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ABSTRACT
The rise in popularity of mobile and voice search has led to a shift
in focus from document retrieval to short answer passage retrieval
for non-factoid questions. Some of the questions have multiple
answers, and the aim is to retrieve a set of relevant answer pas-
sages, which covers all these alternatives. Compared to documents,
answers are more specific and typically form more defined types
or groups. Grouping answer passages based on strong similarity
measures may provide a means of identifying these types. Typically,
kNN clustering in combination with term-based representations
have been used in Information Retrieval (IR) scenarios. An alter-
nate method is to use pre-trained distributional representations
such as GloVe and BERT, which capture additional semantic rela-
tionships. The recent success of trained neural models for various
tasks provides the motivation for generating more task-specific
representations. However, due to the absence of large datasets for
incorporating passage level similarity information, a more feasible
alternative is to use weak supervision based training. This informa-
tion can then be used to generate a final ranked list of diversified
answers using standard diversification algorithms.

In this paper, we introduce a new dataset NFPassageQA_Sim,
with human annotated similarity labels for pairs of answer passages
corresponding to each question. These similarity labels are then
processed to generate another dataset NFPassageQA_Div, which
consists of answer types for these questions. Using the similarity
labels, we demonstrate the effectiveness of using weak supervi-
sion signals derived from GloVe, fine-tuned and trained using a
BERT model for the task of answer passage clustering. Finally, we
introduce a model which incorporates these clusters into a MMR
(Maximal Marginal Relevance) model, which significantly beats
other diversification baselines using both diversity and relevance
metrics.
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1 INTRODUCTION
Answer retrieval is an emerging topic in information retrieval,
where the goal is to display answer text relevant to a question. This
is especially applicable to scenarios such as mobile search, where
display space is limited, and short answers provide a good alterna-
tive to a list of documents. In this paper we focus on non-factoid
questions, which have multiple descriptive answers associated with
them.

We present the first effort in using passage-level information
to cluster answers for the purpose of generating a diverse set of
answer passages to non-factoid questions. To this end, we show that
distributed representations that address the semantic gap between
passages and a weak supervision strategy that models a good simi-
larity function, can be used to generate effective passage clusters.
These clusters can then be used as inputs to a classic diversification
model to generate a diverse ranked answer list. To ensure proper
evaluation, we also introduce two new datasets NFPassageQA_Sim,
which capture inter-passage similarities and NFPassageQA_Div,
which contain various answer types (or subtopics) associated with
a question.

The passage clustering task is significant because it captures
the notion of grouping answers belonging to an answer type. A
classic IR task related to this is Cluster-based Retrieval, where
clusters of documents are retrieved in response to a query [16–19,
27, 36]. However, one of the main limitations of these models is that
they group documents using term based Language Modeling (LM)
strategies, which use term distribution information for estimating
similarities, and do not capture additional semantic information.
Consequently, the document clusters tend to be quite diffuse and
difficult to define. The recent success of many neural models in
IR shows the efficacy of using semantic models for various tasks,
but not many datasets exist for the passage clustering task. The
only existing dataset with information corresponding to various
answer types is the YahooL29 dataset [22]. However, this dataset
suffers from some limitations: it includes questions from only a
single domain in the Yahoo QA forum and it was created using
prepositional phrase clusters extracted from the answers without
comparing full answer passages.
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To create a good evaluation dataset, we perform human anno-
tation to collect a new dataset, NFPassageQA_Sim with questions
sampled from the test set of the ANTIQUE dataset [13]. In contrast
to the YahooL29 dataset, the questions in the NFPassageQA_Sim
dataset cover multiple domains with a larger and more complete set
of candidate answers. This also differs from data created for tasks
such as textual entailment [2, 37] where similarity is not based on
questions or queries. Aside from the passage similarity dataset, we
also generate a new dataset, NFPassageQA_Div, from the passage
similarity labels and group the answers into various answer types.
This contrasts with standard IR TREC diversity tasks [4, 32] where
the queries are very short with subtopics covering various facets of
the query.

Using these datasets, we investigate the effectiveness of using a
weak supervision method for the answer passage clustering task.
Various distributed pre-trained representations such as GloVe [25]
and BERT [12] incorporate contexual information, but may not
include task-specific information, which is generally captured by
training models on large training sets. Due to a limitation in data
size, we exploit a weak supervision strategy to train models. Weak
supervision provides an alternative to human labelled data by lever-
aging other easily available sources. There is existing work in IR
where weak supervision methods using BM25 ranking as weak
signals have been shown to be effective for document ranking
[11]. More recently, Xu et al. [39] demonstrated the application of
weak supervision to passage retrieval tasks where a relatively small
training set was used to fine-tune BERT for this task. We use a sim-
ilar weak supervision strategy for answer passage clustering using
three sources of weak labels: the Language Model (LM), GloVe [25],
and pre-trained BERT [12]. We train a BERT model using different
objective functions and learn a good similarity function, which is
helpful for grouping similar answers together.

Once we create effective clusters, we employ a variation of a
classic diversification approach to display the various answers effec-
tively. There are two standard diversification models in IR: Implicit
and Explicit. The implicit type assumes that each document repre-
sents its own topic and diversifies based on document similarity.
Maximal Marginal Relevance (MMR) [3] is an example of this type.
The other models query topics explicitly and diversifies the result
set based on them. We introduce a modified version of the MMR
model, MMR Cluster, which incorporates the automatically gen-
erated clusters into a MMR framework and creates a diversified
ranked list.

We evaluate the answer passage clusters produced by a BERT
model trained with weak signals generated using GloVe represen-
tations and show that the similarity clusters from these models
significantly perform better than the baselines. We apply these
clusters in MMR Cluster and show that the final diversified output
significantly outperforms standard diversification baselines using
various diversity and relevance metrics when evaluated with the
new NFPassageQA_Div dataset. The best performing weak super-
vision based cluster outperforms the best baseline by 8.3% based on
Precision-IA metric, 7% based on the S-Recall metric, and 5% based
on the 𝛼-NDCG metric which shows the efficacy of this method.

2 RELATEDWORK
Non-factoidQuestionAnswering: The answer passage retrieval
task is becoming increasingly more important in IR. One of the
initial work in this area was the feature-based learning to rank
model introduced by Yang et al. [40]. Subsequently, various deep
learning models [34] have proved to be more effective for this task.
To this end, Cohen and Croft [5, 6] demonstrated the effectiveness
of LSTM models as well as the efficacy of hybrid models, which
combine character and term level information to capture semantic
relationships. More recently, there has been progress on finding
effective ways to sample negative data to improve the performance
of such models [7]. Besides these, BERT models have been demon-
strated to perform very well for passage retrieval [21, 23], as well
as open domain question answering tasks. [1, 35, 41]
Diversification Models: Search Result Diversification models in
IR can be broadly classified into two types : Implicit and Explicit
models. Implicit diversification assumes that the each document
is its own topic. One of the most popular implicit approaches is
MMR [3]. Various supervised implicit techniques have been pro-
posed recently such as Zhu et al. [46] where the model is trained to
optimize both novelty and relevance. Xia et al. [38] trained a neural
tensor model which learns document representations automatically
without using any handcrafted features. Explicit approaches model
query subtopics explicitly and generate a ranked list, which is op-
timized based on topic coverage. xQUAD and PM-2 are examples
of this approach where xQUAD [29] uses query reformulations as
topics and PM-2 [9] is a proportionality based diversification model.
Term Level Diversification Model propososed by Dang et al. [8]
uses xQUAD and PM-2 in conjunction with topic terms. Hu et al.
[14] proposed a hierarchical variant of xQUAD and PM-2 which
models topics as a hierarchy instead of a list. More recently, Sarwar
et al. [30] proposed a linear programming formulation for topic
proportionality used in combination with PM-2 diversification al-
gorithm.
Clustering models in IR: The cluster hypothesis [15] states that
relevant documents which satisfy an information need, tend to
cluster together. This hypothesis triggered research in the area of
cluster based models, where a cluster of documents is retrieved
in response to a query. Various cluster-based models have been
proposed, such as those leveraging topic models [36] or language
models [18] for clustering. Yi and Allan [42] demonstrated that
using nearest neighbors for smoothing works nearly as well as
topic models for this task. Liu et al. [19] showed the effectiveness
of using geometric mean representations of documents. Recently,
Kurland and Krikon [16] and Raiber and Kurland [27] demonstrated
using Language Modeling and MRF techniques to identify good
clusters. Sheetrit et al. showed that the cluster hypothesis applies to
passages as well as documents [31]. In this paper we used the same
settings used in the traditional cluster based models. One major
difference was that we used semantic representations in addition
to LM based models.
Text similarity models: Various similarity models have been
studied in NLP. However, their focus is on sentence pair tasks such
as textual entailment [2, 37] or paraphrasing [24], which relates to
studying similarity between short phrases. Fine-tuned BERT mod-
els have been shown to perform very well for many of these tasks



[12]. More recent work demonstrates the advantages of applying
supplementary training [26] and multi task learning [20] on BERT
for the similarity task. Most of the models are trained on large scale
datasets and their effectiveness has been demonstrated using fully
supervised models. Besides that, almost all the models studied in
NLP are based on sentence level or phrase level information, while
we study the similarity at passage level, which is a more complex
task.
Weak Supervision models: Weak Supervision methods have
been found to be effective for various Information Retrieval tasks
such as document ranking [11] and QPP (Query Performance Pre-
diction) [44]. The document ranking model used BM25 as the weak
supervision signal, while the QPP model trained a neural model
to predict the weight of the multiple signals contributing to the
end task. Xu et al. [39] applied weak supervision using BERT and
combined multiple signals using majority voting technique and
also by learning a simple generative model to predict the labels [28].
The theoretical basis behind the effectiveness of weak supervision
models was shown by Zamani and Croft [43]. Recently, Dehghani
et al. [10] proposed a network which uses a model trained on a
small set of true labels to control the gradient updates on another
network trained for a particular task using weak labels. In this
paper, we explore how weak supervision can be used to improve
the performance of the passage clustering task.

3 TASK DEFINITION
The end-to-end task can be broken down into two parts: the answer
passage clustering task and diversification. Figure 1 illustrates the
high-level architecture flow, where the answer passage similarity
clusters are used as input to a diversified model to generate a re-
ranked list of answers. The answer passage clustering task setting
is similar to the ones used in cluster based IR models [16–19, 27, 36].
Given a question 𝑞 and a passage collection 𝐶 , a standard retrieval
model can be used to retrieve a list of 𝑛 passages P. A cluster is
generated for each of these passages 𝑃𝑖 ∈ P, with respect to every
other passage 𝑃 𝑗 : 𝑃𝑖 ≠ 𝑃 𝑗 and select the most similar passages. An
effective clustering method must be able to perform the following:

• Cluster relevant answer passages together
• Cluster relevant answer passages of the same type together

To generate the clusters, we determine the nearest neighbors corre-
sponding to each passage and rank them based on the similarity
score.

Figure 1: Passage Similarity and Diversity pipeline

This is kNN clustering similar to settings in [16–19, 27, 36],
which has been shown to outperform other approaches such as k-
means and our preliminary experiments confirm this. The generated
passage clusters are then input into a diversified model where an
initial ranked list 𝑅 generated for a question 𝑞 is diversified based
on the clusters.

4 DATA
In this section, we first describe the annotation task for collecting
the passage similarity dataset, NFPassageQA_Sim1. Next, we de-
fine how these similarity annotations were processed, to create a
corresponding clustering dataset NFPassageQA_Div1, with various
answer types (or subtopics) for each question.

4.1 NFPassageQA_Sim dataset
AnnotationTaskDefinition: The definition of similarity is vague
and can have multiple interpretations. For example, the two pas-
sages “Diabetes can be managed by good diet and exercise”
and “Diabetes is a hereditary disease which affects
about 5% of the population” refer to “diabetes” and can be
interpreted as similar. However, they would be considered dissimi-
lar given a question “How to treat diabetes?”, since the second
passage doesn’t answer the question. To eliminate such ambiguities
and to ground the annotation process, we only include relevant
passages for annotation. A formal definition of the task is given
below.

Given a question 𝑞 and a corresponding set of relevant answer
passages P, the data annotation task involves assigning a similarity
label to passage pairs (𝑃𝑖 , 𝑃 𝑗 ), where 𝑃𝑖 ∈ P, 𝑃 𝑗 ∈ P : 𝑃𝑖 ≠ 𝑃 𝑗 .
Here we assume the relationship to be symmetric i.e., 𝑠𝑖𝑚(𝑃𝑖 , 𝑃 𝑗 ) =
𝑠𝑖𝑚(𝑃 𝑗 , 𝑃𝑖 ).

Table 1: NFPassageQA_Sim dataset statistics

Num Questions 128

Total Num of Triples 18,216

Num Label 4 244 (1.34%)

Num Label 3 4,462 (24.49%)

Num Label 2 12,650 (69.44%)

Num Label 1 860 (4.72%)

AvgLen Questions 9.4

AvgLen Passages 61

Data Annotation: As the input to the annotation process, we
used the questions from the test collection of the publicly avail-
able ANTIQUE [13] dataset. A subset of 128 questions, which
contains at least 10 relevant answers from the ANTIQUE dataset
with labels {3,4} was filtered from the test collection. For each
question 𝑞 with 𝑛 relevant answers, we create a set with𝑚 items
I = {(𝑃1

𝑖
, 𝑃1

𝑗
), .., (𝑃𝑚

𝑖
, 𝑃𝑚

𝑗
)}, where 𝑚 =

𝑛 (𝑛−1)
2 , consisting of all

possible relevant answer pairs.

1 https://ciir.cs.umass.edu/downloads/NFPassageQA



Weemployedworkers from theAmazonMechanical Turk (MTurk)2
platform to perform the annotation. The workers were required
to have a HIT (Human Intelligence Task) approval rate of 98% or
higher, a minimum of 10000 approved HITs and be located in US,
Canada, Australia or Great Britain. They were paid $0.13 per HIT.
Each input triple consisting of a question and a corresponding an-
swer pair were assigned to three different workers. Detailed labeling
instructions with examples were also provided to aid them with the
task. After reading through instructions, they assign a similarity
label 0~4 to the triple as illustrated in Table 2. The data collection
was performed in 7 batches. The label with a majority agreement
among the workers was chosen as the ground truth. For cases with
no majority agreement or with a majority label of 0, another round
of annotation was performed to break the tie. We perform a set of
filtering steps to remove instances that do not have sufficient agree-
ment among the workers. First, we discard the instances where
the ground truth could not be determined even after the second
round of annotation. This also includes cases with a majority label
of 0. Next, for those instances where we obtain a majority label,
we remove cases where there is no majority agreement in terms of
overall similarity. For example, an instance with votes [1,2,3,3] has
a majority label agreement for label 3 but does not have agreement
based on overall similarity (which is 2:2, since labels [1,2] indicate
dissimilarity and [3,3] similarity). The filtering brings down the
overall number of instances from 18629 to 18314. The final statistics
of the dataset are shown in Table 1.

To ensure annotation quality, we added test triples with highly
objective labels into each batch. This helps us identify workers
who randomly click on labels without reading the instructions. We
also conducted manual checks on 10% of the data to determine the
quality. After identifying and rejecting around 8% of spurious data
in the initial batches, we established a fully closed qualification
restricted to around 70 workers in the subsequent batches. A Label
0 ("Not Sure") was also added to discourage workers from assigning
a random label when unsure about the answer, especially due to a
lack of domain knowledge.
Discussion: The descriptions of the labels with examples is il-
lustrated in Table 2. Labels 3, 4 indicate high similarity, indicating
answers belonging to the same type, while label 2 indicates the
passages belong to different answer types. Label 1 was added to
capture any non-relevant passages, incorrectly labeled as relevant.
Label 0 was added to reduce annotation noise and was removed
from the final set of judgements.

Table 1 reports the final data statistics. Around 70% of the anno-
tations correspond to Label 2, while Labels 3 and 4 cover around
26%. The high percentage of Label 2 is not surprising, considering
the nature of the data used for annotation. The questions were
extracted from a CQA discussion forum, where users tend to give
alternate answers to the questions. Predictably, Label 4 occurs very
infrequently in the dataset. We also performed manual checks to
confirm that the answers were not being mislabeled as non-relevant
(Label 1), since it has a relatively high coverage (5%).

2 https://www.mturk.com/

4.2 NFPassageQA_Div dataset
Dataset CreationDefinition: The passage similarity annotations
provide us with similarity values pertaining to all pairs of relevant
passages corresponding to each question. This information can then
be used to generate answer types (or subtopics) for these questions.
A formal definition is given below:

Given a question 𝑞, a corresponding set of relevant answer pas-
sages P and a set of similarity annotations between passage pairs
𝑠𝑖𝑚(𝑃𝑖 , 𝑃 𝑗 ), where 𝑃𝑖 ∈ P and 𝑃 𝑗 ∈ P, the dataset creation task
involves automatically identifying the various answer types (or
subtopics) T and assigning passages in P to them.
Dataset Construction: Since the similarity annotations contain
a relatively high ratio (5%) of non-relevant pairs, the first step is the
identification of non-relevant passages, which can then be removed
to reduce noise. All passages appearing in more than 40% of passage
pairs, corresponding to each question and annotated with Label 1 is
marked as non-relevant. 596 passage pairs with these newly identi-
fied non-relevant passages are then removed. This process was also
manually cross-checked to ensure that no relevant passages were
discarded. Due to the change in number of relevant passages per
question, we retain only questions with at least 10 relevant passages
remaining after the previous step, which reduces the number of
questions to 93. Based on the similarity values (Labels 3 and 4), we
next construct all possible passage combinations and identify the
longest non-overlapping passage clusters for each question. These
are considered to be the answer types (or subtopics). Each of the
remaining passages is then added to the answer type if at least one
of the passages in the cluster is similar to this passage.

Relevance judgements are then assigned to each passage with
respect to each answer type. The original passages within each non-
overlapping cluster (representing a unique answer type) and other
passages subsequently added based on partial similarity to original
cluster elements are assigned a relevance value of 1 indicating
relevance. All the other passages are considered non-relevant
with value 0.

Discussion: An example of a question and the two answer
types generated from it is given in Table 3. The passages have been
shortened due to the space restrictions. Due to the nature of the
dataset, a passage can belong to multiple answer types. For instance,
the last passage in both answer types in the Table 3 corresponds
to both Traps and Cats. The dataset consists of 93 questions and
Table 4 gives the distribution of answer types corresponding to
the questions. For example, 32 questions have 2 answer types as
indicated in the table.

5 WEAK SUPERVISION
In this section we describe how using weak labels generated from
different sources can be used to train deep learning models. Such
models have been demonstrated to work well for core IR tasks such
as document ranking [11]. However, they require millions of weak
labels to learn the ranking function. Xu et al. [39] showed that
large pre-trained models such as BERT [12], fine-tuned with small
number of weak labels aggregated from different sources can be
used for passage ranking. The fine-tuning process then forces the
model to learn task specific relationships from these weakly labeled
data.



Table 2: Label Descriptions

Label Type Label Description Example

Similar 4 Both passages answer the question
Both passages contain the same information,
however they maybe worded differently

Question: What do you mean by weed?
Passage 1: Weed could mean the bad thing that grow in the garden or back
and front yard or it could mean the drug
Passage 2: It could mean weeds outside on the lawn or the drug

3 Both passages answer the question.
The passages belong to the same answer type.
They may also contain information associated with a
different type or other non-relevant information

Question: What do you mean by weed?
Passage 1: Weed could mean the bad thing that grow in the garden or back
and front yard or it could mean the drug
Passage 2: Marijuana and lots of it

Dissimilar 2 Both passages answer the question.
The passages belong to different answer types

Question: How can i get a cork out of,not into a wine bottle without
a corkscrew?
Passage 1: Use a screwdriver to put a wood screw into it, then pull the wood
screw out with a pair of pliers, better yet get a $1 corkscrew
Passage 2: If you have a syringe you can push it through the cork to the
inside of the bottle press the air into the bottle and the pressure inside will
force the cork out

1 At least one of the passages does not answer
the question Question: How to cook Angus Burger?

Passage 1: I usually cook burgers until they quit bleeding on both sides,
then maybe just a little longer the cooking time will vary depending on the
thickness of the burger.
Passage 2: I’m not sure what the difference is other than the difference
between a houstine and a angus but just because a bull is castrated doesnt
make him an ox it just makes him a steer.

Not Sure 0 Not sure about the answer N/A

Table 3: Example Answer Types

Question How do I get rid of mice humanely?

Use traps
(Answer Type 1)

Home Depot sells live traps....
Put down a humane trap....
Get a cat or use mouse traps...

Use natural predators
such as cats.
(Answer Type 2)

Just get or borrow a friend’s cat...
invite my cat over,she is a great mouser!
Get a cat or use mouse traps...

Table 4: NFPassageQA_Div Answer Type Distribution

#Types 1 2 3 4 5

#Questions 39 (41.9%) 32 (34.4%) 15 (16.1%) 4 (0.04%) 3 (0.03%)

We adopt this weak supervision strategy and generate pseudo-
labels to learn an improved similarity function and semantic vector
representation for passage clustering, using the BERT [12] model.
The following sub-sections describe the pseudo-labeling sources as
well as the process of generating them from these sources, along
with the model architecture used to train these models.

Pseudo-Labelers: Formally, the pseudo-labeling process can be de-
fined as follows. Start with a question𝑞 and create a ranked list of an-
swer passages P. Then, for a passage 𝑃𝑖 ∈ P with 𝑟𝑎𝑛𝑘𝑄𝐿 (𝑞, 𝑃𝑖 ) ≤
10, the weak labeling process generates a list of 𝑛 passages, ranked
based on the similarity score, R = (𝑃1

𝑗
, 𝑃2

𝑗
, ....𝑃𝑛

𝑗
) with 𝑃𝑘

𝑗
∈ P

and ∀𝑃𝑘
𝑗
, 𝑃𝑘

𝑗
≠ 𝑃𝑖 . For our experiments, the list P is created using

the Query Likelihood (QL) model and the top 𝑛 = 200 passages
are clustered, both reflecting the typical setting for cluster based
models [27, 31] and so the convention we use for our experiments.
We identify three weak labeling functions based on the different
text representations used to encode the passages and the questions
as given below.

Language Model with Dirichlet smoothing (LM): Language
Model is selected as the term frequency based representation. An
alternative representation is tf-idf, however we choose LM since it
has been demonstrated to perform better in cluster based settings
[17]. Given a passage 𝑃 , the language model can be estimated using
maximum likelihood estimation: 𝑃𝑟𝑀𝐿𝐸

𝑃
=

𝑐 (𝑤,𝑃 )
|𝑃 | where 𝑐 (𝑤, 𝑃) is

the count of word𝑤 in passage 𝑃 . Dirichlet smoothing [45] can be
applied to interpolate this estimate with collection (𝐶), 𝑃𝑟𝐷𝑖𝑟 (`)

𝑃
=

𝑐 (𝑤,𝑃 )+`𝑃𝑟 (𝑤 |𝐶)
|𝑃 |+` . These values are calculated at passage (𝑃 ) level.

For this model, the similarity score, 𝑠𝑖𝑚(𝑃𝑖 , 𝑃 𝑗 ) between two pas-
sages 𝑃𝑖 and 𝑃 𝑗 is calculated by using cross-entropy (H ) [27, 31] sim-
ilarity between the Maximum Likelihood (𝑃𝑟𝑃𝑀𝐿𝐸

𝑖
) and Dirichlet

(𝑃𝑟𝐷𝑖𝑟 (`)
𝑃 𝑗

) estimates : 𝑠𝑖𝑚(𝑃𝑖 , 𝑃 𝑗 ) = exp(−H (𝑃𝑟𝑀𝐿𝐸
𝑃𝑖

, 𝑃𝑟
𝐷𝑖𝑟 (`)
𝑃 𝑗

)).
Global Vectors for Word Representation (GloVe): Distribu-
tionalmodels such as GloVe [25] incorporate global term co-occurrence
counts along with the local contextual information, to create repre-
sentations which capture semantic relationships along with term
statistics. We first generate passage representations by combining
the vectors using idf-weighting of terms present in the query as



well as the passage. Query vectors are also used, since this adds
contextual information necessary for clustering and was found to
perform better. We use Euclidean distance as the scoring function.
Bidirectional Transformers for Language Understanding
(P-BERT): Instead of focusing on term statistics or local word con-
texts, longer sequence context information can be used to model
representations at sentence/passage level. BERT [12] representa-
tions capture sentence/passage level information by conditioning
on both left and right contexts across all the layers of a deep neu-
ral model. For each token, BERT generates an embedding using
position, segment and token embeddings. BERT pre-training is per-
formed using two unsupervised tasks: Masked Language Modeling
and Next Sentence Prediction. The vector representations corre-
sponding to a passage/sentence can be generated by giving two
inputs : query 𝑞 and passage 𝑃 . Similar to generating GloVe repre-
sentations, we use query terms in addition to passage information
to provide more context. We use the [CLS] token embedding as the
representation corresponding to the input sequences. The scoring
function is the Euclidean distance.

Model Architecture The BERT [12] model is used as the frame-
work for the weak supervision experiments. For an input question
𝑞 and passage pair (𝑃𝑖 ,𝑃 𝑗 ), the model must learn a similarity func-
tion and output a score for the triple. The training for this task is
performed by feeding the inputs to BERT and fine-tuning the model
based on two different loss functions.
Point-wise model: The point-wise loss function is the default
cross entropy loss used for the sentence pair classification exper-
iments in BERT [12]. The two inputs to the model are (𝑞 + 𝑃𝑖 )
and (𝑞 + 𝑃 𝑗 ) where “+” indicates that question terms have been
concatenated with the corresponding passage terms. For a triple
(𝑞, 𝑃𝑖 , 𝑃 𝑗 ) with 𝑠 (𝑞, 𝑃𝑖 , 𝑃 𝑗 ;\ ) as the scoring function learned by the
model under the parameters \ and 𝑠 (𝑞, 𝑃𝑖 , 𝑃 𝑗 ), the ground-truth
generated by the weak labeler, the training loss can be defined as
follows :

L(𝑞, 𝑃𝑖 , 𝑃 𝑗 ;\ ) = 𝑠 (𝑞, 𝑃𝑖 , 𝑃 𝑗 ) log 𝑠 (𝑞, 𝑃𝑖 , 𝑃 𝑗 ;\ ) (1)

Pair-wise model: The pair-wise model is similar to the Rank
model [11] and the passage ranking model described by Xu et
al. [39]. The loss function employed is the pair-wise hinge loss
function. For an input pair, [(𝑞, 𝑃𝑖 , 𝑃 𝑗 ), (𝑞, 𝑃𝑖 , 𝑃

′
𝑗
)] with point-wise

scoring functions 𝑠 (𝑞, 𝑃𝑖 , 𝑃 𝑗 ;\ ) and 𝑠 (𝑞, 𝑃𝑖 , 𝑃
′
𝑗
;\ ), and the weak la-

bels 𝑠 (𝑞, 𝑃𝑖 , 𝑃 𝑗 ), and 𝑠 (𝑞, 𝑃𝑖 , 𝑃
′
𝑗
), the model is trained to minimize

the hinge loss as follows:

L(𝑞, 𝑃𝑖 , 𝑃 𝑗 , 𝑃
′
𝑗 ;\ ) = max {0, 𝜖 − 𝑠𝑖𝑔𝑛(𝑠 (𝑞, 𝑃𝑖 , 𝑃 𝑗 ) − 𝑠 (𝑞, 𝑃𝑖 , 𝑃

′
𝑗 ))

(𝑠 (𝑞, 𝑃𝑖 , 𝑃 𝑗 ;\ ) − 𝑠 (𝑞, 𝑃𝑖 , 𝑃
′
𝑗 ;\ ))}

(2)

The point-wise model3 used in this case is different from the
default BERTmodel. The inputs to the model are same as the default
version, (𝑞+𝑃𝑖 ) and (𝑞+𝑃 𝑗 ) where “+” indicates that question terms
have been concatenated with the corresponding passage terms. The
BERT scoring model generates hidden states for the [CLS] token
for the input and the final hidden layer is fed into a dense layer.
We consider two variants of the model, one with a linear output
3 References to point-wise model throughout the rest of the paper indicate the default
BERT model

activation (Pair-wise Linear) and the other with tanh activation
(Pair-wise tanh). During test time, the corresponding point-wise
scores are used to generate the similarity scores.

6 ANSWER PASSAGE DIVERSIFICATION
Answer passage clustering models help in grouping similar pas-
sages together. However, the final aim is to be able to display differ-
ent answer types to the users. Diversification models can capture
this information, since they combine relevance and diversity dur-
ing re-ranking. In this paper, we use an extension of the Implicit
Diversification model MMR (Maximal Marginal Relevance) [3] to
diversify the answers. Given a question 𝑞, an initial ranked list
𝑅 of answer passages generated using a standard retrieval model
𝑅 = {𝑝1, 𝑝2, ....𝑝𝑛}, 𝑆 representing the ranked list of diversified an-
swers, 𝑠𝑖𝑚(𝑝𝑖 , 𝑝 𝑗 ) the similarity score between passages 𝑝𝑖 and 𝑝 𝑗 ,
𝐶𝑙𝑢𝑠𝑚 (𝑝) the𝑚 most similar passages to passage 𝑝 , 𝑝∗ the answer
passage selected at each step of ranking, the standard MMR model
is defined as follows:

𝑝∗ = argmax
𝑝𝑖 ∈(𝑅−𝑆)

(1 − 𝛿)𝑟𝑒𝑙 (𝑝𝑖 , 𝑞) + 𝛿 max
𝑝 𝑗 ∈𝑆

𝑠𝑖𝑚(𝑝𝑖 , 𝑝 𝑗 ) (3)

We modify this for cases where the passage 𝑝 𝑗 in S is ranked
within the top 10 of the ranked list 𝑅 (i.e highly relevant to the
query). Here, the diversity component max𝑝 𝑗 ∈𝑆 𝑠𝑖𝑚(𝑝𝑖 , 𝑝 𝑗 ) is re-
placed by max𝑝 𝑗 ∈𝑆 max𝑝𝑘 ∈𝐶𝑙𝑢𝑠𝑚 (𝑝 𝑗 ) 𝑠𝑖𝑚(𝑝𝑖 , 𝑝𝑘 ).

For these cases, instead of finding the maximum similarity be-
tween an element in 𝑅 and passage 𝑝 𝑗 in 𝑆 (as in (3)), we consider
the maximum similarity with top𝑚 most similar cluster elements
with respect to 𝑝 𝑗 . We only expand passages within 𝑆 which are
highly relevant to the query to limit the noise which could be in-
troduced by the non-relevant passages. We also experimented with
other settings such as using cluster elements in 𝑅 and found this
setting to be the best. We will call this MMR Cluster to distinguish
it from the other variants.

7 EXPERIMENTAL SETUP
Data Overview: The evaluation of the answer passage similar-
ity experiments is conducted using the newly collected NFPas-
sageQA_Sim dataset with 128 questions. For the weak supervision
experiments, we used the ANTIQUE dataset collection. 200 ques-
tions were randomly sampled from the training set to create a
validation set and the remaining 2226 questions were used for train-
ing. In order to evaluate the output generated by diversified model,
we used the newly generated dataset NFPassageQA_Div with 93
questions.
Weak Supervision Training and Test Setup: For training, the

Table 5: Weak Supervision Experimental settings

#Train # Train point- # Train pair- #Test
questions wise instances wise instances questions

2226 222600 400000 128

pseudo-labeling process described in Section 5.2 is used to generate
a ranked list of passages for each (𝑞, 𝑃𝑖 ) pair. Instead of adding the
set of all 𝑃 𝑗 to training data, we add only the top 10 passages. To



create weak labels for point-wise models, the top 5 passages from
the ranked list are labeled as positive (1) and the next 5 passages
are labeled as negative (0). For the pair-wise models, we need a pair
of passages from the ranked list to create the training instances.
These pairs are generated using a sliding window method. For each
passage in the ranked list, the next 5 passages below it in the ranked
list are considered to have lower scores and added as training data.
From these generated instances, we randomly sample a subset for
our experiments. At test time, we follow the same initial process
described in Section 5.2. The point-wise scores are generated for
each test triple (𝑞,𝑃𝑖 ,𝑃 𝑗 ) and the clustering is performed based on
these scores. We perform clustering over all passages 𝑃 𝑗 – i.e., a
set of 200 passages – for each |𝑃𝑖 | with 𝑟𝑎𝑛𝑘 (𝑃𝑖 ) ≤ 10 (same as the
settings in Section 5.2). The baseline methods also follow the same
convention for correct comparison. The experimental settings are
summarized in Table 5.
Diversification: The initial retrieval run is obtained using the
Query Likelihood model. The diversity re-ranking is performed
over the top 100 retrieved answers. We consider a number of stan-
dard baselines and compare against them.
• Query Likelihood (QL): This is the initial retrieval run gen-
erated using default Dirichlet prior smoothing (`=2500).
• MMR : This is the classic MMR implementation [3], which uses
a greedy implicit diversification algorithm to generate a diver-
sified output. We use two different versions of this as baseline :
MMR Sparse and MMR P-BERT. MMR Sparse is the classic IR ap-
proach using a sparse vector representation for terms, where the
different dimensions contain term frequency information. MMR
P-BERT uses the BERT representation ([CLS]) for the passages.
• Term Level Diversification: This was introduced by Dang
et al. [8] and is an explicit diversification model, where a set of
topic terms are first generated by an algorithm called DSPApprox
which is then used in combination with xQUAD and PM-2 algo-
rithms to generate a final diversified list. We only use xQUAD as
the baseline since xQUAD consistently outperformed the PM-2
model for this dataset. This is also consistent with the findings
in [33].
Implementation Details: The Language Model experiment

settings are similar to cluster based retrieval [31]. 3-fold cross-
validation was performed to set ` parameter for test questions. The
default parameter value of ` = 10 was set for the train questions
during the LM pseudo-labeling process. 300𝑑 pre-trained GloVe
[25] vectors4 are used for the GloVe experiments. For the BERT
[12] pre-trained experiments, Layer1 hidden vectors of the [CLS]
output generated using BERT-Base (Uncased) pre-trained model5
are used. For the weak supervision experiments, the models trained
on BERT are implemented using TensorFlow6 and fine-tuned after
initializing with the BERT-Base (Uncased) pre-trained model. The
maximum sequence length is set to 128, with each input truncated
to length 64. The batch size is set to 20. The initial learning rate was
selected from [1𝑒−5, 2𝑒−5, 3𝑒−5] by tuning on the validation set. The
dropout parameter is set to 0.1. The experiments were conducted
on a single GeForce GTX 1080 GPU. The train time for the point-
wise model was around 1 hour and pair-wise models took around 2

4 https://nlp.stanford.edu/projects/glove/ 5 https://github.com/google-research/bert
6 https://www.tensorflow.org/

hours for training. The inference time was around 50 minutes for
both model types. The k-nearest neighbor (kNN) clustering was
conducted using the kDTree algorithm in the sklearn toolkit. The
parameter 𝑘 is set to 200. The parameters for the diversity baselines
are set by cross-validation. 𝛿 value for the MMR Cluster approach
is set to 0.5 and parameter𝑚 is set to 40 for WS GloVe model and 60
for P-BERT to reflect the best performance in each case. In order to
maintain consistency with our approach, topic terms for the term-
level diversification baseline are generated from top 200 retrieved
set, same as the setting for answer passage clustering.
Evaluation: To evaluate the passage similarity models effectively,
ranking metrics (instead of default clustering metrics) are used to
determine if the model retrieves relevant and similar passages at
higher ranks. Precision@k and Recall@k, with k=10,20 are em-
ployed for assessing this. For each test question, the metric value is
calculated for each relevant passage and then averaged over all of
them. The values returned for all the questions are then averaged to
generate the final evaluation score. To evaluate diversification mod-
els, standard diversity metrics such as Precision-IA@k, S-Recall@k
and 𝛼-NDCG@k are used. We also measure relevance values using
Precision@k, Recall@k and NDCG@k metrics. For the metrics to
evaluate diversification models, we set 𝑘=10. Statistical significance
is measured using the paired two-tailed t-test with p-value < 0.05.

8 RESULTS AND ANALYSIS
Table 6 reports the results for the passage clustering task using
weakly supervised labels. The column“Sim Clusters” refers to clus-
tering relevant passages of the same type and “Rel Clusters” refers
to clustering relevant passages together. Pseudo-labels derived us-
ing GloVe perform the best, with the pointwise and pairwise models
significantly improving over the corresponding baseline. The best
performing GloVe model also significantly outperforms both LM
and BERT baselines, which shows that the weak labels from GloVe
combines well with BERT when fine-tuned.

Table 7 shows the results on various diversity models on the
NFPassageQA_Div dataset. The Term Level Diversification model
using xQUAD is a competitive baseline outperforming both the
QL baseline and MMR with standard BERT representation. In gen-
eral, using clusters from unsupervised BERT representations and
weak supervision with MMR performs well across all diversity and
relevance metrics. The cluster generated using GloVe weak labels
(WS GloVe) performs the best, significantly outperforming all the
baselines.
Impact of using clustering for diversity : We first investi-
gate how clustering helps in retrieving higher quality answers
for the question answering system. To this end, we first analyze
the Win/Tie/Loss statistics for the top performing baseline and
clustering model with respect to S-Recall as given in Table 8. Since
the dataset consists of questions with a single and multiple answer
types , we measure this for two cases - all questions and questions
with multiple answer types (>1). As S-Recall is a metric which mea-
sures how well a system discovers new subtopics, this would be
relevant only for the second type. As seen in the table, the cluster-
ing technique retrieves significantly more answer types than the
baseline. We also investigate how clustering contributes to these
improvements and found two main reasons for this : (a) In 6 out of



Table 6:Results onNFPassageQA_Simdataset for clustering relevant passages (Rel Clusters) and clustering relevant passages of the same type
(Sim Clusters) for the three main pseudo-labelers. † indicates significance with respect to corresponding baselines. Statistical significance is
measured using the paired two-tailed t-test with p-value<0.05. P-BERT refers to pre-trained BERT. The scores for the best performing trained
model with respect to each baseline has been marked in bold.

Pseudo-labeler Model Rel Clusters Sim Clusters
P@10 P@20 R@10 R@20 P@10 P@20 R@10 R@20

LM

Baseline 0.1057 0.0917 0.0960 0.1780 0.0523 0.0418 0.0942 0.1537
Point-wise 0.0706 0.0624 0.0770 0.1478 0.0380 0.0287 0.0660 0.1041
Pair-wise Linear 0.0803 0.0739 0.0813 0.1575 0.0427 0.0346 0.0779 0.1225
Pair-wise tanh 0.0871 0.0794 0.0937 0.1811 0.0420 0.0335 0.0738 0.1321

GloVe

Baseline 0.1478 0.1114 0.1558 0.2468 0.0663 0.0460 0.1384 0.1813
Point-wise 0.2087† 0.1663† 0.2403† 0.4070† 0.0964† 0.0686† 0.1887† 0.2736†

Pair-wise Linear 0.2002† 0.1632† 0.2192† 0.3722† 0.0924† 0.0674† 0.1799† 0.2617†
Pair-wise tanh 0.1982† 0.1631† 0.2204† 0.3895† 0.0935† 0.0667† 0.1762† 0.2506†

P-BERT

Baseline 0.2279 0.1745 0.2720 0.4580 0.0838 0.0626 0.1662 0.2483
Point-wise 0.1874 0.1457 0.1983 0.3277 0.0815 0.0549 0.1585 0.2118
Pair-wise Linear 0.1928 0.1479 0.1952 0.3284 0.0855 0.0594 0.1661 0.2399
Pair-wise tanh 0.1932 0.1498 0.1868 0.3224 0.0795 0.0578 0.1595 0.2215

Table 7: Results on NFPassageQA_Div dataset for different diversification methods.𝑄 , 𝑆 ,𝑇 , 𝐵 indicates significance with respect to the base-
linesQL,MMRSparse, TLD andMMRP-BERT respectively.Here TLD refers to Term level Diversification [8]. P-BERT refer to the unsupervised
models while WS GloVe refer to the weak supervision model trained with GloVe signals. Statistical significance is measured using the paired
two-tailed t-test with p-value<0.05. The scores for the best performing model has been marked in bold.

Type Model Diversity Relevance
Prec-IA S-Recall 𝛼-NDCG Prec Recall NDCG

Baselines

QL 0.2104 0.6905 0.4671 0.3182 0.1043 0.3435
MMR Sparse 0.0711 0.4743 0.2996 0.1290 0.0404 0.1807
TLD xQUAD 0.2166 0.7057 0.4705 0.3301 0.1079 0.3503
MMR P-BERT 0.1732 0.6118 0.4083 0.2763 0.0891 0.2996

Cluster MMR Cluster P-BERT 0.2290𝑄 ,𝑆 ,𝑇 ,𝐵 0.7317𝑄 ,𝑆 ,𝐵 0.4867𝑄 ,𝑆 ,𝑇 ,𝐵 0.3451𝑄 ,𝑆 ,𝑇 ,𝐵 0.1130𝑄 ,𝑆 ,𝐵 0.3646𝑄 ,𝑆 ,𝑇 ,𝐵

MMR ClusterWS GloVe 0.2344𝑄 ,𝑆 ,𝑇 ,𝐵 0.7530𝑄 ,𝑆 ,𝑇 ,𝐵 0.4939𝑄 ,𝑆 ,𝑇 ,𝐵 0.3569𝑄 ,𝑆 ,𝑇 ,𝐵 0.1162𝑄 ,𝑆 ,𝑇 ,𝐵 0.3723𝑄 ,𝑆 ,𝑇 ,𝐵

Table 8: Win/Tie/Loss statistics for models compared with the QL
baseline with respect to various metrics.

Metric Models W/T/L W/T/L Multi-
All Questions Answer Questions

S-Recall TLD xQUAD 3/87/3 2/49/3
MMR Cluster WS GloVe 11/80/2 9/43/2

Prec-IA TLD xQUAD 11/76/6 6/44/4
MMR Cluster WS GloVe 30/59/4 17/34/3

𝛼-NDCG TLD xQUAD 25/45/23 16/24/14
MMR Cluster WS GloVe 44/37/12 28/18/8

9 cases, it was found that the improvement in answer type S-Recall
was caused by the presence of the currently selected passage (using
MMR) within the cluster of an already retrieved relevant passage in
set 𝑆 . For example, for the query “How do you prevent chicken
from drying out when you cook it?” with 5 answer types,
an already relevant selected passage in set 𝑆 , containing 2 answer
types “sprinkle water, wrap in foil” has another answer with
answer type “coat chicken and fry in oil” in its cluster and the

similarity score for this would be higher than other passages and is
hence retrieved. This demonstrates how “Rel Clusters” or clustering
relevant passages correlates with improvement in this metric. (b) In
the remaining 3 out of 9 cases, we found that non-relevant passage
was responsible for retrieving relevant passage due to its presence
in its cluster. These passages though non-relevant, had some con-
textual similarity to the expected answers. For example, for the
query “How do I get rid of mice humanely?”, a non-relevant
passage “Ask them to leave politely”, had a relevant answer
with answer type “Use live traps” within its cluster, which was
subsequently retrieved by the algorithm.

We also studied the behavior with respect to the Precision-IA
metric, which measures the average number of relevant passages
retrieved for each answer type. This metric would be pertinent
for both cases where questions have a single answer type and
for those with multiple answer types. We found the behaviour
similar to that of S-Recall. Out of the 30 questions which improved
compared to the QL baseline as given in Table 8, the gains for 22 of
these can be attributed to their presence in the clusters of relevant
passages present in set 𝑆 . This demonstrated how “Sim Clusters”
or clustering relevant passages of the same type correlated with



improvements in the Prec-IA metric. The improvements in the
remaining 7 questions, are due to the presence of relevant passages
in clusters of non-relevant passages same as in the S-Recall metric.

The combination of retrieving more answer types and relevant
passages for each answer type contributes to the improvement in
𝛼-NDCG. Significant gains in 𝛼-NDCG metric also demonstrates
that more relevant passages are ranked higher. This also directly
correlates with the improvement in various relevance metrics such
as NDCG, Precision and Recall as shown in Table 7.

Impact of size of the cluster: In order to get the best perfor-
mance from the diversity model, we need to pick the right number
of top similar elements (𝑚) or cluster size. To that end, we study
how 𝛼-NDCG value of the models changes with increase in𝑚. As
shown in Figure 2, we plot two different clusters generated using P-
BERT representations and weakly labeled GloVe with BERT against
different values of𝑚 = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. For both
cases, we observe that the efficacy of the model decreases after a
threshold. This was also observed with S-Recall and Precision-IA
metrics. This behavior can be attributed to the additional noise
introduced by less similar passages, which is added as we increase
the cluster size.
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Figure 2: 𝛼-NDCG across Cluster size

PerformanceComparisonwithTermLevelDiversification
baseline: We qualitatively compared the answers retrieved by the
Term Level Diversification baseline, which is a high-performing
model for document diversity and the cluster based MMR models
and observed that the terms used for diversification in the term
based model is insufficient to differentiate between non-relevant
and relevant answers. For example, for the query “How to get rid
of warts?, some of the top terms used by the term based model
are “remove, try, tape, work, freeze”. While some of these
terms do refer to methods for wart removal such as “using tape” or
“freeze”, this also retrieved other non-relevant passages with the
same terms. This issue is mitigated to a large extent in cluster based
models due to the contextual information captured by them.

Performance comparison betweendifferent clusteringmod-
els: In order to compare the performance of various clustering
models in combination with MMR, we performed the experiments
with clusters of size 𝑚 = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and
reported the maximum value in Table 9. The weakly supervised

model performed the best amongst all the models with the unsuper-
vised GloVe model performing the worst. This shows the efficacy
of using weak supervised clusters as opposed to clusters generated
using unsupervised representations.

Table 9: 𝛼-NDCGmetric comparison for MMRmodels using differ-
ent clustering models

Clustering Models 𝛼-NDCG

MMR Cluster Glove 0.4667
MMR Cluster P-BERT 0.4867
MMR Cluster WS Glove 0.4939

9 CONCLUSION AND FUTUREWORK
Passage clustering is an essential component of a question answer-
ing system aimed at finding multiple answers to questions. In this
paper, we show empirically how passage clustering models can be
used in combination with diversification models to retrieve differ-
ent answer types. We describe the creation of a passage similarity
based dataset: NFPassageQA_Sim and the automatic generation of
the diversity based dataset: NFPassageQA_Div. We also propose
a weak supervision method to tackle the task of answer passage
clustering. Since weak supervision models are expected to capture
additional information compared to unsupervised representations,
we use various pseudo-labels generated using the unsupervised
representations described earlier and fine-tune a BERT model for
this task. We found that a BERT pointwise model trained using
GloVe pseudo-labels to be the most effective for this task. Since
the end task is displaying the various answer types, we employ a
diversification approach to create a re-ranked list. We propose a
modified MMR approach, which uses the similarity between cluster
elements while greedily selecting the next passage. We demonstrate
that expanding the answer set using these clusters results in signif-
icant improvements across various diversity and relevance metrics
in comparison with standard diversification baselines. The results
suggest that this greedy approach finds more passages which are
similar to existing relevant passages and also results in an overall
increase in the number of answer types.

Several different avenues are open to extension from this work.
This paper gives initial experiments which show how similarity
based clusters can be incorporated into a diversified model. A more
natural extension of this work would be creating a single model
which has an objective function optimizing similarity and diversity
jointly. This could also be included as part of a cluster based model
to display answers under a different setting. This type of model
could also be used in combination with a summarization model to
display different answer types.
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