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ABSTRACT
Neural network approaches have recently shown to be effective

in several information retrieval (IR) tasks. However, neural ap-

proaches often require large volumes of training data to perform

effectively, which is not always available. To mitigate the shortage

of labeled data, training neural IR models with weak supervision

has been recently proposed and received considerable attention in

the literature. In weak supervision, an existing model automatically

generates labels for a large set of unlabeled data, and a machine

learning model is further trained on the generated “weak” data.

Surprisingly, it has been shown in prior art that the trained neural

model can outperform the weak labeler by a significant margin. Al-

though these obtained improvements have been intuitively justified

in previous work, the literature still lacks theoretical justification

for the observed empirical findings. In this paper, we provide a

theoretical insight into weak supervision for information retrieval,

focusing on learning to rank. We model the weak supervision sig-

nal as a noisy channel that introduces noise to the correct ranking.

Based on the risk minimization framework, we prove that given

some sufficient constraints on the loss function, weak supervision

is equivalent to supervised learning under uniform noise. We also

find an upper bound for the empirical risk of weak supervision in

case of non-uniform noise. Following the recent work on using mul-

tiple weak supervision signals to learn more accurate models, we

find an information theoretic lower bound on the number of weak

supervision signals required to guarantee an upper bound for the

pairwise error probability. We empirically verify a set of presented

theoretical findings, using synthetic and real weak supervision data.
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1 INTRODUCTION
Neural network models have recently shown promising results

in a number of information retrieval (IR) tasks, including ad-hoc
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retrieval [15, 30], passage retrieval [6], and context-aware rank-

ing [31]. Neural approaches often require a large volume of training

data to perform effectively. Although large-scale relevance signals,

e.g., clickthrough data, are available for a few IR tasks, e.g., web

search, this data is not available for many real-world problems

and domains. Moreover, academia and smaller companies also suf-

fer from lack of access to large-scale labeled data or implicit user

feedback. This is critical for fields, such as information retrieval,

that have been developed based on extensive and accurate evalua-

tions. The aforementioned limitations call for developing effective

learning approaches to mitigate the shortage of training data. In

this line of research, weak supervision has been proposed to train

neural models for information retrieval tasks, such as learning to

rank documents in the context of ad-hoc retrieval [12] and learning

relevance-based word embedding [32]. The substantial improve-

ments achieved by weakly supervised IR models have recently

attracted attention of the IR community [11, 23, 29, 33]. Although

the obtained improvements have been intuitively well justified in

previous work [12, 32], to the best of our knowledge, no theoretical

justification has been proposed to support the empirical findings

from weak supervision in information retrieval.

To close the gap between theory and practice, this paper theo-

retically studies weak supervision in information retrieval to better

understand how and why this learning strategy works.We build our

theory upon the risk minimization framework, and model weak su-

pervision as a noisy channel that introduces some noise to the true

ranking labels. We further define symmetric ranking loss functions.
Our major theoretical findings are summarized below:

• Assuming the noise distribution in the weak supervision noisy

channel being uniform, we prove that risk minimization for sym-

metric ranking loss functions is noise tolerant. Informally, under

the uniformity assumption, the globally optimum ranking model

for weakly supervised data is also globally optimum for the true

labeled data.

• For non-uniform noise distribution in the weak supervision noisy

channel, we prove that if the risk function for the globally opti-

mum ranking model on the true data is equal to zero, then again

it is also the globally optimum ranking model on the weak data.

• For non-uniform noise distribution in the weak supervision noisy

channel, we find an upper bound for the risk function for an

optimum model trained on weak data based on the risk value of

the optimum model trained on the true data. The upper bound is

inversely correlated with the maximum error probability of the

weak signal.

• We find a sufficient (but not necessary) constraint for pairwise

loss functions to be symmetric ranking loss. We study a set of

well-known pairwise loss functions and show that hinge loss and

mean absolute error (i.e., L1 loss) if used in pairwise setting satisfy
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the proposed sufficient constraint. On contrary, cross entropy

and mean square error do not satisfy the proposed constraint.

• Following the recent empirical findings by Zamani et al. [33] on

employing multiple weak supervision signals for learning more

accurate models, we theoretically investigate the task of learning

from multiple weak signals. Our theoretical study results in an

information theoretic lower bound for the number of independent

weak supervision signals required to guarantee the pairwise error

being bounded by an arbitrary parameter ϵ .

The aforementioned theoretical findings provide insights into

how and why training models on weakly supervised data can per-

form well and even outperform the weak labeler. They also intro-

duce some guidelines on what loss functions and how many weak

supervision signals to use, while training on weakly supervised

data. We finally empirically study a set of our theoretical findings

using synthetic and real weak supervision data. Our theoretical

analysis can be easily generalized to different types of noisy labels,

such as those collected via crowdsourcing.

2 RELATEDWORK
Limited training data has been a perennial problem in information

retrieval, and many machine learning-related domains [34]. This

has motivated researchers to explore building models using pseudo-
labels. For example, pseudo-relevance feedback (PRF) [2, 8] assumes

that the top retrieved documents in response to a given query are

relevant to the query. Although this assumption does not neces-

sarily hold, PRF has been proven to be effective in many retrieval

settings. Building pseudo-collections and simulated queries for var-

ious IR tasks, could be considered as another set of approaches that

tackle this issue [1, 3].

As widely known, deep neural networks often require large vol-

umes of training data. Recently, training neural IR models based

on pseudo-labels (i.e., weak supervision) has shown to produce

successful results [12, 32]. Dehghani et al. [12] proposed training

a neural ranking model for the ad-hoc retrieval task based on the

labels generated by an existing retrieval model, such as BM25. Za-

mani and Croft [32] argued that the objective functions of the

general-purpose word embedding models, such as word2vec [22],

are not necessarily equivalent to the objective that we seek in infor-

mation retrieval. They proposed training of relevance-based word

embeddings based on relevance models [20] as the weak label. Fol-

lowing these studies, the idea of training neural IR models with

weak supervision has been further employed in [23, 29, 33].

In the realm of machine learning, learning from noisy data is

a challenging and at the same time an important task. For exam-

ple, training models on crowdsourced data, which is often noisy,

is relatively well studied in the literature [18]. Ghosh et al. [14]

theoretically studied the robustness of binary classification model

to random noise. It has been recently generalized to multi-class

classification [13]. In this area, Bekker and Goldberger [4] proposed

a model for learning from noisy data by learning the noise distri-

bution in addition to optimizing the neural network parameters.

Dehghani et al. [10] suggested to weight noisy instances using a

limited amount of labeled data. Recently, Rolnick et al. [27] showed

that deep neural networks can be robust to multiple noise patterns

in computer vision tasks. Although, learning from implicit feedback

can be also considered as noisy data, it has been shown that im-

plicit feedback provided by users, e.g., clickthrough data, is a strong

signal for search engines [16]. The main challenge in learning from

implicit feedback data is how to learn unbiased model [17], due to

different biases in user behaviours, e.g., positional bias. Moreover,

boosting [28] has been extensively used in the machine learning

community to learn multiple weak learners from supervised data.

In addition, co-training [5], generalized expectation [21], and other

semi-supervised learning approaches are examples of popular tech-

niques for dealing with limited data in machine learning. These

lines of research often require a small set of labeled data and are

out of the scope of this paper.

3 BACKGROUND
3.1 Learning to Rank Formulation
Suppose X is the input space and Y is the output space for a rank-

ing problem. Each element of X, denoted as x, is a list of n fea-

ture vectors corresponding to n objects that should be ranked, i.e.,

x = [x1,x2, · · · ,xn ]. Each element of Y, denoted as y, is also a

list of n labels corresponding to the objects appeared in x, i.e.,
y = [y1,y2, · · · ,yn ]. Let P(X ,Y ) be an unknown joint distribution,

where random variables X and Y respectively take x and y as their

values.

Assume that M is a ranking model that takes x as input and

generates a rank list from the objects appearing in x. Without loss

of generality, we assume thatM produces a score for each object in

x and the objects are then sorted based on their scores in descending
order. Therefore,M(x) can bewritten as [M(x1),M(x2), · · · ,M(xn )].

In typical statistical learning to rank problems, we are given a

training setT = {(x1, y1), (x2, y2), · · · , (xm , ym )}withm elements,

each representing a rank list for n objects. The training instances

are assumed to be drawn iid according to an unknown distribution

over X ×Y. In document ranking, e.g., ad-hoc retrieval, xi is equal
to {(qi ,di1), (qi ,di2), · · · , (qi ,din )}, where qi denotes the i

th
query

in the training set and di j denotes the j
th

candidate document that

should be ranked in response to the query qi . yi is also a list of n
labels representing the relevance judgments for the corresponding

query-document pairs.

3.2 Risk Minimization Framework
In this subsection, we briefly explain the risk minimization frame-

work in statistical learning. The risk function for a given ranking

modelM and loss function L is defined as follows:

RL(M) = EP [L(M(x), y)] =
∫ ∫

L(M(x), y)P(x, y) dx dy (1)

where E denotes expectation and its subscript is a distribution (or

a random variable) with respect to which the expectation is taken.

As mentioned earlier in Section 3.1, P denotes an unknown true

distribution over the X × Y space. L(·, ·) is a loss function that

computes the difference between its inputs which are two lists with

the size of n.
Given the training data T , the empirical risk is defined as follows:

R̂L(M) = E(x,y)∈T [L(M(x), y)] =
1

m

m∑
i=1

L(M(xi ), yi ) (2)



Under the risk minimization framework, the objective is to learn

a ranking modelM that is a global minimizer of the risk function

R̂L , which depends on the ranking loss function L.
1

3.3 Information Theory Preliminaries
In this subsection, we define a number of information theory con-

cepts and lemmas used througout this paper.

Definition 1. [Total Variation Distance] The total variation dis-

tance between two probability measures P and Q with the same

σ -algebra F is defined as:

δTV (P ,Q) = sup

A∈F

{P(A) −Q(A)} (3)

Informally, total variation distance is the largest possible differ-

ence between the probabilities that the two probability distributions

can assign to the same measurable set.

Definition 2. [Kullback-Leibler Divergence] The Kullback-Leibler

divergence (KL divergence), between two probability measures P
and Q on a set X is defined as:

D(P | |Q) =

∫
X

dP log

dP

dQ
(4)

If P andQ are distributions of continuous random variables, then

KL divergence is computed as:∫ ∞

−∞

fP (x) log
fP (x)

fQ (x)
dx (5)

where fP and fQ denote the probability density functions of P and

Q , respectively.
The KL divergence for discrete random variables is also com-

puted as: ∑
x ∈X

p(x) log
p(x)

q(x)
(6)

where p and q are two probability mass functions.

Lemma 1. [Chain Rule of KL Divergence] Let X1,X2, · · · ,Xk be k
discrete random variables, and let P andQ be two joint distributions

of these random variables. Then, the KL divergence of the joint

distribution is computed as:

D(P(x1,x2, · · · ,xk )| |Q(x1,x2, · · · ,xk )) =

k∑
i=1

D(P(xi |x1,x2, · · · ,xi−1)| |Q(xi |x1,x2, · · · ,xi−1)) (7)

Remark 1. Let X1,X2, · · · ,Xk denote k independent discrete ran-

dom variables. Then, the KL divergence of two joint distributions

P and Q is computed as:

D(P(x1,x2, · · · ,xk )| |Q(x1,x2, · · · ,xk )) =
k∑
i=1

D(P(xi )| |Q(xi )) (8)

Lemma 2. [Pinsker’s Inequality] For any two probability measures

P and Q ,

δTV (P ,Q) ≤

√
1

2

D(P | |Q) (9)

1
Since ranking metrics are often non-differentiable, a surrogate loss function is often

used. We can assume that L is a surrogate ranking loss.

where D(·| |·) denotes the KL divergence between the two given

probability measures.

4 LEARNING TO RANK FROMWEAK
SIGNALS

In this section, we present a set of theoretical results on learning

to rank from weakly supervised data. In the following, we first

formulate the problem, and then define symmetric ranking loss

functions. We further study the problem under uniformity and non-

uniformity assumptions. Finally, we study a set of pairwise loss

functions to determine which ones are symmetric ranking losses.

4.1 Problem Statement
Weak supervision is a learning strategy that does not require labeled

training data. LetM be a weak supervision signal that automatically

produces a label for any given input. This gives us a set of weakly

labeled training data T̂ = {(x1, ŷ1), (x2, ŷ2), · · · , (xm , ŷm )}, where

ŷi = [M(xi1),M(xi2), · · · ,M(xin )]. The input feature vectors x in

weakly labeled data are the same as the ones in T described in

Section 3.1.

The weakly supervised labels are generated automatically and

thus are not accurate. In the following subsections, we theoretically

study how to effectively train a ranking model on such noisy labels.

Without loss of generality, we can look at weak supervision as a

noisy channel that applies some noise on the actual true labels.

Therefore, ŷ = M(x) is modeled as a noisy channel that introduces

noise on the true label y.
Let us first define noise tolerance in ranking based on the risk

minimization framework as follows:

Definition 3. [Noise Tolerance in Learning to Rank] Under the

ranking loss function L, risk minimization is noise tolerant if

Pr [M(x)
rank

= y] = Pr [M̂(x)
rank

= y] ∀(x, y) ∈ T (10)

where ·
rank

= · denotes that the two given score lists are equal in

terms of ranking (i.e., the corresponding objects are in the same

order when sorted by their scores). M and M̂ respectively denote

the ranking models trained on the true data T and the weakly

supervised data T̂ .

4.2 Symmetric Ranking Loss
Motivated by the symmetry condition defined for binary classifi-

cation [14], in this subsection, we define symmetric loss function,

which is heavily used in the paper.

Definition 4. [Symmetric Ranking Loss Function] A ranking loss

function L is symmetric, if it satisfies the following constraint:∑
y∈Y

L(M(x), y) = c ∀x,∀M (11)

where c is a constant number.

Note that the above definition assumes that the output space

Y is finite and discrete, which is a reasonable assumption for a

ranking task, where the order of objects matters and the number

of items is finite (i.e., equal to n in our setting). In case of binary

relevance judgments, the output space Y is {0, 1}n , thus |Y| = 2
n
.



Theorem 1. In case of binary relevance judgments (labels), any

ranking loss function L based on a pairwise classification loss

Lpair is symmetric, if the following condition, called the sufficient

symmetric pairwise loss (SSPL) constraint, holds:

Lpair (M(x)−M(x ′),−1)+Lpair (M(x)−M(x ′), 1) = c ∀x ,x ′,∀M
(12)

where c is a constant number.
2

Proof. If the ranking loss function L is computed based on

pairwise misclassifications, then without loss of generality, we

have:∑
y∈Y

L(M(x), y) =
1

Z

∑
y∈Y

n∑
i=1

n∑
j=i+1

Lpair (M(xi ) −M(x j ),yi − yj )

=
1

Z

n∑
i=1

n∑
j=i+1

∑
y∈Y

Lpair (M(xi ) −M(x j ),yi − yj )

(13)

where Z is a constant normalization factor. Since the labels are

binary, thus Y = {0, 1}n . The terms inside the summations in

Equation (13) only depend on the ith and the jth element of y.
Therefore, we can rewrite the above equations as below:

=
2
n−2

Z

n∑
i=1

n∑
j=i+1

∑
(yi ,yj )∈{0,1}2

Lpair (M(xi ) −M(x j ),yi − yj )

=
2
n−2

Z

n∑
i=1

n∑
j=i+1

Lpair (M(xi ) −M(x j ),−1) − Lpair (M(xi ) −M(x j ), 1)

(14)

Note that the pairwise loss for two objects with the same labels

is assumed to be zero. Given the SSPL condition mentioned in

Equation (12), we rewrite the above equation as:

⇒
∑
y∈Y

L(M(x), y) =
2
n−2

Z

n∑
i=1

n∑
j=i+1

c = c ′ (15)

which shows thatL is a symmetric ranking function, and completes

the proof. □

In Section 4.5, we study a number of well-known pairwise loss

functions and discuss whether they satisfy the SSPL constraint. At

this step, it is sufficient to know that there exist some loss functions

that satisfy the SSPL constraint, and thus the following theoretical

findings are useful in practice.

4.3 Weak Supervision as Uniform Noisy
Channel

In this subsection, we generalize Ghosh et al.’s findings [14] on

binary classification to ranking and we assume that independent

from the input x, the noisy channel applies a uniform noise on the

true label and produces the weak label. Although, this is a strong

assumption that does not hold in many real-world situations, it

gives insights into understanding learning from weak supervision,

and is a first step towards more complex situations (e.g., for the

non-uniformity assumption).

2
We assume that the pairwise loss for two objects with the same label is zero (or

constant), otherwise the condition on this theorem should be modified.

Theorem 2. In learning to rank from weak supervision, where

the weak signal is drawn from the true label with a uniform noise,

let L be a symmetric ranking loss function (see Definition 4). Then,

L is noise tolerant (see Definition 3) under the noise probability

ρ < 2
n−1
2
n (meaning that the weak supervision signal performs

better than random).

Proof. We prove this theorem based on the risk minimization

framework. To do so, we show that any ranking model M̂∗
that is

a global minimizer for the empirical risk function on the weak data

is also a global minimizer of the true empirical risk.

The empirical risk function for a ranking model M over the

weak data T̂ is defined as:

R̂′
L
(M) = E

(x, ŷ)∈T̂ [L(M(x), ŷ)]

= Ex Ey |x Eŷ |x,y[L(M(x), ŷ)] (16)

Given the uniform noise assumption, the expected value of the

loss for the weak supervision label is equal to the loss for the true

label with the probability of 1 − ρ and the probability of
ρ

2
n−1 for

any other labels with binary judgments. Hence, the empirical risk

R̂′
L
(M) is equal to:

Ex Ey |x

(1 − ρ)L(M(x), y) +
ρ

2
n − 1

∑
y′∈Y\{y}

L(M(x), y′)

(17)

Since Ex Ey |x = Ex,y and L is a symmetric ranking loss, given

the definition of empirical risk for true labels, we have:

R̂′
L
(M) = (1 − ρ)R̂L(M) +

ρ

2
n − 1

(c − R̂L(M))

=
cρ

2
n − 1

+ (1 −
2
nρ

2
n − 1

)R̂L(M) (18)

Now assume that M̂∗
is a global minimizer for the risk function

R̂′
L
, thus for any ranking modelM, we have:

R̂′
L
(M̂∗) − R̂′

L
(M) ≤ 0 (19)

On the other hand, from Equation (18) we have:

R̂′
L
(M̂∗) − R̂′

L
(M) = (1 −

2
nρ

2
n − 1

)(R̂L(M̂
∗) − R̂L(M)) (20)

According to Equations (19) and (20) and because ρ < 2
n−1
2
n , then

R̂L(M̂
∗) − R̂L(M) ≤ 0 and thus M̂∗

is also a global minimizer for

the true empirical risk function R̂L . Therefore, risk minimization

under symmetric ranking losses is noise tolerant, which completes

the proof. □

This theorem shows that symmetric ranking losses are robust to

uniform noise used to generate weak supervision labels. Note that

the only condition is ρ being less than
2
n−1
2
n . This means that the

weak signal should be better than random, which is not a restrictive

condition. It is also interesting that this finding is independent of

the size of training data.



4.4 Weak Supervision as Non-uniform Noisy
Channel

In the last subsection, we assume that the error probability of weak

labeler is the same for all training instances. This means that the

quality of weak supervision signal is the same for all queries, which

is not a true assumption in practice, i.e., some queries are more

difficult and some are easier to respond. In this subsection, we relax

this assumption and find an upper bound for the empirical risk

function.

Theorem 3. Let L be a symmetric ranking loss function (see

Definition 4). For each pair (x, ŷ) ∈ T̂ , assume that the weak label

ŷ is equal to the true label with a probability of ρx which depends

on the input x. Then, the empirical risk function R̂L(M̂
∗) is upper

bounded by R̂L(M
∗)/(1−

2
nρmax
2
n−1 ), where R̂L is empirical risk on

the true data, ρmax is the maximum error probability, and M̂∗
and

M∗
are the global minimizers of the weak risk R̂′

L
and the true risk

R̂L , respectively.

Proof. Similar to Equation (17), the empirical risk function for

any ranking model M over the weakly labeled data T̂ is defined

as:

R̂′
L
(M) = Ex,y

(1 − ρx)L(M(x), y) +
ρx

2
n − 1

∑
y′∈Y\{y}

L(M(x), y′)


= Ex,y

[
(1 − ρx)L(M(x), y) +

ρx
2
n − 1

(c − L(M(x), y))
]

= Ex,y

[ cρx
2
n − 1

]
+ Ex,y

[
(1 −

2
nρx

2
n − 1

)L(M(x), y)
]

(21)

Note that the term Ex,y
[ cρx
2
n−1

]
is independent of the ranking

model. Let M̂∗
andM∗

be the global minimizers of the empirical

risk functions R̂′
L
and R̂L , respectively. Therefore, we have:

R̂′
L
(M̂∗) − R̂′

L
(M∗) ≤ 0 (22)

According to Equation (21), we can rewrite the above inequality

as:

Ex,y

[(
1 −

2
nρx

2
n − 1

) (
L(M̂∗(x), y) − L(M∗(x), y)

)]
≤ 0

⇒ min

ρx

{
1 −

2
nρx

2
n − 1

}
Ex,y

[(
L(M̂∗(x), y) − L(M∗(x), y)

)]
≤ 0

⇒ (1 −
2
nρmax

2
n − 1

)Ex,y[L(M̂∗(x), y)] ≤ Ex,y[L(M∗(x), y)]

⇒ R̂L(M̂
∗) ≤

1

1 −
2
nρmax
2
n−1

R̂L(M
∗) (23)

Therefore, the true empirical risk for M̂∗
is upper bounded by

R̂L(M
∗)/(1 −

2
nρmax
2
n−1 ). This completes the proof. □

Theorem 3 shows that the ratio of empirical risk for the global

minimizer of the weak risk to to the one for the global minimizer

of the true risk is upper bounded by
1

1−
2
n ρmax
2
n−1

.

Remark 2. Theorem 3 shows that if the minimum empirical risk

on the true labeled data is equal to 0, then the model M̂∗
is the

global minimizer of the empirical risk on the true labeled data.

Therefore, if R̂L(M
∗) = 0, any symmetric ranking loss L is robust

to non-uniform noise.

4.5 A Study of Pairwise Loss Functions
In this subsection, we study a number of pairwise loss functions

to identify the ones that satisfy the SSPL constraint introduced

by Theorem 1. Without loss of generality, assume that M(x) ∈

[0, 1] : ∀x which can be obtained via a sigmoid function. With some

relaxation of notation throughout this section, for a pair of objects

(o,o′)with feature vectors (x ,x ′), let so≥o′ =M(x)−M(x ′) denote
the score of o being ranked higher than o′ by the ranking model

M. Therefore, so≥o′ = −so<o′ ∈ [−1, 1]. Let yo≥o′ ∈ {−1, 1} be a

pairwise label indicating whether o should be ranked higher than

o′ or not.

Lemma 3. In pairwise learning to rank ifM(x) ∈ [0, 1] : ∀x , hinge
loss and mean absolute error (L1 loss) satisfy the SSPL constraint.

On contrary, cross entropy loss and mean square error (L2 loss) do
not satisfy the SSPL constraint.

Proof. In the following, we study the loss functions mentioned

in the lemma one by one.

• Hinge loss: Hinge loss, also known as the max-margin loss, is

defined as follows:

max{0, 1 − yo≥o′so≥o′} (24)

where yo≥o′ ∈ {−1, 1}. Given the above definition, we have:

Lhinдe (so≥o′ ,−1) + Lhinдe (so≥o′ , 1)

= max{0, 1 − so≥o′} +max{0, 1 + so≥o′} (25)

Since so≥o′ ∈ [−1, 1], the above equation is equal to 2, and thus

hinge loss satisfies the SSPL constraint.

• Mean absolute error or L1 loss: Given the definition of L1 loss,
we have:

LMAE (so≥o′ ,−1) + LMAE (so≥o′ , 1)

= |1 − so≥o′ | + | − 1 − so<o′ | + | − 1 − so≥o′ | + |1 − so<o′ | (26)

Since so≥o′ = −so<o′ ∈ [−1, 1], then the above equation is equal

to 4, and thus mean absolute error satisfies the SSPL constraint.

• Cross entropy loss: Given the definition of cross entropy loss,

we have:

Lce (so≥o′ ,−1) + Lce (so≥o′ , 1)

= logpo≥o′ + log(1 − po≥o′)

= logpo≥o′(1 − po≥o′) (27)

Note that we should use the pairwise probability po≥o′ for the
cross entropy loss. The above equation is not equal to a constant

and is not bounded. Therefore, the cross entropy loss function

does not satisfy the SSPL constraint.

• Mean square error or L2 loss: Given the definition of L2 loss,
we have:

LMSE (so≥o′ ,−1) + LMSE (so≥o′ , 1)

= 2(1 − so≥o′)
2 + 2(1 + so≥o′)

2
(28)

Thus, the L2 loss function does not satisfy the SSPL constraint.

However,LMSE (so≥o′ ,−1)+LMSE (so≥o′ , 1) is bounded by [4, 8].

□



5 LEARNING FROMMULTIPLE WEAK
SIGNALS

As pointed out in Section 4.4, the expected risk upper bound for the

global minimizer of the weak risk under the non-uniformity noise

assumption is inversely correlated with the maximum error proba-

bility of the weak labeler. Recently, Zamani et al. [33] proposed to

employ multiple weak supervision signals to improve the accuracy

of weakly supervised models. In this section, we theoretically show

how to guarantee a maximum arbitrary error rate to tighten the

upper bound found in Section 4.4 using multiple weak supervision

signals.

Theorem 4. For any object pair (o,o′), at least
ρ ln 2

2

(
1−2ϵ
1−2ρ

)
2

in-

dependent pairwise weak supervision signals, each with a pairwise

noise probability ρ < 1

2
are required to guarantee the pairwise

error probability of less than or equal to an arbitrary ϵ < 1

2
.

Proof. We prove this theorem based on binary hypothesis test-

ing. For any given object pair (o,o′) with feature vectors (x ,x ′), we
define two hypotheses:

• Hypothesis 1 (H1): o should be ranked higher than or equal to

o′ (i.e., o ≥ o′).
• Hypothesis 2 (H2): o′ should be ranked higher than o (i.e., o <
o′).

The probability mass functions for the two probability distri-

butions P1 and P2 respectively corresponding to H1 and H2 are as

follows:{
P1(o ≥ o′) = 1 − ρ

P1(o < o′) = ρ

{
P2(o ≥ o′) = ρ

P2(o < o′) = 1 − ρ
(29)

Therefore, the probability of error Pe for identifying the correct

pairwise label in binary hypothesis testing is lower bounded as

follows:

Pe ≥
1

2

[
1 − δTV (P

(k )
1
, P

(k )
2

)

]
(30)

where k is the number of weak supervision signals. Given the

Pinsker’s inequality (see Lemma 2), we rewrite the above inequality

as below:

Pe ≥
1

2

[
1 −

√
2

ln 2

D(P
(k )
1

| |P
(k)
2

)

]
(31)

where D(·| |·) denotes the KL divergence between two probability

distributions (see Section 3.3). Since the weak supervision signals

are assumed to be independent, we use Lemma 1 to rewrite the

above inequality:

Pe ≥
1

2

[
1 −

√
2k

ln 2

D(P1 | |P2)

]
=

1

2

[
1 −

√
2k

ln 2

(1 − 2ρ) ln(
1 − ρ

ρ
)

]
(32)

Given the inequality 1 + x ≤ ex : ∀x , we have ln( 1−ρρ ) = ln(1 +

1−2ρ
ρ ) ≤

1−2ρ
ρ . Hence, if we want the probability of error being

upper bounded by any arbitrary ϵ , we have:

ϵ ≥ Pe ≥
1

2

1 −
√

2k

ln 2

(1 − 2ρ)2

ρ


⇒ k ≥

ρ ln 2

2

(
1 − 2ϵ

1 − 2ρ

)
2

(33)

This completes the proof. □

Remark 3. Theorem 4 assumes that the error probability of all

independent weak labelers are equal to ρ. If they have different

error probabilities, the theorem should be slightly modified. In this

case, let Pi1 and Pi2 respectively denote the probability distribution

of the ith weak signal for H1 and H2. Therefore, from Equation (32),

we have:

ϵ ≥ Pe ≥
1

2

1 −
√√√

2

ln 2

k∑
i=1

D(Pi1 | |Pi2)

 (34)

Thus, the minimum k that requires to satisfy the above inequality

is the answer.

Remark 4. Theorem 4 assumes that the noise distribution in weak

supervision signals are independent. If they are not independent,

the divergence term in Equation (32) should be computed using the

chain rule mentioned in Lemma 1.

6 EXPERIMENTS
In this section, we first provide the results on a synthetic noisy

data, and then experiment with real weak supervision data for the

ad-hoc retrieval task.

6.1 Evaluation on Synthetic Data
In this subsection, we empirically verify a set of our theoretical

findings in Section 4. To do so, we create a synthetic data based

on the MQ2008 dataset, which is a part of the LETOR 4.0 dataset.
3

Each training and test instance in this dataset contains 46 features,

extracted via various retrieval techniques. In our experiments, we

performed 5-fold cross-validation based on the queries. We trained

a fully-connected feed-forward neural network on the training

data. The network consists of two hidden layers with 500 and 100

neurons. Relu was used as the non-linear activation function in

hidden layers, and sigmoid was used as the output activation. We

trained the model using a pairwise setting; any two documents

with different labels with respect to each query were considered

as a pairwise training instance. The model was trained for one

epoch using the Adam optimizer [19], and the learning rate was

selected from {0.0001, 0.0005, 0.001} based on the performance on

the validation set. The batch size was set to 128. We evaluated

the performance of the models in terms of normalized discounted

cumulative gain for the top 20 documents (NDCG@20).

Uniform noise. In the first set of experiments, we applied a uni-

form noise on the training data. The pairwise noise probability

was swept from 0.0 to 0.45. Note that the pairwise noise should be

less than 0.5 which means that the weak labeler should perform

3
https://www.microsoft.com/en-us/research/project/

letor-learning-rank-information-retrieval/

https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval/
https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval/


Figure 1: The retrieval performance onMQ2008with respect
to the uniform noise probability (ρ < 0.5).

better than random. We evaluated models with the same neural

architecture, but different pairwise loss functions. The results are

plotted in Figure 1. As depicted, performance of the models based

on the L2 loss and cross entropy (CE) significantly drop when the

noise probability increases. However, the models with the L1 loss
and the hinge loss are robust to uniform noise. This observation

empirically validates our theoretical findings on the robustness of

symmetric ranking losses to uniform noise.

Non-uniform noise. In the next set of experiments, we applied

non-uniform noise on the training data. In other words, the proba-

bility of noise varies across queries. We swept the maximum noise

probability from 0.0 to 0.9. The results are plotted in Figure 2. Ac-

cording to this plot, the performance of all the models significantly

drop when the maximum noise probability passes the 0.7 threshold.

Figure 2 shows that the models with symmetric ranking losses (i.e.,

L1 and hinge loss) perform substantially better than those based on

the L2 loss and cross entropy, when the maximum noise probability

is high (i.e., > 0.7).

6.2 Evaluation on Weak Supervision Data
In this subsection, we focus on a real weak supervision setting for ad-

hoc retrieval. To do so, we trained a fully-connected feed-forward

pairwise model, exactly the same as Rank Model introduced in [12].

Network parameters were optimized using the Adam optimizer [19].

In this experiment, the learning rate and the batch size were se-

lected from {5 × 10
−5, 1 × 10

−4, 5 × 10
−4, 1 × 10

−3, 5 × 10
−3} and

{32, 64, 128}, respectively. The hidden layer sizes were selected

from {100, 300, 500}. We initialized the word embedding matrix by

pre-trained GloVe [25] vectors learned from Wikipedia dump 2014

plus Gigawords 5.
4
The embedding dimensionality was set to 300.

All retrieval experiments were carried out using the Galago search

engine [9].
5
We performed 2-fold cross-validation over the queries

in each collection for hyper-parameter tuning.

We collected our training queries from AOL query logs [24]. We

only used the query strings, and no session and click information

was obtained from the query logs. We filtered out the navigational

queries containing URL substrings, i.e., “http”, “www.”, “.com”, “.net”,

“.org”, “.edu”. All non-alphanumeric characters were removed from

4
https://nlp.stanford.edu/projects/glove/

5
https://www.lemurproject.org/galago.php

Figure 2: The retrieval performance onMQ2008with respect
to the non-uniform maximum noise probability.

the queries. As a sanity check, we made sure that no queries from

the training set appear in our evaluation query sets. Applying all of

these constraints leads to over 6million unique queries as our train-

ing query set. We used query likelihood [26] with Dirichlet prior

smoothing [35] as the weak supervision signal. In more detail, for

each training query, we retrieved 100 documents from the target

evaluation collection using the query likelihood model and cre-

ated our pairwise training instances based on the query likelihood

scores.

We evaluate our models using the following two TREC collec-

tions: The first collection, Robust, consists of thousands of news

articles and is considered as homogeneous collections. Robust was

previously used in TREC 2004 Robust Track. The second collection,

ClueWeb, is a challenging and large-scale web collection containing

heterogeneous and noisy documents. ClueWeb (i.e., ClueWeb09-

Category B) is a common web crawl collection that only contains

English web pages. ClueWeb was previously used in TREC 2009-

2012 Web Track. We cleaned the ClueWeb collection by filtering out

the spam documents, using the Waterloo spam scorer
6
[7] with the

threshold of 60%. Stopwords were removed from all collections. For

Robust, TREC topics 301-450 & 601-700, and for ClueWeb, topics

1-200 were used for the experiments.

Results. The results reported in Table 1 show that all weakly super-

vised models outperform the query likelihood (QL) model, which is

also the weak labeler. The results demonstrate that the models with

L1 and hinge loss functions significantly outperform the models

with L2 loss or cross entropy as the loss function. The statistical

differences are computed using the two-tailed paired t-test at 95%

confidence interval (p_value < 0.05). Recall that the L1 loss and
the hinge loss satisfy the SSPL constraint, while the L2 loss and the

cross entropy loss function do not. This is an empirical validation

on real weak supervision data for our theory presented in Section 4.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we provided a theoretical study on learning to rank

from inaccurate relevance signals, motivated by the recent advance-

ments in developing weakly supervised models for information

retrieval tasks. We looked at weak supervision as a noisy channel

6
http://plg.uwaterloo.ca/~gvcormac/clueweb09spam/

https://nlp.stanford.edu/projects/glove/
https://www.lemurproject.org/galago.php
http://plg.uwaterloo.ca/~gvcormac/clueweb09spam/


Table 1: Retrieval performance of weakly supervised neural ranking models (NRM) with different loss functions. The highest
value per column is marked in bold, and the superscripts 0/1/2 denote statistically significant improvements compared to
QL/NRM-CE/NRM-L2, respectively.

Method Robust ClueWeb

MAP P@20 NDCG@20 MAP P@20 NDCG@20

QL 0.2499 0.3556 0.4143 0.1044 0.3139 0.2294

NRM-CE 0.2743
0

0.3682
0

0.4272
0

0.1233
0

0.3286
0

0.2308
0

NRM-L2 0.2765
0

0.3696
0

0.4290
0

0.1214
0

0.3271
0

0.2315
0

NRM-L1 0.2831012 0.3769012 0.4333012 0.1321
012 0.3368012 0.2386

012

NRM-Hinge 0.2815
012

0.3752
012

0.4327
012 0.1329012 0.3351

012 0.2392012

that introduces some noise on the true labels. We defined sym-

metric ranking loss functions, and further proved that learning to

rank models with symmetric loss functions are noise tolerant under

uniform noise. We also found an upper bound for the risk obtained

by the global minimizer of weakly supervised data, based on the

risk for the true global minimizer. We also proposed a sufficient

constraint for pairwise loss functions to be symmetric ranking loss.

Motivated by the recent work on learning from multiple weak su-

pervision signals, we also found a lower bound for the number

of weak supervision signals required to guarantee any arbitrary

maximum noise probability. We also empirically validated a set of

our theoretical discoveries using synthetic and real weak super-

vision data. Our theoretical findings not only justify the recent

empirical results obtained by the weakly supervised IR models, but

also provide guidelines on how to train effective models with weak

supervision.

In this paper, we only focus on studying the effectiveness of

weakly supervised models. Since weak supervision requires large

volumes of training data, we intend to theoretically study the ef-

ficiency of weakly supervised models in terms of training time.

Reducing their training time is an interesting direction.
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