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ABSTRACT

Deep text matching approaches have been widely studied for many

applications, including question answering and information re-

trieval systems. To deal with a domain that has insufficient labeled

data, these approaches can be used in a Transfer Learning (TL)

se�ing to leverage labeled data from a resource-rich source domain.

To achieve be�er performance, source domain data selection is

essential in this process to prevent the “negative transfer” prob-

lem. However, the emerging deep transfer models do not fit well

with most existing data selection methods, because the data selec-

tion policy and the transfer learning model are not jointly trained,

leading to sub-optimal training efficiency.

In this paper, we propose a novel reinforced data selector to select

high-quality source domain data to help the TL model. Specifically,

the data selector “acts” on the source domain data to find a subset

for optimization of the TL model, and the performance of the TL

model can provide “rewards” in turn to update the selector. We build

the reinforced data selector based on the actor-critic framework

and integrate it to a DNN based transfer learning model, result-

ing in a Reinforced Transfer Learning (RTL) method. We perform

a thorough experimental evaluation on two major tasks for text

matching, namely, paraphrase identification and natural language

inference. Experimental results show the proposed RTL can sig-

nificantly improve the performance of the TL model. We further

investigate different se�ings of states, rewards, and policy optimiza-

tion methods to examine the robustness of our method. Last, we

conduct a case study on the selected data and find our method is

able to select source domain data whose Wasserstein distance is

close to the target domain data. �is is reasonable and intuitive as

such source domain data can provide more transferability power

to the model.

1 INTRODUCTION

Text matching is an important problem in both information retrieval

and natural language processing. Typical examples of text match-

ing include paraphrase identification [26], natural language infer-

ence [3], document retrieval [10], question answering (QA) [37],

and conversational response ranking [38]. In particular, text match-

ing plays a key role in conversational assistant systems to answer

customer questions automatically. For example, the Contact Cen-

ter AI1 recently launched by Google and the AliMe [15] built by

Alibaba Group are both capable of handling informational requests

by retrieving potential answers from a knowledge base.

We illustrate the importance of text matching by describing the

role it plays in a retrieval-based QA system. Typically, for a given

user query, the system measures its similarity with the questions

in the knowledge base and returns the answer of the best matched

question [36, 43]. �e query-question matching problem can be

modeled as a paraphrase identification (PI) or natural language

inference (NLI) task, which are both typical tasks of text matching.

�us in this work, we focus on PI and NLI tasks to evaluate the

performance of our method on text matching. We believe the im-

provement of text matching methods can benefit the end tasks such

as question answering. PI and NLI problems have been widely stud-

ied in previous work [3, 26, 40, 41]. However, when applied to real

world applications, such methods face the challenge of insufficient

labeled data in different domains. For example, in the E-commerce

industry, a QA system has to handle each small domain of products,

such as books, electronics, clothes, etc. It is unrealistic to obtain a

large amount of labeled training data for every small domain. As

a promising approach to bridge the domain discrepancy, Transfer

Learning (TL) has become an important research direction in the

past several years [17, 27, 29, 42, 43].

We argue that source domain data selection is necessary for TL to

prevent the “negative transfer” problem. Table 1 gives an example

of negative transfer in the PI task. “Order” typically means to place

an order for a product in the E-commerce domain (target domain).

However, in an open domain (source domain) dataset, “order” can be

used to denote a succession or sequence. Transfer learning without

source domain data selection might result in negative transfer.

Recently, neural architectures are employed to leverage a large

amount of source domain data and a small amount of target domain

data in a multi-task learning manner [20, 39], which can be de-

scribed as Deep Neural Networks (DNN) based supervised transfer

learning. �e DNN based TL framework has been proven to be

effective in deep text matching tasks for question answering sys-

tems [43]. Although various data selection methods [4, 11, 23, 27]

1h�ps://cloud.google.com/solutions/contact-center/



Table 1: An example of negative transfer in the PI task. �is table is best viewed in color. “Order” in blue means to place an

order for a product, which is typical in the E-commerce domain. “Order” in red means a succession or sequence, which might

appear in the source open domain. Transfer learning without source domain data selection might result in negative transfer.

Domain Sentence 1 Sentence 2

Which answers does �ora show first for each question? How does �ora decide the order of the answers to a question?
What order should the Matrix movies be watched in Is there any particular order in which I should watch the Madea movies

Source
(Open Domain)

How can I order a cake from Walmart online? How do I order a cake from Walmart?

How long is my order arriving? Is it over? Will I have the refund? I have escalated an order and have not been updated in over a week.
How can i get an order receipt or invoice? How do I get an invoice to pay?

Target
(E-commerce Domain)

I need to understand why my orders have been cancelled Why my order have been closed?

were proposed for TL se�ings, most of them do not fit well with

neural transfer models, because the data selector/reweighter is not

jointly trained with the TL model. Specifically, the TL task model is

considered as a sub-module of the data selection framework. �us

the TL task model needs to be retrained repetitively to provide suffi-

cient updates to the data selection framework. Due to the relatively

long training time of neural models, such data selection methods

may suffer from long training time when applied to neural TL mod-

els. �erefore, we argue that data selection methods for transfer

learning need to be revisited under the DNN based TL se�ing.

In the se�ing of DNN based transfer learning, the TL model is

updated with mini-batch gradient descent in an iterative manner.

In order to learn a universal data selection policy in this se�ing, we

model the problem of source domain data selection as a Markov

Decision Process (MDP) [25]. Specifically, at each time step (mini-

batch/iteration), the TL model is at a certain state s , the decision

maker (data selector) chooses an action a to select samples from

the current source batch to optimize the TL model. �e TL model

gives the data selector a reward r and moves on to the next state

s ′. �e state of s ′ depends on the current state s and the action a

made by the data selector. To solve this problem, it is intuitive to

employ reinforcement learning, where the decision maker is the

data selection policy that needs to be learned.

In this paper, we propose a novel reinforced data selector to select

high-quality source data to help the TL model. Specifically, we build

our data selector based on the actor-critic framework and integrate

it to a DNN based TL model, resulting in a Reinforced Transfer

Learning (RTL) method. To improve the model training efficiency,

the instance based decisions are made in a batch. Rewards are

also generated on a batch level. Extensive experiments on PI and

NLI tasks show that our RTL method significantly outperforms

existing methods. Finally, we use Wasserstein distance to measure

the target and source domain distances before and a�er the data

selection. We find our method is able to select source data whose

Wasserstein distance is close to the target domain data. �is is

reasonable and intuitive as such source domain data can provide

more transferability power to the model.

To sum up, our contributions can be summarized as follows. (1)

To the best of our knowledge, we propose the first reinforcement

learning based data selector to select high-quality source data to

help the DNN based TL model. (2) In contrast to conducting data

selection instance by instance, we propose a batch based strategy

to sample the actions in order to improve the model training ef-

ficiency. (3) We perform thorough experimental evaluation on PI

and NLI tasks that involves four benchmark datasets. We find that

the proposed reinforced data selector can effectively improve the

performance of the TL model and outperform several existing base-

line methods. We also use Wasserstein distance to interpret the

model performance.

2 RELATED WORK

Paraphrase Identification and Natural Language Inference.

PI and NLI problems have been extensively studied in previous

work. Existing methods include using convolutional, recurrent,

or recursive neural networks to model the sentence interactions,

a�entions, or encoding of a pair of input sentences [3, 26, 40, 41].

All the methods have been proven to be highly effective if given

enough labeled training data. However, in real world applications,

obtaining a large amount of labeled data by human annotation is

not always affordable in terms of time and expense. �erefore, we

focus on PI and NLI tasks in a transfer learning se�ing in this paper.

Transfer Learning. Transfer learning has been widely studied

in the past years [21]. Existing work can be mainly classified into

two categories. �e first category makes the assumption that la-

beled data from both source and target domains are available to us,

though the amount may differ [6, 43]. While the second category

assumes that no labeled data from the target domain is available in

addition to the labeled source domain data [27, 29]. Our work falls

into the first category. In addition, an alternative view of taxonomy

on transfer learning is to focus on methods. In this case, there

are also two categories. �e first is the instance based methods,

which select or reweight the source domain training samples so

that data from the source domain and the target domain would

share a similar data distribution [4, 11, 27]. �e second category

is feature based methods, which aim to locate a common feature

space that can reduce the differences between the source and target

domains. �is goal is accomplished either by transform the features

from one domain to be closer to the other domain, or to project

both domains into a common latent space [29, 43].

In terms of instance based methods and feature based methods,

our work falls into the first category, and we select data from

the source domain to benefit the task performance in the target

domain. In this line of work, data selectors/reweighters are typically

not jointly trained with the TL model, which can lead to negative

impacts on training efficiency [4, 23, 27]. Specifically, the TL model

is considered as a sub-module of the data selection framework and

the data selection policy is updated based on the final performance

of the TL model. Due to the relatively long training time of neural

models, such data selection methods suffer from poor training

efficiency if applied to neural transfer learning models.



Reinforcement Learning. �e concept of reinforcement learn-

ing (RL) dates back to several decades ago [1, 31]. Recent advances

in deep learning made it possible for RL agents to generate di-

alogs [16], play video games [18], and even outperform human

experts in the game of Go [30]. Reinforcement learning algorithms

can be categorized into two types: value based methods and policy

based methods. Value based methods estimate the expected total

return given a state. �is type of method includes SARSA [28]

and the Deep Q Network [19]. Policy based methods try to find

a policy directly instead of maintaining a value function, such as

the REINFORCE algorithm [34]. Such methods can provide strong

learning signals to update the policy. Finally, it is also possible to

combine the value based and policy based approaches for a hybrid

solution, such as the actor-critic algorithm [14]. �is employs a

learned value estimator to provide a baseline for the policy network

for variance reduction. We experiment with policy based methods

and hybrid methods in our model.

Given the dynamic nature of reinforcement learning, researchers

found it useful to employ RL in data selection problems, because

data selection during training can be modeled as a sequential deci-

sion making process. So far, RL has been applied to data selection

in active learning [8], co-training [35], and other applications of

supervised learning, including computer vision [7, 23], machine

reading comprehension [32], and entity relation classification [9].

However, there is a lack of reinforced data selection methods under

a DNN based transfer learning se�ing.

3 OUR APPROACH

In this section, we present our reinforced transfer learning (RTL)

framework under a DNN based transfer learning se�ing. �e rein-

forced data selector is integrated into a TL model to select source

domain data to prevent negative transfer.

3.1 Task Definition

We formulate our task into three subtasks: a text matching task, a

transfer learning task, and a data selection task.

3.1.1 Text Matching. Both paraphrase identification and nat-

ural language inference tasks can be unified as a text matching prob-

lem, defined as follows. Given two sentencesX1 = {x
1
1, x

1
2, . . . , x

1
m }

and X2 = {x
2
1, x

2
2, . . . , x

2
n }, where x

j
i denotes a word embedding

vector either randomly initialized or retrieved from a pre-trained

global vector look up table (such as GloVe [24]).m andn denotes the

lengths of X1 and X2 respectively. �e goal is to predict a binary la-

bel y ∈ {0, 1} that denotes whether X1, X2 are semantically related.

For PI, y = 1 denotes the two sentences are semantically identical

(PARAPHRASE). For NLI2, y = 1 denotes that the hypothesis X2

can be inferred from the premise X1 (ENTAILMENT).

3.1.2 Transfer Learning. We consider the transductive trans-

fer learning se�ing, where the source and target tasks are the same,

while the source and target domains are different [21]. In contrast

to conventional transductive TL where no labeled target domain

data is available, we assume some target domain training data is

2�e common NLI task contains a third label of CONTRADICTION, which denotes the
premise and the hypothesis are contradicted. �e SciTail [12] dataset in our experiment
does not come with this label.

available to perform supervised training of a base model. However,

we expect a significantly larger amount of source domain training

data can boost the performance of the aforementioned base model

under a transfer learning se�ing. Given the labeled source domain

dataDs and labeled target domain dataDt for the same task, where

|Ds | >> |Dt |, the TL model leverages bothDs andDt to improve

the performance of the base model in the target domain.

3.1.3 Data Selection. �e data selection task under a trans-

fer learning se�ing is formulated as follows. A transfer learning

algorithm updates the TL model with a batch of source data Xs
b

and a batch of target data Xt
b
iteratively. Xs

b
and Xt

b
are drawn

fromDs andDt respectively. �e data selection module intervenes

before the update of every iteration. Specifically, the data selection

module selects a part of data Xs
′

b
from Xs

b
according to a policy π .

�e selected Xs
′

b
is expected to produce a be�er performance than

Xs
b
a�er this single iteration as well as future iterations.

3.2 Overview

�e proposed framework consists of three components: a base

model, a transfer learning model, and a reinforced data selector,

corresponding to the above three subtasks respectively. �e base

model tackles the basic problem of text matching. It takes in a pair

of sentences and generates a hidden representation of the sentence

pair for the final prediction. �e transfer learning model is built

on the top of the base model to leverage a large amount of source

domain data. Finally, the reinforced data selector is a compart-

mentalized part in the transfer learning framework to handle the

data selection for source domain data. �e reinforced data selector

is designed to prevent negative transfer and thus maximize the

effectiveness of the TL model. Figure 1 gives an overview of our

model.

3.3 Base Model

As illustrated in Figure 1, the base model in our method is a shared

encoder (shared neural network). Note that our method is a general

framework which can integrate different base models. Any imple-

mentation of text matching models can be adapted to our frame-

work. However, for real-world applications, it is a common practice

to consider the efficiency at both training and testing time [43].

�us, we use the Decomposable A�ention Model (DAM) [22] as our

base model, as DAM has effective performance with remarkable

efficiency in text matching.

DAM consists of three jointly trained components: “a�end”,

“compare”, and “aggregate”. First, the “attend” module so�ly aligns

the input pair of two sentences by obtaining the unnormalized

a�ention weights ei, j . Formally,

ei j = F (x1i )
⊤F (x2j ) (1)

where F (·) is a feed-forward network. �en the a�ention weights

are normalized as follows:

ϵ2i =

n∑

j=1

so�maxj (ei j ) x
2
j , ϵ1j =

m∑

i=1

so�maxi (ei j ) x
1
i (2)

where so�maxk (·) is to perform the so�max function on dimension

k . ϵ2i is interpreted as the subphrase in X2 aligned to x
1
i .
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Figure 1: Architecture of the proposed Reinforced Trans-

fer Learning (RTL) framework, which consists of two major

parts: a reinforced data selector and a TL model. �is figure

is best viewed in color. �e “Shared Encoder” refers to the

base model embedded in the TL model. �e reinforced data

selector selects a part of the source batch (blue) and feeds

them into the TLmodel at each iteration. �e TLmodel gen-

erates a reward on the target domain validation data for the

data selector. Target batches (orange/pink) are fed into the

TL model without data selection.

�en the “compare” module compares the aligned subphrases

separately and produces a set of matching vectors as follows:

v1,i = G(x
1
i ⊕ ϵ

2
i ), v2, j = G(x

2
j ⊕ ϵ

1
j ) (3)

where ⊕ means concatenation and G(·) is a feed-forward network.

Finally, the “aggregate” module combines the matching vectors

to produce a representation of the sentence pair for a final predic-

tion. Formally, the aggregated vectors are computed as follows:

v1 =

m∑

i=1

v1,i , v2 =

n∑

j=1

v2, j . (4)

Here v1 can be viewed as performing a sum pooling over the con-

catenated matrix [v1,1, v1,2, · · · , v1,m ]. In practice, it’s also benefi-

cial to consider a max pooling over the matrix [5], i.e.:

v
max
1 = maxmi=1(v1,i ), v

max
2 = maxnj=1(v2, j ) (5)

�e aggregated vectors are concatenated to form the output z:

z = v1 ⊕ v2 ⊕ v
max
1 ⊕ v

max
2 (6)

�e base model can be formulated as a transformation function

f that takes in a pair of sentences (X1(i),X2(i)) as input and pro-

duces a hidden representation zi = f (X1(i),X2(i)) as output. If

the base model is used alone to make predictions, a classification

(fully-connected) layer will be added a�er obtaining the hidden

representation.

3.4 Transfer Learning Model

As shown in Figure 1, we consider a DNN based transfer learning

framework with a fully-shared encoder [20, 39]. �e proposed data

selectionmethod is a generalmethod that can be adapted to other TL

frameworks, including fully-shared and specific-shared models [43].

We only consider the fully-shared model because we would like to

keep the TL model simple and focus on the reinforced data selector.

�e base model serves as a shared encoder for sentence pairs from

both source domain and target domain. For each given pair of

sentences (Xd
1 ,X

d
2 ) from domain d (d ∈ {s, t}), the shared encoder

maps (Xd
1 ,X

d
2 ) to a hidden representation z

d
= f (Xd

1 ,X
d
2 ). �en a

classification layer maps zd to a label yd . �e classification layers

are separately learned for different domains. Formally,

p(yd | zd ) = so�max(Wd
z
d
+ b

d ) (7)

where Wd and b
d are the weight matrix and bias vector for the

classification layer respectively for domain d . �us, the training

objective is to minimize the training loss for both source and target

domains. For training, we use the cross-entropy loss as follows.

Ld =
1

Nd

N d∑

n=1

−logp(y
(n)
c |X

d
1 (n),X

d
2 (n)), d ∈ {s, t}, (8)

where y
(n)
c ∈ {0, 1} is the ground truth label for the n-th data pair.

�e fully-shared encoder and the source classification layer is

considered as the source model. Similarly, the fully-shared encoder

and the target classification layer is considered as the target model.

3.5 Reinforced Data Selector

3.5.1 Overview. We cast the source domain data selection in

a transfer learning se�ing as a Markov Decision Process, which can

be solved by reinforcement learning. �e reinforced data selector

is an agent that interacts with the environment constructed by the

TL model. �e agent takes actions of keeping or dropping a given

source sample (a sentence pair) according to a learned policy. �e

agent bases its decision on a state representation that describes

several features of the given sample. �e TL model evaluates the

agent’s actions and produces rewards to guide the learning of the

agent. �e agent’s goal is to maximize the expected future total

rewards it receives.

Reinforcement learning is commonly used for policy learning

of agents in video games or chess games. In the context of video

games, an episode commonly refers to a round of the game where

the player either passes or fails the game at the end. �e player

would take a sequence of actions to reach the terminal state. In a

neural transfer learning se�ing, the TL model is updated batch by

batch for several epochs. It is natural to consider an epoch as an

episode and a batch as a step to take actions.

As shown in Figure 1, given each batch of the source domain

sentence pairs Xs
b
= {(X1(i),X2(i))

n
i=1}, where b denotes the batch

ID and n denotes the batch size. We obtain a batch of states Sb =

{S1, S2, . . . , Sn }, where Si denotes the state of the i-th sentence pair

(X1(i),X2(i)). �en the reinforced data selector makes a decision

for each sample (X1(i),X2(i)) according to a learned policy π (Si ).

Actions are also made in batch, denoted as Ab = {a1,a2, . . . ,an },

where ai ∈ {0, 1}. ai = 0 means to drop (X1(i),X2(i)) from X
s
b
.



�us, we obtain a new source domain batch Xs
′

b
that contains the

selected source samples only. Finally, �e transfer model is updated

with Xs
′

b
and produce a reward rb according to the performance on

target domain validation data.

We will introduce the state, action, and reward in detail in the

following sections. �e batch IDb is omi�ed for the state and action

for simplicity.

3.5.2 State. �e state of a given source domain sentence pair

(X1(i),X2(i)) is denoted as a continuous real valued vector Si ∈ R
l ,

where l is the dimension of the state vector. Si represents the

concatenation of the following features:

(1) A hidden representation zi , which is the output of the shared

encoder given (X1(i),X2(i)).

(2) �e training loss of (X1(i),X2(i)) on the source model.

(3) �e testing loss of (X1(i),X2(i)) on the target model.

(4) �e predicted probabilities of (X1(i),X2(i)) on the sourcemodel.

(5) �e predicted probabilities of (X1(i),X2(i)) on the targetmodel.

�e first feature is designed to present the raw content to the data

selector. Feature (3) and Feature (5) are based on the intuition that

helpful source domain training data would be classified with rela-

tively high confidence on the target model. Feature (2) and feature

(4) are also provided as feature (3) and feature (5)’s counterparts on

the source model.

3.5.3 Action. An action is denoted as ai ∈ {0, 1}, which indi-

cates whether to drop or keep (X1(i),X2(i)) from the source batch.

ai is sampled according to a probability distribution produced by

a learned policy function π (Si ). π (Si ) is approximated with a pol-

icy network that consists of two fully-connected layers. Formally,

π (Si ) is defined as follows:

π (Si ) = P(ai |Si ) = so�max(W2Hi + b2)

Hi = tanh(W1Si + b1)
(9)

whereWk and bk are the weight matrix and bias vector respectively

for the k-th layer in the policy network.

3.5.4 Reward. �e data selector takes actions to select data

from Xs
b
and form a new batch of source data Xs

′

b
. We use Xs

′

b
to update the source model and obtain an immediate reward rb
with a reward function R(Sb ,Ab ). In contrast to conventional

reinforcement learning, where one action is sampled based on one

state and obtaining one reward from the environment, our actions

are sampled in a batch based on a batch of states and obtaining one

reward in order to improve model training efficiency.

�e reward is set to the prediction accuracy on the target domain

validation data for each batch. Othermetrics generated on the target

validation data could also be applicable. To accurately evaluate the

utility of Xs
′

b
, rb is obtained a�er the source model is updated and

before the target model is updated. For the extremely rare case of

Xs
′

b
= ∅, we skip the update of source model for this step.

We compute the future total reward for each batch a�er an

episode. Formally, r ′
b
for batch b is computed as follows.

r ′
b
=

N−b∑

k=0

γkrb (10)

where N is the number of batches in this episode, r ′
b
is the future

total reward for batch b, and γ is the reward discount factor.

3.5.5 Optimization. We experiment with two methods to up-

date the policy network: the REINFORCE algorithm [34] and the

actor-critic algorithm [14]. Our model is mainly based on the actor-

critic framework since it can help to reduce the variance so that

the learning is more stable [14].

For any given episode, we aim to maximize the expected total

reward. Formally, we define the objective function as follows:

J (Θ) = EπΘ [

n∑

b=1

rb ] (11)

where the policy function π is parameterized by Θ. We further

compute the gradient to make a step of update as follows:

Θ← Θ + α
1

n

n∑

i=1

vi∇ΘlogπΘ(Si ) (12)

where α is the learning rate, n is the batch size, and vi is the target

that guides the update of the policy network. �e actor-critic algo-

rithm combines policy based methods and value based methods for

stable updates. We employ a value estimator network as the value

function to estimate the future total reward VΩ(Si ) for each state

Si in a given batch. �us, vi is computed as follows:

vi = r
′
b
−VΩ(Si ) (13)

�e structure of the value estimator network is similar to the pol-

icy network except that the output layer is a regression function.

Formally, the value network is optimized to approximate the real

future total reward r ′
b
, i.e. to minimize the Mean Squared Error

(MSE) between VΩ(Si ) and r
′
b
:

Ω ← Ω + α
1

n

n∑

i=1

∇ΩMSE(r ′
b
,VΩ(Si )) (14)

where the value function V is parameterized by Ω.

In addition to the actor-critic algorithm described above, we also

experiment with a classic Policy Gradient method named REIN-

FORCE algorithm. In this case, vi is simply set to r ′
b
in Equation 12,

which means that every action ai in this batch shares the same

reward r ′
b
.

3.6 Model Training

�e transfer learning model and the reinforced data selector are

learned jointly as they interact with each other closely during

training. To optimize the policy network, we use the actor-critic

algorithm described in Section 3.5.5. To optimize the TL model,

we use a gradient descent method to minimize the loss function in

Equation 8. We first pre-train the TL model for k iterations and then

start the joint training process. We use such a procedure following

previous work [2, 9].

�e details of the joint learning process is described in Algo-

rithm 1. When optimize the TL model, the gradient is computed

based on a batch of training data. �e TL model leverages training

data in both source and target domains for be�er model perfor-

mance. �e reinforced data selector intervenes before every itera-

tion of source model update by selecting helpful source domain data.

�erefore, the intervention process has an impact on the gradient



computed for the source model update, which includes the update

for the shared encoder. �e TL model provides a reward in turn to

evaluate the utility of the data selection. A�er each epoch/episode,

the policy network is updated with the actor-critic algorithm with

the stored (states, actions, reward) triplets.

Algorithm 1: Joint learning of the transfer learning model and

the reinforced data selector

Input :Episode L, source domain training data Ds , target

domain training data Dt and validation data Dval
t

Initialize the pre-trained source and target model in TL model;

Initialize the policy network and value estimator network;

for episode l = 1 to L do
Obtain the random batch sequence:

Ds = {X
s
1 ,X

s
2 , . . . ,X

s
N
} and Dt = {X

t
1 ,X

t
2 , . . . ,X

t
N
};

foreach (Xs
b
,Xt

b
) in {(Xs

b
,Xt

b
)N
b=1
} do

Obtain the states Sb = {S1, S2, . . . , Sn } for X
s
b
;

Sample actions Ab according to the policy π (Sb );

Obtain the filtered source training batch Xs
′

b
;

Update the source model with Xs
′

b
;

Obtain the reward rb on the target model with Dval
t ;

Update the target model with Xt
b
;

Store (Sb ,Ab , rb ) to an episode history H ;

end

foreach (Sb ,Ab , rb ) in H do

Obtain the future total reward r ′
b
as in Eq. 10;

Obtain the estimated future total rewards V (Sb );

Update the policy network following Eq. 12;

end

foreach (Sb ,Ab , rb ) in H do

Obtain the future total reward r ′
b
as in Eq. 10;

Update the value estimator network as in Eq. 14;

end

Empty H ;

end

4 EXPERIMENTS

4.1 Data Description

In this paper, we follow previous work [43] and use paraphrase

identification and natural language inference data to evaluate the

performance of our RTL model on text matching. Four benchmark

datasets are used in the PI and NLI tasks. Both task se�ings are

designed to transfer from a relatively open domain to a closed

domain. Statistics for all datasets are presented in Table 2.

4.1.1 Natural Language Inference (NLI). WeuseMultiNLI [33]

as the source domain data and SciTail [12] as the target domain

data. MultiNLI is a large crowdsourced corpora for textual en-

tailment recognition. Each sample is a (premise, hypothesis, label)

triplet, where the label is one of the ENTAILMENT, NEUTRAL, and

CONTRADICTION. In contrast to another widely used NLI dataset

SNLI [3], where all premise sentences are derived from image cap-

tions, MultiNLI has more diverse text sources and thus is more

suitable to serve as the source domain in a TL se�ing. We use the

1.0 version of MultiNLI with the training data from all five domains.

We discard the samples with no gold labels. SciTail is a recently

released textual entailment dataset in the science domain. In con-

trast to SNLI and MultiNLI, the premises and hypotheses in SciTail

are generated with no awareness of each other. �erefore SciTail is

more diverse in terms of linguistic variations and thus is more chal-

lenging than other entailment datasets [12]. However, the labels in

SciTail only consists of ENTAILMENT and NEUTRAL. �erefore,

we remove the CONTRADICTION samples from MultiNLI.

4.1.2 Paraphrase Identification (PI). Weuse the�ora�es-

tion Pairs3 as the source domain data and a paraphrase dataset made

publicly available in CIKM AnalytiCup 20184 as the target domain

data. �ora �estion Pairs (�ora QP) is a large paraphrase

dataset released by �ora5. �ora is a knowledge sharing web-

site where users post questions and write answers for other users’

questions. Due to the large amount of visitors, the user-generated

questions contains duplications. �us�ora released this dataset to

encourage the research on paraphrase identification. AnalytiCup

Data consists of question pairs in the E-commerce domain. It was

released with the CIKM AnalytiCup 2018. �is competition targets

the research problem of cross-lingual text matching. �is dataset

contains labeled English training data and unlabeled Spanish data.

However, in this work, we only deal with the labeled English data.

We sample the training, validation, and testing data for the Ana-

lytiCup data since no pre-defined data partitions are available.

Table 2: Data Statistics. For source domains, only training

data is used. �e numbers before and a�er the “/” are the

numbers of all sentence pairs and positive sentence pairs.

“Positive” refers to PARAPHRASE in PI and ENTAILMENT

in NLI. CONTRADICTION data in MultiNLI is discarded be-

cause SciTail data does not come with this label.

Task Domain Data Train Validation Test

PI
Source �ora QP 404,287/149,263 N/A N/A
Target AnalytiCup 6,668/1,731 3,334/830 3,330/820

NLI
Source MultiNLI 261,799/130,899 N/A N/A
Target SciTail 23,596/8,602 1,304/657 2,126/842

4.2 Experimental Setup

4.2.1 Baselines. We consider the following baselines:

• Basemodel [22]: we use the shared encoder described in Section

3.3 with a classification layer to form a decomposable a�ention

model. �is base model is trained with the target domain data.

• Transfer baseline: we use the TL model described in Section

3.4 to provide a stronger baseline. �e transfer baseline leverages

training data in both source and target domains.

• Ruder and Plank [27] proposed a data selection method with

Bayesian optimization for transfer learning. �is data selection

approach is model-independent. We use it on the top of our

transfer learning model to keep the comparisons fair.

3h�ps://www.kaggle.com/c/quora-question-pairs
4h�ps://tianchi.aliyun.com/competition/introduction.htm?raceId=231661
5h�ps://www.quora.com/



4.2.2 Evaluation Metrics. For both tasks, we adopt accuracy

(Acc) and the Area under the ROC curve (AUC) as evaluation met-

rics. Significance tests can only be performed on accuracy.

4.2.3 ImplementationDetails. We present the parameter set-

tings and implementation details as follows. All models are im-

plemented with TensorFlow6. Size for the hidden layers of the

decomposable a�ention model is 200. �e max sequence length is

40 for PI and 50 for NLI. �e padding is masked to avoid affecting

the gradient. Hyper-parameters including the size of the hidden

layer of the policy network, and the reward discount factor are

tuned with the target domain validation data. Checkpoints are

saved at the end of every epoch and produce an evaluation on the

test set. All models are trained with a NVIDIA Titan X GPU using

Adam [13]. �e initial learning rate is 0.001 for the transfer model

and 0.02 for the policy network. �e parameters of Adam, β1 and

β2 are 0.9 and 0.999 respectively. �e hidden layer size and opti-

mization methods for the value estimator network are the same

with the policy network. �e transfer learning model is pre-trained

for 50 iterations for both tasks before the reinforced data selector

is applied. For the word embedding layer, we use GloVe [24] (840B

tokens) to initialize the embedding look up table. �e dimension of

word embedding is 300. Word vectors are set to trainable.

4.3 Evaluation Results

We present the evaluation results in Table 3. Models are tuned with

the target domain validation data and results are reported on the

target domain testing data.

Table 3: Testing performance in the target domain for PI and

NLI tasks. Our model is referred to as RTL. �e significance

tests can only be performed on accuracy. ‡ means statisti-

cally significant difference over the strongest baseline with

p < 0.01 measured by the Student’s paired t-test.

Methods
PI NLI

Acc AUC Acc AUC

Base Model [22] 0.8393 0.8548 0.7300 0.7663

Transfer Learning Model 0.8488 0.8706 0.7453 0.8044

Ruder and Plank [27] 0.8458 0.8680 0.7521 0.8062

RTL 0.8616‡ 0.8829 0.7672‡ 0.8163

For paraphrase identification, we observe that the base model

alone achieves relatively good performance. �e TLmodel manages

to have a minor improvement over the base model. However, the

data selection method with Bayesian optimization by Ruder and

Plank [27] fails to make further improvement over the TL model.

Based on the base model performance, we speculate that the PI task

on AnalytiCup data is a relatively straightforward task. �erefore,

it could be possible that sophisticated models do not always boost

the performance. Under these circumstances, our model (RTL) still

manages to generate a statistically significant improvement over

the strongest baseline.

For natural language inference, the performance on all models

are lower in general compared to the PI task. �is is due to the

6h�ps://www.tensorflow.org/

fact that SciTail is very challenging as described in Section 4.1.

�e base model has moderate performance on this task. �e TL

model improves the performance thanks to the source domain data.

�e data selection method with Bayesian optimization manages to

make a further improvement, indicating the large potential of data

selection in this se�ing. Moreover, our RTL model outperforms the

strongest baseline by a large margin with statistical significance.

�ese results demonstrate the effectiveness of the RTL model.

In Ruder and Plank [27], the TL model is considered as a sub-

module of the Bayesian optimization based data selection frame-

work. �is framework evaluates the utility of the data selection

based on the final performance of the TL model. In our RTL frame-

work, the TL model and the reinforced data selector are trained

jointly and thus the data selection policy is updated more efficiently

and effectively. �is could be the reason behind the improvement

of our model over Ruder and Plank [27].

4.4 Ablation Analysis

In addition to the best performing model in Section 4.3, we also

investigate different variations of the RTL model. �e variations are

made in terms of three aspects: the reward functions, optimization

methods for the policy network, and state representations.

4.4.1 Reward Functions and Policy Optimization Meth-

ods. We consider various reward functions and policy optimization

methods as the main se�ings for our ablation tests. �e results are

presented in Table 4.

Table 4: Testing performance of RTL with different varia-

tions. �e last entry is the final RTL model in Table 3.

Methods PI NLI

Reward RL Acc AUC Acc AUC

AUC REINFORCE 0.8557 0.8818 0.7486 0.8070

AUC Actor-Critic 0.8545 0.8793 0.7613 0.8067

Acc REINFORCE 0.8428 0.8788 0.7587 0.8121

Acc Actor-Critic 0.8616 0.8829 0.7672 0.8163

As shown in Table 4, we experiment with two reward functions

of using accuracy or AUC. Also, we use two algorithms to optimize

the policy network: the REINFORCE algorithm and the actor-critic

algorithm. We observe that policy networks optimized with the

actor-arctic algorithm generally produce similar or be�er perfor-

mance. On the other hand, when using the same algorithm to

optimize the policy network, using accuracy as the reward tends to

generate be�er results. �e best se�ing is to use accuracy as the

reward and actor-critic for policy optimization. �us, we adopt this

se�ing for our final RTL model.

4.4.2 State Features. In addition to the model variations on

main se�ings of reward functions and policy optimization meth-

ods, we also perform a state feature ablation test under the best

main se�ing. We have five state features in total as mentioned in

Section 3.5.2. Four of them (feature 2, 3, 4, 5) can be considered as

a feature group because they are all designed to evaluate whether





other distances. (2) Dselect < Dor iдin , which means that the

source domain data selected by the reinforced data selector is closer

to the target domain data and thus may contribute to the transfer

learning process. (3)Ddrop > Dor iдin , whichmeans that the source

domain data dropped by the reinforced data selector is not very

similar to the target domain data and thus may cause negative

transfer. �ese findings indicate that our method is able to select

source domain data whose Wasserstein distance is close to the

target domain data. �is is reasonable as such source domain data

could be more transferrable and helpful for the target domain.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel reinforced data selection method

in a DNN based transfer learning se�ing. Specifically, we use rein-

forcement learning to train a data selection policy to select high-

quality source domain data with the purpose of preventing negative

transfer. We investigate different se�ings of states, rewards, and

policy optimization methods to test the robustness of our model.

Extensive experiments on PI and NLI tasks indicate that our model

can outperform existing methods with statistically significant im-

provements. Finally, we use Wasserstein distance to measure the

source and target domain distances before and a�er the data selec-

tion. �is study indicates that our method is capable of selecting

source domain data that has a similar probability distribution to the

target domain data. Future work will consider to explore more ef-

fective state representations and adapt our reinforced data selector

to other tasks.
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