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ABSTRACT
In this study, we investigate interaction-based neural matching
models for ad-hoc cross-lingual information retrieval (CLIR) us-
ing cross-lingual word embeddings (CLEs). With experiments con-
ducted on the CLEF collection over four language pairs, we evaluate
and provide insight into different neural model architectures, dif-
ferent ways to represent query-document interactions, word-pair
similarity distribution and the vocabulary mismatch problem in
CLIR. This study paves the way for learning an end-to-end CLIR
system using CLEs.
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1 INTRODUCTION
CLIR is the task of retrieving documents in target language Lt
with queries written in source language Ls . The increasing popu-
larity of projection-based weakly-supervised [4, 6, 16] and unsuper-
vised [1, 2] cross-lingual word embeddings has spurred unsuper-
vised frameworks [8] for CLIR, while in the realm of mono-lingual
IR, interaction-based neural matching models [5, 9, 11, 17] that
utilize semantics contained in word embeddings have been the
dominant force. This study fills the gap of utilizing CLEs in neural
IR models for CLIR.

Traditional CLIR approaches translate either document or query
using off-the-shelf SMT system such that query and document are in
the same language. Later on, a lot of literature [13–15] investigates
utilizing translation table to build probabilistic structured query [3]
in target language. Recently, Litschko et al. show that CLEs are good
translation resources by experimenting an CLIR method (dubbed
TbT-QT) that translates each query term in source language to
the nearest target language term in the CLE space [8]. CLEs are
obtained by aligning two separately trained embeddings for two
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languages in the same latent space, where a term in Ls is proximate
to its synonyms in Ls and its translations in Lt , and vice versa.
TbT-QT takes only the top-1 translation of a query term and uses
the query likelihood model [12] for retrieval. The overall retrieval
performance can be damaged by vocabulary mismatch magnified
with translation error. Using closeness measurement between query
and document terms in the shared CLE space as matching signal
for relevance can alleviate the problem, but this area has not been
extensively studied.

The reasons for the success of neural IR models for mono-lingual
retrieval can be grouped into two categories:

• Pattern learning: the construction of word-level query-
document interaction representations enables learning of
various matching patterns (e.g., proximity, paragraph match,
exact match, semantic match) via different neural network
architectures.

• Representation learning: models in which interactions
are built with differentiable operations (e.g., kernel pool-
ing [17]) allow customizing word embeddings via end-to-end
learning from large-scale training data.

Although representation learning is capable of further improving
overall retrieval performance [17], it was shown in the same study
that updating word embeddings requires large-scale training data
to work well (more than 100k search sessions in their case). In CLIR,
however, datasets are usually in the size of less than 200 queries
per available language pair and can only support training neural
models with smaller capacity. Therefore, we focus on the pattern
learning aspect of neural models.

In this study, we formulate the following research questions:
• RQ1: how is a neural model for CLIR different from mono-
lingual IR?

• RQ2: how do neural models compare with each other and
with unsupervised models for CLIR?

We answer these two main research questions with analysis (§ 2)
and experiments (§ 3) in the rest of the paper.

2 ANALYSIS
2.1 Unsupervised CLIR Methods with CLEs
Two unsupervised CLIR approaches using CLEs are proposed by
Litschko et al. [8]. BWE-Agg ranks documents with respect to a
query using the cosine similarity of query and document embed-
dings, obtained by aggregating the CLEs of their constituent terms.
The simpler version, namely BWE-Agg-Add, takes the average em-
beddings of all terms for queries and documents, while the more
advanced version BWE-Agg-IDF builds document embeddings by
weighting terms with their inverse document frequencies. TbT-QT,
as described in § 1, first translates each query term to its nearest
cross-lingual neighbor term and then adopts mono-lingual retrieval.
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These two approaches represent different perspectives towards
CLIR using CLEs. BWE-Agg builds query and document repre-
sentations out of CLEs but completely neglects exact matching
signals, which play important roles in IR. Also, although query
and document terms are weighted based on IDF, using only one
representation for a long document can fail the emphasize the truly
relevant section to the query. TbT-QT only uses CLEs as query trans-
lation resources and adopts exact matching in mono-lingual setting,
therefore its performance is heavily dependent on the translation
accuracy (precision@1) of CLEs. Analytically, an interaction-based
neural matching model that starts with word level query-document
interactions and considers both exact and similar matching can
make up for the shortcomings of the above two methods.

2.2 Neural IR Models
2.2.1 Background. For interaction-based matching models, we se-
lect three representativemodels (MatchPyramid [10, 11],DRMM [5]
and KNRM [17]) from the literature for analysis and experiments.

MatchPyramid: TheMatchPyramid [10, 11] (MP for short) is
one of the earliest models that start with capturing word-level
matching patterns for retrieval. It casts the ad-hoc retrieval task as
a series of image recognition problems, where the “image” is the
matching matrix of a query-document pair (q,d), and each “pixel”
is the interaction value of a query term qi and a document term
dj . Typical interaction functions are cosine similarity, dot product,
Gaussian kernel, and indicator function (for exact match). The
intuition behind hierarchical convolutions and pooling is to model
phrase, sentence and even paragraph level matching patterns.

DRMM: The DRMM [5] model uses a matching histogram to
capture the interactions of a query term with the whole document.
The valid interval of cosine similarity (i.e., [−1, 1]) is discretized
into a fixed number of bins such that a matching histogram is
essentially a fixed-length integer vector. Features from different
histograms are weighted based on attention calculated on query
terms. DRMM is not position-preserving, as the authors claim that
relevance matching is not position related.

K-NRM: The KNRM [17] model takes matrix representation
for query-document interaction (similar to MP), but “categorizes”
interactions into different levels of cosine similarities (similar to
DRMM), using Gaussian kernels with different mean value µ. The
distinct advantage of KNRM over DRMM is that the former allows
gradient to pass through Gaussian kernels, and therefore supports
end-to-end embeddings learning.

2.2.2 Mono-lingual to Cross-lingual. According to results reported
in respective studies [5, 11, 17], the relative performance of three
models for mono-lingual IR should be KNRM > DRMM >MP, even
when embedding learning is turned off with KNRM. Tweaking a
neural model for support of CLIR is trivial: instead of considering
interaction value as two terms’ similarity in a mono-lingual embed-
ded space, we consider the proximity of their representations in the
shared cross-lingual embedded space. However, there are several
matters to consider while making the transition:

Exact matching signals: The significant difference between
cross-lingual and mono-lingual IR is that the former (almost) never
encounters exact match of terms in different languages. However,

Table 1: Cosine similarities of the top-5 closest words to
“telephone” in an English embedding space (EN) and in an
aligned English-Spanish embedding space (ES).

EN phone telephones Telephone landline rotary-dial
0.818 0.761 0.720 0.694 0.669

ES telefónicos teléfono telefónica telefónia telefóno
0.535 0.522 0.522 0.520 0.520

neglecting such factors can be costly for models like MP, the disad-
vantage of which when compared to the other two models is the
inability to capture exact and similarity matching signals at the
same time. To this end, we first define in CLIR the exact matching
of two terms (in different languages) as their cosine similarity in
the CLE space exceeding a certain threshold value η. We then im-
plement a hybrid version, namely MP-Hybrid, that joins exact and
similar matching signals extracted from interaction matrices built
with indicator function and cosine similarity function such that
ranking features from dual channels are concatenated for an MLP
to predict a ranking score.

Word-pair similarity distribution: The cosine similarities of
two terms with close meanings but in different languages are dis-
tributed differently than those in the same language. Specifically,
top word-pair similarity distribution of CLEs tends to have smaller
mean and variance. In an example shown in Table 1, the cosine sim-
ilarity of the five closest words to “telephone” in English embedded
space1 ranges from 0.818 to 0.669, while in aligned English-Spanish
embedded space2, it ranges from 0.535 to 0.520. The similarity dis-
tribution affects histogram construction of DRMM and similarly
for the kernel pooling of KNRM. The distribution also affects the
exact matching threshold value η for related variants of MP. Since
the cosine similarity of a query term and its perfectly correct trans-
lation can be less than 0.6, setting η too high can lead to failure of
capturing positive matching signals.

Vocabulary mismatch and translation error: Query transla-
tion based CLIR methods (e.g., TbT-QT [8]) first translate queries
from Ls to Lt , then does mono-lingual retrieval in Lt . Apart from
the inherent vocabulary mismatch problem within Lt , the trans-
lation error from Ls to Lt has to be also counted. Looking at the
example in Table 1, TbT-QT would look for occurrence of “telefóni-
cos” in the collection, and documents containing only the correct
translation (“teléfono”) would be overlooked. Interaction-based neu-
ral matching models alleviate this issue by giving partial credits
to sub-optimal nearest neighbors, which in many cases are the
correct translations. To demonstrate the necessity of directly using
cross-lingual word embedding similarity as interaction for neural
models, we conduct comparative experiments where queries are
first translated term-by-term like TbT-QT using CLEs, then used
for retrieval in mono-lingual setting. Such models are referred to
as {MP,DRMM,K-NRM}-TbT-QT, respectively.

3 EXPERIMENTS
Datasets: We evaluate the models on the CLEF test suite for the

CLEF 2000-2003 campaigns. We select four language pairs: Eng-
lish (EN) queries to {Dutch (NL), Italian (IT), Finnish (FI), Spanish
(ES)} documents. All documents for the four languages are used

1https://dl.fbaipublicfiles.com/fasttext/vectors-english/wiki-news-300d-1M.vec.zip
2https://dl.fbaipublicfiles.com/fasttext/vectors-aligned/wiki.es.align.vec
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Table 2: Basic statistics of CLEF data for evaluation: number
of queries (#queries), number of documents (#docs), average
number of relevant documents per query (#rel), and average
number of labeled documents per query (#label).

Lang. Pair EN→ NL EN→ IT EN→ FI EN→ ES

#queries 160 160 90 160
#docs 42,734 40,320 16,351 46,540
#rel 29.1 19.5 10.9 49.5
#label 375.4 338.3 282.6 372.7

for evaluation, and are truncated to preserve the first 500 tokens
for computational efficiency [10]. The statistics of the evaluation
datasets are shown in Table 2. The titles of CLEF topics are used as
English queries. All queries and documents are lower-cased, with
stopwords, punctuation marks and one-character token removed.

Cross-lingual word embeddings: We adopt the pre-aligned
fastText CLEs3. Mono-lingual fastText embeddings are trained on
Wikipedia corpus in respective languages, and aligned using weak
supervision from a small bilingual lexicon with the RCSLS loss as
the optimization objective [6].

Model specifications: We implemented two CLEs based unsu-
pervised CLIR algorithms BWE-Agg and TbT-QT as baselines [8].
In addition to the query likelihood model in the original study, we
pair TbT-QT with BM25 to investigate the influence of retrieval
models to queries translated using CLEs.

We experiment with five variants of the MP model, two for the
DRMM model and two for the KNRM model. As the interaction
value of query term qi and document term dj , {MP,DRMM,KNRM}-
Cosine uses the cosine similarity cos (qi ,dj ) = ®qi

⊺ ®dj/(| | ®qi | | · | | ®dj | |),
MP-Gaussian uses e−| | ®qi− ®dj | |2 , andMP-Exact takes1{cos (qi ,dj )≥η } ,
where η is a pre-defined threshold value (set to .3 for Table 3). MP-
Hybrid concatenates the flattened features after dynamic pooling
layer fromMP-Cosine andMP-Exact into one vector, and uses an
MLP to predict a final score. {MP,DRMM,KNRM}-TbT-QT is equal to
first translating query q to target language query tr(q), and running
tr(q) with {MP,DRMM,KNRM}-Cosine model.

For the MP model, we adopt one layer convolution with kernel
size set to 3× 3, dynamic pooling size set to 5× 1, and kernel count
set to 64. For the DRMM model, we adopt the log-count-based
histogram (applying logarithm over the count value in each bin)
with bin size set to 30. For the KNRMmodel, kernel count is set to 20
and sigma (standard deviation) of each Gaussian kernel is set to 0.1.
All decisions made above are based on extensive hyper-parameter
tuning that first prioritizes generalizable retrieval performance then
computational efficiency and model simplicity.

Model training: All neuralmodels in the experiments are trained
with the pairwise hinge loss. Given a triple (q,d+,d−), where doc-
ument d+ is relevant and document d− is irrelevant with respect
to query q, the loss function is defined as:

L(q,d+,d−;Θ) = max{0, 1 − s(q,d+) + s(q,d−)}

where s(q,d) denotes the predicted matching score for (q,d),
and Θ represents the learnable parameters in the neural network.
Note that we randomly select documents that are explicitly labeled

3https://fasttext.cc/docs/en/aligned-vectors.html

Table 3: MAP performance of all CLIR methods. Boldfaced
is the best performer in each language pair. Underlined is
the best MP variant.

Lang. Pair EN→ NL EN→ IT EN→ FI EN→ ES
BWE-Agg-Add .237 .173 .170 .297
BWE-Agg-IDF .246 .178 .180 .298

TbT-QT-BM25 .240 .231 .122 .341
TbT-QT-QL .297 .268 .126 .387

MP-Cosine .348 .331 .254 .423
MP-Gaussian .322 .319 .203 .405
MP-Exact .327 .295 .202 .415
MP-Hybrid .343 .326 .243 .427
MP-TbT-QT .327 .300 .195 .409

DRMM-Cosine .374 .352 .304 .462
DRMM-TbT-QT .345 .324 .193 .450

KNRM-Cosine .368 .313 .286 .423
KNRM-TbT-QT .329 .288 .200 .405

irrelevant (-1) as negative samples for training. Five negative (q,d)
pair are sampled for each positive pair. We apply stochastic gradient
descent method Adam [7] (learning rate=1e-3) in mini-batches (64
in size) for optimization. Maximum number of training epochs
allowed is 50.

Metric: As the CLEF dataset uses binary relevance judgement,
we adopt mean average precision (MAP) as the evaluation metric.

Cross-validation for neural models: In order to conduct eval-
uation on more queries such that drawn conclusions are statistically
more significant, we adopt 5-fold cross-validation with validation
and test set. For each language pair, the collection is split into 5 sets
based on queries. In each run, one set is selected as test set, one
as validation set, and the other three as training set. The recorded
performance on test set is generated by model when MAP on vali-
dation set is the highest. By rotating the sets after each run, five
runs generate evaluation results on all queries in the dataset.

4 DISCUSSION AND CONCLUSION
4.1 Parsing Results
The experimental results of CLIR on four language pairs are re-
ported in Table 3. TbT-QT generally works better than BWE-Agg
except for EN→FI. This might indicate that the English-Finnish
CLEs are not aligned well to provide quality top-1 query term trans-
lation. The larger gaps between {MP,DRMM,K-NRM}-Cosine and
{MP,DRMM,K-NRM}-TbT-QT for EN-FI than the other three lan-
guage pairs reinforce this argument. All neural models achieve sta-
tistically significant improvement over heuristic baselines. DRMM-
Cosine consistently achieves the best performance for all language
pairs. Although DRMM and KNRM are conceptually similar, the
former performs significantly better, withKNRM’s embedding layer
kept frozen. The attention mechanism applied to query terms for
DRMM can be a factor. On EN→{IT,ES}, theMP model performs
on par with or better than KNRM. This finding indicates that the
convolution plus dynamic pooling architecture can also be an op-
tion for learning an end-to-end CLIR model. Comparing different
approaches to build query-document interaction matrices forMP,
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Figure 1: (a,b) – Red: percentage of cross-lingual word pair
with similarity ≥ η; Blue: MP-Exact retrieval performance
with different similarity threshold valueη. (c): Similarity dis-
tribution of word-pairs in the EN→NL collection.
it is clear that cosine similarity of source language query term and
target language document term in the CLE space is the best choice,
which contradicts the conclusions in the study of mono-lingual
IR [10] where Gaussian kernel and indicator function are found to
work better. The exact matching variant MP-Exact we proposed
works reasonably well, indicating that most decisions of relevance
are influenced by top similarity matching signals. The hybrid vari-
antMP-Hybrid we propose improves uponMP-Exact but doe not
outperformMP-Cosine (except for EN→ES). This is expected be-
cause matching signals from MP-Exact are not from truly exact
matches of terms, but are derived from cosine similarity matrices
as in MP-Cosine. Combination of two models results in redundant
information. The fact that {MP,DRMM,K-NRM}-TbT-QT outper-
form baseline approaches but are not as good as respective cosine
variants demonstrates (1) the effectiveness of pattern learning of
neural models; and (2) the necessity to directly build cross-lingual
interactions of query and document in two languages, rather than
building interactions after translation.

4.2 Word-pair Similarity Distribution with CLE
The distribution of word pair similarities influences exact matching
threshold η inMP-Exact, query translation strategy in TbT-QT, and
embedding fine-tuning for an end-to-end model. We take source
language terms in the queries and target language terms in the doc-
uments, calculate their pairwise cosine similarities in the aligned
CLE space, and plot the similarity distributions. In Figure 1a and 1b,
we show in red the percentage of cross-lingual word-pairs with sim-
ilarity above η. Three distributions in Figure 1a are very similar at
tail (η ≥ 0.2), therefore the correspondingMP-Exact’s performance
peaks at the same η = 0.3. EN→FI is distributed differently but the

pattern shown is similar (Figure 1b). The shapes of cross-lingual
similarity distribution for all four language pairs are very similar,
therefore we only plot EN→NL in Figure 1c for demonstration.
Mono-lingual similarity distribution in Xiong et al.’s study [17]
has large variance, positive mean, strong positive skewness and
high density at large η. In comparison, the cross-lingual similarity
distribution (Figure 1c) has small variance, negative mean, no ob-
vious skewness to the left or right, and the density drops low and
flat after η = 0.4, where word-pairs are considered highly similar
(i.e., quality translations). This provides insights into why top-1
translation with CLEs is not necessarily significantly better than
translations ranked at slightly lower positions.

4.3 Conclusions
Answer to RQ1: To adapt a neural model for CLIR, we first have

to consider three factors: exact matching representations, cross-
lingual word-pair similarity distribution, and translation error using
CLEs. In specific model settings, choices of interaction representa-
tions and hyper-parameters (e.g., dynamic pooling size at document
side for MP) are found to be different from mono-lingual IR.

Answer to RQ2: Neural matching models experimented in this
study all outperform baselines using CLEs. The DRMM achieves
the best results across the board, while MP and KNRM perform
inconsistently on different language pairs.

Moving forward, a worthwhile endeavor will be to investigate
an end-to-end neural model that learns from large-scale CLIR data.
How to keep two embedded spaces aligned during embedding up-
dates will be an interesting question.
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