
Critic estimates the action-value in each step which has an interest-
ing advantage. Instead of waiting until the end of the episodes to
calculate the reward, we can make an update in each step which is
suitable for the conversational recommendation system. Estimating
value for each action is another feature of this algorithm. In other
words, we need to estimate a judgment for each question during the
conversation. Therefore, we need a Critic to estimate this judgment
for each question, individually. Zhao et al. [37] proposed an Actor-
Critic algorithm to generate page-wise recommendations. Chen
et al. [4] proposed an approach based on reinforcement learning
for the interactive recommendation which is most related to ours.
They trained a tree-structured policy gradient recommendation
(TPGR) to deal with the large discrete action space problem in the
recommendation. However, for a conversational recommendation
system, since we do not know the actual value for each question
in the conversation in the training, we have to estimate them by a
Critic. Furthermore, we force the Actor to choose questions that
make the current state closer to the target item. Asking high quality
and relevant questions is an important task in conversational rec-
ommendation systems that we address here. So, inspired by their



work, we propose a tree-structured Actor in the Actor-Critic frame-
work for the interactive conversational recommendation system in
the large discrete action space.

3 METHODOLOGY

In this section, we discuss how we model a unified interactive
conversational recommendation system based on reinforcement
learning. We use an Actor-Critic algorithm to train the agent’s
policy to make a flexible conversation with users. We believe that
a good solution for this task should have these features: 1) asking
appropriate personalized questions in the right order to bring the
system closer to the target item; 2) showing some items during the
conversation to get some feedback from the user; 3) making the
conversation shorter as much as possible; and 4) finding appropriate
items from a massive collection of possibilities. To capture these
features, we propose a model based on an Actor-Critic algorithm
[12, 30]. In this model, in each round of the conversation, the Actor
learns to decide between asking a question or recommending some
items. The Critic evaluates the action just selected by the Actor and
the Actor’s parameters will be updated by this evaluation.

In the following sections, we first formulate the problem. Then,
we elaborate the Actor and Critic architectures. Finally, we describe
how the Actor and Critic are trained by stochastic gradient descent.

3.1 Problem Statement

Let Qo = {w1, w2, ..., w; } be initial request issued by a user u, Q =
{01,032, ...,ON} a set of possible questions, A = {A1, Az, ..., Am}
a set of the possible answers for questions, and V = {v1, vy, ..., v}
a set of all items in the system. For each user u we have a list of
clicked/purchased items P, (i.e., P, C V).

When a user initiates a conversation with the system, in each
round of the conversation, the system can ask clarifying questions.
Also, in each round of the conversation, the system should be able
to show some items to the user and get some feedback. To construct
a flexible conversation between a user and the system, the sequence
of actions in the conversation can be shown as follows:

uj — Qolao fo, a1 f1,....ar fr — vi, (1)

where each action a; can be from the collection of items or ques-
tions (i.e., a; € {V,Q}), f;i is the feedback from the user which can
be an answer for a question or a list of judgments for items shown
to the user in the ith round of the conversation (i.e., f; C {A, Py}),
v; denotes the target item, and T is the maximum length of a con-
versation. In the following section, we show how we model the
sequence of actions as a state for each round of the conversation.

3.2 State Representation

The state is designed to understand user preference in each round
of the conversation. Figure 2 illustrates the model for generating
the state. We introduce a RNN with Gated Recurrent Units (GRU)
to capture the user’s preference according to the initial request,
questions asked by the Actor, and their answers. The reason we
used GRU is that we want to train a model to learn the right order
of the questions in the conversation [7]. We use GRU rather than
Long Short-Term Memory (LSTM) because the performance of GRU
is better than LSMT for capturing the user’s sequential preference.

For each word in the conversation i.e., w;, we have an embedding
vector Xy = EL[w;] = w; € R™P where EL is the word embedding
matrix to be learned in the training. The internal states of GRU is
defined as follows:

z; = U(szt + Uzhs-1)
rt = o(WpXt + Uphy—y) R
he = (1=z1).he-1 + 20.he

hy = tanh[W#; + U .he1)].

()

We use the final hidden state h; as the representation of the
current user’s preference.

Output layer

Embedding layer

Input layer

Figure 2: The model for generating the State.

A key point in conversation and recommendation is personal-
ization [1, 34]. In other words, the Actor should ask personalized
questions and recommend personalized items. To consider the in-
herent personalized preference of users, we utilize an embedding
vector u; for each user u; and include this embedding to P?t. There-
fore, the personalized state is the concatenation of the hidden state
}:t and the user embedding #; as follows:

St = (hp, ). (3)

Note that the user embeddings are randomly initialized and will be
learned in the training.

3.3 Architecture of Actor

The Actor takes the state representation (i.e., Eq.3) as input and
outputs the best action in the current state. The Actor has two kinds
of actions: 1) ask a question or 2) recommend a list of items.

An obvious architecture for the Actor can be a feed-forward
neural network and according to the output of the network, we can
decide between asking a question or recommending a list of items.
However, in this task, the number of items usually is much larger
than the number of possible questions, making the Actor biased
towards recommending more items even in the case that the user’s
request is not clear. Moreover, this large discrete action space makes
the training inefficient and ineffective in RL-based models [37]. In
other words, the Actor has to explore a large discrete action space
to find the target items or appropriate questions to earn positive
reward which makes the time complexity of making a decision
linear to the size of the action space [6]. To tackle these challenges
and achieve high effectiveness in the conversation, in this paper,
the Actor is built upon a hierarchical clustering tree over items and
questions. Figure 3 illustrates the architecture of the Actor. For each
node, we utilize a policy network to learn the strategy of choosing
the best subclass at each non-leaf node given the current state. In
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Figure 3: The Architecture of tree structured Actor.

more detail, each non-leaf node is mapped to a policy network and
each leaf node is mapped to an item (the left side of the tree) or a
question (the right side of the tree).

The policy network for each non-leaf node is designed with a
feed-forward neural network which is composed of: the input layer
20, | — 1 hidden layers, and the output layer zj. The input layer for
all policy networks (i.e., non-leaf nodes) is the state representation
in the current timestep t which is generated by Eq.3:

Zo = $t. ©
Each hidden layer z; is a fully-connected layer as follows:

Zi=yWizili+b) 1<i<i-1 ®

where i is a non-linear activation function. The output layer z;
is a fully-connected layer same as Eq.5, but for the output layer,
we used a softmax function as an activation function. The output
of the softmax function is a probability distribution over possible
outputs. Therefore, the probability of a choice ¢; in each non-leaf
node is computed as follows:
etli

ek = S ©
where C is the number of child nodes for each non-leaf node. There-
fore the size of the output layer zj is C. Note that the number of
child nodes for parents of leaf nodes can be at most C. Also, the
number of child nodes for the root is C = 2, since in the root node,
the Actor should decide between asking a question (the right side
of the tree) or recommending an item (the left side of the tree). The
probabilities of these two possibilities are computed by Eq.6.

In each subclass, given the current state and guided by the policy
networks, a top-down moving is performed from the root to a leaf
node and the corresponding item or question is performed as an
action by the Actor.

3.3.1 Balanced Hierarchical Clustering over Items and Ques-
tions. As described above, the tree-structured Actor has two sub-
classes over items and questions. To make it efficient, we need to
build up a balanced hierarchical clustering tree for each sub-class.
One simple and popular approach to do that is divisive approach. In
this approach, the original data points (i.e., the representation of

items and questions individually) are divided into several clusters,
and each cluster is divided into smaller sub-clusters.

To make the tree balance, for each node, the difference between
heights of its sub-trees is at most one, and the number of child
nodes for each non-leaf node is the same except for the parent of
leaf nodes, whose number of child nodes can be different.

Same as Chen et al. [4], we use the PCA-based clustering algo-
rithm which is widely used for this task. A balanced clustering tree
can be constructed by applying the clustering algorithm until each
item or question is assigned to a sub-cluster with only one member.
The inputs of the clustering algorithm are representation vector
of items or questions and an integer as a number of clusters. The
representation of items and questions is computed by averaging
the embedding vector of words in questions and descriptions of
items.

3.3.2 Probability of an Action. Letp; = {c1,c2,...,cq} be apath
from the root to a leaf node at timestep ¢ decided by the Actor. The
path p; includes d (i.e., the number of layers in the tree) choices
and each choice is an integer between 1 and maximum number of
child of each node C (c; can be 1 or 2, since in the root, the Actor
has two choices). Given the state, the probability of action a; (i.e.,
choosing a question or an item) at timestep ¢ is:

d
mo(arlse) = | | 7o, Ceilse), ()
i=1

where g, (ci|s;) is the probability of making each choice in the
corresponding policy network from root to the chosen action which
is computed in Eq.6.

3.3.3 Transition. Given previous state and action, transition de-
fines the new state. As described above, the Actor has two kinds of
actions. If the Actor decides to ask a question, this question and its
answer will be added to the previous questions and initial request
(see Figure 2) to generate a new final hidden state i.e., h;rl. On the
other hand, if the Actor recommends an item to the user, simply
the new state is the same as the previous state. One can use a more
complicated approach for transition especially for item space but
we leave it to future work. More formally, the state transition is



defined as:

®)

st +(Qa,»Aq,), if a; € question space
St+1 = . .
S¢, if a; € item space

where Qg, is the a;th question and Ag, is the corresponding answer.

3.34 Reward. When the Actor takes action a; at timestep f, it
gets a reward which denotes how good is the current action. The
current action can be recommending an item or asking a question.
In both cases, the action includes a path from the root of the tree to
the leaf node. We will elaborate the reward function for both kinds
of actions.
Reward for Recommendation: Again, let p; = {c1,c2,....,cq} be
the path from the root to the leaf node in the action a;. In our case,
for each layer of the tree (i.e., for each choice c;), we set a specific
reward. In more detail, the maximum reward is assigned to the last
layer of the tree (i.e, c¢;) which means that the Actor finds the target
item, and the reward will decrease in each depth from the parent of
leaf node to the root. As an example, if we have a tree with depth 3,
the reward for finding the correct category of the target item in the
first depth would be 10. The reward will be increased e.g., 100 if the
Actor finds the correct category in the second depth. And finally, if
the Actor finds the target item in the third depth, it would get the
highest reward e.g., 1000.

Given an initial request for a target item, let p; = {c{, ¢}, ....c/;}
be the true path to the target item. Therefore, the recommendation
reward is defined as follows:

d
Ry = ) 100 (g1, )
i=1

where 1 ) represents the indicator function taking on a value of 1if
the selected choice is equal to the true choice, and 0 otherwise. This
reward function reduces the exploration time and helps the Actor
to find the target item by finding sub-classes instead of directly
exploring the target item.

Reward for Asking Question: Intuitively, we want to ask ques-
tions that increase the rank of the target item against other items.
However, in the large item space, this reward function cannot work
very well and it takes a lot of time to improve the rank of the target
item. Furthermore, some questions can help to find the sub-clusters
of the target item and this is a key point in this task. For example,
suppose the query is “charger for mobile”. In this case, two possible
sub-clusters can be “wireless” and “wired”. Therefore, the Actor can
ask a question related to these two sub-clusters to make it easier to
find the target item.

Same as the reward for the recommendation, we propose a spe-
cific reward for each layer of the tree. In more detail, based on the
output of the policy network of the corresponding non-leaf node
we compute the reward as follows:

d
Rq = ) 107, (cflse+1), (10)

i=1
where g, (c;|s¢+1) is the probability of the correct choice in non-
leaf nodes (see Eq.6), and s;+1 is computed by Eq.8. Specifically,
suppose that the Actor selects a question as an action (i.e., Qg, ).
This question and its answer will be added to the current state by

Eq.8 to compute s;+1. Then, the reward function evaluates that if
the added question and its answer to the state helps to find the true
path to the target item or not. If the question helps to find more
correct sub-clusters in the tree, the Actor will earn more rewards.

3.4 Architecture of Critic

To evaluate the action (i.e., recommending an item or asking a
question) in the current state we design a Critic that takes the
state and the taken action and learns an action-value function
Q(s, a). According to Q(s, a), the Actor updates its parameters in
order to generate more valuable actions in the conversation. The
action-value function Q(s, a) is usually non-linear, especially in our
task, since the action and state spaces are enormous. Therefore, we
build our Critic over a deep neural network to estimate Q(s, a) (see
Figure 1 and section 4.2.2 for more details). We will discuss how the
parameter of the Critic will be updated in the following sections.

3.5 Time Complexity Analysis

The number of items in the item set is I (i.e., I = |V|, see section
3.1). Similarly, the number of questions in the question set is N (i.e.,
N = |Q|). Therefore, the time complexity for sampling an action in
the normal RL-based methods would be O(N + I [6]. For sampling
an action given a specific state, the AC-CRS needs to make d (i.e.,
the number of layers in the tree) choices. Each choice is based on
a policy network with at most C output units. Therefore, the time
complexity for sampling an action in the AC-CRS is O(d X C). Given
the number of possible items and questions N + I, and d, we can
set C = [(N + I)%]. So, we can rewrite the time complexity in

our model O(d X C) ~ O(d X (N + 1)5), which shows the AC-CRS
significantly reduces the time complexity.

3.6 Training and Test Procedure

3.6.1 Critic Training Procedure. The loss function for the Critic
which is known by Temporal Difference (TD) learning [30] is de-
rived from Bellman equation [2] as follows:

L(@H) = ESt,a[,St+1,at+1,R[(R + YQQ‘/ (St+1,az+1) — QGu (st at))z]a

(11)
where 9;,, y denote all parameters in the Critic and discount factor,
respectively. 0, shows the Critic’s parameters from the previous
iteration and will be fixed in the loss function £(6,,). Note that using
the Bellman equation guarantee that we maximize long term reward
(i.e., users’ long term preferences). Therefore, derivations of the loss
function with respect to parameters 6, is 8, < 6,/ — (xVQ”L(H”)
where « is the learning rate for the Critic training.

3.6.2 Actor Training Procedure. Asking questions related to
the item description is a key point in this task. We used the aver-
age vector of words embedding in each item description to build
our tree-structured Actor which is important for the Actor to find
appropriate questions for each category. However, the embedding
of words is learning during the training and this makes it hard to
ask specific questions for each item. To solve this problem, we have
two objectives for Actor training: the recommendation objective
with the goal of improving recommendation accuracy and the ques-
tioner objective with the goal of asking questions related to the
item description.



Algorithm 1 Learning AC-CRS

Input: tree depth d, number of child nodes c, discount factor y, Critic learning rate ¢, Actor learn-
ing rate 17, Reward function for recommendation R and asking question Rg, item set V, question
set Q, and answer set A, N training data

Output: Actor’s parameters 0.
: Initialize Critic’s parameters 0, and reply memory D
: Construct a balanced clustering tree T with depth d

T > Number of non-leaf nodes in the tree
AQI, =0,and A, =0
fori « 1, Hdo

initialize 6; with random values
end for
O, =(01, 0o, ..., 0)
: forn «— 1, N do

[s1, 71, P15 525 ---» Sms Tm> P Sm+1] -
Sampling(d, Rg, Ry, C, 0, 07,0, D, V, Q, A) (see Algorithm 2)
11: forj « 1, mdo

SPPIQN R WP N

—_

12: map pj to an item or a question aj w.rt T

13: Update Critic and Actor by minimizing Eq.11, and Eq.15, respectively
14: 0y — 0#' —an” L(0y),and O — 0,7 = AVg, L(Ox)

15: end for

16: end for

17: return 0, > Actor’s parameters

Algorithm 2 Sampling Episode for AC-CRS

Input: Reward function for recommendation R, and asking question R, training data n, item set
V, question set Q, and answer set A, Actor’s parameters 0, replay memory D, Maximum length
of Conversation T.

Output: an Episode E.

1: (usery, target — itemy,)

2:¢c«0 > Number of rounds in the conversation
3: sg < (Initial request) and s < so

4: while True do

5: sample az, path ~ mp(st) > Using Eq.7
6: pr < path

7: if a; € recommendation then > Actor chooses to recommend
8: r¢ < Ry(s¢, ag, path) > Using Eq.9
9: St+1 — St

10: else > Actor chooses to ask clarifying question
11: rt < Rg(st, ar, path) > Using Eq.10
12: St+1 < St + Qa; + Aay > calculate s;41 as described in Fig.2
13: end if

14: store experience < S¢, I't, p¢, St+1 > in replay memory D

15: if a; is equal to the target item then

16: the conversation succeeds and break

17: end if

18: if c is equal to the Maximum length of Conversation then

19: the conversation fails and break

20: end if

21: ce—c+1

22: end while

23: fori « 1, mdo

24: e; < sample random transition < s;, r;, p;, Si+1 > from replay memory D

25: Adde; to E

26: end for

27: return E > return samples

Recommendation Objective: The first loss function forces the
Actor to predict the true path from the root to the leaf nodes which
is designed as follows:

L1(07) = log mg(als), (12)

where 7g(als) is computed according to Eq.7.

Questioner Objective: In the second loss function, we push Ac-
tor’s parameters in the last layer of the tree (i.e., parent of the leaf
nodes) to be similar to the item descriptions. The reason is that the
Actor should ask questions related to the item description. There-
fore, we make sure that the representation of each item in the tree
(i-e., the output layer of the Actor in the left side of the tree in Figure
3) is similar to the item description, and this can help the Actor to
ask questions that push the state representation (see section 3.2) to
be similar to the item description.

Assume that v; is the item that is selected by the Actor (not nec-
essarily the target item). We have a textual description for this item
which is generated by merging item description and the textual re-
views for this item [34]. Therefore, the output layer of the Actor (in
the corresponding sub-cluster) should be similar to the description
of this item (if the action-value is positive and vice versa) to help
the Actor to find questions related to this item. Therefore, we use a
GRU to convert the textual description to a fixed size embedding
vector. The parameters of this GRU are shared with one that we use
in the state representation. This helps the Actor by enriching its
knowledge about products and reducing the vocabulary mismatch
between products and user queries. We minimize the difference
between the item description and the output layer of the last layer
in the tree-structured Actor as follows:

L2(0r) = llzi, — ho;llF, (13)
where zj,  is the output layer of the parent of leaf node which

is mapped to the item v; in the Actor and h:,i denotes the item
descriptions generated by GRU.

Loss Function: Finally, the loss function for updating the Actor’s
parameters is designed as follows:

L(0x) = L1(0r) + L2(07). (14)

We utilize REINFORCE algorithm [32] to update parameters in
the Actor as follows:

Vo, J(0x) ~ Ery[Ve, L(67)Qp, (s, a)] (15)

where Qp, (s, a) denotes the action value which is the output of the
Critic. Algorithm 1 shows the training procedure.

3.6.3 The Test Procedure. At test time, we simply use the Actor
0 as our conversational recommendation system. The input of
the Actor in the test time will be an initial request. In each round
of the conversation, the Actor can ask a question or recommend a
list of items. If the Actor decides to recommend a list of the item,
we select the top 100 items and add them to our ranking for this
session. In the next rounds, if the Actor recommends some other
items, we add them to this ranking list. If the Actor chooses to ask
a question, we return the answer of this question if the answer is
in the item description. The conversation will be ended if the Actor
finds the target item or the number of rounds in the conversation
exceed the maximum of rounds.

4 EXPERIMENTS
4.1 Datasets

Following previous works on this task [1, 34], we use the Ama-
zon product dataset. This dataset comprises millions of products
and customers, and rich metadata such as product descriptions,
multi-level product categories, and reviews for products?. There
are 24 sub-datasets of different product types. In this study, we use
Electronics and CDs&Vinyl, which are large-scale datasets [34] to
test our model performance. Table 1 shows the basic statistics of
these two datasets. We used the question-answer (or aspect-value)
pair extraction toolkit [35, 36] to extract QA pairs for each dataset
same as Zhang et al. [34].

2 https://nijianmo.github.io/amazon/index.html
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Table 1: Basic statistics of the experimental datasets, where [(Request) is the average length of initial requests.

#ltems #Questions #Answers #QA pairs #Request #I/(Request) #User-Query pairs

Dataset #Users
CDs & Vinyl 64,847 60,405 514 747
Electronics 142,421 53,278 479 500

659,737
475,020

694
989

5.71
6.40

99,759

381,688

Table 2: Comparison of proposed model AC-CRS and baselines. The superscript a indicates that the improvements over all

baselines are statistically significant.

Dataset Metric QL BM25 LSE MMN PMMN CRM EAR  AC-CRS

. MRR 0.0013 0.0027 0.0149 0.0441 0.0631 0.0574  0.1106 0.13794

CDs & Vinyl R
NDCG 0.0009 0.0016 0.0070 0.0081 0.0107 0.0080 0.0208 0.0332

Electronics MRR 0.0405 0.0400 0.0450 0.0581 0.0864 0.0813 0.1212 0.1409 4

NDCG 0.0054 0.0043 0.0056 0.0066 0.0201 0.0160 0.0225 0.03634

4.1.1

Initial Request Construction. Following Zhang et al. [34],

a fixed value. In the next rounds of the conversation, if the model

we used a three-step paradigm of product search to construct the
initial request Qo for each user u; which purchased a item v;: 1)
extract the multi-level category of information of item v; from
the metadata, 2) concatenate the terms in this information, and
3) remove stopwords and duplicate words. The number of initial
requests and their average length are in Table 1. We randomly select
70% of the data for each user in the training/validation set and keep
the other 30% to make the test set.

4.1.2 Baselines. We compare our model with the representative
product search or recommendation methods as baseline: 1) QL:
The query likelihood model proposed by Ponte and Croft [20],
a language model approach to rank items according to the log-
likelihood of the query, 2) BM25: An effective and widely-used
retrieval method [22] to rank items based on term frequency, inverse
document frequency of query terms and item description length,
3) LSE: The latent semantic entity which is a non-personalized
product search model [31], 4) MMN: A non-personalized model for
the conversational recommendation. MMN utilizes Multi-Memory
Network (MMN) architecture to track the conversation between
user and system [34], 5) PMMN: A personalized version of MMM
[34], 6) CRM: A conversational recommendation system which
utilize reinforcement learning to track the conversation between
user and the system [28], 7) EAR: A three-stage approach named
Estimation—-Action-Reflection emphasizes the interaction between
the conversation and recommendation components [13].

4.2 Experimental and parameter setting

4.2.1 Evaluation Measures and Evaluation Methodology. For
evaluating the performance of the models we use mean reciprocal
rank (MRR) and normalized discounted cumulative gain (NDCG)
at 10 [9]. Note that we assume that for each conversation we have
a single target item, so MRR is equal to mean average precision
(MAP).

For evaluating multiple recommendations in an interactive con-
versational recommendation system, we utilize the freezing ranking
paradigm [24]. In each round of the conversation, if our model is
recommending some items to the user, we select the top 100 items
and add them to our ranking. Note that in this case, the successive
recommendation cannot affect the top 10, and NDCG@10 will have

recommends some other items, we add them to this ranking list. At
the end of the conversation, we evaluate the ranking list provided
by the system. Statistically significant differences of performance
are determined using the two-tailed paired t-test at a 95% confi-
dence level (p_value < 0.05). For our model and baselines, we tuned
all hyper-parameters on the validation set.

4.2.2 Parameter Setting. We implemented and trained our model
using Tensorflow 3. The networks parameter in Actor and Critic
models are trained with Adam optimizer [11] according to the
back-propagation algorithm [23]. The learning rate for the Actor
and Critic were selected from [1le — 4,5e — 5, 1e — 5,5¢ — 6], and
[1e—3,5e—4, 1e—4, 5e—5], respectively. The learning rate for Critic
is larger than Actor since we expect that Critic should learn faster
than the Actor. For each sub-networks we used 4 hidden layers. The
layer size was selected from {100, 150, 200}. The discount factor in
Eq.11 was set to 0.99 since it has been shown this value works well
in the reinforcement learning [12]. The size of the replay memory
was set to 200. The depth of the tree was selected from {1, 2, 3, 4}.
We observed that the best value for the depth of the tree is 4. We
initialize the embedding matrix by pre-trained GloVe [19] vectors
trained on Wikipedia dump 2014 plus Gigaword 5* with dimension
of 100. The maximum length of conversation T was set to 7.

4.3 Results and Discussion

4.3.1 Comparison with the Baselines. In the first experiments,
we evaluate our model against popular state-of-the-art models for
conversational recommendation systems. The results for our model
and baselines are reported in Table 2. The first observation from
this Table 2 is that the results of QL, BM25, and LSE are comparable.
QL and BM25 cannot capture semantic relation between words
while LSE is able to detect semantic matching between words. Ac-
cording to the results in Table 2, semantic matching improves the
performance a little [8, 15, 17, 18]. So, in our model, we considered
semantic matching by learning embedding vectors.

According to Table 2, personalized approaches (i.e., PMMN and
CRM) works much better than non-personalized models (i.e., MMN

3 https://www.tensorflow.org/
4 https://nlp.stanford.edu/projects/glove/
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Figure 5: Average Number of questions.

and LSE). In other words, personalized conversational recommen-
dation enables models to perform better. Our model also takes
advantage of the personalized recommendation (see Eq.3). Also,
this makes our model be able to ask personalized questions based
on the knowledge of the user obtained in the interaction.

Another observation from the results reported in Table 2 is that
AC-CRS outperforms personalized and non-personalized models.
This shows joint modeling and optimizing of dialogue policy and
recommendation offers substantial improvements. Also, EAR un-
derperforms our model in two datasets. A key reason is that our
model can find sub-clusters of a target item at first and this will help
to learn more about the user’s preference and finally find the target
item. Another reason is related to the Critic in our model. In more
detail, our model can detect bad questions and recommended items
in a conversation even the conversation succeeds. However, the
EAR model assigns positive values for each question in a successful
conversation.

The improvements achieved by the AC-CRS in terms of MRR
are much better than NDCG. This shows that in most cases the
model is not able to detect target items in the first round of the
recommendation and needs to show some items to the user and get
some feedback to find the target items in the following rounds. In
other words, this observation implies the importance of the multi
recommendation in this task.
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Figure 6: Average number of recommendations.

4.3.2 Analysis of the Rewards. As pointed out earlier, AC-CRS
is flexible to ask a question or recommend a list of item in each
round of the conversation and gets rewards. In this experiment, we
evaluate the performance of these two actions in terms of reward.
To evaluate our model under both actions, the averaged reward for
asking a question and recommending an item are shown in Figure
4. According to these figures, in each round of the conversation, if
the Actor decides to ask a question, this question increases the rank
of the target item (see Eq.10). Note that, our model has the ability to
ask questions related to the sub-classes and increase the chance of
finding the target item. For example, suppose the query is “charger
for mobile”. In this case, two possible clusters can be “wireless” and
“wired” and the Actor can ask a question related to this situation
to make it easier to find the target item. A similar observation can
be seen in Figure 4 for recommending an item. According to this
figure, the system can get more rewards since the Actor explores
to find the sub-classes of the target item and increase his chance to
recommend the target item.

Figure 4 (on the right) indicates the average reward that the
system receives in general. According to this figure, the system
tries to continue the process of finding the target product until it
becomes stable.



4.3.3 Analysis of the Number of Asked questions and Rec-
ommendations. Figure 5 shows the average number of questions
asked by the Actor. Similarly, Figure 6 indicates the average num-
ber of recommendations in each conversation. According to these
figures, at first, the number of recommendations in a conversation
is more than the number of questions in both collections. However,
according to Figure 4 (on the right), the averaged reward at the first
is not high. This implies that, at first, the Actor recommends items
without knowing exactly what the user needs. For this reason, the
Actor starts to ask more questions and recommend fewer prod-
ucts (see Figures 5 and 6). Although the Actor recommends fewer
products, however, it can recommend with more quality and get
more rewards for a recommendation (see Figure 4). This behavior is
due to the interaction of the dialogue policy and recommendation
model in the training.

Another observation from the results reported in Figure 5 and
6 is that in CDs & Vinyl dataset, after some steps (around 70), the
Actor starts to ask fewer questions and recommend more items.
This implies that the Actor after asking some questions is more
confident about the users’ needs and begin to recommend items
with fewer questions in a conversation.

4.3.4 Effect of tree depth. We evaluate our approach with dif-
ferent tree depth to show the tree depth influence the performance.
The tree-structured tree helps the Actor to find the target item with
less time. To illustrate this, we show the number of finding the
target product (with an equal number of steps) with different depth
of tree in Figure 7. According to this figure, with increasing the
depth of the tree, the Actor can find more target items since it can
first find sub-classes and this brings the Actor closer to the target
item and find it.
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Figure 7: Effect of tree depth

5 CONCLUSIONS AND FUTURE WORK

We argue and propose a unified framework based on the Actor-
Critic algorithm to jointly learn the dialogue policy and the recom-
mendation model at the same time. Our model can have flexible
interaction with the user to reach the goal of the conversation.
The Actor in our framework is built upon a hierarchical clustering
tree to allow the Actor to recommend items from a massive collec-
tion of possibilities. We showed the effectiveness of our model on

real-world user purchasing data in terms of standard evaluation
measures such as NDCG. As in our experiments showed that AC-
CRS at the first of the training tries to recommend items without
asking questions. However, after some steps in the training, AC-
CRS learns to ask questions about user needs that are ambiguous.
This behavior is due to the interaction of the dialogue policy and
recommendation model.

Constructing a richer and more complicated architecture for the
Actor can be an interesting future work. We are also interested in
generating more interesting questions in this task, allowing the Ac-
tor to choose between question derived from product descriptions
and reviews rather than simply from stored database values.
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