Explaining Text Matching on Neural Natural Language
Inference

YOUNGWOO KIM, MYUNGHA JANG, AND JAMES ALLAN, University of Massachusetts

Ambherst

Natural language inference (NLI) is the task of detecting the existence of entailment or contradiction in a given
sentence pair. Although NLI techniques could help numerous information retrieval tasks, most solutions for NLI
are neural approaches whose lack of interpretability prohibits both straightforward integration and diagnosis for
further improvement. We target the task of generating token-level explanations for NLI from a neural model.
Many existing approaches for token-level explanation are either computationally costly or require additional
annotations for training. In this paper, we first introduce a novel method for training an explanation generator
that does not require additional human labels. Instead, the explanation generator is trained with the objective
of predicting how the model’s classification output will change when parts of the inputs are modified. Second,
we propose to build an explanation generator in a multi-task learning setting along with the original NLI task
so that the explanation generator can utilize the model’s internal behavior. The experiment results suggest that
the proposed explanation generator outperforms numerous strong baselines. In addition, our method does not
require excessive additional computation at prediction time, which renders it an order of magnitude faster than
the best-performing baseline.

CCS Concepts: * Information systems — Clustering and classification; * Computing methodologies —
Information extraction; Neural networks.

Additional Key Words and Phrases: natural language inference, neural network explanation, rationale, inter-
pretable machine learning

ACM Reference Format:

Youngwoo Kim, Myungha Jang, and James Allan. 2020. Explaining Text Matching on Neural Natural Language
Inference. ACM Transactions on Information Systems 1, 1, Article 1 (January 2020), 23 pages. https://doi.org/
10.1145/3418052

1 INTRODUCTION

Natural language inference (NLI) is the task of detecting the existence of entailment or contradiction
in an input sentence pair [7]. The NLI task has been expected to assist many information retrieval (IR)
tasks, as the notion of relevance is closely related to the notion of entailment [10, 31]. For example, in
question answering applications, an NLI component could be used to retrieve semantically-equivalent
questions or answer passages [21]. Once the NLI model determines a relationship between two
sentences to be entailment or contradiction, downstream applications would then benefit from
additional information about the decision: What makes the relationship between the sentences
entailment? If the relationship is identified as contradiction, what is contradictory about the two

Author’s address: Youngwoo Kim, Myungha Jang, and James Allan, University of Massachusetts Amherst, Amherst, MA
01003, {youngwookim,mhjang,allan} @cs.umass.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1046-8188/2020/1-ART1 $15.00

https://doi.org/10.1145/3418052

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3418052
https://doi.org/10.1145/3418052
https://doi.org/10.1145/3418052

1:2 Youngwoo Kim, Myungha Jang, and James Allan

sentences? To explain these, the entailed or contradictory information should be localized in given
sentence pairs.

Existing work in other text classification task have been accompanied with a token-level expla-
nation to explain models’ predictions [4, 27, 28]. For NLI task, additional token-level information
would be helpful in many downstream tasks such as the following applications:

o Entailment functions are adopted as a search component in retrieval-based question answering
(QA) systems [21, 35] by retrieving questions or answers that are entailed by users’ queries. In
practice, the system would need to know which tokens in the candidate text entail the query, so
that it can highlight the words that entail the query or re-rank the candidate texts based on the
contextual information such as conversation history.

e For diversification and duplicate detection in short texts, entailment-based text clustering is
used as an alternative to the conventional bag-of-word features [20]. Knowing which terms in
short texts are actually entailed could be a used for a stronger similarity function for clustering.

o Identifying contradictory information at the token-level is important for contradiction-aware
summarization systems, such as opinion summarizers [26] and summarizations for systematic
reviews [1, 43].

In this work, we also formalize our challenge as a token-tagging problem. Specifically, we aim to
explain the identified relation between input pairs by (1) identifying which tokens in each sentence
can be semantically aligned across the pair of sentences, and (2) uncovering reasons for contradictions
by identifying tokens that represent two pieces of information that cannot be true at the same time. For
this, we define three types of tag: “match” to denote aligned tokens that convey the same information,
“conflict” to denote tokens that present contradictory information, and “mismatch” to denote tokens
that could not be aligned (Table 1).

There are number of approaches that are applicable to our problem. First, generic neural network
explanation methods could be used to score the importance of input tokens [4, 38, 42, 51, 52]. In
these methods, importance scores are typically calculated by one of the following three types of
signals or combination of them: (1) changes in outputs with respect to input perturbations [38], (2)
gradients of the outputs with respect to the inputs [42, 51, 52], and (3) activated weights in the neural
network [5]. While these methods do not incur additional annotation effort, we found that many of
them are too computationally inefficient to be used in product deployment settings. Moreover, most
methods are only investigated in very generic settings that are not specific to a particular task or
architecture, and thus there should be much room to improve the accuracy by specializing on the
particular problem and models.

Secondly, when it comes to NLI task specific approach, Thorne et al.’s work is most closely related
to our work as they also targeted token-level explanation for NLI [44]. They proposed an unsupervised
explanation model based on attention weights. However, it was shown that their attention-based

Table 1. Three example sentence pairs from MNLI dataset with the corresponding classification
labels (entailment, contradiction and neutral) and token-level tags : conflict (red), match (blue) and
mismatch (yellow). In each row, the text on the left corresponds to the premise and the text on the
right corresponds to the hypothesis.

There is nothing more to be done here, I think, entailment he stared There isn’t anything left to do.
unless, at the dead ashes in the grate.

yeah i mean just when uh the they military paid contradiction The military didn’t pay for her education.
for her education

uh-huh well I've enjoyed talking to you. neutral I liked talking to you about sports.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Explaining Text Matching on Neural Natural Language Inference 1:3

method is not as effective as generic method LIME [38], which only uses model’s output changes
from perturbed inputs to generate an explanation. This result is supported by other studies that show
standard attention modules do not provide meaningful explanations [25]. One possibility is that we
may need more complex mechanism to generate an explanation from the model’s hidden variables
such as attention weights.

In this study, we aim to build an explanation generator to generate token-level explanations by
considering the model’s internal behaviors. We specifically address the following research questions:

RQ1: How can we train an effective token-level explanation generator without annotation effort?
RQ2: How can an explanation generator benefit from the model’s hidden variables?

As an answer to the first research question, we propose a novel weakly-supervised method to
train the explanation task without using any additional human-labeled data. The training objective
of the explanation generator is to predict the model’s output changes in response to perturbations.
Specifically, given a sentence pair, a number of tokens are randomly removed and the changes in the
classification outcomes are measured. Tokens that cause larger changes in the classification when
removed are taken as a weak supervision signal, and the explanation generator is trained to generate
scores that can predict the model’s behavior in response to perturbations. The resulting generator can
then be used as a token-level explanation generator.

Regarding the second research question, we show that explanation performance can be improved
by building a multi-task learning model that simultaneous predict both the original NLI classification
and its explanation. Multi-task learning has been shown to be effective for tasks with similar
characteristics. In this explanation problem, multi-task learning provides significant benefits because
the explanation generator can access most of the hidden variables of the original task network.

We apply our approach to the Multi-Genre NLI Corpus (MNLI) [47] and the Stanford Natural
Language Inference (SNLI) Corpus [7]. The methods are evaluated by comparing the model’s
outputs with human-annotated token-level explanations. For the MNLI dataset [47], we collect
human-annotated token-level explanations based on our definition of the three types of tag (section 3).
For the SNLI dataset, we used the token-level annotation collected by Camburu et al. [8]. Overall,
our paper makes the following contributions:

e We introduce a weak-supervision training method to train an explanation generator for the
classification problems.

e We show that training an explanation generator using multi-task learning with the original task
network improves the explanation quality even beyond the original perturbation signal.

e We introduce token-label tags and collection labels to explain the NLI problem. We describe
the performance of various explanation approaches on the proposed dataset and the existing
explanation dataset. The experiments on both datasets showed our method to be not only more
computationally efficient than perturbation methods, but also more precise than a number of
strong baselines.

2 RELATED WORK
2.1 Explaining natural language inference

Among the work aimed at obtaining explanations for NLI models, one notable example is the
e-SNLI dataset [8], which adds large scale explanation annotations to the well-known NLI dataset
SNLI [7]. It contains human-written explanation sentences and token-level annotations that represent
the important tokens for the decision [8]. They reported that it is challenging to create quality
explanations and evaluate generated sentences, because it is not easy come up with clear criteria to
define a good explanation. For a method, they also proposed to train a neural network that generates
explanation sentences. Using e-SNLI, [44] have investigated whether the attention component of the

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:4 Youngwoo Kim, Myungha Jang, and James Allan

neural network can be used to generate token-level explanations [44]. The results were not positive:
they showed that the explanation score derived from the attention score is less effective than the
generic machine learning explanation method LIME [38]. In this paper, we show our approach is
more precise than LIME and the attention component based approach.

2.2 Neural network explanation methods

Certain neural explanation methods are called explanation generators if they incorporate additional
machine learning components beyond the original models and have their own parameters to be
trained [18]. A number of explanation generation approaches have used human-written explanations
as supervised labels [8, 22, 24]. If the target data are accompanied by explanations such as textual
descriptions of images, supervised approaches can be an effective and easy way to build an explana-
tion generator [22]. However, it is less likely for the text data to be accompanied by additional text
explaining its meaning. Moreover, some tasks, including NLI, are hard for crowd-workers to annotate,
because these tasks concern too primitive levels of textual understanding. Annotating explanations at
the token-level could be much more challenging and costly than the original task.

In contrast, other neural network explanation approaches aim to be more generic and unsupervised.
To provide an explanation for a particular instance, these methods assign an importance or salience
score to the input by examining the current gradients or the currently active weights, which are
mostly decided by activation of non-linearity units. We refer to these approaches as gradient-driven
methods. Initially, the gradient from the input to output was used as the importance score [41]. Later
approaches used complex combinations of the gradient at multiple points [42]. Another strategy of
these instance-wise approaches is to hide part of the input and measure the sensitivity of the output
changes [51, 52]. The layerwise relevance propagation (LRP) method explains the contribution of
the input tokens by recursively distributing the contribution of an upper layer’s neurons to the lower
layer’s neurons based on the weights at the particular input instance [6]. This method has been
employed to explain a number of text classification problems — for example, sentiment analysis using
recurrent neural network [5] and document classification using convolutional neural networks [4]. It
shows which input words are important for a particular word-generation or classification decision.
Ancona et al. have compared a number of these attribution approaches [2].

One potential pitfall of gradient-driven methods is that they may not be reliable outside the small
faithful locality. Many methods only examine the gradients (or weights) at single inputs, which
makes it challenging to capture a larger view. For example, we found that the impact of negation
such as “not” is often underestimated, and yet its deletion may change the classification decision
from entailment to contradiction. Our approach and other explanation generation approaches are
more robust in handling this problem compared to gradient-driven methods, as they are trained to
generate larger locality during training.

One easy way to arrive at a larger view of neural network behavior is to change part of the input
and examine the changes to the output and the network [42, 51]. Such approaches are referred
to as perturbation-based approaches [14]. A major drawback of perturbation-based approaches is
computational cost. Moreover, the effect of removing multiple tokens simultaneously might be very
different from the effect if they are removed independently. In addition to the cost of executing
exponential permutation candidates, translating the permutation behavior into a localization decision
is not trivial. In this paper, we suggest to use perturbations to train an explanation generator, so that
we can obtain explanations with lower computational costs at the inference time with the acceptable
increase of the cost in the training time.

Specifying rationales as part of the input has been used for a number of text classification
tasks [9, 27, 28]. Those approaches are similar to our approach in that an explanation generator
is trained by selecting an important subset of the input that would result in similar decisions. Our

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Explaining Text Matching on Neural Natural Language Inference 15

experiments do not have direct comparison with these approaches, because applying them for the
NLI task was unduly complex. In contrast to those approaches, which use deleting part of the input
as signal, our approach is more flexible, because it can be trained with other types of modification of
the inputs.

For our problem, some explanation methods are difficult to apply. Model-wise explanation ap-
proaches’ strategy is to generate simpler proxy models, which can be decision-trees [12] or sets
of rules [3]. Although proxy models of networks are easier to interpret than the original models,
it is not trivial to use them for instance-wise explanation, or to handle word embeddings. Some
other approaches are to ensure models to be interpretable by forcing the models to obey some
constraints [32, 39]. However, it is unclear whether the prevalent neural network components such
as a sentence encoding from a sequence of word embeddings can be achieved with the proposed
strategies without sacrificing performance.

2.3 Evaluating explanations for neural network

Although there are numerous generic approaches to explain the predictions of a neural network, it is
difficult to declare one method superior to another because the methods were compared with different
evaluations and it is difficult to define a standard for the evaluations. One of the popular evaluation
methods is to delete or hide a part of the inputs that is explained as contributing significantly to
the prediction and check whether the output changes more than if other parts had been deleted or
hidden [2, 4]. Other approaches incorporate human into evaluation, where the most intuitive way
is to compare human written explanation with the model’s explanation [8, 28]. It is possible to ask
people to achieve some goals by using model provided explanations. In Ribeiro et al.’s work, people
were shown explanation examples for two classifiers and they were asked to predict which classifiers
would perform better or which features would be good for classification [38]. In our evaluation, we
take the most common approach to compare human written explanation with model’s explanation.

2.4 Natural language inference

While there has a been long history of research in area of textual entailment, recently used NLI
task definitions are largely affected by SNLI dataset, which is a large dataset with 570,000 pairs
with manual annotations[7]. It was followed by more generalized dataset Multi-Genre NLI Corpus
(MNLI), which is one of the most representative dataset for NLI task. Currently, the best approach for
NLI task is to fine-tune the neural model from pre-trained language models such as BERT [13, 50].
Recent improvements on MNLI tasks are done by improving pre-trained language models, mostly by
increasing the model size and training data for pre-training [36, 37]. The first pre-trained language
model on Transformer showed accuracy of 82.1. Soon Devlin et al. showed their BERTp45r model
and BERT arge model with accuracy of 84.6 and 86.6, where only difference is the size of the
model [13]. XLNet followed with accuracy of 89.8 [50] and T5-11B showed 91.7 [37].

Unfortunately, it is a non-trivial challenge to apply them to tasks that are similar but slightly
different from one in which they were trained. To benefit from the NLI corpus and the proposed
approaches, various transfer learning approaches were proposed [11, 34]. For example, an MNLI-
trained model was proposed as a sentence encoder to improve other tasks [11]. Multi-task learning
is another effective way to benefit from a large corpus such as the MNLI dataset. Liu et al. built a
multi-task model by training many natural language understanding tasks and sharing all intermediate
transformer parameters except the last feed-forward layers [29]. Especially, the accuracy on the
task with small datasets have huge improvements. Limitations of such transfer learning approaches
are that they require additional training data for the target task and they are difficult to be used in
applications that are not based on machine learning.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:6 Youngwoo Kim, Myungha Jang, and James Allan

Table 2. All relevant tags displayed. Blue is for match, red is for conflict, and yellow is for mismatch. In
each row, the text on the left corresponds to the premise and the text on the right corresponds to the
hypothesis.

An older and younger man smiling. neutral Two men are smiling and laughing at the cats playing on the floor.

yeah i mean just when uh the 'they military paid contradiction |The military didn’t pay for her education.
for her education

To see how the NLI task can benefit other tasks, it worth to have a look at the methods before
the neural approaches appear. Earlier methods for NLI can be found in the PASCAL Recognizing
Textual Entailment (RTE) challenge [17, 23]. Many entailment systems in RTE challenges were
based on curated lexical resources such as WordNet [33] and ParaphraseDB [16]. They were often
composed of separable modules, and it was reasonably clear what the role of each modules was and
the systems could be applied to similar tasks [21].

One example of textual entailment systems that is less reliant on machine learning techniques
is the Excitement Open Platform [30]. This system provides a textual entailment engine based on
the edit distance between premise and hypothesis. This system was used as a feature for a semantic
similarity task [46] and a relation extraction task [15]. The system was easy to be utilized because it
reveals token alignment information and does not require additional training data for the downstream
task.

3 TASK DEFINITION

The original natural language inference task is a sentence pair classification problem. Two sentences,
a premise and a hypothesis, are given. The goal of the task is to classify their relationship into either
entailment, neutral, or contradiction [7].

We define NLI explanation as a sequence-tagging problem. To provide a clear definition for the
token-level annotation, we defined three tags, each of which indicates the role of the tokens in
the sentences with regard to the inference decision. Given a pair of input sentences, our goal is
to compute a score for each token in the sentences based on how relevant it is to each tag: match,
mismatch, or conflict.

Match. The match tag in the hypothesis denotes a token whose meaning can be inferred from the
premise. A token in the premise is tagged as match if it is required to infer the meaning that appears
in hypothesis. A sentence pair that is labeled as an entailment implies that all the meanings that the
tokens in the hypothesis imply should be inferred from tokens in the premise. Thus, we expect all
tokens in the hypothesis to be tagged as match and some of the tokens in the premise — those that
correspond to the tokens in the hypothesis — to be tagged as match. As a result, many tokens are
tagged as match including ones that are trivially same across the sentences.

Even if a sentence pair is labeled as neutral, some information in the hypothesis could be inferred
from the premise. In the first example of Table 2 (labelled neutral), the text “Two men are smiling’
in the hypothesis can still be inferred from the premise, so we can annotate these tokens as match
even though the classification label is not entailment. Similarly match can be used for a sentence pair
whose label is contradiction.

>

Mismatch. A token is tagged mismatch if it is in the hypothesis but cannot be inferred from the
premise. For example, in Table 1, “about sports” in the third row cannot be inferred from the premise,
and hence is annotated as mismatch. A neutral relationship can be clearly explained by indicating

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Explaining Text Matching on Neural Natural Language Inference 17

which tokens are considered mismatched. Mismatch is the opposite of match. We distinguish them
by considering mismatch only for cases whose classification labels are neutral.

Conflict. A token is tagged conflict if it is a critical token that renders the corresponding concept
untrue. We chose to apply the conflict tag only to critical tokens that produce a contradiction, rather
than tagging all the tokens of a contradictory concept. In the annotation process, the annotators
were instructed not to include tokens that are trivially identical across sentences. The negations and
antonym pairs that are relevant to a contradiction are always included.

Drawing a clear border for contradicting concepts is a difficult problem due to their ambiguity.
The ambiguity was more apparent for conflicts than it was for matches or mismatches. In the first
example of Table 3, all the annotators included “same” and “differ” as conflict tokens, but some
also included “is the” and “tended to” as conflict tokens. We accept this discrepancy as an inevitable
limitation of token-level explanations.

Our tagging definition differs from that of e-SNLI [8, 27] in that we are not only seeking to
identify important tokens, but also to identify the roles of the tokens. e-SNLI was generated by
asking crowd-workers to write explanation sentences for each instance of the SNLI dataset. During
the annotation process the crowd-workers were also asked to tag which tokens are important for
the explanation. The difference between their guideline and ours is particularly prominent for the
entailment sentence pairs. In this work, entailment sentences are explained by annotating which
tokens would be tagged match with the definition above. In contrast, e-SNLI asked the crowd-workers
to tag tokens that are semantically related but not trivially equal across the sentence pairs (these are
often paraphrased texts or a hyponymy and hypernymy pairs). This difference resulted in our dataset
having more tokens tagged for entailment sentences pairs then e-SNLI dataset.

4 METHOD

We model token tagging as a ranking problem. For a given sentence pair, the model generates three
scores for each token. Each of the scores represents how likely the token is to be tagged as match,
mismatch, and conflict. Note that the three tags are not mutually exclusive. Although it is reasonable
to expect correlations between tags in a single token, modeling some relations — e.g., between conflict
and match — could be very subtle sometimes. Thus, we don’t explicitly capture correlation in our
modeling.

Let f : x — z. be the original classification function implemented by the neural network, where
x is a sequence of token IDs that are fed to the network. Another function g : x — y; is added to
generate an explanation vector y,; for a tag ¢, where the number of dimensions for y, is equal to
number of tokens in x. Our goal is to train g, so that the score of the y,; (i-th element of y,) indicates
how likely the corresponding input token x; should be tagged with the particular tag.

Table 3. Two examples showing disagreements between annotators. Each example shows annotations
from two annotators, where one annotator tagged only the deep red colored tokens as conflict while
the other annotator also included the light red colored tokens as conflict.

However, the specific approaches to executing those principles contradiction Specific approaches to each principle is the same
tended to differ among the various sectors. in each sector.

What you say about Lawrence is a great surprise to me , I said. contradiction I knew that about Lawrence all along.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:8 Youngwoo Kim, Myungha Jang, and James Allan

classification explanation
' |
[1t tttttt
[Linear Projection L”
| r + 1t 1 1 1
(v, Mo M v, Jos |

<CLS> || Cold || winter|| winds ees |<SEP> | Warm |winds |extend

Fig. 1. The structure of our Transformer-based model. Thin arrows represent final outputs for clas-
sifications and explanations. The red “Linear” in the left represents the linear-projection layer for
sentence pair-level classification, and three linear-projection layers on the right are used to generate
the explanation scores for each tags. Linear layers with the same color share the same parameter.

4.1 Transformer network for classification

Transformer-based neural networks [45] have been shown to be effective for NLI problems, especially
with language model pre-training [13]. We propose a multi-task learning model that can be built on
the Transformer structure. In our experiment, we used pre-trained BERT [13], though our explanation
method is applicable to other Transformer based models as well.

Figure 1 shows the structure of our model. The model takes as input a sequence of token ids, which
will be transformed into dense word embedding in the beginning of the network. It has multiple
blocks, each of which has multi-head attention layers and feed-forward layers as components. The
Transformer generates an h-sized vector, v;, as a representation for each token, where i is the index
of the token in the sequence.

For the classification task, we use the same approach used in previous work [13]. The input
sequence is represented as “[CLS] premise tokens [SEP] hypothesis tokens [SEP]”, where [CLS]
and [SEP] are special tokens. For each token i, the Transformer outputs a vector v; € R". To produce
classification probabilities z. for three classes (entailment, neutral, and contradiction), the output
vector for the [CLS] token, v, is passed to a single linear projection layer and a softmax layer.

ze = Wl og + b, (1)

For other tokens, the corresponding output vectors v; are used to obtain explanation scores. The
vectors are fed into another three different linear projection layers. Finally, we obtain the explanation
score y ;, which is the score of the i-th token for tag ¢

Yri = Wl o+ by 2)

Here, we use two different loss functions for training, so the final output has slightly different format.
When using cross-entropy loss, each linear projection layer produces two values from each token.
The two values are fed into a softmax layer to obtain probability scores, which is same as in binary
classification. The one of the two probability scores is used as the final score. As we have three
linear projection layers, we obtain three scores for each token in the sequence. Each of three scores
represents the probability that the corresponding token be tagged as a particular class. When using
a correlation loss function, each linear projection layer produces a single value for each token. As
there are three linear projection layers, we again obtain three scores for each of the tokens.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Explaining Text Matching on Neural Natural Language Inference 1:9

4.2 Training to explain

For each sentence pair in the training data, we select a weak supervision label for each tag and train
the explanation generation with it. First, random perturbations (deleting) are applied to the sentence
pair to generate several perturbed inputs. The generated inputs and the original input are then fed into
the classification network to obtain the classification probability for the perturbed input. For each of
the tags, we select the perturbation that resulted in the most informative output changes compared to
the output from the original input. We use tokens that were modified in the select perturbation as a
weak label to train the network. Figure 2 shows a high-level overview of the explanation training. In
this section, we describe the details of each step of this training.

E ——
> =) N — e
H
v
PR 1 | 2 |3 |4]5]6] {1203]4]5] = _ . J ..
-
v HE R N > ENENENE =
[1]2 (3]4]5]6] ¢ —
=) e
— »
@ perturbation [1 [2] 4]

@ weak-supervision

[1]2]3]4]s5]6]4] —_—
C —_—

@ classification

A
1
1
1
1
1
1
1
1
1
1

SRR YRR [1] 2[3]4]

(3@ most-informative

explanation

Fig. 2. Explanation training procedure with weak-supervision. This diagram shows the procedure to
obtain a signal for one of the tags.

Algorithm 1: Selecting Informative Instance

input : Input text sequence X={x1, Xz, ..., X, }
Three signal functions Sy, S,, S5 for each of tags. Each S; is defined in terms of f
(hyper-parameter) m : the number of perturbed inputs
(hyper-parameter) p : parameter for perturbed sequence length

Output: Most informative instances x**) for each tag ¢

for i — 1tomdo

L : Location of the last non-padding token. j «— Sample from {0, 1, ..., L}

l; « Sample from G(p = 0.5)

// Delete tokens from j until j+1I;

XD e (X1, Xy X1y Xl s X } 3

Evaluate signal functions S;, S,, S; for x, x D x(m)
for tagt «— 1to3 do
fori «— 1tomdo

// Length penalty

D(x,xD) — max{0.1- (I; — 3),0}

// Informative score I;

I 8y(x) = Sy(xV) - D(x,xD)

L st = argmaini(t)

return x 1), x(51) x(st5)

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:10 Youngwoo Kim, Myungha Jang, and James Allan

Perturbations are applied to each of input sentence pairs by the following procedures: (1) a token
index j is randomly selected to start the deletion; (2) from a geometric distribution with p = 0.5, the
length of the sequence to be deleted, I ~ G(p = 0.5), is sampled; and, (3) I tokens from location j to
Jj+1 are deleted. The tokens after the deleted tokens are shifted forward and the end of the sequence is
filled with padding tokens. Multiple perturbed instances are generated from a single training instance
in this way. Here, the tokens come from a concatenation of the premise and hypothesis, so that both
the premise and hypothesis have a chance to be perturbed.

From each input instance x (indices of the sentence pair), a set of perturbed instances {x(l), x@ x(m) }
is generated. These perturbed instances are fed into the network to produce a corresponding classifi-
cation probability (softmax) output.

Among the perturbed instances, we want to select the one that changes the output the most in
a way that we are interested in. We will call such instance as the most informative instance. We
define and measure the degree of informativeness by what we refer to as a signal function. We expect
that modeling each of the tags separately would help to represent the different aspects of the textual
understanding (match, mismatch and conflict). For each target tag, we define a corresponding signal
function Sy as follows:

Smaten(x) = fe(x)
Sconflict(x) = fC(x)
Smismutch(x) = fn(x)s 3)

where f, f;, and f, are softmax probability outputs for entailment, contradiction and neutral, respec-
tively.

Because long sequences of deleted tokens are likely to result in larger output changes that are less
meaningful, we penalize any perturbation with a large number of token changes by introducing a
size penalty:

D(x,x*) = max{0.1- (d - 3),0}, “4)

where d is the number of modified tokens between x and x¥). Thus, if two different perturbations
cause similar changes in the signal function, the shorter one would be preferred. The numbers in
the penalty term were heuristically designed to match the scale of S;(x) — S;(x*)) which is in the
range [-1, 1].

Equation 5 shows the final informative score for each perturbed instance x¥), where S; is one of
the signal functions in Equation 3:

I, x%) = Sy (x) = Si (xF) — D (x, x0)). (5)
For each tag t, the most informative instance x is selected from the perturbed instances:
X(r) = argmax J; (x, x®), (6)
ke[1,m]

where m is the number of perturbed instances. As a result, we obtain three instances, one for each of
the tags. For some input instances, it is possible that even the largest change of the signal function
(the model’s output) is very small. For example, consider the case where a sentence pair is classified
as entailment and there is very low probability for contradiction. It is possible that any deletion does
not change the contradiction probability much. In this case, the most informative instance for conflict
would not be meaningful enough as the magnitude of change is very small. We handle this problem
by setting a minimum threshold on the informative score, so that the instance for the particular tag is
rejected and the training is skipped when the most informative perturbation is not of adequate quality.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Explaining Text Matching on Neural Natural Language Inference 1:11

We selected a threshold of 0.3, because this is approximately the average value for the probability of
each label (three probabilities that total 1).

Finally, weak-supervision signal is decided by the most informative instance X(;). We take the
tokens that were modified from x to X(;) as the weak label for the tag t. We denote the weak label for
tag t as g;.

Let y; be a vector representing the model output where each dimension y; ; is the score for j-th
token to be important for the tag ¢. The size of y; equals the number of tokens in the input sequence.
Given a weak supervision label g;, the cross-entropy loss for each tag t is given as

Le== G108y (7)
J

where the label y; ; is 1 if j-th token was modified in the perturbation and O otherwise. Our final loss
is sum of the loss for each tag

L= L. 8)
t

As an alternative to classical cross-entropy function, we suggest using Pearson’s correlation
coefficient as a loss function. The loss function that we refer to as correlation loss is given as

2@ - 96) Yy, — Ur)
04,0y, ’

L= €))

where the label y; ;is 1 if j-th token was modified and -1 otherwise !

deviation and the mean of the values in vector y;
XY
lyel

2 (Yej — g)?
- ,— 11
4 ly:| — 1 (1D

|ly;| is the size of the explanation vector, which is equal to the maximum sequence length. o, and Uy
are defined similarly for the vector §,. We adopted this loss function as we expect this could be more
robust than cross-entropy loss with noisy signal. This correlation loss function satisfies the conditions
for an effective list-wise loss function [48]. The effect of the loss function is discussed in section 5.3.

. oy, and g, are the standard

(10)

5 EXPERIMENTS

We evaluated our method and the baseline approaches by comparing them against human annotated
sequence tagging. Our experiments were mainly conducted on the model trained on the MNLI
dataset [47], which we annotated based on the definition in section 3. For comparison with previous
work, we also conducted the experiment on the e-SNLI dataset [8]. The annotation definition of the
e-SNLI is slightly different from ours, because they did not explicitly define the role of the tokens as
match, mismatch or conflict. We observed that most methods were applicable to both the e-SNLI
data and our dataset.

5.0.1 Implementation. Currently, most state-of-the-art models for the NLI tasks are built by
fine-tuning a pre-trained language model [29, 37]. We used the pre-trained uncased BERT model
with 12 layers and fine-tuned the entire network.

We first trained 2.5 epochs only for the NLI classification task. We then began training both the
classification and explanation modules. We alternately processed classification training steps and

Using 1 and 0 would be effectively the same

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:12 Youngwoo Kim, Myungha Jang, and James Allan

explanation training steps. Both the classification and explanation was trained only on the training
split. The explanation training lasted for 0.5 epochs, which is roughly 12,000 steps with a batch
size of 16. For each training instance, 20 perturbed inputs were generated, from which the most
informative pair were selected. Our training was done with single M40 GPU. The training with
explanation took roughly 33 hours to be trained. The training without explanation took 21 hours to
be trained.

A parameter update was performed using the Adam optimizer with weight decay. Linear decay of
the learning rate and warm-up steps were applied as they are in the original implementation of the
BERT model. For the initial learning rate we used 2 - 107°. The maximum sequence length was set to
300 tokens.

During the explanation training we also trained the classification module by alternating the two
tasks every step. For the explanation training, we used a smaller learning rate than we did for the
classification training (0.3 times the learning rate for the classification training).

5.1 Evaluation

5.1.1 Metrics. The metrics we used in the evaluation were accuracy, mean average precision
(MAP), and precision at 1 (P@1). To evaluate accuracy, we tuned the cut-off threshold on the
development set to maximize accuracy. Accuracy was measured over all tokens in the test set. MAP
and P@1 do not require add cut-off threshold.

5.1.2 Data annotation. Conflict was labeled only for sentence pairs whose gold label was contra-
diction. Similarly, match was labeled for the sentence pairs with entailment label and mismatch for
neutral label.

Because the “entailment” label implies that the content of the hypothesis can be inferred from
premise, if the label is “entailment”, all tokens in the hypothesis should be labeled match. Thus, we
evaluated the match label only on the premise sentences. For mismatch, we evaluated tokens only in
the hypothesis.

Forty percent of the data were annotated by three annotators. When the annotators produced
different annotations, the annotation that is more similar to the others was selected. Thus if two
annotators made similar decisions and the other made a different decision, one of the two similar
decisions was selected.

From the validation split of MNLI, we annotated 700 instances for each tag, resulting in a total of
2,100 instances. For each tag, 100 instances were used as a development set, and 600 instances were
used as a test set. Kohen’s x for token-level agreement was 0.74.

5.1.3 Baselines. To show the characteristics of the dataset with trivial baselines, we included
random and inverse document frequency (Idf) approaches. The random method assigns a random
score to each token. The Idf method assigns each token a score of (1/df) where df is the number
of sentences in the collection that contain the corresponding word. P@1 of the random method is
approximately the proportion of true label.

LIME [38] is a generic classifier explanation method that has been shown to be the best-performing
method in previous work on the e-SNLI dataset [44]. Given an input, the LIME method generates
numerous perturbed variations of the input. It evaluates the model’s outputs for these variations
and builds a linear classifier that can predict the model’s output near the given point. This method
requires a large number of perturbed instances for each input. For the number of perturbed inputs,
we selected the proposed value from the implementation.?

Zhttps://github.com/marcotcr/lime.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Explaining Text Matching on Neural Natural Language Inference 1:13

We considered three gradient-driven approaches: Saliency [41], Grad*Input [40], and Integrated
Gradient (IntGrad) [42]. The Saliency method evaluates the score of each input as the absolute value
of the input’s gradient toward the output. The Grad*Input method obtains the score by multiplying
each input dimension by the gradient. The IntGrad method evaluates the score by numeric integration
of the gradient over the input changes from starting value to current input value. These three methods
were implemented based on the DeepExplain library [2].> Modifications were applied to each method
to support word embedding.

Saliency, Grad*Input, IntGrad and LIME were designed to generate scores for each dimension
of the input. As our explanation is token level, we sum the score for each dimension of the token’s
embedding. Taking a maximum was also considered, but the results from the development data
showed that the maximum is similar to or worse than the sum.

We used two perturbation-based methods. The Sensitivity method assigns each token a score
according to the change in the output when the token is deleted [51]. Sensitivity (M) deletes multiple
tokens simultaneously. As it is infeasible to try all possible deletions, this method samples the
location and length of the sequence to delete. Each token’s score is assigned by the maximum change
of outputs among the attempted deletions. For comparison, we allowed an equal number of runs for
Sensitivity and Sensitivity (M).

As our model uses sub-word tokens, the scores of sub-word tokens were translated into a token-
level score by taking the maximum of each token’s sub-word tokens’ scores.

5.2 Results

We refer to our method as SE-NLI (Self-Explaining NLI). In Tables 4 and 5, SE-NLI (CO) and
SE-NLI (CE) denote our methods with different loss functions: Pearson’s correlation coefficient
(Equation 9) and cross-entropy loss (Equation 7), respectively. In the remaining parts of this paper,
SE-NLI without any notation refers to SE-NLI (CO).

5.2.1 Performance on original NLI task. In this subsection, we demonstrate the performance of
our model on the original NLI classification task to show that our multi-task learning for explanation
approach does not have negative effect on the performance in the original task. As discussed in the
related work (section 2.4), recent improvement in the NLI task has been mostly driven by improved
language model pre-training. Thus, newer models are not particularly different from the perspective
of the NLI task itself. Following existing work [19, 49], we include a comparison of models trained
from the same BERT 45 checkpoint. Table 4 shows the accuracy of the classification-only model
and our multi-task trained models on the MNLI dataset, all having the same BERT g5 as a starting
point. The models show little difference in the classification.

Table 4. Original NLI task (entailment, contradiction and neutral) accuracy of the models trained with
our explanation generator and the model that was only trained for the classification task. All three
models used the same BERT,,;, model for parameter initialization. The numbers are accuracy on
MNLI-matched split. The accuracy difference between runs 1, 2, and 3 are not significant, showing
P-values of 0.60 (1 vs 2), 0.41 (1 vs 3) and 0.19 (2 vs 3).

Model Accuracy
1 Classification only 84.4
2 SE-NLI (CO) 84.5
3 SE-NLI (CE) 84.2

3https://github.com/marcoancona/DeepExplain.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:14 Youngwoo Kim, Myungha Jang, and James Allan

Table 5. Experiment on token-level tagging done on MNLI. For each column the highest value is
marked with bold text. If the highest value is significantly better than all the other methods it is marked
with 4 (p = 0.01). Average # of Runs represents the number of neural network required to explain a
single instance.

Conflict Match Mismatch Avg
Method P@l MAP Acc P@l MAP Acc P@l MAP Acc #Runs
Random 0289 0.431 0.762 0.593 0.673 0.509 0.537 0.623 0.519 -
Idf 0364 0.504 0.762 0.703 0.710 0.508 0.478 0.609 0.517 -
Saliency 0.705 0.733 0.762 0.813 0.793 0.524 0.798 0.761 0.530 1
Grad*Input 0.426 0486 0.761 0.737 0.703 0.507 0.598 0.639 0.523 1
IntGrad 0.559 0.582 0.786 0.868 0.744 0.506 0.652 0.689 0.539 300
LIME 0.637 0.618 0.799 0905 0.777 0.597 0.735 0.731 0.601 5,000

Sensitivity 0.601 0.598 0.780 0950 0.795 0.590 0.653 0.674 0.542 39.8
Sensitivity (M) 0.398 0.520 0.762 0.658 0.728 0.508 0.723 0.764 0.523 39.8
SE-NLI(CO) 0.7504 0.723 0.800 0.965 0.9034 0.7604 0.817 0.8304 0.7144 1
SE-NLI(CE) 0.551 0.599 0.783 0932 0.874 0.739 0.803 0.803 0.657 1

Table 6. Comparison of our method with the reported best methods on e-SNLI dataset. For Thresh-
olded Attention and LIME, the numbers are as presented in the previous work [44]. Our own experi-
ments on LIME on BERT based model showed similar numbers to the previous work on LIME. For the
comparison we used the same metric as the previous work.

Premise Hypothesis
P R F1 P R Fl
Thresholded Attention 0.192 0.262 0.222 0.534 0.630 0.578
LIME (LSTM+GloVe based) 0.656 0.483 0.537 0.570 0.669 0.616
LIME (BERT based) 0.376 1.000 0.547 0.460 0.834 0.593
SE-NLI 0.525 0.726 0.609 0.492 1.000 0.660

5.2.2 Comparison with alternative explanation methods. Table 5 shows the results of the token-
level explanation tagging conducted on MNLI. In most cases, SE-NLI (CO) is the best-performing
method. The cross entropy version, SE-NLI (CE) is often comparable to the other methods, but it
does not perform as well as SE-NLI (CO). It is surprising to find that SE-NLI performs much better
than Sensitivity and Sensitivity (seq), because SE-NLI was trained on signals that are similar to those
methods. Note that none of the methods were supervised with the explanation annotation. Each tag
shows different levels of difficulty mainly due to the different number of positive labels in a single
sentence pair. Match has the most positive tokens, which resulted in P@1 and MAP being higher
than for the other two tags. Conflict is the most difficult of all tags.

Among the other methods, Saliency, Sensitivity, and LIME tend to perform better than the other
baselines, but none of them performs exceptionally. It is noteworthy that the Saliency method is among
the highest performing methods; it has the simplest implementation and the lowest computational
cost.

Comparison with the previous work [44] on the e-SNLI dataset is shown in Table 6. The Thresh-
olded Attention method uses attention weights to generate an explanation. We thresholded all the
models to maximize the F1 score. Thus, the differences of precision and recall are the results of
threshold selection. The scores for Thresholded Attention are from the model built using LSTM
and GloVe embeddings. As this model did not benefit from pre-trained contextualized embeddings,
such as BERT, it is not directly comparable to SE-NLI. Instead, LIME could be a baseline for the

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Explaining Text Matching on Neural Natural Language Inference 1:15

comparison, as our implementation of LIME on BERT showed similar results to the LIME on an
LSTM and GloVe based model. On the e-SNLI dataset, SE-NLI out-performed the LIME method by
F1. We would not expect Thresholded Attention to be better than SE-NLI, considering that many
studies claimed that attention weight alone is insufficient as an explanation [25].

5.2.3 Computational requirements. Table 5 shows on the right the average number of neural
network runs required for each method. Saliency and Grad*Input need to compute one forward run
and one backward run (gradients to input) to compute the token-level scores. The IntGrad method
uses numeric integration over the multiple points of gradients and outputs, and so it requires a large
number of computations: the default parameter from the implementation is 300. The LIME method
requires many outputs of perturbed inputs to build a linear classifier: 5,000 is also from the default
parameter of the implementation. The Sensitivity method deletes each token in the input one by
one, and 39.8 is the average number of tokens in the evaluation data. We did not count forward runs
and backward runs as separate runs if they used the same input. Saliency, Grad*Input, and IntGrad
require both forward runs and backward runs; the other methods use only forward runs. Along with
two other methods, SE-NLI has the lowest computational requirements, requiring only a single run to
generate an explanation. If we assume that computing both forward runs and backward runs is more
expensive than only computing forward runs, SE-NLI has the lowest computational requirement of
all the methods during the prediction time.

Compared to the other methods, SE-NLI requires additional computation during training. However,
the additional computational cost are of reasonable amount. In our implementation, we trained the
explanation generator for only 0.5 epochs, whereas the whole training procedure for NLI lasted over
3 epochs.

SE-NLI requires additional computation to get outputs from a number of perturbations. However,
these additional computations are still affordable, because forward runs for perturbations are much
faster than back-propagation and parameter updates.

5.2.4 Effect of loss functions. It is notable that the model trained with cross-entropy loss (SE-NLI
(CE)) dramatically fails on conflict tags. In the early stage of our experiment, we observed that using
the cross-entropy converges slower than the correlation loss. The difference in the final accuracy
(precision) between cross-entropy loss and correlation loss was not as significant when we used a
much larger learning rate without decaying. However, that configuration had an observable negative
effect on the original classification task.

The motivations of using the correlation loss was that cross-entropy loss would penalize the
predictions (location in the sequence) that are not in the weak label (most informative instances) more
harshly than correlation loss does. However, cross-entropy loss exhibits better accuracy, suggesting
that correlation loss is better for ranking metrics.

5.3 Analysis

5.3.1 Fidelity. We evaluated the fidelity of our explanation with a deletion experiment, which is
commonly used in attribution analysis papers [4]. We selected 2,000 sentence pairs whose gold labels
were contradiction. We deleted tokens in decreasing order of conflict tag scores and measured how
much the average accuracy changed. Figure 3 shows that SE-NLI is good at predicting the tokens
that will make the system’s accuracy plummet much faster when deleted.

5.3.2 Multi-task learning. 1t is unclear whether NLI knowledge is actually needed for the token-
tagging task. To investigate this question, we trained the explanation generator in a separate network.
For training data, we recorded weak-supervision input from the training of SE-NLI and applied it to
the target network. We tested two cases: in one, the model was initialized with pre-trained BERT

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:16 Youngwoo Kim, Myungha Jang, and James Allan

—— SE-NLI
- —— Sensitivity
0.8 . ’ i
\ S Saliency
\ el --- Random
\ =~
0.6 ,\ e 17" IntGrad ||

Accuracy

1 5 10 15 20

k = number of deleted tokens

Fig. 3. Sentence classification accuracy changes as tokens are deleted in the order of decreas-
ing scores of explanation prediction. Rapid accuracy drops are considered evidence of a good
explanation [4].

Table 7. Effect of multi-task learning. MTL with NLI is the same as the model SE-NLI (CO) in Table 5.
BERT start and cold start were trained using the same supervision as the training of SE-NLI but they
were trained on vanilla BERT or a random initialization rather than on an NLI-trained model.

Conflict Match Mismatch
Model P@l MAP Acc P@l MAP Acc P@l MAP Acc
MTL with NLI 0.750 0.723 0.800 0.965 0.903 0.760 0.817 0.830 0.714
BERT start 0.625 0.640 0.798 0.965 0.890 0.754 0.783 0.791 0.688
Cold start 0.484 0.544 0.775 0.700 0.711 0.584 0.537 0.628 0.523

Model Sentences

P: I don’ [t know um do you do a lot of camping
H: I know exactly.

P:1 don’ t know um do you do a lot of [camping
H: I know exactly.

Table 8. Comparison of conflict prediction of MTL model (MTL with NLI) and baseline model (BERT
start). P stands for premise and H stands for hypothesis.

MTL with NLI

BERT start

(BERT start), whereas in the other, the parameters were randomly initialized (Cold start). Table 7
shows the results of alternative models. The BERT start model shows comparable performance for
the match tag, but it does not reach the performance of the original model for the other two tags. Thus,
we conclude that there is meaningful gain in using multi-task learning for explanation generator.

Table 8 shows a case that highlights two models with different levels of language understanding.
Although the word “camping” does not carry conflicting meaning, the model without NLI knowledge
(BERT start) assigns it a high score. Moreover, this model assigns a lower score to the token “know’
in the hypothesis than it does to the “know” token in the premise.

s

5.3.3 Hyper-parameters. In this subsection, we demonstrate the change in the model’s perfor-
mance as the hyper-parameter values changes.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Explaining Text Matching on Neural Natural Language Inference 1:17

When the tokens in the inputs are deleted for perturbations, the number of deleted tokens for each
perturbation is sampled from a geometric distribution. We found that deleting a flexible number of
tokens is superior to deleting only one token. Figure 4 shows that the MAP changes as this parameter
changes. The score decreases if too many tokens (0.9) or too few tokens are deleted. The value of p
being 0 implies that always single token is deleted, and, in this setting, MAP score for the match tag
drops. We expect that the score drop is much larger on the match tag because it requires that a greater
number of tokens be tagged. Specifically, for the match tag, 63% of the tokens in a sentence pair are
tagged, whereas for conflict, only 30% are tagged. We expect that only deleting a single token causes
the model to generate only a few “most important” tokens, which are insufficient to select 60% of
tokens for the match tag.

0.9 /V/\ |

2 T
0.7 |- S
=
--- conflict
0.5 —— mismatch ||
—— match
| | | | |
0 0.2 0.4 0.6 0.8

p : parameter for geometric distribution

Fig. 4. Changes in MAP as the parameter p of geometric distribution changes, which decides the
length of deleted sequence. Larger p values would result in a longer sequence being deleted.

Another hyper-parameter is the number of perturbations generated when selecting the most
informative instance. For the numbers reported above, our method was trained by generating 20
perturbed inputs for each instance. If only a small number of perturbations are considered, even
the most informative instance could result in a small difference in outputs. We used the strategy
of rejecting the instance and skipping the training when the most informative score is below the
threshold (Equation 5). This strategy helps the training succeed even when we use small numbers of
perturbations, as fewer perturbations lead to more instances having low informative scores. Figure 5
shows the MAP scores for the conflict tag as the number of perturbations changes. As expected, if
the number of perturbations is fewer than five, the accuracy is reduced, and the difference increases
when no threshold is applied.

5.3.4 Qualitative analysis. We examined the proposed method’s actual output to understand the
model’s behavior. We considered 18 instances. The NLI task has three labels, so the confusion matrix
for the prediction has 3 x 3 = 9 entries. Two examples are presented for each of nine entries. We list
the first appearing instances in the dataset that matches the entries of the confusion matrix. All the
instances were from the validation (matched) split. Tables 9, 10 and 11 each present six examples.
Table 9 contains examples whose gold label is “contradiction”, Table 10 contains examples for
“entailment” and Table 11 contains examples for “neutral”.

Although each of three tags could show complementary information, it is difficult to list all three
scores for all token in a simple format. Thus, for each example, we presented the single tag that

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Youngwoo Kim, Myungha Jang, and James Allan

0.9 ;

0.7

MAP

! conflict: with threshold
’ - - - conflict: w/o threshold
! mismatch: with threshold
! mismatch: w/o threshold
05 ——— match: with threshold
! - - - match: w/o threshold

0 5 10 15 20 25 30

m : number of perturbation to generate

Fig. 5. Changes in MAP for the conflict tag in number of perturbations per step changes.

is most relevant to the model’s prediction. Match (blue) tag scores are displayed for entailment,
conflict (red) for contradiction and mismatch (green) for neutral. Scores are linearly normalized for
presentation by color. As there are negative scores, the tokens with white backgrounds could have
negative scores.

In the first example of Table 9, the model predicted the label to be entailment, and the gold label is
entailment. The token “all” in the hypothesis is not considered to be “match”. We can at least expect
that the model did not consider “all” to match any of the tokens in the premise, but simply treated it
as unimportant token. In the third example of Table 9, the model assigns a high score to the token
“long”. We can expect that the model failed to infer that this expression is contradictory to “has never
really let”.

Similarly, in the third example of Table 10, the model assigns a high mismatch score to the token
“cold,” implying that it concluded that this token contains information that cannot be inferred from

the premise.

6 CONCLUSION

We investigated an approach to generate an explanation for a neural natural language inference
method by defining token tags that show the role of the token in the language inference. We described
a new weak-supervision training method to build a neural model that contains both an explanation-
generating function and a sentence classification function in a shared network. We showed that our
proposed model outperforms strong baselines, while our model has the least computational cost of

those considered.
We expect a few directions for future work. The current work defines only three possible roles

for each tokens. These definitions should be supplemented to provide more detailed information
Also, we would expect to see more fine-grained grouping of tokens, so that tokens for same entity or
same actions could be aligned across the sentences. We hope that this work will help researchers to

investigate and use neural models for information retrieval tasks.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Explaining Text Matching on Neural Natural Language Inference 1:19

Prediction
(Label) Sentences
P: The most important directions are simply up and up leads eventually
entailment to the [cathedral| and fortress commanding the hilltop, and down inevitably
(contradiction) leads to one of three ‘gates through the wall to the new town.

H: Go downwards to one of the gates, all of which will lead you into
the cathedral.

P: But uh these guys were actually on the road uh [two thousand miles

entailment from from [home when they had to file their uh their final ‘€xams and send
(contradiction) them in

H: These men filed their imidterm exams from home.

P: What” s truly striking, though, is that Jobs has never really let this idea

neutral
. go.
(contradiction) .
H: Jobs never held onto an idea for long.
neutral P: Even if you’ re the kind of traveler who likes to improvise and be
(contradiction) adventurous, don’ t turn your nose up at the tourist offices.
H: There’ s nothing worth seeing in the tourist offices.
P: This site includes a list of all award winners and a searchable database
. of Government Executive articles.
contradiction . 5 .
H: The Government Executive articles housed on the website are not able
to be searched.
P: Yeah i i think my favorite restaurant is always been the one closest you
- know the closest as long as it’ s it meets the minimum criteria you know
contradiction

of good food
H: My favorite restaurants are always at least a hundred miles away from
my house.

Table 9. Our model’s explanation score output for examples whose gold labels are contradiction.
Different tags are shown depending on the model’s actual prediction. If the model’'s prediction is
entailment, the scores for the match tag are highlighted blue. For neutral predictions, the mismatch
scores are highlighted green. For contradiction predictions, the conflict scores are highlighted red. P
stands for premise, and H stands for hypothesis.

ACKNOWLEDGMENTS

This work was supported in part by the Center for Intelligent Information Retrieval and in part by
NSF grant #I1S-1813662. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect those of the sponsor.

REFERENCES

[1] Abdulaziz Alamri and Mark Stevenson. 2016. A corpus of potentially contradictory research claims from cardiovascular
research abstracts. Journal of biomedical semantics, 7(1):36.

[2] Marco Ancona, Enea Ceolini, Cengiz Oztireli, and Markus Gross. 2018. Towards better understanding of gradient-based
attribution methods for deep neural networks. In 6th International Conference on Learning Representations (ICLR
2018).

[3] Robert Andrews, Joachim Diederich, and Alan B Tickle. 1995. Survey and critique of techniques for extracting rules
from trained artificial neural networks. Knowledge-based systems, 8(6):373-389.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:20

Youngwoo Kim, Myungha Jang, and James Allan

Prediction Sentences
(Label)
P: Uh i don’ t know i i have mixed emotions about him uh sometimes
entailment i like him but at the same times iflove to see somebody beat him
H: I like him for the most part, but would still enjoy seeing someone
beat him.
. P: You and your friends are [not welcome here, said severn.
entailment .
H: Severn said the people were not welcome there.
neutral P: " m not sure what the overnight low was

(entailment) H: I don’ t know how cold it got last night.

P: Mortifyingly enough, it is all the difficulty, the laziness, the pathetic
neutral formlessness in youth, the round peg

(entailment) in the square hole, the whatever do you want?

H: Many youth are lazy.

contradiction P: And uh as a matter of fact he’ s a draft dodger
(entailment) ~ H: They |[dodged the draft, i’ 11 have you know.

contradiction
(entailment)

P: I’ m kind of familiar| with the weather out that way in west Texas
but not in not in lewisville
H: I do not know the weather conditions in lewisville.

Table 10. Our model’s explanation score output for examples whose gold labels are entailment.
Different tags are shown depending on the model’s actual prediction. If the model’'s prediction is
entailment, the scores for the match tag are highlighted blue. For neutral predictions, the mismatch
scores are highlighted green. For contradiction predictions, the conflict scores are highlighted red. P
stands for premise, and H stands for hypothesis.

[4]
[5]

[6]

[7

—

[8]

[9]

[10]

(11]

[12]

Leila Arras, Franziska Horn, Grégoire Montavon, Klaus-Robert Miiller, and Wojciech Samek. 2017. " what is relevant
in a text document?": An interpretable machine learning approach. PloS one, 12(8):e0181142.

Leila Arras, Grégoire Montavon, Klaus-Robert Miiller, and Wojciech Samek. 2017. Explaining recurrent neural network
predictions in sentiment analysis. EMNLP 2017, page 159.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Miiller, and Wojciech
Samek. 2015. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS
one, 10(7):e0130140.

Samuel Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. 2015. A large annotated corpus for
learning natural language inference. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 632-642.

Oana-Maria Camburu, Tim Rocktéschel, Thomas Lukasiewicz, and Phil Blunsom. 2018. e-snli: Natural language
inference with natural language explanations. In Proceedings of the 32nd Annual Conference on Neural Information
Processing Systems, NIPS 2018, Montreal, Canada, December 3-8, 2018.

Samuel Carton, Qiaozhu Mei, and Paul Resnick. 2018. Extractive adversarial networks: High-recall explanations for
identifying personal attacks in social media posts. In EMNLP.

Daniel Cohen, Brendan O’Connor, and W Bruce Croft. 2018. Understanding the representational power of neural
retrieval models using nlp tasks. In Proceedings of the 2018 ACM SIGIR International Conference on Theory of
Information Retrieval, pages 67-74. ACM.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine Bordes. 2017. Supervised learning of
universal sentence representations from natural language inference data. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pages 670-680.

Mark Craven and Jude W Shavlik. 1996. Extracting tree-structured representations of trained networks. In Advances in
neural information processing systems, pages 24-30.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Explaining Text Matching on Neural Natural Language Inference 1:21

Prediction Sentences
(Label)
entailment P: Tuppence rose.
(neutral) H: Tuppence |floated into the air.
entailment P: What changed”?
(neutral) H: What was unique?
P: The new rights are nice enough
neutral -
H: Everyone really likes the newest benefits
P: Calcutta seems to be the only other production center having any
pretensions to artistic creativity at all, but ironically you’ re actually more
neutral likely to see the works of satyajit Ray or mrinal Sen shown in Europe or
North America than in India itself.
H: Most of mrinal Sen’ s work can be found in European collections.
P: Um- hum um- hum yeah well uh i can see you know it’ s it’ s it
> s it’ s kind of funny because we it seems like we loan money you know
we money with strings attached and if the Government changes and the
contradiction coyntry that we loan the money to um i can see why the might have a
(neutral) different attitude towards paying it back it s a lot us that you know
we don’ 't really loan money to to countries we loan money to
governments and it’ s the
H: We don’ [t loan a lot of money.
. P: ' m not opposed to it but when its when the time is right it will
contradiction - ;
(neutral) probably just kind of happen you know

H: I cannot wait for it to happen.

Table 11. Our model’s explanation score output for examples whose gold labels are neutral. Different
tags are shown depending on the model’s actual prediction. If the model’s prediction is entailment,
the scores for the match tag are highlighted blue. For neutral predictions, the mismatch scores are
highlighted green. For contradiction predictions, the conflict scores are highlighted red. P stands for
premise, and H stands for hypothesis.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4171-4186.

[14] Mengnan Du, Ninghao Liu, Qingquan Song, and Xia Hu. 2018. Towards explanation of dnn-based prediction with
guided feature inversion. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 1358-1367. ACM.

[15] Kathrin Eichler, Feiyu Xu, Hans Uszkoreit, and Sebastian Krause. 2017. Generating pattern-based entailment graphs for
relation extraction. In *SEM.

[16] Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch. 2013. Ppdb: The paraphrase database. In Proceedings
of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 758-764.

[17] Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. 2007. The third pascal recognizing textual
entailment challenge. In Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, RTE *07,
pages 1-9, Stroudsburg, PA, USA. Association for Computational Linguistics.

[18] Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal. 2018. Explaining
explanations: An overview of interpretability of machine learning. In 2018 IEEFE 5th International Conference on Data

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

http://dl.acm.org/citation.cfm?id=1654536.1654538
http://dl.acm.org/citation.cfm?id=1654536.1654538

1:22 Youngwoo Kim, Myungha Jang, and James Allan

Science and Advanced Analytics (DSAA), pages 80-89. IEEE.

[19] Aditya Gupta and Greg Durrett. 2019. Effective use of transformer networks for entity tracking. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages 759-769.

[20] Anand Gupta, Manpreet Kaur, Shachar Mirkin, Adarsh Singh, and Aseem Goyal. 2014. Text summarization through
entailment-based minimum vertex cover. In Proceedings of the Third Joint Conference on Lexical and Computational
Semantics (* SEM 2014), pages 75-80.

[21] Sanda Harabagiu and Andrew Hickl. 2006. Methods for using textual entailment in open-domain question answering.

In Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the

Association for Computational Linguistics, pages 905-912. Association for Computational Linguistics.

Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt Schiele, and Trevor Darrell. 2016.

Generating visual explanations. In European Conference on Computer Vision, pages 3—19. Springer.

[23] Andrew Hickl and Jeremy Bensley. 2007. A discourse commitment-based framework for recognizing textual entailment.
In Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, RTE *07, pages 171-176,
Stroudsburg, PA, USA. Association for Computational Linguistics.

[24] Dong Huk Park, Lisa Anne Hendricks, Zeynep Akata, Anna Rohrbach, Bernt Schiele, Trevor Darrell, and Marcus
Rohrbach. 2018. Multimodal explanations: Justifying decisions and pointing to the evidence. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 8779-8788.

[25] Sarthak Jain and Byron C Wallace. 2019. Attention is not explanation. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 3543-3556.

[26] Hyun Duk Kim and ChengXiang Zhai. 2009. Generating comparative summaries of contradictory opinions in text. In
Proceedings of the 18th ACM conference on Information and knowledge management, pages 385-394. ACM.

[27] Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016. Rationalizing neural predictions. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pages 107-117.

[28] Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. Understanding neural networks through representation erasure. arXiv
preprint arXiv:1612.08220.

[29] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-task deep neural networks for natural
language understanding. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 4487-4496.

[30] Bernardo Magnini, Roberto Zanoli, Ido Dagan, Kathrin Eichler, Giinter Neumann, Tae-Gil Noh, Sebastian Pado, Asher
Stern, and Omer Levy. 2014. The excitement open platform for textual inferences. In Proceedings of 52nd Annual
Meeting of the Association for Computational Linguistics: System Demonstrations, pages 43—48.

[31] Christopher Manning. 2016. Understanding human language: Can nlp and deep learning help? In Proceedings of the
39th International ACM SIGIR conference on Research and Development in Information Retrieval, pages 1-1. ACM.

[32] David Alvarez Melis and Tommi Jaakkola. 2018. Towards robust interpretability with self-explaining neural networks.
In Advances in Neural Information Processing Systems, pages 7786-7795.

[33] George A. Miller. 1995. Wordnet: A lexical database for english. Commun. ACM, 38(11):39-41.

[34] Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui Yan, and Zhi Jin. 2016. Natural language inference by tree-based

convolution and heuristic matching. In Proceedings of the 54th Annual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers), pages 130-136.

Chen Qu, Feng Ji, Minghui Qiu, Liu Yang, Zhiyu Min, Haiging Chen, Jun Huang, and W Bruce Croft. 2019. Learning to

selectively transfer: Reinforced transfer learning for deep text matching. In Proceedings of the Twelfth ACM International

Conference on Web Search and Data Mining, pages 699-707. ACM.

[36] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are
unsupervised multitask learners.

[37] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J. Liu. 2019. Exploring the limits of transfer learning with a unified text-to-text transformer.

[38] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i trust you?: Explaining the predictions of
any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1135-1144. ACM.

[39] Andrew Slavin Ross, Michael C Hughes, and Finale Doshi-Velez. 2017. Right for the right reasons: training differentiable
models by constraining their explanations. In Proceedings of the 26th International Joint Conference on Artificial
Intelligence, pages 2662-2670.

[40] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. 2017. Learning important features through propagating
activation differences. page 3145-3153.

[22

[35

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

http://dl.acm.org/citation.cfm?id=1654536.1654571
https://doi.org/10.1145/219717.219748
http://arxiv.org/abs/1910.10683

Explaining Text Matching on Neural Natural Language Inference 1:23

[41] K Simonyan, A Vedaldi, and A Zisserman. 2014. Deep inside convolutional networks: visualising image classification

models and saliency maps.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution for deep networks. In Proceedings of the

34th International Conference on Machine Learning - Volume 70, ICML’17, page 3319-3328. JMLR.org.

[43] Noha S Tawfik and Marco R Spruit. 2018. Automated contradiction detection in biomedical literature. In International
Conference on Machine Learning and Data Mining in Pattern Recognition, pages 138—148. Springer.

[44] James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. 2019. Generating token-level expla-

nations for natural language inference. In Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages

963-969.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia

Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 5998—6008.

[46] Ngoc Phuoc An Vo, Simone Magnolini, and Octavian Popescu. 2015. Paraphrase identification and semantic similarity
in twitter with simple features. In SocialNLP @ NAACL.

[47] Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus for sentence under-
standing through inference. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1112—1122.

[48] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. 2008. Listwise approach to learning to rank: theory
and algorithm. In Proceedings of the 25th international conference on Machine learning, pages 1192—-1199. ACM.

[49] Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. 2020. Deebert: Dynamic early exiting for accelerating
bert inference. arXiv, pages arXiv—2004.

[50] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. 2019. Xlnet:
Generalized autoregressive pretraining for language understanding. In Advances in neural information processing
systems, pages 5754-5764.

[51] Matthew D Zeiler and Rob Fergus. 2014. Visualizing and understanding convolutional networks. In European conference
on computer vision, pages 818-833. Springer.

[52] Luisa M. Zintgraf, Taco S. Cohen, Tameem Adel, and Max Welling. 2017. Visualizing deep neural network decisions:
Prediction difference analysis. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net.

[42

[45

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://openreview.net/forum?id=BJ5UeU9xx
https://openreview.net/forum?id=BJ5UeU9xx

	Abstract
	1 Introduction
	2 Related Work
	2.1 Explaining natural language inference
	2.2 Neural network explanation methods
	2.3 Evaluating explanations for neural network
	2.4 Natural language inference

	3 Task Definition
	4 Method
	4.1 Transformer network for classification
	4.2 Training to explain

	5 Experiments
	5.1 Evaluation
	5.2 Results
	5.3 Analysis

	6 Conclusion
	References

