
Topic Detection and Tracking Pilot Study

Final Report

James Allan
�
, Jaime Carbonell

✁
, George Doddington

✂
, Jonathan Yamron

✄
, and Yiming Yang

✁�
UMass Amherst,

✁
CMU,

✂
DARPA,

✄
Dragon Systems, and

✁
CMU

ABSTRACT

Topic Detection and Tracking (TDT) is a DARPA-sponsored initia-

tive to investigate the state of the art in finding and following new

events in a stream of broadcast news stories. The TDT problem con-

sists of three major tasks: (1) segmenting a stream of data, especially

recognized speech, into distinct stories; (2) identifying those news

stories that are the first to discuss a new event occurring in the news;

and (3) given a small number of sample news stories about an event,

finding all following stories in the stream.

The TDT Pilot Study ran from September 1996 through October

1997. The primary participants were DARPA, Carnegie Mellon

University, Dragon Systems, and the University of Massachusetts

at Amherst. This report summarizes the findings of the pilot study.

The TDT work continues in a new project involving larger training

and test corpora, more active participants, and a more broadly de-

fined notion of “topic” than was used in the pilot study.

The following individuals participated in the research reported.

James Allan, UMass

Brian Archibald, CMU

Doug Beeferman, CMU

Adam Berger, CMU

Ralf Brown, CMU

Jaime Carbonell, CMU

Ira Carp, Dragon

Bruce Croft, UMass,

George Doddington, DARPA

Larry Gillick, Dragon

Alex Hauptmann, CMU

John Lafferty, CMU

Victor Lavrenko, UMass

Xin Liu, CMU

Steve Lowe, Dragon

Paul van Mulbregt, Dragon

Ron Papka, UMass

Thomas Pierce, CMU

Jay Ponte, UMass

Mike Scudder, UMass

Charles Wayne, DARPA

Jon Yamron, Dragon

Yiming Yang, CMU

1. Overview

The purpose of the Topic Detection and Tracking (TDT) Pi-

lot Study is to advance and accurately measure the state of

the art in TDT and to assess the technical challenges to be

overcome. At the beginning of this study, the general TDT

task domain was explored and key technical challenges were

clarified. This document defines these tasks, the performance

measures to be used to assess technical capabilities and re-

search progress, and presents the results of a cooperative in-

vestigation of the state of the art.

To appear in Proceedings of the DARPA Broadcast News Transcription

and Understanding Workshop, February, 1998.

1.1. Background

The TDT study is intended to explore techniques for detect-

ing the appearance of new topics and for tracking the reap-

pearance and evolution of them. During the first portion of

this study, the notion of a “topic” was modified and sharp-

ened to be an “event”, meaning some unique thing that hap-

pens at some point in time. The notion of an event differs

from a broader category of events both in spatial/temporal

localization and in specificity. For example, the eruption of

Mount Pinatubo on June 15th, 1991 is consider to be an event,

whereas volcanic eruption in general is considered to be a

class of events. Events might be unexpected, such as the erup-

tion of a volcano, or expected, such as a political election.

The TDT study assumes multiple sources of information, for

example various newswires and various news broadcast pro-

grams. The information flowing from each source is assumed

to be divided into a sequence of stories, which may provide

information on one or more events. The general task is to

identify the events being discussed in these stories, in terms

of the stories that discuss them. Stories that discuss unex-

pected events will of course follow the event, whereas stories

on expected events can both precede and follow the event.

The remainder of this section outlines the three major tasks of

the study, discusses the evaluation testbed, and describes the

evaluation measures that were used. Section presents the ap-

proaches used by the study members to address the problem

of text segmentation and discusses the results. The detection

task is taken up and similarly described in Section . Sec-

tion presents the approaches and results of the tracking task,

including a brief section on tracking using a corpus created

from speech recognition output.

1.2. The Corpus

A corpus of text and transcribed speech has been developed

to support the TDT study effort. This study corpus spans the

period from July 1, 1994 to June 30, 1995 and includes nearly

16,000 stories, with about half taken from Reuters newswire

and half from CNN broadcast news transcripts. The tran-

scripts were produced by the Journal of Graphics Institute

(JGI). The stories in this corpus are arranged in chronolog-

ical order, are structured in SGML format, and are available

from the Linguistic Data Consortium (LDC). ☎
A set of 25 target events has been defined to support the TDT

study effort. These events span a spectrum of event types

and include both expected and unexpected events. They are

described in some detail in documents provided as part of

the TDT Corpus. The TDT corpus was completely anno-

tated with respect to these events, so that each story in the

corpus is appropriately flagged for each of the target events

discussed in it. There are three flag values possible: YES

(the story discusses the event), NO (the story doesn’t dis-

cuss the event), and BRIEF (the story mentions the event

only briefly, or merely references the event without discus-

sion; less than 10% of the story is about the event in ques-

tion). Flag values for all events are available in the file

tdt-corpus.judgments. ✆
1.3. The Tasks

The Topic Detection and Tracking Study is concerned with

the detection and tracking of events. The input to this pro-

cess is a stream of stories. This stream may or may not be

pre-segmented into stories, and the events may or may not

be known to the system (i.e., the system may or may not be

trained to recognize specific events). This leads to the defini-

tion of three technical tasks to be addressed in the TDT study.

These are namely the tracking of known events, the detection

of unknown events, and the segmentation of a news source

into stories.

The Segmentation Task The segmentation task is defined

to be the task of segmenting a continuous stream of text (in-

cluding transcribed speech) into its constituent stories. To

support this task the story texts from the study corpus will be

concatenated and used as input to a segmenter. This concate-

nated text stream will include only the actual story texts and

will exclude external and internal tag information. The seg-

mentation task is to correctly locate the boundaries between

adjacent stories, for all stories in the corpus.

The Detection Task The detection task is characterized by

the lack of knowledge of the event to be detected. In such

a case, one may wish to retrospectively process a corpus of

stories to identify the events discussed therein, or one may

wish to identify new events as they occur, based on an on-line

stream of stories. Both of these alternatives are supported

under the detection task.

Retrospective Event Detection The retrospective detection

task is defined to be the task of identifying all of the events

in a corpus of stories. Events are defined by their association✝
Linguistic Data Consortium Telephone: 215 898-0464 3615 Market

Street Fax: 215 573-2175 Suite 200 ldc@ldc.upenn.edu Philadelphia, PA,

19104-2608, USA. http://www.ldc.upenn.edu✞
Only values of YES and BRIEF are listed, thus reducing the size of the

judgment file by two orders of magnitude. (The vast majority of stories have

flag values of NO for all events.)

with stories, and therefore the task is to group the stories in

the study corpus into clusters, where each cluster represents

an event and where the stories in the cluster discuss the event.

It will be assumed that each story discusses at most one event.

Therefore each story may be included in at most one cluster. ✟
On-line New Event Detection The on-line new event detec-

tion task is defined to be the task of identifying new events in

a stream of stories. Each story is processed in sequence, and

a decision is made whether or not a new event is discussed

in the story, after processing the story but before processing

any subsequent stories). A decision is made after each story

is processed. The first story to discuss an event should be

flagged YES. If the story doesn’t discuss any new events, then

it should be flagged NO.

The Tracking Task The tracking task is defined to be the

task of associating incoming stories with events known to the

system. An event is defined (“known”) by its association with

stories that discuss the event. Thus each target event is de-

fined by a list of stories that discuss it.

In the tracking task a target event is given, and each succes-

sive story must be classified as to whether or not it discusses

the target event. To support this task the study corpus will be

divided into two parts, with the first part being the training

set and the second part being the test set. (This division is

different for each event, in order to have appropriate training

and test sets.) Each of the stories in the training set will be

flagged as to whether it discusses the target event, and these

flags (and the associated text of the stories) will be the only

information used for training the system to correctly classify

the target event. The tracking task is to correctly classify all

of the stories in the test set as to whether or not they discuss

the target event.

A primary task parameter is the number of stories used to de-

fine (“train”) the target event, ✠☛✡ . The division of the corpus

between training and test will be a function of the event and

the value of ✠☞✡ . Specifically, the training set for a particular

event and a particular value of ✠☛✡ will be all of the stories up

to and including the ✠ ✡✍✌✡ story that discusses that event. The

test set will be all subsequent stories.

1.4. The Evaluation

To assess TDT application potential, and to calibrate and

guide TDT technology development, TDT task performance

will be evaluated formally according to a set of rules for each✎
While it is reasonable that a story will typically discuss a single event,

this is not always the case. In addition to multifaceted stories, there are also

overlapping events. For example, in the case of the TDT study’s corpus and

target events, there are 10 stories that have a YES or BRIEF tag for more than

one event. One of these (story 8481) has a YES tag for two events (namely

Carter in Bosnia and Serbs violate Bihac). Nonetheless, the assumption that

each story discusses only one event will be used, because it is reasonable for

the large majority of stories and because it vastly simplifies the task and the

evaluation.

of the three TDT tasks. In these evaluations, there will be

numerous conditions and questions to be explored. Among

these are:✏ How does performance vary when processing different

sources and types of sources?✏ How does selection of training source and type affect

performance?

In general evaluation will be in terms of classical detection

theory, in which performance is characterized in terms of two

different kinds of errors, namely misses (in which the target

event is not detected) and false alarms (in which the target

event is falsely detected). In this framework, different events

will be treated independently of each other and a system will

have separate outputs for each of the target events.

2. Segmentation

The segmentation task addresses the problem of automat-

ically dividing a text stream into topically homogeneous

blocks. The motivation for this capability in this study arises

from the desire to apply event tracking and detection tech-

nology to automatically generated transcriptions of broadcast

news, the quality of which have improved considerably in

recent years. Unlike newswire, typical automatically tran-

scribed audio data contains little information about how the

stream should be broken, so segmentation must be done be-

fore further processing is possible. Segmentation is there-

fore an “enabling” technology for other applications, such as

tracking and new event detection.

Given the nature of the medium, “topically homogeneous

blocks” of broadcast speech should correspond to stories,

hence a segmenter which is designed for this task will find

story boundaries. The approaches described below, however,

are quite general; there is no reason that the same technol-

ogy, suitably tuned, cannot be applied to other segmentation

problems, such as finding topic breaks in non-news broadcast

formats or long text documents.

There is a relatively small but varied body of previous work

that has addressed the problem of text segmentation. This

work includes methods based on semantic word networks

[10], vector space techniques from information retrieval [7],

and decision tree induction algorithms [11]. The research on

segmentation carried out under the TDT study has led to the

development of several new and complementary approaches

that do not directly use the methods of this previous work,

although all of the approaches share a common rationale and

motivation.

2.1. Evaluation

Segmentation will be evaluated in two different ways. First,

segmentation will be evaluated directly in terms of its abil-

ity to correctly locate the boundaries between stories. Sec-

ond, segmentation will be evaluated indirectly in terms of its

ability to support event tracking and preserve event tracking

performance.

For the segmentation task, all of the TDT study corpus will

be reserved for evaluation purposes. This means that any ma-

terial to be used for training the segmentation system must

come from sources other than the TDT study corpus. Also,

the nature of the segmentation task is that the segmentation is

performed on a single homogeneous data source. Therefore,

for the purpose of evaluating the segmentation task, segmen-

tation will be performed not only on the TDT Corpus as a

whole, but also on its two separate sub-streams–one compris-

ing just the Reuters stories, and the other comprising just the

CNN stories. In addition, the segmentation task must be per-

formed without explicit knowledge of the source of the text,

whether from newswire or transcribed speech.

Direct Evaluation of Segmentation Segmentation will be

evaluated directly using a modification of a method suggested

by John Lafferty. ✑
This is an ingenious method that avoids dealing with bound-

aries explicitly. Instead, it measures the probability that two

sentences drawn at random from the corpus are correctly clas-

sified as to whether they belong to the same story. For the

TDT study, the calculation will be performed on words rather

than sentences. ✒ Also, the error probability will be split into

two parts, namely the probability of misclassification due to

a missed boundary (a “miss”), and the probability of misclas-

sification due to an extraneous boundary (a “false alarm”).

These error probabilities are defined as✓✕✔✗✖✙✘✚✘✜✛ ✢✤✣✦✥★✧✖✪✩ ☎ ✫ ✌✭✬✯✮✱✰✍✲✴✳✵✲★✶✸✷✺✹✕✻✼✰✾✽❀✿ ✫✭❁✴❂✾❃ ✰✍✲✴✳✵✲❅❄❆✷✺✹✾✹✢ ✣✦✥❇✧✖✪✩ ☎ ✰✚✽❀✿ ✫❈❁✯❂✚❃ ✰❉✲✯✳✾✲❇✶❊✷✺✹✵✹✓✕❋❍●✯■❏✘ ❂✚❑ ■❏● ❁ ✔ ✛ ✢ ✣✦✥★✧✖✪✩ ☎ ✰✾✽❀✿ ✫ ✌▲✬✴✮▼✰✍✲✯✳✾✲★✶✸✷✺✹✵✹◆✻ ✫✭❁✴❂✚❃ ✰❉✲✯✳✵✲❖❄P✷✺✹✢◗✣✦✥❇✧✖✪✩ ☎ ✫❈❁✯❂✚❃ ✰✍✲✯✳✾✲★✶✸✷✺✹
where the summations are over all the words in the corpus

and where✫ ✰❉✲✯✳❖❘❙✹ ✛❯❚ ✽ when words ✲ and ❘ are from the same story❱
otherwise

Choice of ✷ is a critical consideration in order to produce a

meaningful and sensitive evaluation. For the TDT study cor-

pus, ✷ will be chosen to be half the average document length,

in words, of the text stream on which we evaluate (about 250

for the TDT Corpus, for example).❲
“Text Segmentation Using Exponential Models”, by Doug Beeferman,

Adam Berger, and John Lafferty.❳
There are several reasons for using words rather than stories. First, there

will likely be less debate and fewer problems in deciding how to delimit

words than how to delimit sentences. Second, the word seems like a more

suitable unit of measurement, because of the relatively high variability of the

length of sentences.

Indirect Evaluation of Segmentation Segmentation will

be evaluated indirectly by measuring event tracking perfor-

mance on stories as they are defined by automatic segmen-

tation means. A segment will contribute to detection errors

proportionate to how it overlaps with stories that would con-

tribute to the error rates. Details of this evaluation are pre-

sented in Section in the tracking chapter.

2.2. Dragon Approach

Theory Dragon’s approach to segmentation is to treat a

story as an instance of some underlying topic, and to model

an unbroken text stream as an unlabeled sequence of these

topics. In this model, finding story boundaries is equivalent

to finding topic transitions.

At a certain level of abstraction, identifying topics in a text

stream is similar to recognizing speech in an acoustic stream.

Each topic block in a text stream is analogous to a phoneme

in speech recognition, and each word or sentence (depend-

ing on the granularity of the segmentation) is analogous to

an “acoustic frame”. Identifying the sequence of topics in

an unbroken transcript therefore corresponds to recognizing

phonemes in a continuous speech stream. Just as in speech

recognition, this situation is subject to analysis using classic

Hidden Markov Model (HMM) techniques, in which the hid-

den states are topics and the observations are words or sen-

tences.

More concretely, suppose that there are ✷ topics ❨☛❩✙☎✚❬ , ❨❭❩❏✆✴❬ ,
. . . , ❨❪❩ ✧ ❬ . There is a language model associated with each

topic ❨❭❩ ✖ ❬ , ✽❴❫❵✲❭❫❛✷ , in which one can calculate the prob-

ability of any sequence of words. In addition, there are tran-

sition probabilities among the topics, including a probability

for each topic to transition to itself (the “self-loop” probabil-

ity), which implicitly specifies an expected duration for that

topic. Given a text stream, a probability can be attached to

any particular hypothesis about the sequence and segmenta-

tion of topics in the following way:

1. Transition from the start state to the first topic, accumu-

lating a transition probability.

2. Stay in topic for a certain number of words or sen-

tences, and, given the current topic, accumulate a self-

loop probability and a language model probability for

each.

3. Transition to a new topic, accumulating the transition

probability. Go back to step 2.

A search for the best hypothesis and corresponding seg-

mentation can be done using standard HMM techniques and

standard speech recognition tricks (using thresholding if the

search space gets too large, for example).

Implementation Details Since the entire TDT Corpus is set

aside for evaluation, training data for a segmenter must come

from other sources. One such source available to all sites

is the portion of Journal Graphics data from the period Jan-

uary 1992 through June 1994. This data was restricted to the

CNN shows included in the TDT Corpus, and stories of fewer

than 100 and more than 2,000 words were removed. This left

15,873 stories of average length 530 words. A global unigram

model consisting of 60,000 words was built from this data.

The topics used by the segmenter, which are referred to as

background topics, were constructed by automatically clus-

tering news stories from this training set. The clustering was

done using a multi-pass ✷ -means algorithm that operates as

follows:

1. At any given point there are ✷ clusters. For each story,

determine its distance to the closest cluster (based on the

measure described below), and if this distance is below a

threshold, insert the story into the cluster and update the

statistics. If this distance is above the threshold, create a

new cluster.

2. Loop through the stories again, but now consider switch-

ing each story from its present topic to the others, based

on the same measure as before. Some clusters may van-

ish; additional clusters may need to be created. Repeat

this step as often as desired.

The distance measure used in the clustering was a variation

of the symmetric Kullback-Leibler (KL) metric:❜ ✛ ❝▲❞ ✰❢❡ ❞❤❣❥✐ ✹✱❦❏❧✼♠ ❡ ❞♥❣♦✐✰✍♣ ❞ ✶✸❡ ❞ ✹ ❣ ✰❢qr✶ ✐ ✹✶ ❝ ❞ ✰s♣ ❞❤❣ q❭✹▼❦❏❧✼♠ ♣ ❞♥❣ q✰✍♣ ❞ ✶✸❡ ❞ ✹ ❣ ✰sq◗✶ ✐ ✹ ✳
where ❡ ❞ and ♣ ❞ are the story and cluster counts for word t ❞ ,

with

✐ ✛ ✢ ❡ ❞ and q ✛ ✢ ♣ ❞ .

A background topic language model was built from each clus-

ter. To simplify this task, the number of clusters was limited

to 100 and each topic was modeled with unigram statistics

only. These unigram models were just smoothed versions of

the raw unigram models generated from the clusters. Smooth-

ing each model consisted of performing absolute discounting

followed by backoff to the global unigram model. The uni-

gram models were filtered against a stop list to remove 174

common words.

Decoding of text was done by actually using code from a

speech recognizer with 100 underlying “single node” models

(corresponding to the topics), each of which was represented

by a unigram model as described above. As in speech, the

text was scored against these models one frame at a time –

a frame corresponding, in these experiments, to a sentence.

The topic-topic transition penalties were folded into a single

number, the topic-switch penalty, which was imposed when-

ever the topic changed between frames/sentences.

The topic-switch penalty was tuned to produce the correct

average number of words per segment on the first 100 stories

from the test set. There are no other parameters to tune except

the search beam width, which was set large enough to avoid

search errors in the experiments.

Results

TDT Corpus. The segmentation error metric computed for

Dragon’s system on the full TDT Corpus was 12.9%. The

segmenter produced 16,139 story boundaries, compared to

the 15,863 actual boundaries in the test set. Of these, 10,625

were exact matches, yielding a recall rate of 67.0% and a pre-

cision of 65.8%.

CNN vs. Reuters. One might expect that, because the data

used to train the segmenter’s background models was taken

entirely from CNN broadcasts, the performance of the seg-

menter on the CNN portion of the TDT Corpus would be sig-

nificantly better than its performance on the Reuters portion.

To explore this, Dragon ran the evaluation separately on the

two subcorpora. The system returned a segmentation error of

16.8% (worse than for the corpus as a whole!) on CNN, and

an error of 12.3% (better!) on Reuters.

The most likely explanation for this anomaly is that the CNN

is more difficult than Reuters for a content-based segmenter

such as Dragon’s. For example, written news tends to be

more concise than broadcast news, with none of the typi-

cal “broadcast fillers”, such as introductions, greetings, and

sign-offs. It is also the case that the length of CNN stories

varies much more widely than Reuters stories, a problem for

this segmenter, which has a single parameter controlling for

length.

TWA Corpus. The closed-caption version of the corpus

contains punctuation marks, making it possible to introduce

sentence breaks in the usual way. The recognized transcrip-

tions, of course, contain no punctuation, so breaks were in-

troduced at arbitrary points in the segments in such a way as

to produce approximately the same number of “sentences” as

in the closed-caption case.

On the closed-caption data, the segmenter returned a segmen-

tation error of 25.5%. On the recognized data the error was

33.6%. The size of these numbers suggests that the problem

of segmenting broadcasts may be harder than the TDT Cor-

pus leads us to believe. In any event, it would be interesting

to calibrate these error rates against the result on a clean tran-

scription of the TWA Corpus.

The Future It is remarkable that this simple application of

HMM techniques to segmentation and tracking achieves such

promising results. This work represents just the beginning

of what can be achieved with this approach; many improve-

ments are possible, both by incorporating ideas found in im-

plementations at the other sites and from generalizations of

the techniques already employed.

In particular, some form of story modeling that attempts to

recognize features around boundaries, which both UMass and

CMU incorporate into their systems, should be incorporated

into Dragon’s framework. One way to do this, which contin-

ues in the spirit of the speech recognition analogy, is to use

“multi-node” story models, in which a story is modeled as a

sequence of nodes (for example, one which models the story

start, one which models the middle, and one which models

the end) rather than a single topic model.

It is also possible to improve the topic modeling that already

forms the basis of the segmenter. Some methods of achieving

this include using bigram models in place of unigram models

for topics, including a “trigger model” of the kind employed

by CMU, and adaptively training the background during seg-

mentation. It is also likely that the basic speech-inspired lan-

guage models can be improved by incorporating information

retrieval measures that are more informed about topic infor-

mation, such as the local context analysis used by UMass.

2.3. UMass Approach

Content Based LCA Segmentation UMass has developed

two largely complementary segmentation methods. The first

method makes use of the technique of local context analy-

sis (LCA) [16]. LCA was developed as a method for auto-

matic expansion of ad hoc queries for information retrieval.

It is somewhat like the method of local feedback [5] but has

been shown to be more effective and more robust. For the

segmentation task, LCA can be thought of as an association

thesaurus which will return words and phrases which are se-

mantically related to the query text and are determined based

on collection-wide co-occurrence as well as similarity to the

original sentence. Each sentence is run as a query against the

LCA database and the top 100 concepts are returned. The

original sentence is then replaced with the LCA concepts and

the effect is that sentences which originally had few or per-

haps no words in common will typically have many LCA con-

cepts in common.

The original LCA method was derived from that described in

[12]. The text is indexed at the sentence level using offsets to

encode the positions of the LCA features. For example, sup-

pose the feature “O. J. Simpson” occurs in sentence 1, 3, and

10. The index will encode these positions as 1, 2 and 7, the

offset from the previous occurrence of the concept. The main

idea of the LCA segmenter is to use these offsets to measure

shifts in vocabulary over time. The original method, which

was tested on the Wall Street Journal, used a simple func-

tion of the offsets as a heuristic measure of the “surprise”

of seeing a particular concept in a particular sentence. In

a homogeneous collection such as the Wall Street Journal,

this heuristic, in conjunction with LCA expansion, worked

quite well. However, the TDT Corpus has stories from sev-

eral sources and so it often happens that several stories on

the same topic will occur in close proximity. Moreover, since

the TDT Corpus consists of transcribed speech, there is far

more off-topic language than in the Wall Street Journal. For

example, throughout the corpus, one finds social interaction

between speakers which does not relate to the current topic.

These two difficulties were circumvented by means of an ex-

ponential length model. Rather than looking at the total size

of the offset, a model of the average segment size was used.

The model was used to determine the probability that an oc-

currence of a concept was in the same segment as the previ-

ous occurrence. This method is more robust with respect to

multiple stories on same topic and to “social noise” than the

original method and performance is improved.

The LCA method can be thought of as a content-based

method. It works by looking at changes in content-bearing

words. It is somewhat similar to the topic models used in

Dragon’s method and to the relevance features in CMU’s

method. The strong point of the LCA method is that, other

than the length model estimation, it is completely unsuper-

vised. One weakness of this method is that the current im-

plementation is somewhat slow since it requires a database

query per sentence. However, it could be sped up consider-

ably using standard information retrieval query optimization

techniques. A second weakness is that performance of the

LCA expansion currently requires sentence breaks. A modifi-

cation of this approach would be to use a fixed-sized window

rather than sentences as the atomic unit for expansion.

Discourse Based HMM Segmentation The second seg-

mentation method uses a Hidden Markov Model to model

“marker words,” or words which predict a topic change. The

model consists of one or more states for the first ✠ sentences

of a segment, one or more for the last ✠ sentences, and one

or more for the remainder of the segment. So while the LCA

segmenter relies on shifts in content, the HMM segmenter is

relying on words which predict the beginning or end of a seg-

ment without regard to content. This is somewhat similar to

CMU’s use of vocabulary features. The model is trained us-

ing segmented data. Unknown word probabilities were han-

dled with a very simple smoothing method.

Additional Features. In addition to the word probabilities,

other features were modeled. These included sentence length

(which would be implicit in a word based segmenter), serial

clustering tendency [3], and distance from previous occur-

rence. Each of these features was measured as a standard

score, and state probabilities were estimated from the train-

ing data. These three features yielded a very slight improve-

ment over the words alone. Part of the reason why they did

not help more is that, in the first place, the distributions of the

features are far from normal and, secondly, most of the data

points cluster around the mean. This suggests that an adaptive

binning technique would work better than using standardized

scores.

In order to shed some light on this conjecture, all of the

data points lying more than one standard deviation from the

mean were discarded and a new mean and standard deviation

were computed and the scores restandardized. This admit-

tedly poor modification yielded a modest improvement over

the initial standard scores and therefore suggests that adap-

tive binning would be appropriate. However, it is not known

to what extent the results would improve from better binning.

One advantage of the HMM implementation is that it is very

fast. Training time is approximately 15 minutes on the TDT

training corpus and segmentation is extremely fast as one

would expect from an HMM with a small number of states.

Also, unlike the LCA method, the HMM method can be used

at the word level (although the current implementation works

at the sentence level). The disadvantage of the HMM method

is that it requires segmented training data.

Results and Discussion

LCA Method. The LCA segmenter achieves a 17.6% error

rate on the TDT Corpus. The new method is still heuris-

tic in nature and a more principled use of the LCA con-

cepts would, in all likelihood, improve performance further.

Two additional improvements could be made to the LCA ap-

proach. First, one difficulty with the LCA method is that

when one gives a query to LCA such as “Thank you and

good-night,” the concepts one gets back are essentially ran-

dom. The current method is fairly robust with respect to a

reasonable amount of random noise, but perhaps a better ap-

proach would be to model the noise words and not pass them

to LCA at all. The second approach is to make use of the

discourse features as well. This is discussed further below.

HMM Method. The HMM segmenter has a 23% error rate

on the TDT Corpus. One caveat is that this approach may rely

on the similarity of the training data to the test data somewhat

heavily. Still, it shows that very simple discourse modeling

can provide useful information. This method could be made

more robust by explicitly modeling “segues” and other regu-

larities of the source. For example, it would be more general

to tag place names and names of reporters and to learn the

probability of segment boundaries relative to the tags rather

than to the specific names as the current approach does.

The Future One obvious question is to what extent a hybrid

approach would improve performance over either method

alone. For example, one could use an HMM based segmenter

and sample the LCA concepts at locations where the distri-

bution is less peaked, i.e. use LCA in places where one least

sure about a break. A second reasonable hybrid would be to

combine the content-based HMM segmenter used by Dragon

with a simple discourse-based HMM segmenter.

It may also be possible to leverage the strengths of the two ap-

proaches as follows. The LCA segmenter works in an unsu-

pervised manner but is somewhat slow. The HMM segmenter

is very fast, but requires training data. Over time, one could

use the LCA segmenter on a sample of the incoming data in

order to provide “up to the minute” training data for the faster

HMM segmenter in order to keep the distributions up to date

as the language use shifts over time.

2.4. CMU Approach

Motivation The original motivation for the CMU segmen-

tation research arose in the context of multimedia informa-

tion retrieval applications. In particular, both the News-on-

Demand and video library projects within Informedia Digital

Libraries project require segmentation of the video stream for

accurate and useful indexing, retrieval, browsing, and sum-

marization.

In order to find natural breaks in a video stream, it is impor-

tant to make use of the concurrent and often complementary

information in the text (closed captions or speech output), au-

dio, and image streams. The CMU approach was designed

around the idea that various “features” of these multiple me-

dia sources should be extracted and then combined into a

statistical model that appropriately weighs the evidence, and

then decides where to place segment boundaries. For multi-

media, the relevant features might include questions such as:

Does the phrase COMING UP appear in the last utterance of

the decoded speech? Is there a sharp change in the video

stream in the last ✉ ❱ frames? Is there a “match” between the

current image and an image near the last segment boundary?

Are there blank video frames nearby? Is there a significant

change in the frequency profile of the audio stream in the next

utterance?

There are several key ingredients in this basic approach ap-

plied to the subproblem of text segmentation:

1. Content-based features derived from a pair of language

models that are used to help gauge “large scale” changes

of topic.

2. Lexical features that extract information about the local

linguistic and discourse structure of the context.

3. A new machine learning algorithm that incrementally

selects the best lexical features and combines them with

the information provided by the language models to

form a unified statistical model.

The use of language models, as described below, is geared

toward finding changes of topic—whether within or across

segment boundaries. This component is similar in spirit to

Dragon’s use of unigram language models trained on clus-

ters of segments, and the UMass local context analysis tech-

nique. The lexical features complement this information

by making more fine-grained judgments about those words

that correlate—both positively and negatively—with segment

boundaries. The feature selection algorithm automatically

“learns” how to segment by observing how segmentation

boundaries are placed in a sample of training text. This algo-

rithm incrementally constructs an increasingly detailed model

to estimate the probability that a segment boundary is placed

in a given context. Each of these ingredients is described in

more detail below.

Language Models. In the CMU approach the relative be-

havior of an adaptive language model is compared to a static

trigram language model in an on-line manner. The basic idea

is that the adaptive model generally gets better and better as

it sees more material that is relevant to the current “topic”

of a segment. However, when the topic changes, the perfor-

mance of the adaptive model degrades relative to the trigram

model since it is making its predictions based upon the con-

tent words of the previous topic. These language models are

essentially the same as those employed for the speech recog-

nition system used in CMU’s entry in the recent TREC eval-

uation for spoken document information retrieval.

Two static trigram models are used—one for the CNN ex-

periments and one for Reuters experiments. The CNN ex-

periments use a static trigram model ✈ tri ✰ t❊✇❅t ✥ ✆ ✳ t ✥ ☎ ✹ with

a vocabulary of roughly 60,000 words that is trained on ap-

proximately ✽▲① ❱ million words (four and a half years) of tran-

scripts of various news broadcasts, including CNN news, but

excluding those Journal Graphics transcriptions that overlap

with the time frame of the TDT Corpus. The Reuters exper-

iments use a trigram model that has a vocabulary of 20,000

words and is trained on approximately 38 million words of

Wall Street Journal data. Both models use the Katz backoff

scheme [9] for smoothing.

The method used to construct the adaptive model is to treat

the static trigram model as a default distribution, and then to

add certain features based on semantic word classes in or-

der to form a family of conditional exponential models. The

details of this model are described in [1]. Since the adap-

tive model should improve as it sees more material from

the current topic (or event), a segment boundary is likely

to exist when the adaptive model suddenly shows a dip in

performance—a lower assigned probability to the observed

words—compared to the short-range model. Conversely,

when the adaptive model is consistently assigning higher

probabilities to the observed words, a partition is less likely.

Lexical Features. The use of simple lexical features is in-

tended to capture words or phrases that are commonly used

to begin or end a segment in a particular domain, as well as to

extract simple linguistic and discourse clues that a boundary

is near.

As an example, in the domain of CNN broadcast news, a

story often will end with a reporter giving his or her name

and the location of the report: THIS IS WOLF BLITZER RE-

PORTING LIVE FROM THE WHITE HOUSE. In the domain

of Reuters newswire, on the other hand, which originates as

written communication, a story is often introduced by record-

ing the day on which the event occurred: A TEXAS AIR NA-

TIONAL GUARD FIGHTER JET CRASHED FRIDAY IN A RE-

MOTE AREA OF SOUTHWEST TEXAS.

The lexical features enable the presence or absence of partic-

ular words in the surrounding context to influence the statisti-

cal segmenter. Thus, the presence of the word REPORTING in

the broadcast news domain, or the presence of the word FRI-

DAY in the newswire domain might indicate that a segment

boundary is nearby. The way in which the learning algorithm

actually chooses and uses these features is described briefly

in the next section.

Feature Induction The procedure for combining the evi-

dence in the language models and the lexical features is based

on a statistical framework called feature induction for random

fields and exponential models [2, 4]. The idea is to construct

a model which assigns to each position in the data stream

a probability that a boundary belongs at that position. This

probability distribution is incrementally constructed as a log-

linear model that weighs different “features” of the data. For

simplicity, it is assumed that the features are binary questions.

One way to cast the problem of determining segment bound-

aries in statistical terms is to construct a probability distri-

bution ② ✰❢③ ✇❖④ ✹ , where ③⑥⑤⑧⑦ YES ✳ NO ⑨ is a random variable

describing the presence of a segment boundary in context④ . Consider distributions in the linear exponential family⑩ ✰s❶❷✳ ② 0 ✹ given by⑩ ✰s❶❷✳ ② 0 ✹ ✛❸❚ ② ✰s③ ✇❅④ ✹ ✛ ✽❹❻❺ ✰ ④ ✹❥❼ ❺♦❽ ❃ ❩❏❾▼❬ ② 0 ✰❢③ ✇❖④ ✹➀❿
where ② 0 ✰❢③ ✇❖④ ✹ is a prior or default distribution on the pres-

ence of a boundary, and ➁ ✻✼❶◆✰ ④ ✹ is a linear combination of

binary features ❶ ✖ ✰ ④ ✹❴⑤⑧⑦ ❱ ✳✭✽ ⑨ with real-valued feature pa-

rameters ➁ ✖ :➁ ✻▲❶◆✰ ④ ✹ ✛ ➁ ☎ ❶ ☎ ✰ ④ ✹➂✶ ➁ ✆ ❶ ✆ ✰ ④ ✹❍✶✤✻❈✻❈✻ ➁ ❞ ❶ ❞ ✰ ④ ✹★➃
The normalization constants

❹ ❺ ✰ ④ ✹ ✛ ✽➄✶ ❼ ❺♦❽ ❃ ❩➅❾✱❬ insure that

this is indeed a family of conditional probability distributions.

The judgment of the merit of a model ② ⑤ ⑩ ✰❢❶❷✳ ② 0 ✹ relative to

a reference distribution ✈❊➆⑤ ⑩ ✰❢❶❷✳ ② 0 ✹ during training is made

in terms of the Kullback-Leibler divergence➇ ✰ ✈☛➈★② ✹ ✛➉❝❾❷➊♦➋ ✈ ✰ ④ ✹ ❝➌ ➊❙➍ YES ➎ NO ➏ ✈ ✰❢③ ✇❖④ ✹▼❦✪❧♦♠ ✈ ✰s③ ✇❖④ ✹② ✰❢③ ✇❖④ ✹ ➃

Thus, when ✈ is chosen to be the empirical distribution of a

sample of training events ⑦▼✰ ④ ✳✯③➐✹ ⑨ , the maximum likelihood

criterion is used for model selection. The training algorithm

for choosing the parameters to minimize the divergence is the

Improved Iterative Scaling algorithm presented in [4].

This explains how a model is chosen once the features❶ ☎ ✳❈➃❈➃✭➃➐✳✴❶ ❞ are known, but how are these features to be found?

One possibility is a greedy algorithm akin to growing a deci-

sion tree, although the models are closer to the form of cer-

tain neural networks. In brief, the gain of a candidate is esti-

mated as the improvement to the model that would result from

adding the feature and adjusting its weight to the best value.

After calculating the gain of each candidate feature, the one

with the largest gain is chosen to be added to the model, and

all of the model’s parameters are then adjusted using iterative

scaling. In this manner, an exponential model is incremen-

tally built up using the most informative features. See [4] for

details.

Results The exponential models derived using feature in-

duction give a probability ✈ ✰s③ ✛
YES ✇❅④ ✹ that a boundary

exists at a given position in the text. In order to actually seg-

ment text, this probability is computed in an “on-line” man-

ner, scanning the text sequentially. It is assumed that sentence

boundaries have been identified, and segment boundaries are

only placed between sentences. A segment boundary is hy-

pothesized if (1) the probability ✈ ✰❢③ ✛
YES ✇❅④ ✹ exceeds a

pre-specified threshold ➑ , and (2) a boundary has not been

previously placed in the immediately preceding ➒ sentences.

The parameters ➑ and ➒ were chosen on a portion of heldout

training data to minimize the error probability, and were set

to ➑ ✛ ❱ ➃✪✽▲① and ➒ ✛ ① for CNN data, and ➑ ✛ ❱ ➃ ✉ ① and ➒ ✛ ✉
on newswire data.

As described in the TDT Evaluation Plan, the direct evalu-

ation for a hypothesized segmentation ➓▼➔❙→ with respect to

the reference segmentation ref is computed as a probabil-

ity ✈ ✰ error ✇ ref ✳ hyp ✳✴✷✺✹ . This is the probability that a ran-

domly chosen pair of words a distance of ✷ words apart is

inconsistently classified; that is, for one of the segmentations

the pair lies in the same segment, while for the other the pair

spans a segment boundary.

The CNN segmentation model was trained on approximately

one million words of broadcast news data not included in the

TDT Corpus, using the broadcast news language models de-

scribed above as the basis for language model features. A

total of 50 features were induced, and the model was trained

using the Improved Iterative Scaling algorithm. The selec-

tion of each feature from the pool of several hundred thou-

sand candidates takes on the order of 30 minutes, and then

training all of the weights takes roughly five minutes, on a

high-end workstation. No cross-validation was done to de-

termine the best stopping point, nor was the resulting model

smoothed in any way. One of the advantages of feature induc-

tion for exponential models, versus more standard machine

learning techniques such as decision trees, is that the proce-

dure is quite robust against over-fitting. When the resulting

50 feature model was then evaluated on the CNN portion of

the TDT Corpus, the error rate was 12.5%. The exact match

precision and recall were 72.2% and 72.3% respectively.

The segmentation model for the Reuters portion of the TDT

Corpus was built using a collection of approximately 250,000

words of AP newswire data, Wall Street Journal articles, and

Reuters headline news segments extracted from the Internet.

The language models used were trained on 38 million words

of Wall Street Journal data. Because of the lack of training

data from the Reuters domain, as well as the general absence

of strong cue phrases for story transitions in this written do-

main, it was expected that the resulting segmentation perfor-

mance would be inferior to that obtained for broadcast news,

and this was indeed what happened in the CMU results. A 50

feature model was induced on the training set, and when eval-

uated on the Reuters portion of the TDT Corpus, the resulting

error rate was 15.5%.

The Future The CMU segmentation research carried out

under the TDT project is clearly only a beginning, and there

are many directions in which this work can be extended, im-

proved, and made more practical. There is current work going

on at CMU to build on these results to develop segmentation

algorithms for multimedia data, making use of parallel text,

audio, and video streams.

The CMU approach has an economy of scale since the lan-

guage models that are used are identical to those that are used

for speech recognition systems constructed in the same do-

main. Improved language models for speech recognition can

be expected to yield improved performance for segmentation.

The exponential models resulting from feature induction are

very “concrete” in the sense that only a handful of specific

features are extracted, and the behavior of the resulting seg-

menter can be well understood—there are specific “explana-

tions” of the decisions that it makes. Moreover, since the

model directly assigns a probability distribution to bound-

aries, a confidence in the decisions is easy to assign.

The challenge of future work is to preserve these strengths

while integrating the complementary strengths of the Dragon

and UMass approaches.

2.5. Discussion

One of the remarkable outcomes of the TDT study on seg-

mentation is the diversity of ideas and techniques that have

been brought to bear on this problem. Broadly speaking,

these ideas and techniques fall into two classes: those that

focus on story content and those that focus on story struc-

ture or discourse. In the details, however, there is very little

similarity between approaches. Dragon’s content-based sys-

TWA

TDT CNN Reuters cc rec

Dragon 12.9 16.8 12.3 25.5 33.6

UMass 17.6 — — — —

CMU — 12.5 15.5 — —

Table 1: Segmentation error rates (percentages).

tem models stories as instances of topics described by sim-

ple unigram statistics; UMass, in one approach, treats stories

as collections of similar queries to an information retrieval

system, and in another approach, as a set of words bounded

by marker words and phrases; and CMU’s system exploits

both content and discourse features simultaneously, training

an exponential model to combine information from a trig-

ger/trigram language model with features that are associated

with story boundaries.

This variety of approaches bodes well for the future of work

on segmentation. It not only means that improvements on the

current task are likely to be realized by combining some of

these different ideas, but also that a variety of different tasks

can be addressed by selecting the approach with the appro-

priate strengths. For example, on the CNN task, for which

a large amount of well-matched training data was available,

CMU’s feature-learning mechanism proved to be very effec-

tive; on the Reuters task, for which well-matched training ma-

terial was not available, Dragon’s content-based system was

more robust (see Table 1).

The indirect evaluation of segmentation (described in Sec-

tion) shows that carefully transcribed broadcast data can

probably be segmented well enough with the current meth-

ods that subsequent processing (tracking, at least) will not

suffer much. It remains to be seen if the same can be said

of not-so-carefully transcribed data, such as that produced by

closed-captioning or recognition. The one small test that has

been done using the TWA Corpus indicates that this may be a

hard problem. On the other hand, in TDT segmentation of the

broadcast stream is not an end in itself, but an enabling tech-

nology for subsequent tracking and detection processes, and

it may prove to be the case that methods of the type developed

here will be adequate to support these technologies.

3. New Event Detection

Event detection is the problem of identifying stories in sev-

eral continuous news streams that pertain to new or previ-

ously unidentified events. In other words, detection is an un-

supervised learning task (without labeled training examples).

Detection may consist of discovering previously unidenti-

fied events in an accumulated collection (“retrospective de-

tection”), or flagging the onset of new events from live news

feeds or incoming intelligence reports in an on-line fashion

(“on-line detection”). Both forms of detection by design lack

advance knowledge of the new events, but do have access to

(unlabeled) historical data as a contrast set.

In the TDT study, the input to retrospective detection is the

entire corpus. The required output by a detection system is

a partition of the corpus, consisting of story clusters which

divide the corpus into event-specific groups according to the

system’s judgment. (CMU’s and UMass’s methods exhibit

considerably better performance when they are allowed to

place stories within multiple event groups.)

The input to on-line detection is the stream of TDT stories

in chronological order, simulating real-time incoming news

events. The output of on-line detection is a YES/NO deci-

sion per story made at the time when the story arrives, in-

dicating whether this story is the first reference to a newly

reported event. A confidence score per decision is also re-

quired. These scores are used later to investigate potential

trade-offs between different types of errors(misses and false

alarms) by applying different thresholds on these scores and

thus shifting the decision boundary.

How to use the above information to detect unknown events

presents new research challenges. There are multiple ways to

approach the problem.✏ The CMU approach to retrospective event detection is to

cluster stories in a bottom-up fashion based on their lexi-

cal similarity and proximity in time. The CMU approach

to on-line detection combines lexical similarity (or dis-

tance) with a declining influence look-back window of✷ days when judging the current story, and determine

NEW or OLD based on how distant of the current story

from the closest story in the ✷ days window.✏ The UMass approach to on-line detection is similar to

the extent that it uses a variant of single-link clustering

and builds up (clusters) groups of related stories to rep-

resent events. New stories are compared to the groups

of older stories. The matching threshold is adjusted over

time in recognition that an event is less likely to be re-

ported as time passes. UMass’ retrospective detection

method focuses on rapid changes by monitoring sudden

changes in term distribution over time.✏
The Dragon approach is also based on observations over

term frequencies, but using adaptive language models

from speech recognition. When prediction accuracy of

the adapted language models drops relative to the back-

ground model(s), a novel event is hypothesized.

3.1. Detection evaluation

The detection task used the entire TDT study corpus as in-

put. However, detection performance was evaluated only on

those stories which discuss only one of the 25 target events

and which are flagged as such with a YES flag for that story.

There are 1131 such stories. ➣
Retrospective Event Detection System output for the ret-

rospective event detection task is the clustering information

necessary to associate each of the stories with a cluster. (Each

story is constrained to appear in only one cluster.) This in-

formation is recorded in a file, one record per story, with

records separated by newline characters and with fields in a

record separated by white space. Each record has five fields in

the following format: “Cluster ✠ ✡ Story Decision

Score”, where:✏
Cluster is an index number in the range ⑦ 1, 2, . . . ⑨ which

indicates the cluster (event) affiliation of the story.✏ ✠ ✡ is the number of stories used to train the system to the

event. (Since this is a detection task, ✠↔✡ ✛ ❱ , but it is

kept in the output to maintain format uniformity across

different tasks.)✏
Story is the TDT corpus index number in the range ⑦ 1,

2, . . . 15863 ⑨ which indicates the story being processed.✏
Decision is either YES or NO, where YES indicates that

the system believes that the story being processed dis-

cusses the cluster event, and NO indicates not. (Again,

Decision should always be YES since the story is a

member of its cluster, but it is retained in the output for-

mat so as to maintain format uniformity across different

tasks.)✏
Score is a real number which indicates how confident

the system is that the story being processed discusses

the cluster event. More positive values indicate greater

confidence.

The performance of retrospective detection is evaluated by

measuring how well the stories belonging to each of the target

events match the stories belonging to the corresponding clus-

ter. This presents a problem, because it is not known which

of the clusters corresponds to a particular target event. Thus it

is necessary to associate each target event with (exactly) one

cluster to determine this correspondence. This was accom-

plished by associating each target event with the cluster that

best matches it. The degree of match between an event and

a cluster is defined to be the number of stories that belong to

both the event and the cluster.

Note that retrospective detection uses the entire TDT corpus

of 15,863 stories, but is evaluated only on the manually la-

beled stories of 25 events (containing about 7% of the total

stories).↕
There are a total of 1382 non-NO event flags and 1372 flagged stories.

(10 stories were flagged by two events.) However, 240 of these stories were

flagged as BRIEF, and one was flagged as YES by two events.

On-line New Event Detection The on-line new event detec-

tion task is to output a new event flag each time a story dis-

cusses a new event. Since evaluation is performed only over

the set of target events, the small number (25) of type I trials

presents a problem for estimating performance. This problem

is addressed by artificially changing the corpus so as to mul-

tiply the number of type I trials by ✠ ✘ ✧ ✖ ✮ (with ✠ ✘ ✧ ✖ ✮ ✛ ✽ ❱).

This is done in the following way:✏ The corpus is processed once after deleting all stories

with BRIEF event tags.✏ The corpus is processed a second time after further delet-

ing the first story which discusses each of the target

events.✏ The corpus is processed ✠ ✘ ✧ ✖ ✮➄✿➙✽ more times, each time

further deleting the subsequent first (next) story which

discusses each of the target events, until the first ✠ ✘ ✧ ✖ ✮
stories discussing each of the target events have been

skipped.

System output for the on-line detection task will be a dec-

laration for each story processed. This output is to indicate

whether or not the story discusses a new event. This infor-

mation was recorded in a file in ASCII format, one record

per story, with records separated by newline characters and

with fields in a record separated by white space. Each record

has six fields in the following format: “Event ✠↔✡ Story

Decision Score ❘ ✘ ✧ ✖ ✮ ”, where:✏
Event is an event index number. (Since there is no event

affiliation for the on-line detection task, Event is set to

zero, but it is retained in the output format so as to main-

tain format uniformity across different tasks.)✏ ✠ ✡ is the number of stories used to train the system to

the event. (Since this is a detection task, ✠ ✡ is identi-

cally zero, but it is retained in the output format so as to

maintain format uniformity across different tasks.)✏
Story is the TDT corpus index number in the range ⑦ 1,

2, . . . 15863 ⑨ which indicates the story being processed.✏
Decision is either YES or NO, where YES indicates that

the system believes that this story is the first to discuss

the event which the story discusses, and NO indicates

not.✏
Score is a real number which indicates how confident

the system is that the story being processed is the first to

discuss the event. More positive values indicate greater

confidence.✏ ❘ ✘ ✧ ✖ ✮ is the number of initial stories that have been

skipped for each of the target events, in the range ⑦ 0,

1, . . . ✠ ✘ ✧ ✖ ✮ ⑨ .

Evaluation measures Given a story and a particular event

in consideration, the output of a detection system is a

YES/NO decision with a confidence score. The performance

average over a set of test stories is used to evaluate the de-

tection system. Five evaluation measures are reported in this

study: miss rate, false alarm rate, recall, precision, and the ➛ ☎
measure. The miss and false alarm rates were the “official”

measures of the pilot study.

The ➛ ☎ measure[14] was used as a way of balancing re-

call and precision, in a way that each of them is given

equal weight. A more general form of the F-measure is➛❍➜ ✰❉➝➀✳ ✈ ✹ ✛ ❩ ➜✼➞ ❄ ☎✚❬ ✮ ❁➜ ➞ ✮➐❄ ❁ where ➟ is the parameter allowing dif-

ferential weighting of ✈ and ➝ . The F-measure is commonly

used as an optimization criterion in binary decision making,

when recall and precision are considered as the primary per-

formance measures.

In addition to optimizing binary decisions, another objective

of the TDT study is the ability to achieve a tradeoff between

different types of performance scores at any level desired. A

Decision Error Trade-off (DET) curve between misses and

false alarms is used for this part of the evaluation.

3.2. The CMU Approach

Given the lack of knowledge about events, event detection

is essentially a discovery problem—i.e., mining the data for

new patterns, in a new paradigm of query-free retrieval. CMU

takes an approach based on group average agglomerative text

clustering, aiming the discovery of natural patterns of news

stories over concepts (lexicon terms) and time. This ap-

proach creates a hierarchical tree of clusters, with the top lay-

ers representing a rough division into general topics, and the

lower ones a finer division into narrower topics and events.

CMU also investigated an incremental average-link cluster-

ing method that produces a single level partition of the TDT

corpus.

Incremental clustering For story and cluster representa-

tion, CMU uses the conventional vector space model.[13]

A story is presented as a vector whose dimensions are the

stemmed unique terms in the corpus, and whose elements

are the term weights in the story. By “terms” we mean

words or phrases in general. A cluster is represented using

a prototype vector (or the centroid) which is the normalized

sum of the story vectors in the cluster. For term weighting

in a story vector, CMU tested several typical term weight-

ing schemes which combine the within-story term frequency

(TF) and the Inverse Document Frequency (IDF) in different

ways. As implementation, CMU uses the mechanisms pro-

vided in SMART, a benchmarking retrieval system developed

by the Salton group at Cornell [13]. The term preprocess-

ing includes removal of stop words, stemming, and then term

weighting. The “ltc” option (in the SMART notation) yielded

in the best clustering results in the experiments, where the

weight of term ➠ in story
❜

is defined to be:t ✰ ➠ ✳ ❜ ✹ ✛ ✰✚✽➡✶➢❦❏❧✼♠ ✆ ❨➤➛ ❩ ✡ ➎ ➥ ❬ ✹✗➦➨➧ ➇ ➛ ✡ ❣ ➈❆➩❜ ➈ ➃
The denominator ➈ ➩❜ ➈ is the 2-norm of vector ➩❜ , i.e., the

square root of the squared sum of all the elements in that vec-

tor. The similarity of two stories is defined as the cosine value

of the corresponding story vectors. Similarly, the similarity of

two clusters is defined as the cosine value of the correspond-

ing prototype vectors.

Having stories and clusters represented in vectors, the incre-

mental clustering is straightforward. For each consecutive

story, compute the cosine similarity of this story and each

cluster centroid in the accumulated set. If the similarity score

between this story and the closest cluster is above a threshold

(pre-selected), then add this story to the cluster as a member,

and update the prototype vector correspondingly. Otherwise,

add this story as a new cluster in the set. Repeat the above

until the corpus is done.

This algorithm results in a flat partition of the TDT corpus.

The number of clusters in the partition depends on the clus-

tering threshold in Step 3. When setting the threshold to a

value of 0.23, we obtained a partition of 5,907 clusters which

yielded the optimal result evaluated using the 25 events la-

beled by humans (see Section).

Group-average based clustering The core part of CMU’s

method is an agglomerative algorithm named Group Average

Clustering[8, 6] which maximizes the average pairwise simi-

larity between stories in each cluster. This algorithm uses the

same vector representation for documents and clusters and

produces a binary tree of story clusters in a bottom-up fash-

ion: the leaf nodes tree are single-story clusters; a middle-

level node is the centroid of the two most proximate lower-

level clusters; and the root node of the tree (if the algorithm

is allowed to reach this point) is the universal cluster which

contains all sub-clusters will all the stories. The GAC al-

gorithm has a quadratic complexity in both time and space,

although envisioned improvements based on [15] and other

work at CMU should yield sub-quadratic space complexity,

without increasing time complexity. In order to reduce the ef-

fective complexity and to exploit natural temporal groupings

of events in news-streams CMU used the following modified

form of GAC clustering:

1. Sort the TDT stories in chronological order, and use this

as the initial partition of the corpus where each cluster

starts with a single story.

2. Divide the partition (a cluster series) into non-

overlapping and consecutive buckets whose size is fixed

in terms of the number of clusters they contain.

3. Apply GAC to each bucket, i.e., combine lower-level

clusters into higher-level ones in a bottom-up fashion

until the bucket size (number of clusters in it) is reduced

by a factor of ➫ .

4. Remove the bucket boundaries (assemble all the GAC

clusters) while reserving the time order of the clusters.

Use the resulting cluster series as the updated partition

of the corpus.

5. Repeat Step 2-4, until a pre-determined number of clus-

ters is achieved in the final partition.

6. Periodically (say, once per 3 iterations in Step 2-4) flat-

ten each cluster, and apply GAC internally to each flat-

tened cluster for re-clustering. This is CMU’s augmenta-

tion to Cutting and Pedersen’s algorithm. It enables sto-

ries belonging to the same event, but initially assigned to

different buckets, to be re-assigned to a common cluster.

On-line Detection Algorithm CMU’s on-line detection is

implemented as below:

1. The algorithm starts with an empty set (“PAST”) of clus-

ters, with the pre-determined values for the following

parameters:✏
the detection threshold which is the minimum

score for the system to say that the current story

belongs to a new event;✏
the combining threshold which is the minimum

similarity score for adding a story as a new mem-

ber of an existing cluster;✏
the window size which is the maximum number of

clusters in PAST, or the aging limit (in terms of

days) of a cluster to be a member in PAST.

2. Read the next story as “the current”. Compute the simi-

larity of this story and all the clusters in PAST.✏ If the largest similarity value is above the detection

threshold, then announce “YES” as the detection

of a new event; otherwise, announce “NO”.✏ If the largest similarity value is above the cluster-

ing threshold, then add the current story to the clos-

est cluster, and update the prototype vector of the

cluster correspondingly; otherwise, add the current

story an a new cluster in PAST, and remove the old-

est cluster from PAST if it exceeded the window

size.

3. Repeat the above step until the end of the input series.

This algorithm is similar to the incremental clustering algo-

rithm used for retrospective detection (Section), except for

two modifications:

✏ The PAST reference is restricted to a time window of

fixed number of stories or days which are closest to the

current story, instead of referring an infinite past.✏
A detection threshold, independent from the cluster

combining threshold, is used to differentiate NEW from

OLD.

3.3. The UMass Approach

Retrospective Detection UMass used two different ap-

proaches to retrospective event detection:

In the first approach, the TDT collection was examined and

all words and noun phrases that occur very often in the col-

lection that do not also occur often in a separate training col-

lection were identified as potential triggers for clusters. Each

of those terms was then examined to see if its occurrence in

documents was heavily concentrated in some small range of

time. If not, the term did not trigger an event.

For a term that did trigger an event, all documents containing

the term within a time range (determined by the standard de-

viation of daily occurrence) were handed to a relevance feed-

back algorithm and a query representing event was created.

UMass applied that query to the collection as a whole to find

documents that matched the event. A final trimming step re-

moved outlier stories by considering the concentration of sto-

ries over a range of days.

The second approach was a bottom-up agglomerative clus-

tering of the documents similar to CMU’s. Document sim-

ilarity was accomplished using the same queries created by

on-line detection (described below). Document ✲ and ❘ are

compared by running query ✲ against document ❘ , then query❘ against document ✲ , and averaging the resulting two belief

scores. Only document pairs that are more than two standard

deviations away from the mean comparison score are eligible

to invoke clustering. This provides a stopping criterion for

the clustering.

On-Line Detection The UMass algorithm for on-line event

detection follows these steps:

1. For each document, extract the ➭ most important fea-

tures needed to build a query representation of this doc-

ument.

2. Calculate a belief threshold for this document’s corre-

sponding query by running the query against its source

document. That belief value is an upper bound on the

threshold; it is adjusted downward as described below.

3. Compare the new document against all previous queries.

If the document does not exceed the the threshold of an

existing query flag the document as containing a new

event.

4. If the document exceeds the the threshold of any existing

query flag the document as not containing a new event.

5. Save the document’s query (and threshold) in the query

set.

For the type of query used in this system, InQuery’s belief

values can range from 0.40 to 1.00. UMass used a threshold

above in step 2 that is somewhere between 0.40 and the belief

of the document against its own query. We tried various val-

ues, but found that values from 20-30% of the way between

the two worked well in general, with a lower threshold was

more useful with a larger set of ➭ features.

UMass also applied an aging factor to the thresholds: over

time, the threshold for matching grew higher and higher. This

was meant to model the idea that an event is less and less

likely to be reported as time passes—i.e., it slowly becomes

news that is no longer worth reporting. UMass found that

the aging factor was an important factor in achieving good

results.

3.4. Dragon Approach

Dragon’s online and retrospective detection systems are ap-

plications of the clustering technology used to train back-

ground models for the segmenter. As described in the seg-

mentation report, this technology is an implementation of a✷ -means clustering algorithm.

Online Detection Dragon followed CMU’s lead and ap-

proached the online detection task as a clustering problem

in which the stories being clustered could be examined only

once. With this interpretation, online detection is a natural ap-

plication of ✷ -means clustering, in which one executes only

the first pass of the algorithm. Following this procedure, the

first story in the corpus defines an initial cluster. The remain-

ing stories in the corpus are processed sequentially; for each

one the “distance” to each of the existing clusters is com-

puted. A story is inserted into the closest cluster unless this

distance is greater than a threshold, in which case a new clus-

ter is created. The decision to create a new cluster is equiva-

lent to declaring the appearance of a new event.

The old distance measure Given that several iterations of

Dragon’s implementation of the ✷ -means algorithm produces

good clusters for the segmenter, one would expect that the

first pass alone would provide a credible basis for an online

detection system. This turns out not to be the case. In fact,

the performance of Dragon’s clustering algorithm in its first

iteration turns out to be horrible, essentially dividing the cor-

pus into chunks of about 50 consecutive stories and declaring

these to be clusters.

The problem in the first pass arises due to a subtle property of

the distance measure,❜ ✛ ❝▲❞ ✰❢❡ ❞❤❣❥✐ ✹✱❦❏❧✼♠ ❡ ❞ ❣♦✐✰✍♣ ❞ ✶✸❡ ❞ ✹ ❣ ✰❢qr✶ ✐ ✹✶ ❝ ❞ ✰s♣ ❞❤❣ q❭✹▼❦❏❧✼♠ ♣ ❞ ❣ q✰✍♣ ❞ ✶✸❡ ❞ ✹ ❣ ✰sq◗✶ ✐ ✹ ✳
where ❡ ❞ and ♣ ❞ are the story and cluster counts for wordt ❞ , with

✐ ✛ ✢➯❡ ❞ and q ✛ ✢➲♣ ❞ . The two terms have the

following interpretation: the first is the distance between the

story and the cluster after the story has been inserted into it,

and the second is the distance that the cluster itself moves as

a result of incorporating the story.

A problem arises for very small clusters: because of the merg-

ing of the story and cluster distributions in the denominator

of the log, a story can actually “drag” a small cluster close

enough that the distance to it is small, and therefore below

threshold. Thus whenever a new cluster is created by the clus-

tering algorithm, all subsequent stories are found to be close

in distance until the cluster gets big enough (about 50 stories,

given our threshold settings), at which point a new cluster is

created and the cycle begins again.

The new measure Dragon fixed the measure for the online

task by smoothing the cluster distribution used in the dis-

tance computation with a background distribution, and then

preventing the cluster from being “dragged” by the story

distribution. Two improvements were also made: a story-

background distance was subtracted from the story-cluster

distance (to compensate for the fact that small clusters tend

to look a lot like background after smoothing), and a decay

term was introduced to cause clusters to have a limited du-

ration in time. This term is just a decay parameter times the

difference between the number of the story represented by the

distribution ❡ ❞ and the number midway between the first and

last stories in the cluster.

The new measure has the form❜ ✛ ❝✭❞ ✰❢❡ ❞♥❣❥✐ ✹▼❦✪❧♦♠❭➳ ❞ ❣♦➵♣➐➸❞ ❣ q ✶ decay term ✳
where ♣ ➸❞ is the smoothed cluster count for word t ❞ , and ➳ ❞
is the background unigram count with

➵ ✛ ✢ ➳ ❞ .

Tuning the online detection system means adjusting the decay

parameter and the overall threshold. Currently these can only

be tuned on the test corpus.

3.5. Results, Analysis, and Future Work

The three sites have obtained results for retrospective and on-

line detection, evaluated using the various metrics discussed,

including F1 and DET curves. Tables 2, 3 and 4 list the re-

ported results for several of the runs from the various sites.

Figure 1 shows the DET curves of the best online runs, one

for each site. Figures 3, 2 and 4 are the DET plots of retro-

spective detection systems.

CMU optimization efforts In order to optimize results,

CMU is investigating the following: dealing with out-of-

vocabulary (OOV) terms; incremental updating of IDF; using

time windows and declining weighting factors; dynamically

setting Clustering thresholds; and, unsupervised incremental

learning.

The incremental updating of Inverted Document Frequency

(IDF) is defined to be:

➧ ➇ ➛ ❩✪➺ ➎ ✡ ❬ ✛ ❦✪❧♦♠ ✆ ✰ ✠ ❩❏➺▲❬ ❣ ➭ ❩❏➺ ➎ ✡ ❬ ✹
where ➠ is a term, ➻ is the current story, ✠ ❩❏➺▲❬ is the number

of stories in the sequence from the first story in the corpus

(TDT or JGI+TDT) to the current point ➻ , and ➭ ❩❏➺ ➎ ✡ ❬ is the

number of stories which constrain term ➠ in the sequence to

the current point ➻ .

In terms of using time constraints in on-line detection, CMU

tried two methods. The first method was to use a time window

of ✷ stories, denoted as ➼ ✧ , which is prior to the current story.

The detection decision on the correct story, ➻ , is based on the

comparison of this story with each story in the window:❡▲♣➐➽➾➝ ❼ ✰ ➻ ✹ ✛ ✽❀✿➪➚➹➶➀➘➥✯➴ ➊❙➷➤➬ ⑦▲♣❈➽❥❡✼✰ ➩➻ ✳ ➩❜ ✖ ✹ ⑨
Another method was to use a decaying weighting function to

adjust the influence of stories in the window. The ❡▲♣➐➽➾➝ ❼ ✰ ➻ ✹
in this method is modified as❡▲♣➐➽➾➝ ❼ ✰ ➻ ✹ ✛ ✽❀✿➯➚➹➶➀➘➥✯➴ ➊❙➷➤➬ ⑦ ✲✷ ♣➐➽❥❡❙✰ ➩➻ ✳ ➩❜❙✖ ✹ ⑨ ➃
This modification makes the decision rely more on the stories

which are closer to the current time, than the stories far in the

past. In other words, it is a smoother way to use a time win-

dow than a uniformly weighted window. CMU found that a

window size of 700 is about optimal when not using the de-

caying weighting function, and a size of 2500 optimal when

using the decay weighting. The relative improvement from

using decaying weights is about 2% in the ➛ ☎ measure over a

fixed window.

UMass optimization efforts The word-trigger approach

provided reasonably high-precision clusters, but realized bad

recall: the cluster sizes were too small. UMass believes that

the recall can be improved by relaxing some constraints.

For the bottom-up agglomerative approach, UMass found the

unsurprising result that higher-dimensionality query repre-

sentations were more effective. 100- and 50-term queries

were noticeably more effective than 10-term queries, in the

same way that they were for on-line detection. However,

in this case the 50-term queries outperformed the 100-term

queries.

 1

 2

 5

 10

 20

 40

 60

 80

 90

 .01 .02 .05 0.1 0.2 0.5 1 2 5 10 20 40 60 80 90

M
is

s
 P

ro
b
a
b
ili

ty
 (

in
 %

)

False Alarm Probability (in %)

random performance
CMU

UMass.100t
UMass.400t

Dragon

Figure 1: TDT On-line Detection Runs

 1

 2

 5

 10

 20

 40

 60

 80

 90

 .01 .02 .05 0.1 0.2 0.5 1 2 5 10 20 40 60 80 90

M
is

s
 P

ro
b
a
b
ili

ty
 (

in
 %

)

False Alarm Probability (in %)

TDT Retrospective Detection Runs, Averaged Over Events

random performance
CMU

Dragon
UMass

CMU (bestfit)
UMass (dupls)

Figure 2: TDT Retrospective Detection Runs, Averaged Over Events

 1

 2

 5

 10

 20

 40

 60

 80

 90

 .01 .02 .05 0.1 0.2 0.5 1 2 5 10 20 40 60 80 90

M
is

s
 P

ro
b
a
b
ili

ty
 (

in
 %

)

False Alarm Probability (in %)

TDT Retrospective Detection Runs, By Event

random performance
cmu

dragon
umass-100T

Figure 3: TDT Retrospective Detection Runs, By Event

 1

 2

 5

 10

 20

 40

 60

 80

 90

 .01 .02 .05 0.1 0.2 0.5 1 2 5 10 20 40 60 80 90

M
is

s
 P

ro
b
a
b
ili

ty
 (

in
 %

)

False Alarm Probability (in %)

TDT Retrospective Detection Runs DUPLICATES ALLOWED, By Event

random performance
cmu-bestfit

umass-100T-dupls

Figure 4: TDT Retrospective Detection Runs, duplicates allowed, By Event

Run %Miss %f/a %Recall %Prec micro-avg F1 macro-avg F1

CMU incremental 38 0.09 62 67 0.64 .77

CMU gac top-level 17 0.32 83 43 0.56 .63

Dragon 39 0.08 61 69 0.65 .75

UMass 100T 66 0.09 34 53 0.42 .60

UMass 10T 67 0.50 33 16 0.21 .53

Table 2: Retrospective Detection Results: Partition Required. (Official evaluation)

For retrospective detection, UMass did only a small amount

of work with alternate types of features (e.g., phrases) for

these experiments; preliminary results suggest that multi-

word features are helpful.

Similar to CMU’s time-windows UMass found that the time

sensitive nature of event reporting can be captured by aging

the belief thresholds. For a given documents’ query, UMass

raised the threshold incrementally as each subsequent story

was processed, making it more and more difficult for later

stories to pass the threshold. This aging of the thresholds

provided substantial improvements in precision without im-

pacting recall noticeably. Note, however, that the aging helps

performance of unexpected events (e.g., disasters) but hurts

performance of long-running events such as the O.J. Simpson

trial.

Dragon’s Optimization Directions Dragon believes that

further careful research on the clustering measure can pro-

duce performance gains in its system. The fact that the ret-

rospective evaluation indicates that the new distance measure

does better than the old one suggests that the clustering of the

background topics used by the segmenter should be revisited,

and the segmentation experiments rerun with topics based on

the new measure. This is an area for future work.

3.6. Open Issues

Some related issues pertaining to event detection have not

been addressed in the pilot TDT study, but evolve naturally

therefrom, including:✏ How to provide a global view of the information space

to users and navigation tools for effective and efficient

search?✏ Some approaches generate a cluster hierarchy automati-

cally. How to choose the right level of clusters for user’s

attention that best fits the information need of the user?✏ How to summarize the information at different degrees

of granularity, i.e., at a corpus level, a cluster level, a

story level, and a sub-story level? How to provide user-

specific or query-specific summaries? How to remove

redundant parts and maximize the information in a sum-

mary?✏ How to make a better use of temporal information in

event detection and tracking than we have done? In

the case of on-line detection, for example, we have only

taken the simplest approach of imposing a time window

to the data stream.✏ How to improve the accuracy of on-line detection by in-

troducing limited look-ahead? For instance, noting that

two or three stories arriving very close in time are highly

related to each other but different than anything in a pre-

vious time interval would be a very good indicator of a

new breaking event.

4. Event Tracking

The TDT event tracking task is fundamentally similar to the

standard routing and filtering tasks of Information Retrieval

(IR). Given a few sample instances of stories describing an

event (i.e., stories that provide a description of the event), the

task is to identify any and all subsequent stories describing

the same event. Event tracking is different from those IR

tasks in that events rather than queries are tracked, and in that

events have a temporal locality that more general queries lack.

These differences shift the nature of the problem slightly but

at the same time shift the possible solutions significantly. The

narrowing of the scope of information filtering encourages

modifications to existing approaches and invites entirely new

approaches that were not feasible in a more general query-

centric setting.

This report discusses approaches to Event Tracking by re-

search teams from CMU, the University of Massachusetts,

and Dragon Systems.

4.1. Tracking evaluation

Each event is to be treated separately and independently. In

training the system for any particular target event, allowable

information includes the training set, the test set, and event

flags for that target event only. (No information is given on

any other target event).

Evaluation will be conducted for five values of ✠➮✡ , namely

Run %Miss %f/a %Recall %Prec micro-avg F1 macro-avg F1

CMU gac hierarchy 25 0.02 75 90 0.82 .84

UMass 100T-dups 27 0.06 73 78 0.75 .81

UMass 10T-dups 31 0.05 69 80 0.74 .81

Table 3: Retrospective Detection Results: Duplicates Allowed.

⑦ 1, 2, 4, 8, 16 ⑨ . In training, ✠↔✡ will count just the number of

YES tags for the target event and will exclude the BRIEF tags.

However, the full classification of each story in the training

set (i.e., YES, BRIEF, and NO) may be used in training.

All of the stories in the test set must be processed, but there

will be two evaluations – one over all of the test data (for each

value of ✠ ✡), and one over a fixed set of test data, namely

the test set corresponding to ✰ ✠ ✡✚✹✾➱ ● ➺ ✛ ✽✭✃ . (Tabulating

performance for a fixed test set as ✠☛✡ varies will allow a more

stable comparison of performance across the various values

of ✠☞✡ , because the test set will be the same for all values of✠❪✡ .)

The test stories are to be processed in chronological order,

and decisions must be made “on line”. That is, the detection

decision for each test story must be output before processing

any subsequent stories. Decisions may not be deferred.

The event tracking system may adapt to the test data as it

is processed, but only in an unsupervised mode. Supervised

feedback is not allowed. (Evaluating over a set of ✠↔✡ ’s pro-

vides essentially equivalent information.)

In calculating performance, those stories tagged as BRIEF for

the target event will not be included in the error tally.

There will be a TDT tracking trial for each story, and for each

event, and for each value of ✠☛✡ . This will make a total of

about 1,000,000 trials. This number is derived by multiplying

the number of target events (25) by the average number of

test stories (assumed to number about 8,000) by the number

of values of ✠ ✡ (5). Of these trials, less than one percent will

be type I (true) trials.

For each trial, there will be two outputs - first, a logical de-

tection indication, YES or NO, indicating whether the system

believes that the story discusses the target event; and second,

a score indicating how confident the system is in this decision.

This confidence indicator will be used to compute a detection

error trade-off (DET) between misses and false alarms.

The trials for the tracking task will be recorded in a file in

ASCII format, one record per trial, with trials separated by

newline characters and with fields in a record separated by

white space. Each record will have 5 fields in the format,

“Event ✠☞✡ Story Decision Score”, where:

✏
Event is an index number in the range ⑦ 1, 2, . . . , 25 ⑨
which indicates the target event being detected.✏ ✠ ✡ is the number of stories used to train the system to

the target event.✏
Story is the TDT corpus index number in the range ⑦ 1,

2, . . . 15863 ⑨ which indicates the story being processed.✏
Decision is either YES or NO, where YES indicates that

the system believes that the story being processed dis-

cusses the target event, and NO indicates not.✏
Score is a real number which indicates how confident

the system is that the story being processed discusses the

target event. More positive values indicate greater con-

fidence. (Large negative numbers indicate lack of confi-

dence, while large positive number indicate high confi-

dence.)

Indirect Evaluation of Segmentation Segmentation (see

Section) will be evaluated indirectly by measuring event

tracking performance on stories as they are defined by auto-

matic segmentation means. A straightforward three-step pro-

cedure will be used:

1. Segment the whole corpus using the segmentation sys-

tem under test.

2. Using an event tracker that has been evaluated on the

TDT corpus previously, run this system on the auto-

segmented corpus. Follow the standard event tracking

rules, with the following exceptions:✏ Train the event tracking system on the original cor-

rectly segmented stories.✏ Begin evaluation on the first auto-segmented story

which follows the last training story and which is

disjoint from it.

3. Evaluate the event tracker results and compare these re-

sults with results on the original correctly segmented

stories.

The evaluation is complicated by the fact that there are no

event flags for the auto-segmented stories. This problem will

be solved by creating scores for the original stories from those

Run %Miss %f/a %Recall %Prec micro-avg F1 macro-avg F1

CMU decay-win2500 59 1.43 41 38 .40 .39

CMU fixed-win700 55 1.80 45 35 .39 .39

Dragon 58 3.47 42 21 0.28 .28

UMass 100T 50 1.34 50 45 0.48 .45

UMass 50T 51 1.31 49 45 0.47 .47

UMass 10T 59 1.19 41 43 0.42 .42

UMass 10T notime 73 1.53 27 28 0.28 .27

Table 4: On-line Detection Results: Average Over 11 Runs.

computed for the auto-segmented stories. ❐ The evaluation

will then be performed on the original stories using these

synthetic scores. The synthetic score for each original story

will be a weighted sum of the scores for all overlapping auto-

segmented stories, where the weight prorates each score ac-

cording to how many words the overlapping story contributes:✐ ♣➐➽➾➝ ❼➀❒ ❁ ✖➅❮ ❩ ✖ ❬ ✛ ✢Ï❰ ➊ ❒✾Ð ❂✚❁ ■❏● ✮ ❩ ✖ ❬ t ✖ ❰ ✻ ✐ ♣➐➽➾➝ ❼ ●ÒÑ ✡ ❒ ✘ ❂ ❮ ❩ ❰ ❬✢ ❰ ➊ ❒✾Ð ❂❅❁ ■❏● ✮ ❩ ✖ ❬ t ✖ ❰
where t ✖ ❰ is the number of words in the ❘ ✡✍✌ auto-segmented

story that overlap with the ✲ ✡✍✌ original story.

The output record format will be the same as for the conven-

tional event tracking task. The decision will be computed in

the standard way and will be based on the synthetic score.

Speech Tracking – the TWA 800 crash event In addition

to the TDT study corpus, an additional corpus will be pro-

cessed to explore the tracking task for different representa-

tions of speech, including machine recognition of speech.

The corpus consists of CNN recordings and spans the period

during 1996 when the TWA 800 crash occurred. This corpus

contains a total of 1029 stories, of which 35 discuss the TWA

crash. Two different representations of the speech will be pro-

cessed: (1) Closed captioning taken from the CNN broadcast;

and, (2) Speech recognition output provided by CMU. There

were no JGI transcripts for the TWA corpus, so there is no

“accurate” representation of the speech.

4.2. UMass approach

All efforts by UMass to attack this problem have focused on

its similarity to information filtering. For that reason, UMass

used the training data (positive and negative) to create a short

query intended to represent the event being tracked. TheÓ
There are two possible ways of solving this problem - either by mapping

the event flags for the original stories onto the auto-segmented stories, or

by mapping the decisions on the auto-segmented stories onto the original

stories. Mapping event flags onto the auto-segmented stories might seem to

represent the actual application scenario more accurately. Mapping scores

was chosen, however, to facilitate a clearer comparison with results on the

original stories and to avoid conceptual and mechanical difficulties involved

in mapping the event flags.

training data were also used to derive a threshold for compar-

ison with that query. That query was applied to all subsequent

stories—if they matched the query, they were “tracked.”

UMass tried two approaches. The first was based on simple

“relevance feedback” methods of IR. The ✠ ✡ positive training

examples and up to ✽ ❱♦❱ ✠ ✡ negative training examples were

handed to a relevance feedback routine that built queries of 10

to 100 words that were intended to represent the event. The

query was run against the training set to select a threshold.

A second approach used a shallow parser to extract nouns and

noun phrases (rather than all single terms), weighted features

in two different ways—one that gave features a higher weight

if they occurred frequently within at least one training story,

and the other that weighted features based upon the number

of training stories it occurred in.

4.3. CMU approach

CMU developed two methods for tracking events: a k-Nearest

Neighbor (kNN) classifier and a Decision-Tree Induction

(dtree) classifier.

kNN is an instance-based classification method. All training

instances (positive and negative) of each event being tracked

are stored and efficiently indexed. The approach proceeds by

converting each story into a vector as it arrives and comparing

it to all past stories. The ✷ nearest training vectors (measured

by cosine similarity) to the incoming story each “vote” for

or against the new story, based on whether or not they are

themselves members of the event. For a binary decision, we

set a threshold on the scores to vote YES or NO for
❜ ✖

being

an instance of the tracked event. For instance, vote YES iff

score Ô 0.

CMU ran some variation on kNN in an effort to find ap-

proaches that yielded high-quality results across the entire

miss vs false-alarm tradeoff spectrum, as exhibited in the

DET curves in the evaluation section. The alternate ap-

proaches were based upon using two nearest-neighborhoods

(not necessarily of the same size), one for positive instances

of the event and one for negative, computing scores

✐ ❄
and

✐ ✥ respectively, using the same similarity-weighted voting as

before. The overall score was a linear combination or a ratio

of the two neighborhoods’ scores.

Decision Trees Decision trees (dtrees) are classifiers built

based on the principle of a sequential greedy algorithm which

at each step strives to maximally reduce system entropy. De-

cision trees select the feature with maximal information gain

(IG) as the root node, dividing the training data according to

the values of this feature, and then for each branch finding

the next feature ❶ ✧ such that ➧❙Õ➹✰ ✐ ✰❢❶ ❰ ✹Ò✳✴❶ ✧ ✇ ❶ ❰ ✹ is maximized,

and so on recursively. Decision trees are typically good when

there are sufficient training instances belonging to each class.

One disadvantage of dtrees is that they cannot output contin-

uously varying tradeoff scores and thus are unable to generate

meaningful DET curves (some efforts were made to produce

DET curves from the dtrees, but they were not highly suc-

cessful).

4.4. Dragon approach

Dragon’s event tracker is an adaptation of its segmenter,

which is described in more detail in the segmentation report.

As discussed there, the segmentation algorithm does segmen-

tation and topic assignment simultaneously. In general, the

topic labels assigned by the segmenter (which are drawn from

the set of automatically derived background topics) are not

useful for classification, as they are few in number and do not

necessarily correspond to categories a person would find in-

teresting. However, by supplementing the background topic

models with a language model for a specific event of inter-

est, and allowing the segmenter to score segments against this

model, it becomes possible for the the segmenter to output a

notification of an occurrence of that event in the news stream

whenever it assigns that event model’s label to a story. In this

implementation, the topic models have the role of determin-

ing the background against which the event model must score

sufficiently well to be identified.

In this incarnation, the segmenter is not asked to identify story

boundaries. Its job is merely to score each story against its

set of background models, as well as against the event model,

and report the score difference between the best background

model and the event model. A threshold is applied to this

difference to determine whether a story is about the event or

not, and this threshold can be adjusted to tune the tracker’s

output characteristics. For example, a low threshold means

that a story does not have to score much better in the event

model than it does in the best background model (or, perhaps,

may even fail to score as well by a specified amount) for it

to be declared an instance of the event. This tuning tends to

result in missing very few stories on the event, but probably

will generate a high number of false alarms.

Event models were built from the words in the ✠➮✡ training

stories, after stopwords were removed with some appropriate

Run %Miss %F/A F1 % Prec

CMU kNN 29 0.40 0.66 61

Dragon 71 0.12 0.39 60

UMass nonRF-comb 55 0.10 0.60 88

UMass nonRF-20T 13 2.35 0.41 27

UMass RF100 39 0.27 0.62 62

Table 5: Tracking results for ✠ ✡ ✛❵Ö
, pooled average across

all 15 events evaluated (evaluation at ✠ ✡ ✛ ✽✭✃). (Note that

recall is 1 minus the miss rate.)

smoothing. In this case, in order to provide a more accurate

smoothing for the event model, we take as the backoff distri-

bution the mixture of the background topic models that best

approximates the unsmoothed event model. There is there-

fore a different backoff model for every event and every value

of ✠❪✡ .
4.5. Evaluation methodology

The first 16 stories on each event × are set aside for training

purposes. A system’s ability to track events is tested on all

stories from the one immediately following the ✽▲✃ th training

story through the end of the TDT corpus. Note that this means

that the test sets for each event are different.

A system is evaluated based on varying amounts of training

data. Each system is allowed ✠☛✡ positive training examples,

where ✠❪✡ takes on values 1, 2, 4, 8, and 16. The system is

permitted to train on all ✠↔✡ positive stories as well as all sto-

ries that occur in the corpus prior to the ✠ ✡✍✌✡ story. Note that

the training subset may include some stories that were judged

BRIEF for a particular event; those stories may be used (along

with the knowledge that it was judged BRIEF). The test set is

always the collection minus the ✠ ✡ ✛ ✽✭✃ training data.

Evaluations may be averaged across events within ✠ ✡ values.

It is not particularly meaningful to average across ✠ ✡ values.

Results are reported using the standard TDT evaluation mea-

sures and the Detection Error Tradeoff curves.

4.6. Evaluation results

Basic results Table 5 lists the reported results for several of

the runs from the various sites. These report the exact evalu-

ation of error rates at the thresholds chosen by the sites, av-

eraged across all events, at ✠☛✡ ✛ØÖ
(averaging is by pooling

all the results), but evaluated using the ✠↔✡ ✛ ✽▲✃ test set. The

table shows that the sites are able to generate results that vary

widely in their error rates. The preferred run from UMass isÙ
Only stories that are judged YES count; those judged BRIEF do not

count as part of the 16, nor as part of the test set.

nonRF-comb. Comparing it to the run from the other sites

shows dramatic differences in miss rates. The UMass and

Dragon runs have similar false alarm rates (the 0.02% differ-

ence is the difference between 4 and 7 false alarms per event

on average). CMU’s substantially lower miss rate comes at

the expense of a much larger false alarm rate.

These results are not particularly surprising. CMU tuned its

decision points on the false alarm/miss tradeoff based upon

the F1 measure that attempts to balance recall and precision

values. UMass, on the other hand, tuned its approach using

average precision numbers. The effect is clear in the numbers,

where UMass achieves very high precision for the task, but

CMU attains a better balance between the two.

DET curves Figure 5 shows the DET curves for three sam-

ple runs, one from each site. To make some comparison

possible, only the ✠☛✡ ✛➪Ö run is given for each. A single

point is plotted on the curve to represent the specific detec-

tion error tradeoff made by the threshold values each system

chose. The detached point is associated with the CMU deci-

sion tree approach: this is the result of a confidence threshold

that does not entirely conform to the YES/NO decisions made

for tracking.

The UMass RF2 run and the Dragon run are very similar in

effectiveness. The graph shows only ✠↔✡ ✛rÖ , but when all ✠☞✡
values are plotted, the UMass run turns out to be the quickest

approach to converge to “good” values as ✠☛✡ increases. In

fact, the use of additional training stories appears to harm

the overall tradeoff between the errors. UMass hypothesizes

that the stability is a result of using noun phrases as features.

Dragon’s event models did not work as well with very small

values of ✠ ✡
The UMass RF run performs less well, primarily because it

uses a small number of features. It is shown to make it clear

that minor variations in the query formation process can result

in substantial differences in effectiveness.

The CMU k-NN run is fairly insensitive to ✠ ✡ at low false

alarm rates, but when the miss rate drops below 10%, the

training instances become more and more important. This re-

sult is not surprising, because as the size of the neighborhood

needed to match grows (in order to reduce the miss rate), it

is very likely that mismatches will occur and the supporting

evidence of other training examples will help prevent that. (It

is more surprising that UMass’s run does not degrade in this

fashion, than that CMU’s does.)

The CMU decision tree approach results in an unusual DET

curve because its decisions result in a very small number of

confidence scores. When the curve makes huge jumps to the

right, that indicates a large number of stories with the same

confidence value: when the threshold hits that point, all sto-

ries at that value get included and the false alarm rate leaps.

The decision tree approach is tuned to a specific point on the

✠ ✡ value

1 2 4 8 16

Dragon -55% -26% – +12% +40%

CMU, Dtree -90% -30% – +12% +15%

CMU, kNN -25% -9% – +11% +32%

UMass -39% -5% – +5% +5%

Table 6: Shows changes in pooled ➛ ☎ measure for several

systems as ✠ ✡ varies, with ✠ ✡ ✛ÚÖ as the baseline. Actual

effectiveness numbers for ✠ ✡ ✛✤Ö are reported in Table 5.

curve: here, the leftmost knee at about 0.1% false alarm rate

was the goal.

The DET curves also show the tradeoffs that each site made

for selecting a threshold for YES/NO decisions. UMass and

Dragon both show decision points in the extreme upper left

of the curves, reflecting an emphasis on precision or low false

alarms. CMU, on the other hand, selected points much closer

to the middle of the graph, illustrating their goal of balancing

recall and precision.

Varying Values of ✠ ✡ The results presented above are at

a single value of ✠ ✡ (i.e., four). That limited presentation

simplifies some points of comparison, but also ignores the in-

teresting question of how the number of training stories (✠ ✡)
affects performance. Rather than present DET curves for ev-

ery run discussed in the previous section, we will consider

just the increase in effectiveness each system achieves as ✠↔✡
changes.

Table 6 shows the impact that varying ✠ ✡ has on the effec-

tiveness of the systems, as measured by pooled values of ➛ ☎ ,
a measure that balances recall and precision. Only a few

of the systems made an effort to optimize for ➛ ☎ values, so

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

CMU,DtreeDragon

CMU, kNN UMass

1 2 4

8

16

Figure 6: Graph of data in Table 6, showing impact of various

values of ✠ ✡ on a pooled ➛ ☎ measure for several systems.

 1

 2

 5

 10

 20

 40

 60

 80

 90

 .01 .02 .05 0.1 0.2 0.5 1 2 5 10 20 40 60 80 90

M
is

s
 P

ro
b
a
b
ili

ty
 (

in
 %

)

False Alarm Probability (in %)

TDT Tracking Runs, Nt=4

CMU.dtree
CMU.kNN

Dragon
umass-RF

UMass.RF2
random performance

Figure 5: DET curve for sample tracking runs from each site. All runs were performed with ✠ ✡ ✛ÛÖ training stories, and

evaluated at ✠ ✡ ✛◗Ö .
the actual effectiveness numbers are less important than the

changes that varying ✠ ✡ causes. For that reason, only percent

changes from the ✠ ✡ ✛ÜÖ value are reported (Table 5 reports

the baseline effectiveness for that ✠ ✡ value for those who are

concerned).

It is clear from the figure that the decision tree approach is ex-

tremely sensitive to the amount of training data. At ✠➮✡ ✛ ✽ ,
it has very poor effectiveness, but it learns rapidly, with only

modest gains after four training instances. The Dragon ap-

proach and the kNN approach both show more consistent

gains with each additional training example, though Dragon’s

approach appears to continue to benefit from learning the

most. The UMass approach stands out as the most stable after✠ ✡ ✛ ✉ training instances: it learns a good event representa-

tion very rapidly and gains almost nothing in effectiveness

beyond that point.

4.7. Indirect Evaluation of Segmentation

Figure 7 shows a comparison of a tracking run done with ac-

tual TDT stories and one with stories generated by a segmen-

tation run. The runs were both done by Dragon, though are

based on an earlier version of their tracker than that presented

in Figure 5, so the baseline performance is slightly lower.

The two runs are nearly identical, except that the segmented

corpus has noticeably degraded performance below a false

alarm rate of 0.04% and above a rate of roughly 15%. It

shows a modest loss in effectiveness in the 2-15% range.

Another indirect evaluation done by UMass (not presented

here) showed a similar effect, except that the degradation was

slightly larger and consistent everywhere except in the 10-

20% false alarm rate were the two runs were almost identical.

Those two sets of runs suggest that segmentation of the qual-

ity reported in Section has only a modest impact on tracking

effectiveness.

4.8. Speech-Recognized Audio Transcripts

The tracking methods developed and discussed above worked

relatively well for accurate transcripts and newswire stories:

transcribed CNN and Reuters, respectively. However, can

tracking also be performed on a much noisier channel, such as

the automatically-recognized audio track of broadcast news?

If so, at what price in accuracy? In order to investigate these

questions the CMU Informedia group provided TDT with

about 1,000 CNN news stories, including their close cap-

tions and their speech-recognized audio. Speech recognition

was performed with the SPHINX-II system, which generates

about 50% word accuracy for raw broadcast news. The low

accuracy of CSR is due in part to the quality of the news audio

(often there is background interference: music, noise, other

voices) and a significant number of out-of-vocabulary words.

 1

 2

 5

 10

 20

 40

 60

 80

 90

 .01 .02 .05 0.1 0.2 0.5 1 2 5 10 20 40 60 80 90

M
is

s
 P

ro
b
a
b
ili

ty
 (

in
 %

)

False Alarm Probability (in %)

Combined DET plots

random performance
dragon-truth
dragon-seg

Figure 7: DET curves for an early Dragon tracking run using true story boundaries compared to the same run using calculated

segment boundaries.

One event, the crash of TWA flight 800, was heavily repre-

sented in this small corpus, and was used for the preliminary

investigation. All the TWA-800 events were hand-labeled by

Informedia, and made available to the TDT research groups.

CMU tried both kNN and dtrees on close-captions and speech

data. Dragon (with less preparation time than CMU) also

tried their trackers, producing the following summary results,

as measured by F1 micro-average across ✠ ✡ values.

Classifier CC transcript CSR Output

D-tree 0.34 0.20

kNN 0.31 0.21

Dragon 0.29 0.08

These results indicate a drop in accuracy from perfect tran-

scripts to imperfect close captions, and a further drop in ac-

curacy to speech recognized audio. However, tracking still

works under conditions of 50% error rates. This is encourag-

ing as speech recognition accuracy on broadcast news will

only improve, and tracking technology will also improve.

Moreover, the latter may be tunable to different expected

noise levels in the input channel. These results are quite pre-

liminary, especially given the small data set and single-event

tracking.

4.9. Analysis and Conclusions

The tracking task is difficult to analyze because it is some-

what vaguely stated. There was no preference specified for

minimizing misses or false alarms, so it was difficult for any

of the sites to tune their systems appropriately. (The DET

curve shows a tradeoff for a particular tracking algorithm not

across algorithms.)

For this task, the events had an average of 54 stories that could

have been tracked, and an average of 8377 stories that should

not have been tracked. Achieving a miss rate of 50% and a

false alarm rate of less than 0.25% would mean 27 correctly

tracked, and less than 20 incorrectly tracked.

As reported in Table 5, each of these systems falls into ap-

proximately that range, but just barely. At a miss rate of

50%, the systems achieve about 0.15%, 0.20%, and 0.05%,

meaning that on average 12, 16, or 4 uninteresting stories are

tracked in order to get 27 interesting ones. To that extent,

then, these systems are successful.

However, for low-miss (high-recall) applications, these re-

sults are less impressive. At a miss rate of 20% (43 of 54

tracked), anywhere from 42 to 320 false alarms will arise (as-

suming at least 2 training examples).

These numbers are not out of line with typical IR ranked re-

trieval tasks, though the comparison is not necessarily obvi-

ous. 50% precision at 80% recall would be quite good for a

search system, and suggests that this problem or this corpus

is simpler than basic IR.

What works The tracking task works by creating some

form of model of the event being tracked. The above experi-

ments suggest the following:✏ If the event is modeled by a set of single terms (and

weights), the evidence indicates that 20-50 terms is

preferable. Smaller sets of terms provide higher preci-

sion, but do not cast a wide enough net to bring in much

relevant material. Very large sets appear to cast too wide

and undifferentiated a net, bringing in more relevant sto-

ries, but swamping it with unrelated material.✏
A better set of features (e.g., noun phrases) is even more

effective at producing high quality results. UMass be-

lieves that it is the higher quality features used in its

nonRF-comb20 run that gave it superior performance.✏ Combining multiple approaches to deciding that a story

should be tracked can be helpful. The evidence com-

bination applied by UMass substantially stabilized the

algorithm’s handling of very small numbers of training

stories.✏ One idea addresses the problem of small event models.

To smooth an event model consisting of one story, use

that story as a query into a training database, and use

the stories retrieved as smoothing material. Given that

Dragon’s performance improves rapidly with more train-

ing examples, this might dramatically improve the be-

havior of the system at small ✠ ✡ . In general, Dragon

believes that this task requires a smoothing algorithm

that aggressively preserves topic, something that is much

more suited to information retrieval techniques.

These results are consistent with IR searching results and are

not particularly surprising for that reason. However, it does

mean that methods that have helped IR are likely to help in

this task, too: for example, query expansion techniques based

on pseudo-relevance feedback may be a fruitful means of ad-

dressing the problem of tracking with a very small set of pos-

itive stories. For example, the following may be appropriate

areas to explore: (1) evidence combination beyond that ex-

plored briefly by UMass; unsupervised learning; interactive

tracking (supervised learning).

This study has shown that fairly simple techniques can

achieve very high quality results, but that substantial work

is needed to reduce the errors to manageable numbers. For-

tunately, that the TDT problem focuses on Broadcast News

and not on arbitrary forms of information, means that there is

hope that more carefully crafted approaches can improve the

tracking results substantially.

5. Conclusions

This section presents some broad conclusions that can be

drawn from the Topic Detection and Tracking pilot study. It

was not known at the start of the TDT pilot study whether

the state of the art could effectively and efficiently address

any of the TDT tasks. The conclusions below show that the

technologies applied solve large portions of the problem, but

leave substantial room—and hope—for improvement.

The success of existing approaches has two implications.

First, because quick efforts yielded good results, continued

and more concentrated work on these problems is likely to

yield even better results. Second, because the current ap-

proaches are adequate, it is possible to move forward and in-

vestigate the more complicated problems suggested by TDT:

handling of degraded text (from automatic speech recogni-

tion), differences between “topics” and “events,” building de-

scriptions of the events being tracked or detected, and so on.

General conclusions. The reporting pattern for a typical

event is a rapid onset followed by a gradual decline over pe-

riod ranging from 1 week to 4 weeks. Some events “re-ignite”

(such as Hall’s Helicopter, upon his release and homecom-

ing). A few atypical events are “sagas” with sporadic report-

ing over long periods (such as OJ’s DNA).

Segmentation conclusions. Segmentation is a tractable task

using known technologies (HMM, IR, machine learning).

This fact was not at all certain when the pilot study began.

Segmentation is possible by several methods, each of which

has strengths and weaknesses. This suggests (a) that future

work will yield improvements as different ideas are merged,

and (b) different kinds of segmentation problems can be ad-

dressed.

The tracking task shows negligible degradation when ap-

plied to segmented text rather than “correct” segmentation,

suggesting that automatic segmentation technologies may re-

quire little improvement for this task.

Detection conclusions. Pure retrospective detection can be

performed quite reliably for most events (except OJ, etc.) by

clustering methods, with significant differences attributable

to the clustering methods used. Permitting overlapping

clusters improves performance over strict partitions, though

presents some evaluation concerns.

Online detection cannot yet be performed reliably. Whereas

the onset of some events are detected well, others (e.g., differ-

ent airline disasters) are confused with earlier similar events

and thus frequently missed. Further basic research is needed,

not just tuning or incrementally improving existing methods.

Intermediate points of detection, such as on-line with a vari-

able deferral period offer interesting intermediate solutions

between retrospective and immediate detection. Ý
Tracking conclusions. Tracking is basically a simpler ver-

sion of the classic Information Retrieval (IR) “filtering” task,

but one should not therefore conclude that it is uninteresting

because it is already “solved”. Rather, the fact that it lies in

a slightly more restricted domain than IR deals with, means

that some more domain-specific techniques can be applied

(from IR, speech, and machine learning) to possibly give bet-

ter performance than one might expect from unrestricted ap-

proaches.

Tracking of typical events can be accomplished fairly reliably

if at least 4 instance documents are provided. Some events

can be tracked with fairly reliably with only 1 or 2 training

instances.

Different technologies for tracking (kNNs, decision trees,

probabilistic queries, language-model differentials, etc.)

show remarkably similar performance on aggregate, but sub-

stantial differences on specific events.

Degraded text conclusions. A preliminary study by CMU

and Dragon indicated that tracking with automated speech

recognition output may prove more difficult than with per-

fect transcriptions, especially with small numbers (under 4)

training instances. Results show a 50% or more drop in

effectiveness, ☎✚Þ suggesting that this area is ripe for further

research. Note that the TDT2 study will focus centrally on

CSR-generated text for segmentation, detection, and track-

ing.

References

1. D. Beeferman, A. Berger, and J. Lafferty, A model of lexical
attraction and repulsion, In Proceedings of the ACL, Madrid,
Spain, 1997.

2. A. Berger, S. Della Pietra, and V. Della Pietra, A maximum
entropy approach to natural language processing, Computa-
tional Linguistics, 22(1):39–71, 1996.

3. A. Bookstein and S.T. Klein, Detecting content-bearing words
by serial clustering, Proceedings of the Nineteenth Annual In-
ternational ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pp. 319–327, 1995.

4. S. Della Pietra, V. Della Pietra, and J. Lafferty, Inducing fea-
tures of random fields, IEEE Trans. on Pattern Analysis and
Machine Intelligence, 19(4):380–393, April 1997.

5. W.B. Croft and D.J. Harper, Using probabilistic models of doc-
ument retrieval without relevance information, Journal of Doc-
umentation, 37:285–295, 1979.

6. D.R. Cutting, D.R. Karger, J.O. Pedersen, and J.W. Tukey,
Scatter/Gather: a Cluster-based Approach to Browsing Large
Document Collections, In 15th Ann Int ACM SIGIR Confer-
ence on Research and Development in Information Retrieval
(SIGIR’92), 1992.ß

The TDT2 study will focus on this mode of detection.✝✍à
Effectiveness numbers should be viewed skeptically because of the very

small sample size of the test corpus.

7. M.A. Hearst, Multi-paragraph Segmentation of Expository
Text, in Proceedings of the ACL, 1994.

8. T. Feder and D. Greene, Optimal Algorithms for Approximate
Clustering. In Proceedings of the 20th Annual ACM Sympo-
sium on the Theory of Computing (STOC), pp. 434-444, 1988.

9. S. Katz, Estimation of probabilities from sparse data for the
language model component of a speech recognizer, IEEE
Transactions on Acoustics, Speech and Signal Processing,
ASSP-35(3):400–401, March, 1997.

10. H. Kozima, Text Segmentation Based on Similarity between
Words, in Proceedings of the ACL, 1993.

11. D.J. Litman and R.J. Passonneau, Combining Multiple Knowl-
edge Sources for Discourse Segmentation, in Proceedings of
the ACL, 1995.

12. J.M. Ponte and W.B. Croft, Text Segmentation by Topic, in
Proceedings of the First European Conference on Research
and Advanced Technology for Digitial Libraries, pp. 120–129,
1997.

13. G. Salton, Automatic Text Processing: The Transformation,
Analysis, and Retrieval of Information by Computer, Addison-
Wesley, 1989.

14. C.J. van Rijsbergen, Information Retrieval (2nd edition), But-
terworths, London, 1979.

15. E.M. Voorhees, Implementing agglomerative hierarchic clus-
tering algorithms for use in document retrieval, Information
Processing & Management, 22:6, 465-476, 1986.

16. J. Xu and W.B. Croft, Query Expansion Using Local and
Global Document Analysis, in Proceedings of the Nineteenth
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 4–11, 1996.

