A Reinforcement Learning Framework for Relevance Feedback

Ali Montazeralghaem
Center for Intelligent Information
Retrieval
University of Massachusetts Amherst
montazer@cs.umass.edu

ABSTRACT

We present RML, the first known general reinforcement learning
framework for relevance feedback that directly optimizes any de-
sired retrieval metric, including precision-oriented, recall-oriented,
and even diversity metrics: RML can be easily extended to directly
optimize any arbitrary user satisfaction signal. Using the RML
framework, we can select effective feedback terms and weight them
appropriately, improving on past methods that fit parameters to
feedback algorithms using heuristic approaches or methods that do
not directly optimize for retrieval performance. Learning an effec-
tive relevance feedback model is not trivial since the true feedback
distribution is unknown. Experiments on standard TREC collec-
tions compare RML to existng feedback algorithms, demonstrate
the effectiveness of RML at optimizing for MAP and @-nDCG, and
show the impact on related measures.

1 INTRODUCTION

Search queries are often too short and cannot precisely express
the users’ information needs. Sometimes a query is well speci-
fied but does not match the vocabulary of the collection being
searched. Relevance feedback is one of the effective techniques to
address these issues by utilizing feedback information for expand-
ing queries. That is, given information from a handful of relevant
documents, relevance feedback algorithms add terms to a query
that better describe the information need within this collection and
often provide weights indicating the relative importance of the new
terms and the query terms. Relevance feedback information can
be obtained through any of explicit feedback such as document
relevance judgments [37], implicit feedback such as clickthrough
data [18], or pseudo-relevance feedback when the system assumes
that the top retrieved documents in response to a query are rele-
vant [21, 23, 37, 51, 54].

Relevance feedback methods compute the feedback weight for
each term using the same feedback information. However, ground
truth feedback weights are unknown: an evaluation benchmark
typically indicates which documents are relevant, but does not
indicate which terms shoudl be in a query or what weights they
shoudl have. Therefore, existing relevance feedback models make
strong assumptions to estimate the feedback weight for each term.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGIR 20, July 25-30, 2020, Xi’an, China

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-5656-5/18/09...$15.00
https://doi.org/10.1145/3234944.3234973

Hamed Zamani
Microsoft
hazamani@microsoft.com

James Allan
Center for Intelligent Information
Retrieval
University of Massachusetts Amherst
allan@cs.umass.edu

For instance, the divergence minimization model of Zhai and Laf-
ferty [54] assumes that a term with high frequency in the feedback
documents and low frequency in the collection should be assigned
a high feedback weight. However, these assumptions are not nec-
essarily inline with the ultimate goal of relevance feedback, i.e.,
improving retrieval performance.

Finding feedback weights that optimize ranking metrics is an
important and challenging problem, partly because ranking metrics
are non-differentiable, and because of the unknown optimal feed-
back weights. Recently, reinforcement learning (RL) has proven to
be effective in various problems with non-differentiable metrics
through policy gradient. For instance, successful results have been
achieved in summarization [31, 34], machine translation [5, 34],
and image captioning [34, 35] using RL methods.

In this study, we propose a reinforcement learning framework,
namely RML, that learns a relevance feedback function as a stochas-
tic policy network by selecting and weighting feedback terms in
order to directly optimize the retrieval metrics as a reward function.
RML is built on the REINFORCE algorithm [46] to achieve this
objective. In our model, the policy network takes the query and
the corresponding feedback documents and computes a probability
distribution over the feedback terms.

It has been shown that relevance feedback models can benefit
from various features, such as term proximity [24] and seman-
tic similarity [48, 49]. Therefore, we model our policy network
such that it can be easily extendable to new features. We propose
a component-based model for the policy network whose compo-
nents learn low-dimensional dense representations for any arbitrary
query-dependent and query-independent feature. The output of
the policy network is used by an agent to expand the query with
respect to the feedback distribution. The agent’s action is to sam-
ple K terms from the predicted distribution. This sampling helps
the policy network to explore the search space and find effective
feedback terms and their weights. Any arbitrary retrieval model
(e.g., BM25 or query likelihood) can play the role of the environ-
ment in our RL setting. The retrieval performance is then used as a
reward function to guide the policy network. RML is trained using
a cross-entropy loss via a gradient-based optimization model that
is guided by the reward function.

An important advantage of the reinforcement learning frame-
work compared to the most existing methods is that it can be opti-
mized for different evaluation metrics, such as average precision or
normalized discounted cumulative gain (nDCG) [17]. It can even go
beyond relevance-only metrics and, for example, optimize novelty
and diversity metrics such as a-nDCG [8]. In the ideal case, the
reward function can be easily modeled by various user satisfaction
signals.

https://doi.org/10.1145/3234944.3234973

SIGIR ’20, July 25-30, 2020, Xi’an, China

We conduct experiments on standard newswire and web col-
lections. The experimental results show that RML outperforms
competitive baselines. Furthermore, we show that the model im-
proves the diversity of the result list, especially when trained by
optimizing ¢-nDCG. We perform extensive experiments to analyze
each component of the model.

The primary contributions of this work can be summarized as
follows:

e Designing a policy network as a relevance feedback function to
directly optimize the retrieval metrics. Our policy network can
be easily extended to new relevance matching features.

e Evaluating our model with two different reward functions to
select and weight feedback terms in order to improve MAP and
diversity of the top-rank documents.

e We show that our model outperforms competitive baselines using
three TREC collections.

2 RELATED WORK

In this section, we first introduce methods used to improve the
query language model in previous studies. We also review studies
conducted to apply reinforcement learning in information retrieval.

2.1 Estimating Query Language Models

Previous studies try to improve a query language model by adding
semantically related terms to the query. There are two groups of
resources to select the related terms 1) global and 2) local. The
methods that are in the first category try to use some global re-
sources (e.g., Wikipedia and Dbpedia [2]) to expand the query. But
methods in the second category are usually more popular and they
commonly assume top retrieved documents in the first retrieval
are relevant to the query and expand the query by important terms
in these documents [21, 23, 36, 37, 40, 54]. These methods are also
known as pseudo relevance feedback.

The Rocchio algorithm [37] is one relevance feedback method
proposed for the vector space model which also used for PRF. This
approach improves the query vector by maximizing its similarity
to the top retrieved documents. Several PRF methods have been
developed for language model so far. The relevance model [21] and
mixture model [53] are two PRF methods which have been shown
to be very effective. The mixture model is a model-based feedback
strategy with the idea that terms in the feedback documents are
drawn from two models: 1) topic model and 2) background model.
It tries to separate the background model and topic model by using
the EM algorithm and then use the topic model as the feedback
model. Similar to the mixture model, the relevance model also
tries to estimate p(w|Q) which is the probability of w given the
query as evidence. The relevance model estimated this probability
by using information from feedback documents. Another model-
based approach proposed for the language model framework is
the Divergence Minimization Model (DMM) [54] which is based
on minimization of the KL-divergence over feedback documents.
Lv and Zhai [25] showed that although DMM satisfies most of
the retrieval constraints, it performs poorly in experiments. They
showed that DMM generates highly skewed feedback model. They
introduced a maximum-entropy divergence minimization model
(MEDMM) by proposing an entropy term to regularize DMM. They

Ali Montazeralghaem, Hamed Zamani, and James Allan

showed that MEDMM can improve the DMM’s performance signifi-
cantly. recently, Li et al. [22] proposed an end-to-end neural pseudo
relevance feedback framework i.e., NPRF. However, their model do
not directly optimize the retrieval performance.

The aforementioned methods usually use basic features of the
feedback terms i.e., term frequency and document frequency. Re-
cently some proposed methods try to use additional evidence i.e.,
semantic and proximity to PRF methods [15, 24, 27, 28, 50] that has
been shown to be effective to improve the query language model.

2.2 Reinforcement Learning

Reinforcement learning (RL) is a framework of machine learning to
optimize the behavior of an agent with respect to a desired reward
[43]. Due to the progress of the deep learning, RL algorithms have
demonstrated an impressive potential for tackling a wide range
of complex tasks, from game playing [42] to robotic manipulation
[33].

The main roles in RL are the agent and the environment. The
environment is the world that is visible to the agent and that the
agent can interact with. At every step of interaction, the agent sees
observations in the environment and takes some actions based on
these observations. The agent receives a reward according to its
actions. The reward is a measure to show how good and bad are the
actions taken by the agent. The agent’s final goal is to maximize
the cumulative reward.

RL algorithms have two branches: Model-free and Model-based
RL. In the model-based RL approaches, the agent has access to a
model of the environment. The main advantage of having a model
is that it allows the agent to plan by thinking ahead. In most cases
though, a ground-truth model of the environment is not available
to the agent. For this reason, model-free RL approaches are more
popular. There are two approaches to model-free RL algorithms:
1) Policy optimization and 2) Q-learning. Policy optimization can
be used when a large and continuous action space is provided by
the environment. On the other hand, when action space is small
Q-learning is more promising.

Reinforcement learning in information retrieval also has recently
attracted much attention. Zeng et al. [52] recently proposed a rein-
forcement learning approach for multi-page ranking in the learning
to the rank framework. Wei et al. [45] proposed a novel learning
to rank model on the basis of Markov decision process (MDP) MD-
PRank, which can directly optimize the evaluation measures and
also leverage the evaluation measure at all ranking positions. Ros-
set et al. [38] proposed a novel approach based on reinforcement
learning to reduce the accesses to the index blocks for pruning the
results before showing to the user in the search engine.

Nogueira et al. [30] proposed an approach based on reinforce-
ment learning for query reformulation which is most related to
ours. They trained an agent to reformulate an initial query to maxi-
mize the expected return. However, their model concern semantic
matching between query and a candidate term and cannot capture
relevance matching signals such as term importance, document
frequency of candidate terms in the feedback set and document
length [9, 16]. Guo et al. [16] show that semantic matching based
models cannot perform well in the ad-hoc retrieval tasks, especially
when there is no access to large-scale training data. In contrast,

A Reinforcement Learning Framework for Relevance Feedback

our model can learn the interaction between relevance matching
signals and train even without access to large-scale training data.

3 LEARNING QUERY LANGUAGE MODEL

In this section, we first formulate the problem and define our mo-
tivation. Then, we propose a reinforcement learning framework
for relevance feedback. Finally, we describe the architecture of the
policy network.

3.1 Problem Statement and Motivation

Let Q = {q1,92; ..., qm} be a query with m terms issued by a user
u, and F = {D1, Do, ..., Di.} be a set of k feedback documents. The
feedback set F can be obtained from either explicit or implicit
feedback from the user. In case of the absence of user feedback, we
can assume that the top retrieved documents retrieved in response
to the query are relevant. This assumption has been firstly made
by Attar and Fraenkel [4] and by Croft and Harper [12] in the
1970s. It is commonly known as blind feedback or pseudo-relevance
feedback (PRF) and has been shown to be effective in a wide variety
of information retrieval settings [21, 51, 54].

Following previous work that has utilized relevance feedback
information for query expansion and query term re-weighting [21,
51, 54], we also focus on estimating an accurate query model 95 for
the query Q. Therefore, we assume that the retrieval model M is
given. Without loss of generality, we focus on the language model-
ing framework [32] and use the KL-divergence retrieval model [20].
The retrieval score is computed as:

’ . . PWIOH)
score (0, 6p) = —D(0|16p) = - ;Vp(w|eg>log)
where 6p denotes the unigram language model of the document D
over the vocabulary set V, estimated using maximum likelihood es-
timation smoothed with the Dirichlet prior smoothing method [55].
By fixing the retrieval model and the document language model
estimation, the relevance feedback problem is now reduced to esti-

mating an accurate query language model G*Q.

The ultimate goal of relevance feedback! is to improve the re-
trieval performance. Therefore, the objective of relevance feedback
is to optimize the following evaluation function:

eval(u, O, M(67,;C)) (1)

where M and C denote the retrieval model and the document
collection, respectively. The query language model G*Q is estimated
as:

05 = R(Q.F;C.Q) @

where R denotes the relevance feedback model with the param-
eter set Q. The ‘eval’ function measures the performance of the
given retrieval list (i.e., M(67,; C)) with respect to the user’s infor-
mation need. Theoretically, this function can be defined based on
different levels of relevance, ranging from algorithmic and topical
relevance to motivational relevance. In its simplest form, the ‘eval’
function may measure topical relevance based on the ranking and
set-based metrics such as precision of the top retrieved documents,

!Throughout this article, we often use “relevance feedback” as a reference to both true
and pseudo relevance feedback settings.

SIGIR °20, July 25-30, 2020, Xi’an, China

average precision (AP), and normalized discounted cumulative gain
(nDCG) [17]. It may go beyond relevance-only metrics, and for
instance measure novelty and diversity, such as a-nDCG [8]. In
the ideal case, it may measure user satisfaction and accomplish-
ment based on multiple signals captured from user interaction
with the system or questionnaires. In all of aforementioned cases,
the function ‘eval’ is non-differentiable. Recently, reinforcement
learning (RL) has proven to be effective in various problems with
non-differentiable metrics through policy gradient.

Since the optimal query language model is unknown, typical su-
pervised learning approaches cannot be employed to optimize the
query language model estimation. Existing pseudo-relevance feed-
back methods, such as relevance models [21], mixture model [53],
and divergence minimization model [54], do not directly optimize
the ultimate objective, i.e., improving relevance. Their objectives
are mostly equivalent to minimizing the distance between the query
language model and the language model estimated for the feedback
set, and sometimes try to distinguish the terms in the feedback set
from those in the collection. In the rest of this section, we introduce
a reinforcement learning framework for relevance feedback that
directly optimizes the ultimate objective function, no matter how
it is computed.

3.2 A Reinforcement Learning Framework for
Relevance Feedback

This subsection introduces a relevance feedback framework, called
RML, that directly optimizes the ultimate objective of relevance
feedback, i.e., improving the retrieval performance. In more detail,
given a training query set T = {Q1,Q2, - ,0Qn}, RML learns a
relevance feedback model R with the parameter set Q as follows:

n

arg max Z eval(u, 0i, M(R(Q;, Fi; C, Q); C)) 3)
i=1
Optimizing the above objective using supervised learning is chal-
lenging since we do not know what is the ground truth relevance
feedback model per query. In other words, the true distribution
of the query model learned from the feedback set is unknown. To
address this issue, we model relevance feedback as a reinforcement
learning task. In reinforcement learning, there is an agent that at
each timestamp takes an action and gets a reward signal from the
environment, a number that tells the agent how good or bad was
the taken action. The agent tries to figure out the best actions to
take or the optimal way to behave in the environment in order to
carry out his task in the best possible way to gain more reward.

In the following, we describe how we model the agent, the ac-
tions, and the reward function, such that the whole training process
directly optimizes the above objective.

3.2.1 Training. In the following, we explain the training process
of our model in detail.
Agent: At each timestamp in the training phase, the agent is a
query modeling component. In our case, the agent expands the
query and re-weights the query terms according to learned feedback
distribution. The goal is to learn a feedback distribution that leads
to an accurate query language model.
Policy Network: A policy is a rule used by an agent to decide
what actions to take. At each timestamp t, the policy network

SIGIR ’20, July 25-30, 2020, Xi’an, China

will take the feedback documents and corresponding query and
predict a probability distribution over the feedback terms p(w|9tQ)

where 9;2 = R(Q, F;C, Q). We will discuss the policy network
architecture in the rest of this section.

Agent’s Action: Due to both efficiency and effectiveness reasons,
the common practice is to only use a number of feedback terms
to expand the query. Because of this reason, the agent’s action is
to sample K terms St = {wi,ws, -+, wg} from the query model
distribution learned by R without replacement (i.e., w ~ QtQ, where

GtQ = R(Q, F;C, Q")) to get the actual feedback distribution. This

results in the following probability distribution after normalization:
p(wl65) ¢

p'(wl6p) = {0 7 Hwes @)

otherwise

where Z is a normalization factor, i.e., Z = },, et p(w|9tQ), Note
that although a natural decision is to take the top K terms with
the highest probability, instead of sampling, we intentionally take
samples to let the reinforcement learning agent explore. On the
other hand, we take sample from the p(wl@é) distribution, instead
of uniform, let the model exploit.

The agent finally takes its action by linearly interpolating the
sampled query model distribution p’ (w|9£)) with the original query
model estimated using maximum likelihood estimation. In other
words, the agent produces the following query language model:

p(wlBh) = ap(wloy) + (1 - a)p’ (wl0h))
where p(w|9gLE)= % (|Q| denotes the length of the given

query), and « is a hyper-parameter controlling the weight of the
original query model.

Environment: The environment for our RL agent is defined based
on the retrieval collection C as well as the retrieval model M, which
is the KL-divergence retrieval model [20] in our case.

Reward Function: We compute the reward function based on the
‘eval’ function, which is our ultimate objective. To provide a useful
signal to the model to learn effective relevance distribution, we
define the reward function as follows:

Reward(Q, t) = eval(u, 0, M(6%,; C))—eval(u, Q, M(%‘l :C)) (6)

In fact, our reward function provides information about the

quality of relevance distribution at timestamp ¢ compared to ¢ — 1.
If the current reward is better than that at the last time step, the
reward would be positive and vice versa.
Loss Function and Optimization: We adapt a cross-entropy loss
function that has been widely used in the reinforcement learning
literature [31]. Assuming training queries in the training set T are
drawn i.i.d, the loss function at each timestamp ¢ is defined as:

L0 == %" Reward(Q,1)- > p'(wl0f)logp(wldh) (7)
QeT weS?

where p(w|9tQ) is the predicted feedback distribution and p’ (w|9£2)
is the actual feedback distribution. Multiplying the cross-entropy
formula by the reward function pushes the model towards the
right direction. In fact, if the model achieves a positive reward
function, our RL algorithm tries to decrease the divergence between
the model’s output and the expanded distribution that led to a

Ali Montazeralghaem, Hamed Zamani, and James Allan

positive reward. In contrast, negative reward value helps the model
to diverge from the current expanded query.

We use REINFORCE algorithm [46], one of the policy gradient
methods as the optimization algorithm. In more details, for each
episodes, the parameters of the policy network are updated as
follows:

ol — Q14 qve® (8)

where « is the learning rate. By optimizing the loss function using
gradient descent-based algorithms, the model parameters (i.e., Q)
will be appropriately updated. In our experiments, we use the Adam
optimizer [19] that has been shown to be effective in reinforcement
learning [5, 31]. Note that the parameter set Q is randomly initial-
ized. Indeed, we start with a random relevance feedback model
and update its parameters, such that the retrieval performance
increases.

3.2.2 Query Expansion at Test Time. At test time, we simply use
the trained relevance feedback model R (i.e., G*Q) for estimating the
query language model for any arbitrary test query Q. Following
previous work on pseudo-relevance feedback [21, 51, 54], we only
keep the K terms with the highest probability and interpolate this
normalized distribution with the original query language model as
follows:

p(wlBg) = ap(wlOyLF) + (1 - a)p(wl0y) ©

where « controls the weight of original query in the final query

model (i.e., 55).

3.3 Policy Network Architecture

We implement the relevance feedback model R using neural net-
work. The reason for making this decision is that (1) neural net-
works can be easily trained as part of our reinforcement learning
framework using the back-propagation algorithm [39], (2) they can
be easily extended to handle various features, (3) they have recently
produced promising results for various information retrieval set-
tings, ranging from basic and fundamental tasks, such as ad-hoc
retrieval [13, 16] and question answering [41], to more recent and
trending tasks, such as mobile search [3] and information-seeking
conversations [47].

Instead of designing a complex neural network with huge num-
ber of parameters, we intentionally design our model with few
parameters (i.e., less than 300 parameters) to make sure that the
model can perform effectively, even without access to large-scale
training data. Figure 1 is an overview of the architecture of the
policy network in our model. We empirically validate our claim by
only experimenting on standard TREC collections that only contain
a few hundred queries. Because of this reason, we cast the problem
of estimating a relevance feedback distribution to estimating a rele-
vance feedback weight for each term using a softmax operator, as
follows:

exp(R’(w, Q,F;C, Q))
Zwev exp(R' (W, Q, F;C, Q))
In other words, we train a single model R’ that takes informa-

tion related to a candidate feedback term as input and produces a
feedback weight. This model is applied to all vocabulary terms. R’

p(wIR) =

(10)

A Reinforcement Learning Framework for Relevance Feedback

FQw.Dy): [f1. f2..... fi]

F(w, D) : [f1, f2s.-.,

SIGIR °20, July 25-30, 2020, Xi’an, China

F(w, D) : Lf1s faseees il

N ¥ N

«— ¥
Co e

Ap

R'(w,0, F;C,Q)

Figure 1: The architecture of policy network.

uses a component-based architecture that consists of a set of sub-
networks, each modeling an aspect of relevance feedback. They are
expected to produce complimentary information and final feedback
weight is computed using an aggregation sub-network. Formally,
we compute the feedback weight of each term w as follows:

R (w, 0. F; C, Q) = 0/L (A@1(w, 0. Dis O), - . 1w, 0. D O). W)
(11)
where ¢1, @2, - -, #; denote I components, each learning a repre-

sentation for each feedback term in a feedback document. The
component A aggregates these [representations. W; denotes the
relevance score of the document D; to the query Q. Finally, the
compositionality component © aggregates all the representations
obtained from all feedback documents and produces a single real
number as the weight of the feedback term w. In the following, we
describe how each component is developed.

The representation learning components (¢;s): The relevance
feedback literature [21, 23, 25,37, 51, 54] suggests that term statistics
information, such as term frequency in the feedback documents and
collection frequency, is essential in feedback models. This has been
also validated by a set of theoretical studies based on axiomatic
analysis [9, 28, 29]. For simplicity as well as fair comparison, we
only use the features that are used by existing relevance feedback
models, such as the Lavrenko and Croft’s relevance models [21].
These features include:

tf(w, D): term frequency in the feedback document D
idf(w): inverse document frequency in the collection

|D|: length of the feedback document

df(w): document frequency in the feedback set

However, our experiments show that using these features as in-
puts of the network does not perform effectively. This is due to the
varying scale of these features [13]. The common feature normaliza-
tion methods, such as max or z-score normalization, do not solve the
issue. Therefore, we propose to use these features in a binary format.
For example, assume that the frequency of a term in a feedback doc-
ument is 27. We first encode this feature to binary (11011). Since the
back-propagation algorithm assumes that inputs of the network are
zero-mean, we compute the following feature vector by subtracting

0.5 from each digit: [0.5,0.5,—0.5,0.5,0.5]. Let B = (b1, by, - - - ,bp)
represent this binary encoding which is normalized. The simplest
network to learn representation for this feature vector is probably
a fully-connected network. However, since the binary digits are
not independent, a fully-connected network does not perform well,
which is also verified by our experiments. In other words, the it
digit carries two times higher weight than the (i + 1) digit. In fact
the weight of digit i is higher than the summation of all the weights
corresponding to digits (i + k) for (1 < k < p—i). Therefore, instead
of U(Zle biw; + b) which is used in fully-connected layers, we
model the first layer of this sub-network as follows:

P
z1 = O'(Z bi(wi + W(i11) + ... + wp) +D) (12)
i=1

where w; is the weight of the ih digit and b is a bias term. o is
an activation function (i.e., ReLU in our experiments) to let neural
network learn non-linear function. The output of the first layer can
then be fed to fully-connected layers.

The aggregation component (A): This component feeds the con-
catenation of the outputs of the representation learning components
(¢is) to a fully-connected network. The output of this component
is a d-dimensional vector that is learned for each term in each
feedback document.

The compositionality component (©): |F| d-dimensional vec-
tors are the outputs of the aggregation component for each term.
These vectors are multiplied by the relevance score of each docu-
ment W; and are concatenated. This weighted concatenation is fed
into a fully-connected network to produce a single real number as
the weight of the feedback term.

4 EXPERIMENT

Datasets: We use three standard test collections in our experiments.
Robust collection consists of thousands of news articles and is
considered a homogeneous collection. Robust was used in TREC
2004 Robust Track. We also use two large scale web collections
(GOV2 and ClueWeb) containing heterogeneous documents. GOV2
consists of the .gov domain web pages, crawled in 2004. ClueWeb

SIGIR ’20, July 25-30, 2020, Xi’an, China

Table 1: Summary of TREC collections and topics.

Collection Genre Queries #docs
Gov2 webpages 701-850 25m
Robust04 news 301-450 & 601-700 0.5m
ClueWeb webpages 1-200 50m

(i.e., ClueWeb09-Category B) is a common web crawl collection
that only contains English web pages. GOV2 and ClueWeb were
previously used in TREC 2004-2006 Terabyte Track and TREC 2009-
2012 Web Track, respectively. The statistics of these collections
are reported in Table 1. We only used the title of the topics as
queries. We cleaned the ClueWeb collection by filtering out the
spam documents using the Waterloo spam scorer ! with a threshold
of 60% [11]. Stop words were removed from all collections using the
standard INQUERY stopword list and all documents were stemmed
using the Porter stemmer.

Experimental and parameter setting: All models are imple-
mented using TensorFlow [1, 44]. We optimized the parameter of
the network using the Adam optimizer [19] which uses the back-
propagation algorithm to compute the gradients. Tuning of the
hyper-parameters of the network is done on the respective val-
idation sets. The learning rate in our experiments was selected
from {1e — 3, 5¢ — 4, 1le — 4}. One or two hidden layers were used
for each sub-network of our model. The size of each hidden layer
was selected from {2, 5, 10, 15}. We sweep the number of feedback
terms between {5, 10, 15, 20, 25} and the feedback coefficient be-
tween {0.0,0.2, ...,1.0}. We performed 5-fold cross-validation over
the queries in each collection for tuning the hyper-parameters of
our model as well as baselines. For regularization, we find that the
early stopping strategy [7] works well for our model.

Note that at inference and training times, we take the top 1000
retrieved documents (Not all documents in the collections) using
the query likelihood retrieval model as candidate documents and
re-rank them. Diaz [14] showed that re-ranking the top 1000 doc-
uments is as effective as retrieving from the entire collection at a
much lower cost.

Evaluation metrics: To evaluate retrieval performance, we use
mean average precision (MAP) of the top 1000 documents as the
main evaluation metric. In addition, we also report precision of the
top 10 and 20 retrieved documents (P@10 and P@20) and normal-
ized discounted cumulative gain (nDCG) [17] computed for the top
20 retrieved documents (nDCG@20). To evaluate the robustness of
the proposed method, we use the robustness index (RI) [10] which

is defined as N+|EIJ|V_ , where |@Q| is the number of queries. N, and

N_ denote the number queries which improved or degraded by
the feedback model. The value of RI is always in the [—1, 1] inter-
val and methods with higher values are more robust?. Statistically
significant differences of performance are determined using the
two-tailed paired t-test at a 95% confidence level (p_value < 0.05).

Baselines: Our baseline methods include 1) the standard lan-
guage model without feedback (LM), 2) the relevance model (RM3)

!http://plg.uwaterloo.ca/ gvcormac/clueweb09spam/
2To avoid the influence of very small performance changes in the RI values, we only
consider improvements/losses higher than 10% relatively.

Ali Montazeralghaem, Hamed Zamani, and James Allan

[21] which is an effective and unsupervised PRF model, 3) a super-
vised approach for learning query language model (SL) [6]. They
assume that feedback terms contribute independently to the re-
trieval performance, so as they mentioned, we train a binary clas-
sifier to find a term if the retrieval performance increases beyond
a preset threshold when that term is added to the original query.
More formally, we consider a term as relevant if (R' —R)/R > 0.005
where R and R’ are the retrieval performance without and with
expanding the query by the term. 4) the maximum entropy diver-
gence minimization model (MEDMM) [25] which is an effective PRF
model by modifying the divergence minimization model (DMM)
[54]. MEDMM is also an unsupervised approach for PRF. We do
not consider other methods since the performance of the chosen
methods is significantly better than other models such as [23, 25].

There are a number of PRF methods that considered additional
evidence e.g., term dependencies [26], term proximity [24, 27] and
semantic similarity [28, 48]. Since we do not use the additional evi-
dence in our model (see section 3.3) we do not consider these meth-
ods in our experiments to avoid unnecessary apples-to-oranges
comparisons.

4.1 Results and Discussion

In this section, we discuss several research questions that are needed
to be addressed and for each, we present a set of experiments along
with their results and analysis to address the research questions.

RQ1: How effective is RML compared to the baselines?

In this experiment, we use AP in our reward function for training
which is denoted as RML. The results obtained by the proposed
method and the baselines are reported in Table 2. To have a fair
evaluation, in this experiment we do not compare our model against
relevance feedback methods that considered additional evidence
e.g., term dependencies [26], term proximity [24, 27] and semantic
similarities [28, 48].

According to this table, RML outperforms all the baselines in
terms of MAP, P@10, P@20, and Rl in all the collections, except
in one case. The statistical t-test shows that the MAP, P@10, and
P@20 improvements over LM are always significant. These im-
provements over the state-of-the-art baseline feedback models are
also significant in terms of MAP which RML tries to maximize.
These results show the effectiveness of the proposed method com-
pared to the strong relevance feedback methods. MAP measure
intrinsically is related to other measures e.g., P@10, P@20, and
RI. Therefore, maximizing MAP can also help P@10, P@20, and RI
improve but this improvement is not significant in all cases over
the baselines. In addition to the baseline methods and RML, we
report an Oracle performance bound in the last column. The Oracle
is RML method when trained on the test set.

RQ2: Which feedback terms are selected by RML and base-
lines? (Exploration)

To answer this question, we analyze the terms chosen by each
model. For each feedback term, we first compute the total num-
ber of occurrences of the term in the feedback set (i.e., TF(w) =
. DeF count(w, D)), its document frequency in the feedback set (i.e.,

A Reinforcement Learning Framework for Relevance Feedback

SIGIR °20, July 25-30, 2020, Xi’an, China

Table 2: Comparison of proposed methods (trained to maximize MAP) and baselines. Superscripts 0/1/2/3 indicate that the
improvements over LM/RM3/MEDMMY/SL are significant. The highest non-oracle value in each row is marked in bold

Dataset Metric LM RM3 MEDMM SL RML Oracle
MAP 0.2992 0.3123 0.3129 0.3138 0.32840123 0.3567

P@10 0.5437 0.5462 0.5821 0.5495 0.5855913 0.6344

Gov2 P@20 0.5198 0.5257 0.5406 0.5263 0.55699123 0.6104
nDCG@20 0.4721 0.4677 0.4851 0.4677 0.50240123 0.5454

RI - 0.0540 0.0366 0.0409 0.1571 0.3716

MAP 0.2442 0.2754 0.2737 0.2762 0.28450123 0.3168

P@10 0.4242 0.4460 0.4486 0.4502 0.456801 0.5190

Robust04 P@20 0.3605 0.3736 0.3789 0.3712 0.3875%13 0.4283
nDCG@20 0.4290 0.4455 0.4517 0.4480 0.4604913 0.5144

RI - 0.2393 0.2771 0.2510 0.2588 0.5144

MAP 0.1001 0.1055 0.1073 0.1061 0.10930123 0.1140

P@10 0.3145 0.3365 0.3467 03412 0.349301 0.3565

ClueWeb P@20 0.2955 0.3122 0.3159 03112 0.3182° 0.3330
nDCG@20 0.2587 0.2714 0.2768 0.2750 0.2819° 0.2925

RI - 0.0850 0.1107 0.0720 0.1602 0.2050

Table 3: Statistics of terms extracted by different models

Dataset Statistics SL RM3 MEDMM RML Oracle
,u(tf) 145.29 146.17 4420 68.53 67.55
;l(df) 8.12 8.16 7.19 7.53 7.48
Gov2 p(idf) 2.67 2.66 4.70 3.43 3.33
,u(dl) 4203.84 4195.38 4368.09 4364.78 4385.28
u(tf) 34.20 38.49 14.05 27.04 20.22
,u(df) 6.71 6.60 5.13 6.05 5.52
Robust04y(idf) 2.67 2.54 4.09 3.06 3.35
u(dl) 1354.39 1371.82 1405.54 1369.19 1374.44
y(lf) 112.80 109.51 26.17 41.29 43.38
u(df) 7.48 7.72 6.63 6.82 6.84
ClueWeb y(idf) 3.32 3.08 5.42 4.77 4.59
;l(dl) 2272.05 2221.78 2293.54 2296.75 2301.63

DF(w) = Y. pef I(count(w, D) > 0) where I(.) is an indicator func-
tion), its inverse document frequency in the collection (i.e., IDF(w))
and the length of the feedback documents that contain this term
(i.e., DL(w) = X peF I(count(w, D) > 0) * |D|). We then averaged
these quantities overall feedback terms and queries. For example,
te TF(w)
i=1 fc

|@Q| is the number of the queries and tc the number of feedback
terms added to the query. Table 3 shows the above statistics. Ac-
cording to this table, the SL and RM3 models select feedback terms
that have small IDF, and relatively high TF and DF. MEDMM, on the
other hand, selects feedback terms that have high IDF and relatively
small TF and DF. Therefore, in contrast to SL and RM3, MEDMM
focuses more on words that are not too common (high IDF and
small TF) but an advantage of SL and RM3 is that they try to select
terms that occur in an acceptable number of feedback documents
(high DF). Selected feedback terms by RML are not too general
(relatively small TF and high IDF) but still occur in a sufficient

the mean ¢ f is computed as u(t f) = ﬁ 2geQ where

number of feedback documents. We also report the same statistics
for feedback terms selected by Oracle in this table.

To get a sense of what is learned by RML and RM3, in Table 7 we
report the top 10 expansion terms for a sample query. According
to these tables, the terms added to the query by the RML model
are more relevant to individual query terms. In this example, for
the query “dinosaur”, the feedback terms that are selected by RML
are kinds of dinosaurs and RML learns to select and weight them
because these terms help the model to get more reward. But RM3
select feedback terms with high TF and DF that do not necessarily
help to improve the retrieval performance. Therefore, RM3 selects
terms that obviously are not related to these queries in most cases.

Table 4: Weighing selected feedback terms by RML with
RM3

MAP P@10 P@20 NDCG@20 RI

RM3 0.3123 0.5462 0.5257 0.4677 0.0540
RM3 + RML 0.3211 0.5755 0.5489 0.4896 0.0885
RML 0.3284 0.5855 0.5569 0.5024 0.1571

RQ3: How effective is RML in weighing feedback terms? (Ex-
ploitation)

As mentioned before, RML initially tries to select good terms
among other feedback terms and then weights the selected terms in
an appropriate way to get more reward. To analyze the exploitation
task in the RML model we chose the feedback terms that are selected
by RML and weight them by RM3. The results of this experiment
reported in Table 4. According to this table, although using selected
feedback terms by RML improves the RM3 performance but still
RML outperform. This shows that RML not only is effective in find-
ing relevant feedback terms (exploration) but also can effectively
weight them (exploitation).

SIGIR ’20, July 25-30, 2020, Xi’an, China

Ali Montazeralghaem, Hamed Zamani, and James Allan

Table 5: Effect of each feature of proposed model

MAP P@10 P@20 nDCG@20 RI
RM3 0.3123 0.5462 0.5257 0.4677 0.0540
TF 0.3182 0.5648 0.5356 0.4777 0.0904
TF (weighted document) 0.3230 0.579 0.5503 0.4973 0.1147
TF (weighted document) + DocLen 0.3252 0.5822 0.5495 0.4946 0.1100
TF (weighted document) + DocLen + IDF 0.3284 0.5855 0.5569 0.5024 0.1571

Table 6: Maximizing RML with a-nDCG to improve diversification and novelty on ClueWeb only. Superscripts 0/1/2 indicate
that the improvements over LM/RM3/RML are significant. The highest value in each row is marked in bold

Measure
Method
MAP P@10 P@20 nDCG@20 RI a-nDCG@20
LM 0.1001 0.3145 0.2955 0.2587 - 0.3497
RM3 0.1055 0.3365 0.3122 0.2714 0.0850 0.3569
RML 0.1093 0.3493 0.3182 0.2819 0.1602 0.3574
RML ,_,pcGazo 0.1057 03421 03044 0.2759 0.0342 0.3665°12

Table 7: The top terms added to the query “dinosaur” (topic
14) by RM3 and RML methods.

RM3 Weight | RML Weight
price 0.1611 tyrannosaurus 0.1185
parti 0.1377 stegosaurus 0.1132
regular 0.0788 jurass 0.0982
99 0.0574 triceratop 0.0532
rex 0.0506 skull 0.0512
dino 0.0474 prehistor 0.0488
toy 0.0447 mammal 0.0477
birthday 0.0388 skeleton 0.0467
prehistor 0.0333 bone 0.0392
game 0.0326 plush 0.0372

RQ4: How effective is each feature in RML?

To study the effect of each feature in the retrieval performance,
we add one feature to RML at a time. The results obtained by this
experiment are reported in Table 5. According to this table, RML
beats RM3 and also other baselines (Table 2) even if it only uses
the term frequency (TF) of feedback terms. This shows that RML
can learn an appropriate representation for term frequency. In
addition, RML performance improves when the document length
of a feedback document and the inverse document frequency (IDF)
of the term are added to the model.

RQ5: How does the reward function affect the retrieval perfor-
mance?

Diversification and Novelty: As mentioned before, different
reward functions can be used in RML. In this experiment, we use
a different measure for evaluation that used for diversification in
previous work. Specifically, we add ¢-nDCG [8] to our evaluation
as a reward function and try to maximize it in RML. Note that this

Table 8: The top terms added to the query “403b” (topic 151)
by RML ,_,pcG@20 and RML (feedback terms are stemmed
by Porter).

Subtopic 1: What is a 403b plan?
What is the difference between
Subtopic 2: 401k and 403b retirement plans?
What are the withdrawal limitations
Subtopic 3: for a 403b retirement plan?

RML a—-nDCG@20 Weight RML Weight
401k 0.3817 choos 0.1645
limit 0.1062 portion 0.1563

portion 0.0973 roth 0.1301
guidanc 0.0743 ira 0.1222
requir 0.0557 rollov 0.0761
ira 0.0468 individu 0.0585
incom 0.0397 retir 0.0492
offer 0.0336 estat 0.0420
rollov 0.0328 organ 0.0318
individu 0.0180 minor 0.0277

experiment is done on the ClueWeb collection since there are no
diversification judgments of the other two collections. The results
obtained by this experiment are reported in Table 6. Interestingly,
RML 4_npcG@2o outperforms compared the baselines in terms of
a-nDCG when it tries to maximize this metric. In other words, in
this case, RML 4_npcG@2o selects and weights terms in order to
improve the diversification in the retrieval. According to this table,
we can see that although a-nDCG improves, the other measures
decrease. That is because the relation between ¢-nDCG and other
measures is less than MAP and other measures. Maximizing a-
nDCG can hurt other measures.

A Reinforcement Learning Framework for Relevance Feedback

As an example, we report top 10 terms that are added to the
query “403b” by RML which is maximized with MAP and a-nDCG
in Table 8. Three subtopics of this query also are shown in this
table. According to this table, the selected terms by RML using a-
nDCG as the reward function are more diverse. For example, “401k”
obviously is a term relevant to the second subtopic, “limit” can be
relevant to the third subtopic and other terms are more relevant to
the first subtopic. In contrast, RML that is maximized with MAP,
find terms that are more relevant to the first subtopic.

Parameter Sensitivity: To capture the sensitivity of the RML
to the number of feedback terms and the feedback interpolation
coefficient we plot the MAP values achieved by sweeping these
parameters in Figure 2. Appropriate selection of the number of
feedback terms for Robust collection is more important and 15 terms
can be added to the query to get the best result in this collection.
For the interpolation coefficient parameter, our experiments show
that 0.5 or 0.6 for Rebuts and Gov2 collections is suitable and for
ClueWeb collection 0.8 is better.

——
0.30 030
0.25 //J‘\ 025
—— Gov2 —— Gov2
%IO 20 —+— ClueWeb | % —— ClueWeb
=0 =
—— Robust 0.20 —— Robust

0.15

0.10 //"——‘

015

010

0.0 0.2 04 0.6 0.8 5 10 15 20 25
Interpolation Coefficient Number of feedback terms

Figure 2: Sensitivity of the RML method to the number

of feedback terms (right) and the interpolation coefficient
(left).

Learning Curve: Figure 3 shows the learning curve of RML in
terms of MAP. From the figure, we can see the ranking accuracy
of RML improves, as the training goes on, until the accuracy on
the validation and the test sets reach to the peak. As mentioned
before, we find that the early stopping [7] strategy works well for
our model.

5 CONCLUSIONS AND FUTURE WORK

We proposed a novel reinforcement algorithm for learning rele-
vance feedback model, referred to as RML. In contrast to the most
existing models, RML directly optimizes retrieval metrics, including
average precision for effective retrieval and a-nDCG for diverse
retrieval. Furthermore, since the existing feedback models are built
upon some underlying theoretical framework, it is not always pos-
sible to easily incorporate new features.

RML employs a policy network to learn the relevance feedback
function. Based on our results, RML can effectively explore and
exploit the solution space to learn an effective feedback function.
According to our results, RML select feedback terms that are not
too general (i.e., feedback terms that have small TF and high IDF)
but still occur in a sufficient number of feedback documents. Exper-
imental results on three TREC datasets show that RML significantly

SIGIR °20, July 25-30, 2020, Xi’an, China

0.37 |
0-300 14 330
0.295 §.0.325
+ 0.36 5/0.325 _
7] = c
5 10.290 20320 £,
5 g o
£035 | 0.285 2/0.315 £
—— map_test 2
—— map_validation |4 54 r0.310
0.34 —— map_train | 0.305
0 1000 2000 3000
step
0.350
0.295
l0.35 |0.345
0.290 c L0340
o s C
§0.285 1030% |43 5
I I iy
T 0.280 > 10.330 &
F —— map_test 033 & £
0.275 [g 10,325
—— map_validation
0.270 —— map_train to.32 [0-320
0 1000 2000 3000
step
0.110
0.124
r0.108 c 0.108
o
o 0.123 S -
- 0 106£ e £
20.122 10655 104 o
£) g
0.121 map_test | o.104 £ 0102
—— map_validation .
0.1201 —— map_train 0.100
0 1000 2000 3000
step

Figure 3: Learning curves for Robust (top), Gov2 (middle),
and ClueWeb (bottom).

outperforms the baseline methods. RML finds and weights diverse
feedback terms when trained by optimizing a-nDCG.

In this study, we learn a query model in order to maximize the
retrieval performance but we do not modify the retrieval model.
As future work, the agent could also learn to find the similarity of
the query and document model in the main retrieval. Proposing an
effective reward function to consider two or more retrieval metrics
at the same time is another aspect of future work.

6 ACKNOWLEDGEMENTS

This work was supported in part by the Center for Intelligent In-
formation Retrieval and in part by NSF grant #IIS-1617408. Any
opinions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect those of the sponsor.

SIGIR ’20, July 25-30, 2020, Xi’an, China

REFERENCES

(1]

[12]

[13]

[14

[15]
[16]

[17]

[18

[19]

[20]

[21]

[22

[23]
[24]
[25]
[26]
[27]

[28]

[29]

[30

[31]

Martin Abadi and Agarwal A Barham P TensorFlow. 2016. Large-scale machine
learning on heterogeneous distributed systems. In OSDIGAZ16. 265-283.

Nitish Aggarwal and Paul Buitelaar. 2012. Query Expansion Using Wikipedia
and Dbpedia.. In CLEF (Online Working Notes/Labs/Workshop).

Mohammad Aliannejadi, Hamed Zamani, Fabio Crestani, and W. Bruce Croft.
2018. Target Apps Selection: Towards a Unified Search Framework for Mobile
Devices. In SIGIR ’18. 215-224.

R. Attar and A. S. Fraenkel. 1977. Local Feedback in Full-Text Retrieval Systems.
J. ACM 24, 3 (1977), 397-417.

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe,
Joelle Pineau, Aaron Courville, and Yoshua Bengio. 2016. An actor-critic algorithm
for sequence prediction. arXiv preprint arXiv:1607.07086 (2016).

Guihong Cao, Jian-Yun Nie, Jianfeng Gao, and Stephen Robertson. 2008. Selecting
good expansion terms for pseudo-relevance feedback. In SIGIR '08. ACM, 243—
250.

Rich Caruana, Steve Lawrence, and C Lee Giles. 2001. Overfitting in neural nets:
Backpropagation, conjugate gradient, and early stopping. In Advances in neural
information processing systems. 402-408.

Charles LA Clarke, Maheedhar Kolla, Gordon V Cormack, Olga Vechtomova,
Azin Ashkan, Stefan Biittcher, and Ian MacKinnon. 2008. Novelty and diversity
in information retrieval evaluation. In SIGIR ’08. ACM, 659-666.

Stéphane Clinchant and Eric Gaussier. 2013. A theoretical analysis of pseudo-
relevance feedback models. In ICTIR ’13. ACM, 6.

Kevyn Collins-Thompson. 2009. Reducing the risk of query expansion via robust
constrained optimization. In CIKM "09. ACM, 837-846.

Gordon V. Cormack, Mark D. Smucker, and Charles L. Clarke. 2011. Efficient and
Effective Spam Filtering and Re-ranking for Large Web Datasets. Inf. Retr. 14,5
(2011), 441-465.

W. B. Croft and D. J. Harper. 1979. Using Probabilistic Models of Document
Retrieval Without Relevance Information. J. of Documentation 35, 4 (1979), 285—
295.

Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W. Bruce
Croft. 2017. Neural Ranking Models with Weak Supervision. In SIGIR’17. 65-74.
Fernando Diaz. 2015. Condensed list relevance models. In ICTIR ’15. ACM, 313—
316.

Fernando Diaz, Bhaskar Mitra, and Nick Craswell. 2016. Query expansion with
locally-trained word embeddings. arXiv preprint arXiv:1605.07891 (2016).
Jiafeng Guo, Yixing Fan, Qingyao Ai, and W. Bruce Croft. 2016. A Deep Relevance
Matching Model for Ad-hoc Retrieval. In CIKM’16. 55-64.

Kalervo Jarvelin and Jaana Kekéldinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422-446.

Thorsten Joachims. 2002. Optimizing search engines using clickthrough data.
In Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining. 133-142.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR’15.

John Lafferty and Chengxiang Zhai. 2001. Document language models, query
models, and risk minimization for information retrieval. In SIGIR '01. ACM,
111-119.

Victor Lavrenko and W. Bruce Croft. 2001. Relevance Based Language Models.
In SIGIR’01. 120-127.

Canjia Li, Yingfei Sun, Ben He, Le Wang, Kai Hui, Andrew Yates, Le Sun, and
Jungang Xu. 2018. NPRF: A neural pseudo relevance feedback framework for
ad-hoc information retrieval. arXiv preprint arXiv:1810.12936 (2018).

Yuanhua Lv and ChengXiang Zhai. 2009. A Comparative Study of Methods for
Estimating Query Language Models with Pseudo Feedback. In CIKM 09.
Yuanhua Lv and ChengXiang Zhai. 2010. Positional relevance model for pseudo-
relevance feedback. In SIGIR ’10. ACM, 579-586.

Yuanhua Lv and ChengXiang Zhai. 2014. Revisiting the divergence minimization
feedback model. In CIKM ’14. ACM, 1863-1866.

Donald Metzler and W Bruce Croft. 2007. Latent concept expansion using markov
random fields. In SIGIR 07. ACM, 311-318.

Jun Miao, Jimmy Xiangji Huang, and Zheng Ye. 2012. Proximity-based rocchio’s
model for pseudo relevance. In SIGIR ’12. ACM, 535-544.

Ali Montazeralghaem, Hamed Zamani, and Azadeh Shakery. 2016. Axiomatic
analysis for improving the log-logistic feedback model. In SIGIR ’16. ACM, 765—
768.

Ali Montazeralghaem, Hamed Zamani, and Azadeh Shakery. 2018. Theoretical
Analysis of Interdependent Constraints in Pseudo-Relevance Feedback. In SIGIR
’18. ACM, 1249-1252.

Rodrigo Nogueira and Kyunghyun Cho. 2017. Task-oriented query reformulation
with reinforcement learning. arXiv preprint arXiv:1704.04572 (2017).

Romain Paulus, Caiming Xiong, and Richard Socher. 2017. A deep reinforced
model for abstractive summarization. arXiv preprint arXiv:1705.04304 (2017).

(32]

[33

[34

[35

&
2

~
=

N
fla’

~
s

~
£

[48]
[49]
[50]

[51]

o
&,

[53

[54

[55

Ali Montazeralghaem, Hamed Zamani, and James Allan

Jay M. Ponte and W. Bruce Croft. 1998. A Language Modeling Approach to
Information Retrieval. In SIGIR’98. 275-281.

Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland Hafner, Gabriel Barth-
Maron, Matej Vecerik, Thomas Lampe, Yuval Tassa, Tom Erez, and Martin Ried-
miller. 2017. Data-efficient deep reinforcement learning for dexterous manipula-
tion. arXiv preprint arXiv:1704.03073 (2017).

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba.
2015. Sequence level training with recurrent neural networks. arXiv preprint
arXiv:1511.06732 (2015).

Steven] Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and Vaibhava
Goel. 2017. Self-critical sequence training for image captioning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 7008-7024.
Stephen E. Robertson and Karen Sparck Jones. 1988. Document Retrieval Systems.
Taylor Graham Publishing, London, UK, UK, Chapter Relevance Weighting of
Search Terms, 143-160. http://dl.acm.org/citation.cfm?id=106765.106783

J.J. Rocchio. 1971. Relevance Feedback in Information Retrieval. In The SMART
Retrieval System: Experiments in Automatic Document Processing. Prentice Hall,
313-323.

Corby Rosset, Damien Jose, Gargi Ghosh, Bhaskar Mitra, and Saurabh Tiwary.
2018. Optimizing Query Evaluations using Reinforcement Learning for Web
Search. arXiv preprint arXiv:1804.04410 (2018).

David E Rumelhart, Geoffrey E Hinton, and Ronald] Williams. 1986. Learning
representations by back-propagating errors. nature 323, 6088 (1986), 533.
Gerard Salton and Chris Buckley. 1990. Improving retrieval performance by
relevance feedback. Journal of the American society for information science 41, 4
(1990), 288-297.

Aliaksei Severyn and Alessandro Moschitti. 2015. Learning to rank short text
pairs with convolutional deep neural networks. In SIGIR ’15. ACM, 373-382.
David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
and others. 2017. Mastering the game of Go without human knowledge. Nature
550, 7676 (2017), 354.

Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

Yuan Tang. 2016. TF. Learn: TensorFlow’s high-level module for distributed
machine learning. arXiv preprint arXiv:1612.04251 (2016).

Zeng Wei, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. 2017. Rein-
forcement learning to rank with Markov decision process. In SIGIR ’17. ACM,
945-948.

Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3-4 (1992), 229-256.
Liu Yang, Minghui Qiu, Chen Qu, Jiafeng Guo, Yongfeng Zhang, W Bruce Croft,
Jun Huang, and Haiging Chen. 2018. Response Ranking with Deep Matching
Networks and External Knowledge in Information-seeking Conversation Systems.
arXiv preprint arXiv:1805.00188 (2018).

Hamed Zamani and W Bruce Croft. 2016. Embedding-based query language
models. In ICTIR ’16. ACM, 147-156.

Hamed Zamani and W. Bruce Croft. 2017. Relevance-based Word Embedding. In
SIGIR’17. 505-514.

Hamed Zamani and W Bruce Croft. 2017. Relevance-based word embedding. In
SIGIR ’17. ACM, 505-514.

Hamed Zamani, Javid Dadashkarimi, Azadeh Shakery, and W. Bruce Croft. 2016.
Pseudo-Relevance Feedback Based on Matrix Factorization. In CIKM’16.

Wei Zeng, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. 2018. Multi Page
Search with Reinforcement Learning to Rank. In SIGIR ’18. ACM, 175-178.
Chengxiang Zhai and John Lafferty. 2001. Model-based feedback in the KL-
divergence retrieval model. In CIKM °01. 403-410.

Chengxiang Zhai and John Lafferty. 2001. Model-based Feedback in the Language
Modeling Approach to Information Retrieval. In CIKM’01. 403-410.
Chengxiang Zhai and John Lafferty. 2004. A Study of Smoothing Methods for
Language Models Applied to Information Retrieval. ACM Trans. Inf. Syst. 22, 2
(2004).

http://dl.acm.org/citation.cfm?id=106765.106783

	Abstract
	1 Introduction
	2 RELATED WORK
	2.1 Estimating Query Language Models
	2.2 Reinforcement Learning

	3 Learning Query Language Model
	3.1 Problem Statement and Motivation
	3.2 A Reinforcement Learning Framework for Relevance Feedback
	3.3 Policy Network Architecture

	4 Experiment
	4.1 Results and Discussion

	5 Conclusions and Future Work
	6 Acknowledgements
	References

