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ABSTRACT
We study the impact of translation resource scarcity on the per-

formance of cross-language information retrieval (CLIR) systems.

To do that, we develop a contrastive analysis framework that uses

high-resource languages to simulate low-resource languages. In

the framework, we focus on parallel translation corpora and aim

to better understand the factors that impact CLIR performance.

We argue that both low- and high-resource corpora are needed to

develop that understanding. Hence, we take the approach of start-

ing with a true low-resource language and systematically down-

sampling a high-resource language to become an artificial low-

resource language—the reverse perspective of existing research.

We formalize the problem as the Resource Scarcity Simulation (RSS)
problem. We model the problem with a family of set covering prob-

lems, formulate with integer linear programming, and prove that

the problem is actuallyNP-hard. To this end, we provide two greedy
algorithms with polynomial complexities. We compare and analyze

our approach with alternate techniques using four high-resource

languages (French, Italian, German, and Finnish) down-sampled

to simulate two low-resource languages (Somali and Swahili). Our

experimental results suggest that language families are important

for the RSS problem. We simulate Somali with German, and Swahili

with Finnish, achieving 98% and 97% on the similarity percentage

in terms of CLIR performance, respectively.
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1 INTRODUCTION
Most modern statistical approaches to cross-language information

retrieval (CLIR) depend upon some form of translation table that
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provides a mapping from the vocabulary of the query language to

that of the documents’ language. Such a translation resource might

be a lookup table [20] with probabilities associated with each tar-

get language word, a cross-language distributional representation

(word embedding) where distance in the vector space corresponds

to likelihood of translation [23, 28], or other comparable approaches

[18, 24]. Each of those approaches is built from some collection of

data resources, most commonly a set of parallel (or comparable

[28]) texts that is used to build statistically reliable cross-language

mappings of the desired type [16, 19, 25]. However, it is not always

true that the more parallel text that is brought to bear, the more

accurate the derived probabilities or distances are [1, 26, 30].

One issue that arises with striking regularity is what to do when

the amount of parallel text (or the quantity of other translation

resources) is substantially smaller than ideal. One of the collections

we will discuss below has roughly two million pairs of parallel

sentences, contrasting with “low resource” languages where we can

have 4-16% of that. The result is a dramatic drop in the statistical

reliability of the translation process and, not surprisingly, a con-

comitant drop in the effectiveness of downstream processes such

as extraction, summarization, or (the focus of this study) retrieval.

There are some studies showing the trade-off between various fea-

tures of translation resources, in terms of quantity and quality, and

effectiveness in the studied task [1, 10, 15, 26, 30].

We are interested, though, in a deeper understanding of why
effectiveness drops. What is qualitatively different between the

translations that result from high-resource language pairs com-

pared to low-resource pairs? Is it vocabulary coverage in the query

language or the documents’ language? Is it the accuracy of the

estimated translation probabilities? Is it consistent across different

languages or does it depend on the languages being crossed? With

a better understanding of that issue, we believe it should be possi-

ble to target resource acquisition efficiently. Given a low-resource

language pair, should a researcher or system builder look for in-

formation comparable to what is on hand to improve translation

probabilities? Or should it sacrifice those probabilities to provide

greater coverage of the vocabulary of the target corpus or, perhaps,

the vocabulary of the likely queries if those can be guessed?

To understand the impact of additional resources on CLIR quality

(for example), we need corpora that are both low- and high-resource.

To isolate language-specific impact, we could use massive numbers

of language pairs with various amounts of data and CLIR relevance

judgments, but the cost in terms of time and money is prohibitive.

Instead, we take the approach of starting with a true low-resource

language and systematically down-sample a high-resource lan-

guage to become an artificial low-resource language—in a way that

https://doi.org/10.1145/3341981.3344236
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allows us to monitor statistics of interest and compare them to the

statistics of true low-resource languages. Our long-term goal is to

use this approach to construct language pair corpora with under-

standable properties so that we can understand the impact on CLIR

effectiveness of vocabulary size, vocabulary coverage, translation

probabilities, morphological processing, and other items.

The goal of this study is to develop a method for simulating a

low-resource language pair using a high-resource pair. We call this

process Resource Scarcity Simulation (RSS). We know of no prior

work that has explored this RSS problem. Indeed, most existing

research exploits random down-sampling, an approach that is likely

to preserve some statistical properties of the data but provides no

insight into what is changing as resources are made scarcer, nor

what other than size is comparable between the down-sampled

data and a genuinely low-resource language pair. Our methods are

extendable to a range of factors for optimizing the down-sampling,

though we focus on vocabulary coverage and vocabulary distribu-

tion [7, 21, 26], i.e. “frequency profiling”.

The rest of this paper is organized as follows. In Section 2 we pro-

vide a review of related works done previously. Section 3 provides a

formal statement of the problem we address. Section 4 provides our

modeling of the problem with a family of set covering problems and

our proposed two greedy algorithms. Section 5 and 6 provides our

experimental design and a discussion on the results. We conclude

our study in Section 8 with directions on possible future works.

2 RELATEDWORK
There is existing work exploring CLIR performance reliability from

the perspective of available translation resources. Franz et al. [8]

studied different features of translation resources possibly impact-

ing the CLIR performance including size, domain, dialect, quality,

and style. They provided evidence that the query terms’ out of

vocabulary rate (OOV rate) is a simple estimator of the retrieval

performance and the corpus size is not always the most impacting

factor [8]. Zhu and Wang [32] studied a rule-based machine trans-

lation system by decreasing the dictionary and rule base, and found

that removing dictionary has a greater impact on CLIR performance.

McNamee and Mayfield [17] argued that the quality of the trans-

lation resource is the most important factor, and explore various

query expansion techniques with the OOV rate increased synthet-

ically, simulating variability in the coverage of resources. Some

earlier work evaluated different resources pair-wise to contrast

the difference in the resource quality for the retrieval performance

[9, 13, 29].

Through empirical investigations, Xu and Weischedel [30, 31]

studied the impact of lexical resources on CLIR performance. In

particular, they suggested a metric based on the frequency of a

word in the retrieval corpus and used it for sentence selection such

that with some portion of the data reasonable performance can

be achieved – when compared to the original translation resource

based CLIR performance. Their experimental results provided evi-

dence for the importance of frequency distribution of terms in the

retrieval corpus from the perspective of the impacting features of

translation resource on the CLIR performance [30].

Talvensaari [26] studied the three major impacting factors of

parallel corpora, including topical nearness, alignment quality, and

size through empirical investigations. He highlighted the impact

of topical nearness as the most crucial factor, and suggested that

even adding noisy complementary resources to decrease the topical

differences can help CLIR performance.

Some recent work on cross-lingual distributed representation

construction, with different applications than CLIR, also investi-

gated the resilience of the embedding construction methods with

resource scarcity scenarios [1, 10, 15]. For example, Adams et al.

[1] exploited a special down-sampling in which only the target

language is scaled down and studied the impact with the aim to

extend the results for a threatened language.

Most of the existing work takes a high-resource language and

simulates resource scarcity by randomly down-sampling. However,

no real-world resource scarcity scenario is provided in the existing

investigations. Our study differs from the existing work in the fol-

lowing way: We investigate obstacles with low-resource languages’

CLIR performance using high-resource languages in a contrastive

comparison. Basically, we start with a low-resource language and

aim to understand the limitations using different high-resource

languages. This perspective requires that the resource scarcity situ-

ation be simulated by a high-resource language. Afterwards, using

different data augmentation techniques, the resource scarcity sce-

nario can be studied further. We focus on the first step and leave

the latter as future work.

3 PROBLEM STATEMENT
The problem that we address is the simulation of a limited paral-

lel corpus (PCL) of a low-resource language using a much richer

parallel corpus (PCH ) of a high-resource language. Our target ap-

plication is the CLIR ad-hoc document ranking problem. However,

our simulation problemmay also be applicable to other applications

in machine translation.

We define the Resource Scarcity Simulation (RSS) problem that

takes as inputs two sets of parallel corpora, PCH and PCL, and
produces a new parallel corpus PCHd that is a “down-sampled”

version of PCH that is “statistically similar” to PCL.
Figure 1 depicts our proposed solution to RSS. Let the low-

resource source language of the parallel corpus PCL be L and the

target language be E, e.g., PCL is a corpus of parallel sentences in

the Somali language (L) and English (E). In particular, PCL contain

m parallel sentences {(sL
1
, sE
1
), (sL

2
, sE
2
), · · · , (sLm , s

E
m )}. Likewise, let

the high-resource source language of the parallel corpus PCH be

H and the target language be E, e.g., PCH is a corpus of parallel

sentences in French (H ) and English (E). PCH contains n parallel

sentences {(sH
1
, sE
1
), (sH

2
, sE
2
), · · · , (sHn , s

E
n )}, where n ≫m.

Note that we assume that both PCL and PCH share the target

language E. In the bilingual CLIR scenario where the retrieval col-

lection (RC) is a monolingual collection, and we have queries in

several languages, this assumption is naturally satisfied. For exam-

ple, suppose we have an English news collection as RCE
and we

aim to build a system that can query RCE
with both H and L query

languages.

Let voc(.) and fdist(.) refer to the vocabulary set and the fre-

quency distribution for a given corpus, respectively. Note that no

assumption about PCHE
and PCLE can be made, other than be-

ing in the same language. Although ideally a parallel corpus for a
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Figure 1: The overall schema of the RSS problem.

high-resource language should cover all the vocabulary in the low-

resource side, i.e. voc(PCLE ) ⊂ voc(PCHE ), in a realistic scenario

we cannot make this assumption. We do assume those vocabulary

sets overlap, i.e. voc(PCLE ) ∩ voc(PCHE ) , ∅.
The output of the RSS problem is a new parallel corpus PCHd that

we construct by selectingm′ sentence pairs out ofn existing in PCH ,

i.e., PCHd ⊂ PCH andm′ ≪ n. We aim to do this down-sampling

such that PCHE
d ≈ PCLE , where PCHE

d and PCLE denote the sen-

tences in the target language E in PCHd and PCL respectively. More

precisely, when we say that one set of sentences approximates (≈)

another, we mean that terms and their frequencies match closely,

i.e., voc(PCHE
d ) ≈ voc(PCLE ) and fdist(PCHE

d ) ≈ fdist(PCLE ). It
has been shown that such frequency profiling is effective for com-

paring corpora [21, 26]. By making PCHE
d ≈ PCLE , we hypothesize

that the respective sets in the source languages in H and L are

also approximately similar, i.e. PCHH
d ≈ PCLL . Note that while

constructing PCHd , we ensure that the sentences that we pick are

distinct.

Finally, we assume that the information need is exactly same

across high- and low-resource languages, i.e. QL ≡ QH
. Let the

query, qL ∈ QL
, be in the source language L, with constituent terms

{qL
1
, · · · ,qL

|qL |
}, and the document,DE ∈ RCE

, in target language E,

with constituent terms {dE
1
, · · · ,dE

|DE |
}. Similar notation is defined

for QH
. As with the standard bilingual CLIR setting, the aim is

to calculate score(qL ,DE ). We use statistical machine translation

to construct a Translation Table (TT) for the query translation,

which is built using PCL or PCH . The process of constructing TT

using parallel corpora, translating search query, and the document

retrieval is shown as function tq(. , .) in Figure 1.

4 MODELING RSS AS A COVERING PROBLEM
Our main insight to solving RSS is that it belongs to a family of

covering problems that is well-studied in the literature [27]. While

RSS itself has no prior work, a special case of RSS is the multi-set

multi-cover problem that is known to be NP-complete [27]. This

implies that RSS is NP-Hard and hence infeasible to solve exactly

(assuming that P , NP ). However, the observation that RSS is a

covering problem also suggests that a greedy algorithm similar

to those known for other covering problems is likely to work for

RSS. Thus, the greedy algorithms presented for RSS in this section

are inspired by similar algorithms known for set cover, multi-set

multi-cover, and other covering problems [27].

4.1 Formulation as an Integer Linear Program
We now formulate RSS as an integer linear program (ILP) that can

be viewed as a generalization of the standard ILP for the multi-set

multi-cover problem. LetU = voc(PCHE ) and V = voc(PCLE ) rep-
resent the unique terms in each corpus. As we mentioned earlier,

RSS aims to down-sample PCHE
such that its frequency profiling

becomes similar to PCLE . Each sentence s ∈ PCHE
covers some of

the terms inU . However, by down-sampling, RSS should select sen-

tences covering V . To this end, we intend to cover the intersecting

terms inU ∩V , and avoid terms inU −V .

For each sentence s ∈ PCHE
, we define a boolean variable xs ∈

{0, 1} that indicates whether or not s is chosen to be part of PCHE
d .

Let c(s) be the cost of including the sentence in PCHE
d . The objective

of RSS is to minimize the total cost of all the sentences included in

the down-sampled version as expressed below:

min

∑
s ∈PCH E

c(s)xs (1)

Note that the cost c(s) can be flexibly defined in a manner that

suits our application. For each term tk ∈ U , we define a coverage
requirement fk that is minimum number of times the term must

appear in PCHE
d . For any term tk ∈ U ∩ V that appears in both

vocabularies, our desire would be to ensure that fk equals the

frequency fdist(PCLE , tk )with which tk appears in PCLE . However,
to avoid situations in which the frequency of a term tk in PCLE

is higher than PCHE
and that would make our ILP infeasible, we

formulate the desired frequency as below.

fk = min(fdist(PCHE , tk ), fdist(PCL
E , tk ))

Let bs,k denote the number of times term tk ∈ U appears in sen-

tence s ∈ PCHE
. We enforce the coverage requirement by adding

the following constraint.∑
s ∈S

bs,kxs ≥ fk ,∀tk ∈ U ∩V (2)

We would like to avoid picking sentences that use terms tk ∈ U −V .

We capture this term avoidance requirement by adding the following

constraint. ∑
s ∈S

bs,kxs = 0,∀tk ∈ U −V . (3)

Finally, we postulate the integrality of xs as follows.

xs ∈ {0, 1},∀s ∈ PCHE
(4)

The RSS problem is modeled as an ILP with objective function in

Eq. 1 with constraints described in Eq. 2, Eq. 3, and Eq. 4.

Theorem 1. The RSS problem is NP-hard.

Proof. We show that the multi-set multi-cover problem that is

known to be NP-hard [27] is a special case of the RSS problem. In

the multi-set multi-cover problem, we are given an universeU of

elements and collection of multi-sets S = {s1, s2, · · · }, where each
multi-set si contains elements from U , possibly with repetitions.

Each multi-set si also has a cost c(si ). The goal is to find a minimum

cost sub-collection S ′ ⊆ S such that frequency of an element e in



the sub-collection S ′ is at least a required value re , for all e ∈ U .

Note that the multi-set multi-cover problem is itself a generalization

of the classic set cover problem which does not have the frequency

requirement, but is also NP-Hard.

It is now easy to see that the multi-cover multi-set problem can

be reduced to RSS by simply setting each element ofU in the former

problem to be a term in the voc(PCHE ) in the latter problem. Further

each multi-set si of the former problem is a sentence s ∈ PCHE

in the latter problem. The frequency requirement re of the former

problem become the coverage requirement fe in the RSS problem.

Further, we make the voc(PCHE ) equal to voc(PCLE ), resulting in
no term avoidance requirements. From this reduction, it is clear that

any polynomial time solution to RSS will also result in a polynomial

time solution for the multi-cover multi-set problem, and that is not

possible unless P = NP . □

4.2 Greedy Algorithm
The traditional approach for designing provably good greedy algo-

rithms for covering problems is to define a function that assigns a

“price” for covering each element (term in our case). The algorithm

then repeatedly picks the most cost-efficient sets (sentences in our

case) that have the least price in a greedy fashion. The RSS problem

differs from other known covering problems in that it incorporates

a term avoidance requirement (Eq 3). However, we use an approach

that is inspired by known provably-good greedy algorithms for

other covering problems, although we define cost-effectiveness and

price in a manner that is specific to RSS.

Algorithm 1 presents the standard greedy algorithm that repeat-

edly picks sentences in the decreasing order of the current price,

where cost effectiveness can be defined by an arbitrary price function.
We define two price functions that determine the cost-effectiveness

of a sentence s ∈ PCHE
. In each iteration, the algorithm selects,

from amongst the currently remaining sentences, the lowest price

sentence. The get_price() function, line 5 of Algorithm 1, calculates

the price based on our two definitions. The stopping criteria, line 2

of Algorithm 1, is determined by satisfy() function.We described the

ideal problem constraints with the ILP formulation. However, for

providing comparable numbers and simplicity in our evaluations,

we selectm sentences from PCH , i.e.m′ =m.

The price p(s) of a sentence s is defined to be ratio of its cost c(s)
and its effectiveness e(s)1. We define two different price functions

by defining the effectiveness function e(s) in two different ways.

However, for both price functions, we use the same cost function

defined below. For each sentence s ∈ PCHE
, we define a cost

function, c(s), based on the number of terms covering {U −V }.

c(s) = |voc(s) ∩ (U −V )| + α (5)

α is a slack variable to control the cost of selecting a sentence. It also

prohibits the cost to become zero. We use α = 1 in our experiments

as the cost of selecting a new sentence which we desire to keep it

minimum. The effectiveness function, e(.), is defined based on the

selected sentences at the moment, C . Basically it aims to measure

the novelty a new sentence brings to the terms covered by the

selected sentences. We describe the two variants below.

1
To avoid dividing by zero, we actually define price to be p(s) = c (s )

e (s )+β , where

β = 0.05.

Algorithm 1 Greedy Solution for the RSS Problem

Input: PCH : High-resource PC, PCL: Low-resource PC
Output: C: selected sentences from PCH
1: C ← ∅
2: while satisfy(C, PCH , PCL) do
3: cur_price← ∅
4: for s ∈ PCHE −C do
5: cur_price← cur_price ∪ get_price (s,C, PCH , PCL)
6: end for
7: C ← C ∪min(cur_price)
8: end while

1) Greedy Simulation (GreeSim). For distinguishing different
scenarios in each iteration of the algorithm,we define three different

scenarios. A term is not covered at all, the term is under-covered,

and lastly the term is over-covered. The following formulation of

the effectiveness deals with each scenario accordingly.

e(t , s) =


fdist(s, t), if t < C

fdist(s, t) × ft−fdist(C,t )
ft

, if t ∈ C, and fdist(C, t) < ft

0, if t ∈ C, and fdist(C, t) ≥ ft
(6)

A summation over the sentence terms, voc(s), in which t ∈ {U ∩
V } result in e(s) for the GreeSim variation of the algorithm.

2) Relaxed Greedy Simulation (ReGreeSim). With the re-

laxed constraints, we only consider the coverage or not coverage in

the currently selected sentences for the term in a given sentence.

e(s) = |(voc(s) ∩ (U ∩V )) − voc(C)| (7)

In particular, in this variant we relax the coverage requirement

(Eq. 2) such that we only aim to cover each term tk with a positive

frequency fk at least once, rather than at least fk times.

Complexity Analysis. Let the price calculation for a given sen-

tence, get_price() function, take constant time, O(c). On each step,

we select a sentence from the remaining sentences of PCH and

we repeat the operation untilm′ sentences are selected: we have
n + (n − 1) + (n − 2) + · · · + (n −m′) operations for the greedy

solution. Therefore, the complexity of the Algorithm 1 is O(nm′).
Although we mentioned thatm′ ≪ n, in the worst case scenario

the complexity would be O(n2).

5 EXPERIMENTAL SETUP
In this section, we explain our CLIR system details, the data used,

and the evaluationmetrics of our experiments. For the high-resource

languages, H , we use French, Italian, German, and Finnish as the

query language
2
. For the low-resource languages, L, we use Somali

and Swahili
3
. We simulate each low-resource language using any

of the high-resource languages.

2
English and German are in the Germanic language family, Italian and French are in

the Romance language family, and Finnish is in the Uralic language family.

3
Somali is in the Afro-Asiatic language family, and Swahili is in the Niger-Congo

language family. Both are mostly spoken in Africa.



5.1 Retrieval System
Let the query, q, be in source language F , and the document, d , in
target language E. We translate the query term-by-term into lan-

guage E. We use GIZA++ [20] as the statistical machine translation

toolkit. It provides a translation table with the probability of trans-

lation trained on parallel corpora. For a given query term we obtain

a sorted list of T translations with the corresponding score. For-

mally, for the ith query term, qFi =< · · · , (q
E
(i, j), t(q

E
(i, j) |q

F
i )), · · · >,

where (1 ≤ j ≤ T ) and t(.|.) is the translation probability from F
to E. For out-of-vocabulary (OOV) terms in queries, we set qFi =<

(qF
(i), 1.0) > to fall back on exact matching without translation.

From this point, anymonolingual rankingmethod (e.g., probabilistic

or languagemodeling) can be applied [19] to calculate score(qF ,dE ).
We use Galago’s implementation

4
of Okapi BM25 [22] with default

parameters (b = 0.75, K = 1.2, and w = 1.0). For incorporating

translation terms with the corresponding scores we exploit the

Galago query language
5
– specifically, the weighted #combine op-

erator is used. We use T = 5 in our experiments, chosen based

on some preliminary experiments showing with that number of

translation terms the best retrieval performance is achieved across

all the languages.

5.2 Data
5.2.1 Text Pre-processing. In order to have consistent pieces

of text across different resources for translation model training,

queries, and test collection, we apply the following pre-processing

steps. Characters are normalized by mapping diacritic characters

to the corresponding unmarked characters and lower-casing. We

remove non-alphabetic, non-printable, and punctuation characters

from each word. The NLTK library [2] is used for tokenization and

stop-word removal. No stemming is performed.

5.2.2 Query Set and Text Collection. We performed experiments

on the Cross-Language Evaluation Forum (CLEF) 2000-2003 cam-

paign [3–6] for bilingual ad-hoc retrieval tracks
6
. We aggregate all

four years’ track topics and query relevance judgments in order to

have a higher number of queries, similar to Kraaij et al.’s experimen-

tal design [14]. The text collection for all our query languages is the

Los Angeles Times (LAT94) comprising over 113k news articles.
7

We only use the text field of the LAT94 corpus for indexing. We

apply the same text pre-processing operations on the query set and

collection text. Queries are selected from C001 −C200 topic set for
each language. For the low-resource language queries, we hired

a translation organization to translate C001 −C200 topic set into
Somali and Swahili. We share these queries with the community

8
.

Queries without any relevant document are excluded, resulting in

151 queries for each language. We use only the title field of the

queries in our experiments.

4
https://www.lemurproject.org/galago.php

5
https://sourceforge.net/p/lemur/wiki/Galago%20Query%20Language/

6
http://catalog.elra.info/en-us/repository/browse/ELRA-E0008/

7
In the 2003 track an additional text collection was added to the evaluations, the

Glasgow Herald corpus. For consistency in the evaluations, we filter out this collection

with its relevance judgments.

8
https://ciir.cs.umass.edu/download

Table 1: Statistics of the resources used for training of trans-
lation models, before down-sampling. The source language
is either H or L, and the target language is English, E.

Source Lang. #Instances Source Voc. English Voc.

French 1,995,528 141,338 105,182

Italian 2,267,872 275,527 201,403

German 2,547,952 577,192 263,593

Finnish 2,333,189 794,665 170,209

Swahili 306,367 126,139 65,099

Somali 98,591 131,145 42,270

5.3 Parallel Corpora (PC)
For the high-resource languages, in order to have comparable re-

sources, in terms of size and domain of the high-resource par-

allel corpora, we use the Europarl sentence-aligned corpus [12].

It is extracted from the proceedings of the European Parliament,

sentence-aligned with statistical methods, and includes 21 Euro-

pean languages. For the low-resource languages, we use a mixture

of resources provided by OpenCLIR
9
program of the MATERIAL

project and DARPA’s LORELEI
10

project. In addition to the men-

tioned parallel corpora, for each of the languages pairs, we exploit

the Panlex lexicon [11]—covering more than 5,700 languages. Its

data acquisition strategy emphasizes high-quality lexical and broad

language coverage
11
. A concatenation of Panlex with the former re-

sources are used in our experiments. A summary of the translation

resources used in our experiments for each language pair along

with their vocabulary size is given in Table 1. Our low-resource

languages are in the range of 4% to 16% of high-resource languages,

in terms of the number of instances. However, they have reasonable

vocabulary coverage.

5.4 Evaluation.
For evaluating retrieval effectiveness, we report Mean Average

Precision (MAP) of the top 1000 ranked documents. We also report

the Out-of-Vocabulary rate (OOV) and the similarity percentage of

the down-sampled corpus, as defined below.

Out-of-Vocabulary Rate (OOV). The query OOV rate has an

important role in the retrieval performance [8]. Given that for query

translation in CLIR, the common practice is to use more than one

translation so some may be in and others out of vocabulary, we

define the following OOV rate for each query. We define OOV of a

query based on its constituent terms qt ∈ q, and average over all

the queries for reporting. For qt , we take top T translations from

the translation table. Among these T ranked terms, starting with

the top ranked translation term, we check whether the term exists

in the retrieval collection (RC) or not. If the term exist, then the

partial OOV for that term is calculated based on the rank of the

term using OOV (qt ) ← 1 − 1

rank(t (qt ))
, the rank starts with 1 as

the most probable translation. Otherwise, we set OOV (qt ) ← 1.

9
https://www.nist.gov/itl/iad/mig/openclir-evaluation

10
https://www.darpa.mil/program/low-resource-languages-for-emergent-incidents

11
https://dev.panlex.org/data-model/

https://www.lemurproject.org/galago.php
https://sourceforge.net/p/lemur/wiki/Galago%20Query%20Language/
http://catalog.elra.info/en-us/repository/browse/ELRA-E0008/
https://ciir.cs.umass.edu/download
https://www.nist.gov/itl/iad/mig/openclir-evaluation
https://www.darpa.mil/program/low-resource-languages-for-emergent-incidents
https://dev.panlex.org/data-model/


Table 2: RSS Experimental Results with respect to Somali language. For each down-sampling method, the highest similarity
percentage is marked with bold-face.

Orig. PC Random (5 runs) ReGreeSim GreeSim

Q Lang. MAP OOV MAP OOV Sim (%) MAP OOV Sim (%) MAP OOV Sim (%)

French 0.3033 0.0117 0.2748 0.1092 25.96 0.2707 0.1297 29.69 0.2646 0.1250 35.25

Italian 0.2876 0.0151 0.2683 0.0813 20.49 0.2649 0.1113 24.12 0.2612 0.1136 28.06

German 0.2851 0.0616 0.1962 0.2306 97.05 0.1967 0.2668 96.51 0.1949 0.2609 98.47
Finnish 0.2509 0.0730 0.1707 0.2631 60.35 0.1785 0.2697 73.87 0.1799 0.2618 76.31

Somali 0.1935 0.1673 50.96 56.05 59.52

Table 3: RSS Experimental Results with respect to Swahili language. For each down-sampling method, the highest similarity
percentage is marked with bold-face.

Orig. PC Random (5 runs) ReGreeSim GreeSim

Q Lang. MAP OOV MAP OOV Sim (%) MAP OOV Sim (%) MAP OOV Sim (%)

French 0.3033 0.0117 0.2802 0.1912 24.14 0.2725 0.2542 32.18 0.2719 0.2435 32.81

Italian 0.2876 0.0151 0.2828 0.1526 6.03 0.2769 0.0626 13.38 0.2766 0.0639 13.75

German 0.2851 0.0616 0.2325 0.1332 67.87 0.2231 0.1818 80.00 0.2215 0.1807 82.06

Finnish 0.2509 0.0730 0.1947 0.1812 70.25 0.2090 0.1947 96.77 0.2086 0.1926 97.69

Swahili 0.2076 0.1224 42.07 55.58 56.58

Note that by this definition, a term that does not exist in the TT

(i.e., cannot be the output of a translation step and we use the term

itself in the translated query) but nonetheless exists in RCE
does

not count toward overall OOV.

OOV (q) =

∑
qt ∈q OOV (qt )

|q |
(8)

Similarity Percentage (Sim). In order to see how close the

retrieval performance of the down-sampled high-resource parallel

corpus, PCHd , compared to the low-resource language’s retrieval

performance, we use the following measurement.

Sim(q) = 1 −
| tq(qH , PCHd ) − tq(q

L , PCL) |

| tq(qH , PCH ) − tq(qL , PCL) |
(9)

where tq( ., .) returns= the Average Precision (AP) value of the

retrieval, after translating and querying the retrieval corpus. We

report this as percentage in our experiments. Higher values of Sim

means that the down-sampled retrieval performance is closer to

the corresponding low-resource retrieval performance.

5.5 Random Baseline
To the best of our knowledge, the problem as we proposed here, is

not addressed in the literature. The existing research down-samples

the parallel corpus, whenever needed, by randomly taking a frac-

tion of data. As we show through our experiments, that is not

the best practice for doing the down-sampling. For the random

down-sampling baseline, we randomly select m′ = m sentences

out of PCH and repeat for five times, as described. For example,

for simulating Somali, we randomly select 98k sentences out of

French-English parallel corpus, repeating that five times. We report

the average value of the five runs on each evaluation measurement.

6 EXPERIMENTAL RESULTS
Tables 2 and 3 present our experimental results for down-sampling

four high-resource languages with respect to Somali and Swahili,

respectively. We report the retrieval performance and OOV for the

original resources in the first column. We also report the average

similarity percentage across four high-resource languages.

For example, the first row of Table 2 presents our results for

simulating of Somali using French parallel corpus. It shows that

without any down-sampling, we get a MAP value of 0.3033 and

OOV rate of 0.0117. Randomly taking 98k sentences out of 1.9m

sentences, retrieving based on the translation table trained with

the down-sampled data, and averaging over the five random runs,

results in the second column for French. The results show a drop in

MAP and a corresponding increase in the OOV rate. Comparing the

down-sampled MAP value with the run without down-sampling,

and using Eq. 9, we see that it is similar to Somali retrieval perfor-

mance by a factor of≈ 26%. As can be seen, with the same procedure,

it is easier to simulate the characteristics of Somali with German.

On average across four high-resource languages, we are able to sim-

ulate by a factor of ≈ 51% using multiple random down-sampling.

However, with ReGreeSim and GreeSim we are able to simulate

Somali language with a similarity percentage of 56% and 59%. This

results suggest that it is possible to improve simulation of the re-

source scarcity environment with a high-resource language, when

compared to random down-sampling. GreeSim is outperforming

ReGreeSim in terms of simulation success in every high-resource

language.

As with Table 3 relatively consistent results are achieved for sim-

ulating Swahili when compared to Somali simulation. For Swahili

we have larger parallel corpus, providing evidence for Swahili’s

better retrieval performance, compared to Somali. We hypothesize

that for the same reason, it is harder to simulate Swahili compared



to Somali with the same set of high-resource languages—compare

42% of Swahili random simulation with that of Somali as 51%. How-

ever, our greedy solutions provide consistent similarity average

percentage when comparing both the scenarios—56.05% to 55.58%

and 59.52% to 56.58%. Comparing ReGreeSim with GreeSim sug-

gests that respecting the frequencies of the low-resource corpora is

important in order to simulate the resource scarcity environment.

Another interesting observation is that our experiments show

that it is easier to simulate Swahili using the Finnish high-resource

corpus when compared to other high-resource corpora: compare

that with our previous observation suggesting it is easier to simu-

late Somali with German parallel corpus. In addition, considering

the fact that French and Italian are from the Romance language

families might explain that those families are ill-suited to simu-

late Somali and Swahili, both in African language families. Note

that this conclusion needs further investigation which we leave for

future work.

In terms of MAP values, we compare German down-sampled

to Somali, and Finnish down-sampled with Swahili using the two-

tailed paired t-test with p_value < 0.05 (i.e., 95% confidence level).

We wanted to see if there is any query-wise differences between

these various runs. The difference is insignificant. For example

for the GreeSim simulation of German results, compared with So-

mali experiments, the p_value = 0.0649 suggests that there is no

significant difference. However, doing so with different random

sub-samples shows that some of them are statistically significant.

For example out of five runs of Swahili simulation with Finnish, 3

of them are statistically significant.

Comparing the OOV rates across simulations of Somali and

Swahili suggests some inconsistency with the results of [8]. Par-

ticularly, with German and Finnish simulations, the OOV rate is

relatively high compared to that of Somali and Swahili. For example

compare the OOV rate of German simulated with GreeSim to that

of Somali. It is difficult to interpret this, given that we use top-5

translations and measure OOV rate using a ranked based OOV rate

definition. For this purpose, we further investigate the OOV rate

reliance with a similar experiment to McNamee and Mayfield’s

experimental design [17] in the following section.

7 SYNTHETIC SIMULATION ANALYSIS
To study the observedOOV rate discrepancieswith our experiments,

we exploit the approach widely used in the literature to study the

retrieval performance with resource scarcity of low-resource lan-

guages [8, 17]. For this purpose, instead of down-sampling PCH ,

one can train a translation table first, and then, by simply remov-

ing some synonym relations, synthetically increase the OOV for

the queries [8]. Such an approach is relatively cheap, in terms of

the computational resource requirements. However, it is a query

specific solution with relatively limited possibility of generalizing

the observations, in terms of understanding the limitations with

the low-resource languages—since it is based on a byproduct of the

parallel corpora.

As it has been suggested by McNamee and Mayfield [17] a high-

resource parallel corpus is likely to have more coverage of rare

terms and entities. For this reason, when dropping some of the

terms from the translation table it seems that one should keep
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Figure 2: Sensitivity Analysis on OOV rate by synthetically
dropping terms from TT.

those rare terms rather than randomly dropping. We drop from

the translation table starting from the least frequent terms in the

parallel corpus. Using this procedure, we increase the OOV rate of

high-resource languages and measure the MAP value.

Figure 2 presents our sensitivity analysis on the OOV rate. We

start with the original parallel corpus’ OOV rate, as reported in

Table 2, and set the synthetic OOV rate to {0.1, 0.2, · · · , 1.0} val-

ues. The OOV rate of 1.0 means that none of the query terms are

translated using the translation table. We also plot the OOV rate of

Somali and Swahili with diamond and square pointers.

In general, since the OOV rate increasing method is the same

across our four high-resource languages, they all show approxi-

mately consistent reactions toward the change of OOV in terms

of retrieval performance. The low-resource languages’ OOV rate

is also consistent with the retrieval performance; the higher OOV

rate means lower retrieval performance.

One interesting observation of this experiment, which explains

the inconsistency of OOV rates in Table 2 and 3, is that for having

the same retrieval performance as of the low-resource language,

using a synthetically increasing OOV rate of the high-resource

language, it should be increased to a higher level. For example,

to achieve a MAP of 0.2076 using any high-resource language,

which is the MAP of Swahili queries, a higher OOV rate is required

compared to that of the high-resource language.

Another interesting observation is seemingly the three clusters

of behavioral pattern with OOV and MAP. These three clusters

seems to be: 1) Somali and Swahili, 2) Finnish, and 3) German, Ital-

ian, and French languages. We hypothesize that this might be due

to the language family differences when compared to the retrieval

corpus’s language. However, this observation definitely needs more

investigation and is left for future work. In addition, studying var-

ious dropping procedures might reveal interesting observations.

Considering each of these mentioned clusters individually, an ap-

proximately linear relationship can be seen. This provides more

evidence for the conclusion of McNamee and Mayfield [17]. How-

ever, our results also suggest that OOV rate is not consistent with

MAP across languages.



8 CONCLUSION
We introduced a contrastive framework for studying low-resource

languages, using high-resource languages. It is the reverse of the ex-

isting research in which a high-resource language is down-sampled

randomly to provide artificial resource scarcity environment. Our

perspective consist of a two-step procedure where a true low-

resource scenario is simulated with a high-resource language, and

then various translation data augmentation procedures are stud-

ied. To this end, we investigated the first step, called the Resource
Scarcity Simulation (RSS) problem. We modeled the problem with a

family of set covering problems. We formulated the RSS with ILP

and proved that the problem is actually NP-hard. We also proposed

two greedy algorithms based on our modeling of the problem.

Through our experiments, we investigated the simulation of two

low-resource languages, i.e. Somali and Swahili, using four high-

resource languages. We observed that the language families are

important for the simulation, and particularly for CLIR retrieval

performance—see Table 2 and Table 3 for evidence supporting the

conclusion. For example, it is easier to simulate Somali with German

compared to Italian, French, and Finnish. In addition, investigating

OOV rate across our studied languages, with a synthetic increas-

ing procedure, suggested that having the same OOV rate in two

different languages may not predict their corresponding CLIR per-

formance. However, for the same language, decreasing OOV rate

may help for the CLIR performance, showing a linear relation—see

Figure 2 for evidence.

As the future work, we are mainly interested to study data aug-

mentation techniques to further investigate the resource scarcity

problem with the low-resource languages. In addition, the appli-

cation of the RSS problem, and the provided greedy solutions, in

other domains like machine translation seems highly interesting.
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