
Using Cumulative Distribution Based Performance

Analysis to Benchmark Models

Scott M. Jordan Daniel Cohen
University of Massachusetts Amherst

[sjordan,dcohen,pthomas]@cs.umass.edu

Philip S. Thomas

Abstract

When using only reported empirical results, it has become difficult to identify
machine learning methods that provide meaningful advancement. One reason
is that results are commonly only reported using well-tuned models, and thus
represent an optimistic evaluation of performance. In this work, we propose
a new framework for evaluating algorithms that presents both the performance
when the system is well-tuned, as well as the difficulty of tuning the algorithm.
This is achieved by considering the distribution of performances that result when
applying the method with different hyper-parameter settings (e.g., different step
sizes and network structures). Using common benchmark tasks in supervised and
reinforcement learning, we demonstrate how this evaluation framework can both
evaluate an algorithm’s robustness to hyper-parameter selection and identify new
areas of improvement.

1 Introduction

As new algorithms are developed, a common set of benchmark tasks are used to evaluate and compare
to previous approaches. Based on the results reported on benchmark scores, it could be argued
that some algorithms have attained or surpassed human level performance on specific collections,
e.g., ImageNet [12] and the Arcade Learning Environment [7]. However, the style of using a single
benchmark score leads researchers to tune their algorithm’s hyper-parameters, e.g., steps sizes and
network structures, until performance is superior to other algorithms. As a result, this optimistic
approach to evaluation shows what an algorithm can achieve, not what it is likely to achieve.

The performance of an algorithm depends on four factors: the chosen hyper-parameters, seed of
a random number generator, available training data, and test data used to evaluate the model’s
performance. The current method of evaluation does not consider all these sources of variability.
Furthermore, it compresses the performance into a single metric which hides the variability of the
algorithm’s performance on each task. Previous work has proposed a more informative view of
algorithm performance by using the the distribution of performance obtained as an algorithm’s
hyper-parameters are changed [2]. We extend this work by providing an experimental procedure
for estimating the performance distribution as hyper-parameters, random seed, training dataset, and
testing dataset are changed. Additionally, we demonstrate this evaluation method on both supervised
learning (SL) and reinforcement learning (RL) benchmark tasks.

2 Current Methods of Evaluation

The current method to evaluate performance of a model or learning algorithm is to tune hyper-
parameters prior to reporting performance on a held out dataset. This tune-and-test procedure splits
the evaluation of the algorithm into two phases: a model search phase and an evaluation phase. The
model search phase involves manual tuning or using an automated search method [1] to identify high

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



performing hyper-parameters that score well on a portion of the training set. The evaluation phase is a
single step where the tuned model is evaluated on the held out test data by computing a performance
metric, e.g., classification accuracy.

The performance from this method of evaluation discards a significant amount of information as the
reported score becomes a single random variable drawn from the probability distribution over the
model’s evaluation score. Reproducing results of this style of evaluation can be challenging. For
example, previous work [5] shows that extensive hyper-parameter search fails to reach within 10
points of published SQuAD benchmark results. As a consequence, results from literature are difficult
to reproduce and can lead to incorrect interpretations of performance [6]. Using a more informative
style of evaluation is necessary to limit the impact of these issues.

By posing an algorithm’s training procedure and scoring as a stochastic process, new and informative
evaluation questions can be formulated. Consider the training and scoring of an algorithm that
depends on a set of hyper-parameters, X ∈ X , a training dataset, Dtrain ∈ D, test dataset, Dtest ∈ D,
and random seed, S ∈ S, where X is the set of all valid hyper-parameter configurations for a
particular algorithm, D is the set of all possible datasets, and S is the set of all possible random seeds.
The training and scoring function, h : X ×D ×D × S → R, that maps a sample of algorithm hyper-
parameters, X , training and testing datasets Dtrain and Dtest, and a random seed, S, to a score, Z ∈ R.
The standard tune and test evaluation score can be rewritten in this notation as z = h(x̂, dtrain, dtest, s),
where dtrain ∈ D is an instance of training dataset, dtest ∈ D is an instance of a testing dataset, s is
the random seed used, and x̂ = argmax

x∈X E[h(x,D′
train, Dvalidation, S)], where D′

train, Dvalidation are
sampled from training dataset, dtrain. In practice however, the hyper-parameter tuning process is often
accidentally biased by the test set performance, i.e., x̂ = argmax

x∈X E[h(x, dtrain, dtest, S)]. This
results in higher performance when compared to hyper-parameters selected without any knowledge
of the test set. In the next section, we will use this framework to define a new evaluation procedure.

3 Distributional Evaluation

Using the notation defined above, the performance of an algorithm can be viewed as a random variable,
Z. For example, the expected performance of an algorithm where only the random seed is viewed as a
random quantity is E[Z|X = x,Dtrain = dtrain, Dtest = dtest] =

∑
s∈S

h(x, dtrain, dtest, s) Pr(S = s).
A more critical evaluation of an algorithm can be considered by taking the expectation with respect
to all sources of variation e.g., E[Z]. An algorithm which only performs well on a narrow set of
hyper-parameters is likely to need additional tuning when applied to similar problems. An ideal
algorithm would perform well on a new problem without requiring problem specific tuning. Thus,
it is important to include variations in hyper-parameters when estimating the performance of an
algorithm. This is especially important in online learning and RL where the algorithm is evaluated
during training before any hyper-parameter tuning can occur.

The expected value of performance alone is insufficient to properly evaluate an algorithm as it discards
information about the variance in performance. A more useful representation of performance can be
obtained by considering the cumulative distribution function (CDF) of performance over all sources
of variance. The CDF of performance for an algorithm is the function, FZ : R → [0, 1], which
maps a score, z, to the probability that the algorithm achieves a score less or equal to that score, i.e.,
FZ(z) := Pr(Z ≤ z) where z ∈ R.

Using this distribution of performance allows for comparisons between algorithms with respect to
their variance. We propose that evaluating algorithm performance should be approached in two ways:
1) visually examining the CDF of performance and 2) evaluating numerically by statistics computed
from the CDF. The visual investigation by plotting the CDF allows for a quick interpretation of
an algorithm’s variability and range of performance. A numerical evaluation can summarize an
algorithm’s performance with respect to task specific performance constraints. For example, if a task
has a minimum threshold of performance required, zthresh, then an algorithm can be scored based
on the area under the CDF curve that meets this threshold, i.e.,

∫∞

zthresh
zfZ(z)dz, where fZ(z) is

the probability density of performance at z. Another similar measure is Conditional Value-At-Risk
(CVaR) [11] which computes the expected value of a random variable above a probability, α, i.e.,

CVaRα(Z) = E[Z|Z ≥ F−1

Z
(α)], where F−1

Z
(α) := argmin

z
{z|FZ(z) ≥ α} is the inverse CDF

of FZ . When using CVaR, algorithms are evaluated based on the average performance of the top
(1− α) percent of trials, i.e., CVaR0.9(Z) is the average performance of the top 10% of trials. There

2



exist another CVaR measure that computes the expected value below a probability, α, which, would
provide a measure of risk in this setting. However, in this work we use the first definition of CVaR.

We present our procedure, Distributional Sampling for Evaluation (DSE), for generating the empirical
CDF of an algorithm’s performance in Algorithm 1. In order to conduct this type of evaluation
there needs to be a method for sampling hyper-parameters for each algorithm. How this method is
defined can greatly affect results. For example, if one algorithm uses a sampling method that mostly
selects poor performing hyper-parameter combinations and another that only samples near optimal
combinations the former algorithm will appear arbitrarily worse than the latter. For this reason an
algorithm should specify how hyper-parameters should be selected. In lieu of these specifications,
hyper-parameter combinations should be sampled uniformly from ranges found in literature showing
the algorithm performing well on similar problems. This leaves open an avenue to improve the
understanding of an existing algorithm by identifying how ranges should be set.

While DSE is specified for hyper-parameters to be randomly sampled, automated tuning of the
hyper-parameters can be incorporated through modification of the training and evaluation function, f .
For example, inside f the hyper-parameters could be tuned using random search and cross validation
over the training set. In the experiments below, we use both DSE with automated hyper-parameter
tuning and DSE with random hyper-parameter sampling.

At first glance our approach appears to require additional computation time, however, time is often
already spent tuning hyper-parameters. Instead of discarding the results from sub par hyper-parameter
configurations, it could instead be used to generate the distribution of performance. Additional
computation time is thus minimized and the comparison to other algorithms is fair in that all
algorithms are run for the same number of trials.

Algorithm 1: DSE: Distributional Sampling for Evaluation

Input: algorithm training and evaluation function, f , hyper-parameter sampling function, φ,
data sampling function, ψ, and number of trials to run, N .
Return: empirical CDF, F , of the performance metric
τ ← [] Initialize list of performance results
for for each random seed do

s ∼ uniform(S) sample a random seed
x← φ(s) sample set of hyper-parameters
dtrain, dtest ← ψ(s) sample datasets
z ← f(x, dtrain, dtest, s) get performance metric
τ ← τ + [z] add performance metric to list

F ← compute_cdf(τ) Compute empirical CDF

4 Experiments

In this section we provide examples showing the results of DSE on several classification tasks and
an RL task. In the classification task we compare five algorithms, support vector machines (SVM),
k-nearest neighbors (kNN), random forests (RF), logistic regression (LR), and neural networks (NN).
Each algorithm is evaluated on four standard classification tasks found in the scikit-learn repository
[10]: moons, circles, linear, and face identification. The moons task involves classifying points on
one of two intersecting half circles, the circles task involves classifying points on an inner and outer
circle, the linear task separates classes by hyper-planes and points are noisily generated on both sides.
The face identification task uses images from the Labeling Faces in the Wild dataset [8].

We run two different experimental setups for the supervised classification tasks: DSE with automated
hyper-parameter tuning, and DSE with randomly sampled hyper-parameters. The same hyper-
parameter ranges were used for both versions and the details can be found in Appendix A.

In RL, a standard way to report results is to provide a learning curve plot that shows average total
reward obtained from each episode. This method is subject to high variance and not able to capture
the sensitivity of an algorithms to its hyper-parameters. To see how the distributional approach to
evaluation benefits RL we compare two algorithms: Actor-Critic (AC) [14] and Proximal Policy
Optimization (PPO) [13] on the benchmark task pendulum swing-up and balance [4]. For both of

3







References

[1] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In Advances in Neural Information Processing Systems 24: 25th
Annual Conference on Neural Information Processing Systems 2011. Proceedings of a meeting
held 12-14 December 2011, Granada, Spain., pages 2546–2554, 2011.

[2] Daniel Cohen, Scott M. Jordan, and W. Bruce Croft. Distributed evaluations: Ending neural
point metrics. CoRR, abs/1806.03790, 2018.

[3] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec
Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. OpenAI Baselines.
https://github.com/openai/baselines, 2017.

[4] Kenji Doya. Reinforcement learning in continuous time and space. Neural Computation,
12(1):219–245, 2000.

[5] Alexander Dür, Andreas Rauber, and Peter Filzmoser. Reproducing a neural question answering
architecture applied to the squad benchmark dataset: Challenges and lessons learned. In
Advances in Information Retrieval - 40th European Conference on IR Research, ECIR 2018,
Grenoble, France, March 26-29, 2018, Proceedings, pages 102–113, 2018.

[6] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 3207–3214,
2018.

[7] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van
Hasselt, and David Silver. Distributed prioritized experience replay. CoRR, abs/1803.00933,
2018.

[8] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces in the
wild: A database for studying face recognition in unconstrained environments. Technical Report
07-49, University of Massachusetts, Amherst, October 2007.

[9] George Konidaris, Sarah Osentoski, and Philip S. Thomas. Value function approximation
in reinforcement learning using the fourier basis. In Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2011, San Francisco, California, USA, August 7-11,
2011, 2011.

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[11] R. Tyrrell Rockafellar and Stanislav Uryasev. Optimization of conditional value-at-risk. Journal
of Risk, 2:21–41, 2000.

[12] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision,
115(3):211–252, 2015.

[13] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[14] Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an introduction. Adaptive
computation and machine learning. MIT Press, 1998.

6



Appendix A Classification Experimental Details

The moons, circles, and linear tasks have generatabled datasets. For each task 2,000 points are
randomly generated and the train and test data is randomly selected with a 60%/40% train/test
split. The linear tasks has features in R

10 and there are 4 classes with 2 clusters per class. The face
identification task uses images from the Labeling Faces in the Wild dataset [8], which has 1288 data
points, 7 classes, and the features used are the projection of the images on to the top 150 eigenvectors.
Since the face identification tasks is not generatable, the randomness in the data only comes from
a random train/test split. All algorithms and datasets used were implemented in the scikit-learn
repository [10]. Each algorithm and classification problem was run for 2,000 iterations of DSE.
For DSE with hyper-parameter tuning, the training and evaluation function, f , includes an inner
training loop that tunes the hyper-parameters. During the tuning process, 50 random hyper-parameter
configurations are sampled and the best performing set on a 3-fold cross validation of the training
dataset is used to evaluate the algorithm on the test set. DSE with tuning approach was ran for 2,000
iterations.

The hyper-parameters for each algorithm were selected as follows. For the k-nearest neighbors
algorithm the number of neighbors was chosen uniformly from the set {3, 4, 5, 10, 25, 50}. All other
parameters for the k-nearest neighbors algorithm were left as the defaults. In the SVM algorithm the
C parameter was selected from a (natural) log uniform distribution in the range[0.01, 100]. The SVM
kernel was chosen uniformly between the set {linear, polynomial, RBF, sigmoid}. When the kernel
was selected to be polynomial the degree was chosen uniformly from the set {2, 3, 4, 5}. All other
SVM parameters were left at their default values. The random forest algorithm used a number of
estimators to from a (natural) log uniform distribution in the range [10, 100]. The decision criterion
was chosen uniformly between Gini impurity and entropy. The minimum number of samples to split a
node was selected uniformly from the set {2, 4, 8, 16} and the minimum number of samples in a leaf
node was selected uniformly from the set {1, 3, 5}. The logistic regression algorithm used the saga
solver, an l2 penalty on the weights, maximum iterations of 1,000, and fit the y-intercept. Additionally
the C parameter for logistic regression was sampled form a log uniform random distribution over the
range [0.0001, 1,0000]. The neural network used the adam optimizer with a constant learning rate,
early stopping and a max number of epochs of 200. The activation function of neural network was
chosen uniformly from the set {logistic, tanh, relu}. The hidden layer sizes were chosen uniformly
random from combinations of [50, 100, 150] units per layer and using one or two layers. The learning
rate was randomly sampled from (natural) log uniform distribution over the range [0.0001, 0.1].

Appendix B RL Experimental Details

To see how the distributional approach to evaluation benefits RL we compare two algorithms Actor-
Critic (AC) [14] and Proximal Policy Optimization (PPO) [13] on the benchmark task pendulum
swing-up and balance [4]. For both of these algorithms hyper-parameters are sampled randomly from
the ranges which provided below. The ranges for PPO were determined from the paper introducing
it with sight modifications to make it perform better on this domain. The ranges were Actor-Critic
were set from a combination of parameters found in the literature. Both algorithms use a linear
policy and value function using the Fourier basis [9]. Each algorithm was run with repeated trials
for 12 hours spread across 1, 000 CPUs. The Actor-Critic algorithm was run for significantly more
trials, 3, 041, 685, than PPO, 17, 415, because it was implemented in c++ and PPO uses the python
implementation in the OpenAI Baselines repository [3].

Both algorithms used the same linear policy structure that used the Fourier basis with an independent
order of six and a dependent order of 5. Each algorithm also used a Fourier basis function for
the critic to use with independent and dependent orders uniformly sampled from a range [0, 10].
Additionally, both algorithms used the reward discount parameter γ = 0.99, a λ-return mixing
parameter sampled uniformly from [0, 1]. The actor-critic algorithm used actor and critic learning
rates sampled from a log uniform distribution from the range [0.0001, 0.1]. The PPO algorithm
used learning rate sampled from a long uniform distribution over the range [0.00001, 0.01], the
steps-per-batch parameter was selected from a log (base 2) uniform range of [16, 256], the number of
epochs was chosen uniformly over the range [1, 15], the batch size was selected uniformly from the
range [8, 64], and the importance weights clipping parameter was selected uniformly from the range
[0.1, 0.3]. All other PPO parameters were left as the defaults in the baselines repository.

7




	Introduction
	Current Methods of Evaluation
	Distributional Evaluation
	Experiments
	Results
	Supervised Learning
	Reinforcement Learning

	Conclusion
	Acknowledgements
	Classification Experimental Details
	RL Experimental Details
	Comparison to learning curves

