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ABSTRACT
The ease of constructing effective neural networks has resulted in
a large number of varying architectures iteratively improving per-
formance on a task. Due to the nature of these models being black
boxes, standard weight inspection is difficult. We propose a probe
based methodology to evaluate what information is important or
extraneous at each level of a network. We input natural language pro-
cessing datasets into a trained answer passage neural network. Each
layer of the neural network is used as input into a unique classifier, or
probe, to correctly label that input with respect to a natural language
processing task, probing the internal representations for information.
Using this approach, we analyze the information relevant to retriev-
ing answer passages from the perspective of information needed
for part of speech tagging, named entity retrieval, sentiment classi-
fication, and textual entailment. We show a significant information
need difference between two seemingly similar question answering
collections, and demonstrate that passage retrieval and textual en-
tailment share a common information space, while POS and NER
information is used only at a compositional level in the lower lay-
ers of an information retrieval model. Lastly, we demonstrate that
incorporating this information into a multitask environment is corre-
lated to the information retained by these models during the probe
inspection phase.
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1 INTRODUCTION
An effective information retrieval (IR) system must be able to process
a query and candidate document and produce an accurate relevance
score, which necessitates the model be able to capture the complex
relations between its query and candidate document inputs. As con-
ventional IR features do not adequately capture this signal in certain
retrieval domains such as short text and passage retrieval [6, 26],
neural networks provide a strong foundation as retrieval models due
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to their capability to learn features via backpropagation. In particular,
recurrent neural networks have been shown to achieve state of the
art performance on these domains [6, 32].

As handcrafted features perform particularly poorly for these IR
tasks, the relevant features therefore rely on the neural model’s mul-
tiple nonlinear transformations across spans of text to reach a salient
representation. This black box nature results in the publication of
numerous models with only the final rankings used for benchmark-
ing, and it is further exacerbated by the impact of hyperparameters
on the performance of a single network [9] as well as our lack of
understanding in how these models generalize [35].

Recent work has sought to alleviate this opaque nature by leverag-
ing attention mechanisms [17], gradients [14], or cell activations [11]
to understand what information is important. However, these meth-
ods rely on the original input to understand what is occurring rather
than viewing the information in context of a structured task and only
identify topical representations or patterns in text that correspond
with a strong prediction for a label. When applied to an IR task,
these techniques reveal traditional handcrafted features such as term
overlap and related words, but provide little information on what
non traditional features are being captured to produce a relevance
score [22, 23].

Thus we propose viewing IR neural models as transformations on
traditional NLP information defined through auxiliary tasks rather
than at the traditional term level. This approach portrays relevance
features as a function of distributed NLP features, and while this
is not innately interpretable, the rigid definition of these auxiliary
tasks provide a reference to examine how the IR model leverages
these non traditional features. To demonstrate the degree to which
relevance is composed of NLP information, we provide a new tech-
nique leveraging Alain and Bengio’s [2] probe based methodology
and apply it to measure the information loss with respect to related
tasks. As NLP objectives are often highly structured, they provide a
more concrete environment to understand what information is being
captured in a network trained for retrieval. To do this, we insert small
neural networks, referred to as probes, into the intermediate layers of
a neural model trained for IR and evaluate the hidden representations
for auxiliary NLP applications. As the final output of an IR model
is a single scalar, this probe based methodology allows one to see
what NLP features are most important for lower level layers as well
as how the IR model learns to combine or discard this information
into new representations pertinent to determining relevance. The
motivation for this approach is three fold: (1) Understanding the
NLP information pertinent to the core retrieval task allows for IR
researchers to leverage the abundant work done with respect to that
specific NLP application when designing new models, (2) Providing
insight into what low level and high level features an IR network
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leverages to produce a relevance score in order to better engineer
future neural architectures, and (3) Identifying common patterns
on what information is needed to determine relevance across IR
collections.

We choose answer passage retrieval as a case study of this tech-
nique, although it is generalizable to any retrieval task. The nature of
answer passage retrieval is conducive to the difficulty that traditional
retrieval techniques experience and the recent success of deep neural
networks on this task [7].

Through this technique, we show that increasingly abstract fea-
tures are learned at subsequent layers within an IR network, and
correspondingly that lower level NLP tasks such as POS tagging
and NER suffer the greatest at higher hidden layers when com-
pared to identifying textual entailment, a higher level NLP task.
We evaluate this over two similar retrieval collections and reveal a
significant difference in information used within their respectively
trained neural models. This confirms that sentence retrieval is a
significantly different task than passage retrieval in terms of useful
neural representations. In addition, we demonstrate that the auxiliary
information is directly applicable to augmenting the neural IR model
for increased proportional performance correlating with respect to
the NLP probe.

2 RELATED WORK
A number of recent papers have focused on the development of tech-
niques to discover the internal representations of neural networks.
Alain and Bengio [2] use a set of linear classifiers to capture the
current level of information within the hidden layers of a network.
After training a deep neural network for image classification, the
weights of the network are frozen and the hidden layers become
inputs for their respective linear classifiers. Thus each classifier is
trained to predict the label of the example with access to only an
intermediate representation.

Zintgraf et al. [36] approach the investigation of neural networks
from a different perspective by using prediction difference analysis.
Rather than investigating the representation at intermediate layers,
they mask a portion of the input and measure the difference in total
activation and classification probability. The masks are created by
conditioning an area of pixels on the surrounding area. This results
in down-weighting easy to predict pixels which can be viewed as
redundant and allows the visualization of rare pixels that have the
greatest impact on the class score of the image. This allows for a
rich exploration when using the mask due to the fully labeled pixel
data. However, this same property makes the direct adaptation of
their method to text a challenge.

In the field of computer vision, where visualization is much more
intuitive for human eyes, there are two main approaches to under-
standing intermediate layers. The first is similar to Alain and Ben-
gio’s [2] work involving intermediate probes. However, these probes
attempt to reconstruct the initial input from a convolutional neural
network rather than classifying it. The motivation lies in the belief
that the pixels of an image that are able to be reconstructed reflect
the information contained in a hidden representation. The second
approach involves a top down perspective where one can either use
gradient updates from the loss function to determine which pixels
are most important or deconvolving, where a new supervised model

is trained to sequentially project higher layers in the original network
to lower ones. However, both of theses approaches require some
adaptation for text due to the less intuitive visual representation.

Li et al. [14] utilize this past work and examine one feature at a
time by directly analyzing layer activations and using first order Tay-
lor expansions to measure the importance of specific words on the
output of the network, referred to as saliency. They explore the im-
pact of individual tokens on a sentiment classification task via LSTM
models. Kaparthy et al. [11] provide a more comprehensive review
on recurrent character level language models. They use LSTM ac-
tivations to interpret individual cells and identify long range range
dependencies in text.

Adi et al. [1] approach the representation of text by using predic-
tion tasks to characterize what information is being captured. They
use a variety of sentence encoding methods and predict the efficacy
of these final representations in representing the original sentence’s
word length, unique word content, and word order. While the final
sentence encodings are evaluated, no investigation in the interior
of the networks is conducted. Belinkov et al. [3] expand Alain and
Bengio’s [2] work in the neural machine translation area by insert-
ing classifiers into a neural machine translation model to examine
the impact of morphology. While similar to this work in regard to
both using Alain and Bengio’s methodology, Belinkov’s analysis
was focused solely on the connection to translation, while this work
examines the information loss specific to information retrieval on an
arbitrary auxiliary NLP task.

In the specific realm of IR, Palangi et al. [23] examine the hidden
activations of long short term memory (LSTM) networks on query-
sentence pairs at the word level. They identify key query words
within the LSTM activations.

3 METHOD
We investigate the information captured by an IR answer passage
deep neural model by utilizing the intermediate representations of
deep neural networks. The foundation of this work comes from
the data processing inequality [8], where given a markov chain of
successive representations, X → Y → Z , then

I (X ;Z ) ≤ I (X ;Y )

where I (X ;Y ) is the mutual information function. Tishby and Za-
slvsky [30] show that layered neural networks form a Markov chain
of representations. Thus from the perspective of deep neural models,
each transformation at best can preserve the information from an ear-
lier layer and the most information available at any point in a neural
model is contained in the lower layers. The advantage of additional
layers is not to add information, but to identify the salient informa-
tion with respect to the target, and transform the representation into
a linearly separable space.

We apply this inequality to identify what information is discarded
by a passage retrieval model from the perspective of NLP tasks.
Specifically, after training an IR model for answer passage retrieval,
we freeze the weights and pass it over POS, NER, sentiment, and tex-
tual entailment datasets. Each hidden state of the IR model then goes
into separate neural networks, or probes, to predict the input’s true
NLP label. The efficacy of the probes’ ability to learn and predict the
various NLP tasks illustrates what linguistic and semantic properties
are being discarded by the network from the base embeddings.



Figure 1: An overview of the probe (P) insertion model. The
main LSTM model attempts to evaluate the input for its main
task in embedding (E) format, ŷn while the probes use each
layer’s intermediate representation to predict an auxiliary task
ŷt .

3.1 Model
In this paper, we implement a multilayer LSTM network used by
Graves et al. [10] that feeds into a series of dense feed forward layers
(Figure 1). This has been shown to be a critical component of state
of the art NLP and answer passage retrieval systems [18, 29]. The
model consists of two LSTM layers where the output of the second
LSTM layer is absolute max pooled. It is then passed to two feed
forward dense layers and outputs to a K dimensional final layer. The
final layer is a dense layer with the number of nodes equal to the
number of classes where a softmax function is taken to create a
probability distribution over the labels. Additional hyperparameters
are provided in Table 1. We use a dropout rate of 0.2 over both
LSTM outputs during training of the main network for all tasks as
it has been shown to improve the generalizability of deep neural
models to unseen data [34, 35].

Table 1: Hyperparameters of Main and Probe models with K as
the final classes for a task

Main Model
Layer Dimension Activation
LSTM 1 512 internal: sigmoid, output: tanh
LSTM 2 512 internal: sigmoid, output: tanh
Dense 300 ReLU
Dense 200 ReLU
Dense K -

Probe
Layer Dimension Activation
Dense 300 ReLU
Dense 200 ReLU
Dense K -

Auxiliary Networks In order to provide an approximate upper
bound for the internal representation and information contained in
the IR network described in the previous section, we train additional
LSTM networks identical to the IR network dedicated to each auxil-
iary task. The sole difference between these auxiliary LSTM models
and the IR model is the training data and dimension of the final dense
layer. The same hyperparameters and training methods were used
across all LSTM networks. The difference in probe performance
between those inserted in the IR model and those in the auxiliary net-
work can then be viewed as the discarded information with respect
to the auxiliary signal.

3.2 Probes
We use small multilayer perceptions, which accept as input each
intermediate layer of the main LSTM networks. These probes are
trained to predict target labels of the input using only the current
hidden layer of the network they are monitoring. Changing the input
of the main IR network to reflect an auxiliary task allows the probes
to effectively become a measurement tool in how much information
the main network is retaining with respect to these auxiliary labels.
An illustrative representation of the setup is shown in Figure 1.
Any task that requires individual labeling of tokens, denoted by the
dashed probe symbol P, are fed the LSTM and embedding sequences
in temporal order. Text classification tasks receive (1) a max pooled
representation across time of the recurrent layers, (2) a sum of
embeddings or (3) direct output from a dense layer as shown below,

xi = argmax
t

(|hi,t |) (1)

x =
∑
w ∈S

Embedding(w) (2)

x = σ (W hl−1 + b) (3)

where x is the vector input into the probe, hi,t is the hidden LSTM
layer at dimension i at time t , w represents the words contained in
the sample S , and hl−1 is input into the dense layer of the main
network and the output is passed to the probe.

3.3 Tasks
We also evaluate the vocabulary overlap between the IR collection
and the auxiliary task to ensure that the majority of the new input
into the IR network has been seen during training. As shown in
Table 3, there is a significant overlap between IR training and task
evaluation vocabulary

Core Task: Answer Passage Retrieval: The core IR task being
studied is answer passage retrieval. As mentioned, this task repre-
sents a unique challenge when compared to ad-hoc retrieval and
factoid QA. While factoid retrieval often encounters questions such
as “When did James Dean Die” or “How high is Everest?” that re-
quire only one or two tokens to successfully fulfill the information
need of the query, passage retrieval requires information that spans
multiple sentences. This integral difference results in state of the
art factoid QA networks failing to beat standard tf-idf baselines on
answer passage retrieval tasks [7].

Auxiliary Task: Part of Speech Tagging: Part of speech (POS)
tagging is the task of labeling each word with its syntactic part of
speech, e.g. noun, verb, adjective, based on its use in a sentence.



As shown in past work by Bjerva et al. [4], networks trained on
semantic tagging tasks independently capture part of speech infor-
mation. As passage retrieval requires semantic processing to bridge
the information across sentences, we investigate the extent to which
an answer passage neural model also captures POS tags.

Auxiliary Task: Named Entity Tagging: While related to POS
tagging, named entity recognition (NER) requires higher level fea-
tures which often consist of POS information, whether latent or
explicit, due to the dependencies across a sentence and additional
information required for accurate entity tagging [13, 15]. We evalu-
ate a NER auxiliary task to see if the core answer passage network
dedicates some of its parameters to capture information pertaining
to named entities. Recent work in deep neural QA [26] have shown
that adding named entity overlap between question and answer sig-
nificantly improves performance with respect to IR metrics. The
increase in IR metrics suggests that entity information plays an
integral role for modeling relevance.

Auxiliary Task: Sentiment Classification: At a significantly
higher level task compared to POS tagging and NER due to the
need to process and compress an entire sequence, we implement a
sentiment classification task. Here, the objective is correctly identify
whether a sentence denotes a positive or negative view of the topic.
Li et al.’s [14] work in visualizing LSTM networks for sentiment
classification provides insight on what features are important to
predict sentiment. The most critical components are the ability to
capture local context around a word, recognize negation, qualitative
adjectives and key verbs.

Auxiliary Task: Textual Entailment: We use a textual entail-
ment task to evaluate whether information retrieval at the passage
level could be viewed as whether the query provides evidence for
a passage to be considered relevant. The goal of this task is to de-
termine whether two sentences (1) are contradicting each other, (2)
are unrelated, or (3) that the first sentence (the evidence) entails the
hypothesis. The performance of the probes on the core IR model will
help disentangle the semantic information related to entailment over
that which relates a query to its relevant passage. As each example is
an ordered pair of sentences, we concatenate the evidence-hypothesis
sentences the same way as query-passage pairs for the answer pas-
sage retrieval task. The evidence serves as the query and the passage
represents the hypothesis. The auxiliary network and probes for
this task have a three node dense final layer to classify entailment,
contradiction, and neutral classes.

3.4 Multitask Inspection
As information retained in each layer has some benefit towards de-
termining relevance, we examine the impact of explicitly reinforcing
this signal through a multitask environment using a similar neural
structure as Long and Wang [16] where gradients are passed through
task specific sub networks into larger main model. Thus the probe
remains task dependent while the layer of the IR network it connects
to, and those below it, become shared layers for the multitask ob-
jective. This approach retains the probe inspection method while
simultaneously adopting a competitive neural multitask framework.
As the IR collections do not have gold NLP labels for training, we
use the trained auxiliary NLP networks to create pseudo labels for
training.

Figure 2: Simplified representation of multitask architecture
with LSTM1 acting as shared layer.

The structure of the multitask architecture consists of the main model
hyperparameters described in Table 1. The corresponding task spe-
cific substructures are mirrored. Thus if the shared layer is LSTM 1,
then LSTM 2 and the subsequent feedforward hyperparameters are
used for both tasks with no weight sharing. A depiction of this setup
is exemplified in Figure2. The multitask model is optimized via the
joint loss function

L = Laux + LI R

where Laux and LI R are the respective loss functions used for single
task training discussed in the following section.

3.5 Training
We use Adam for optimizing both the main models as well as the
probes with a cross-entropy loss function and a learning rate of 10−3
, which provides a robust value for training [12]. Each main model
was trained via PyTorch1 over a 80-10-10 train, development, and
test partition and was stopped after the best validation loss did not
improve for four epochs as a form of early stopping. Each probe
was trained, validated, and tested on the same data to measure the
amount of information captured by the main model rather than the
probe’s ability to generalize.

Input into the IR network is done in a similar manner to past
works [7, 31] by concatenating question and passage text with an
end-of-sentence (EOS) token as shown below.

< q1, . . . ,qn > + < EOS > + < a1, . . . ,am >

This allows for query passage interaction while still being easily
adaptable to processing input from auxiliary tasks. In the case of the
NLP tasks that do not have text pairs to partition with <EOS>, we
feed the text in directly to simulate the query stage of an IR task,
and then we train another set of probes on samples where <EOS>
is prepended to the same the sample. The IR network views this
as an empty query and a candidate passage, which enables us to
identify how captured information differs for the same text as query
and passage in the IR main network.

All tokens are expressed as GLOVE 300D embeddings 2 [24]. In
order to provide a consistent text representation across all tasks, we

1https://github.com/pytorch/pytorch
2http://nlp.stanford.edu/data/glove.840B.300d.zip



do not update the initial embeddings during training at any point.
This represents a common baseline across all models.

3.5.1 Datasets. Answer Passage Retrieval: To investigate
what information is pertinent to an answer passage network for
determining the relevance of a candidate document, we use Yahoo’s
Webscope L4 high quality “Manner” collection [28] and a noisier
nfl6 collection derived from Yahoo’s Webscope L6 [7] referred to as
the CQA collection. The answer passages within these collections
are significantly longer than those found in conventional QA. The
average length of the L4 and nfl6 answer passages are 92 and 60
words respectively, while WikiQA [32] sentences have an average
length of 25 words. The final dense layer of this task’s main model
consists of a single node and trained via a binary cross entropy loss.
We apply the following auxiliary methods below not just to the CQA
dataset, but to WikiQA to provide insight into why certain models
dramatically suffer a significant loss in performance when moving
from sentence QA to passage retrieval.

Part of Speech Tagging: The collection used for evaluating this
auxiliary task is the Wall Street Journal set from Penn Treebank
III [20]. As mentioned, POS probes are inserted only into the tem-
poral (LSTM and embedding) layers of the core network. The POS
auxiliary main network was trained over 46 POS using the standard
train (0-20), validation (21, 22), and test (23, 24) splits as seen in
past work [21].

Named Entity Recognition: We use the CoNLL-2003 NER for
training and evaluation [25] and use MISC, LOC, ORG, PERS, O
tags over the standard BIO annotation (Begin, Inside, Outside). This
was done to investigate whether the IR main model is able to identify
and differentiate among the classes over the more detailed task of
determining whether a token is the beginning of a phrase or inside it.

Sentiment Classification: Like the past work [14], we use the
Internet Movie Database (IMDB) review collection [19] where a
movie review is either positive or negative with 25k samples for each
label. We use binary cross entropy to evaluate this task.

Textual Entailment: We use Stanford’s Natural Language In-
ference (SNLI) corpus [5]. This entailment set is a collection of
570k human-written English sentence pairs with labels of entail-
ment (183,416), contradiction (183,187), and neutral (182,764). We
discard the 785 samples that do not fall under one of these three
labels. Each sample is an ordered pair of sentences, one that serves
as the evidence and the following that is a hypothesis. The auxiliary
network and probes for this task have a three node dense final layer
to classify entailment, contradiction, and neutral classes.

4 RESULTS AND DISCUSSION
In this section, we show the performance of the probes using the
answer passage network’s internal representation.

As shown in Table 4, there is a steady decline in information loss
as the initial embeddings flow up through the layers. Following work
found in computer vision [33] where each layer captures increasingly
abstract representations, the answer passage model also reflects
this tendency. Lower level POS and NER information is captured
consistently in the first LSTM layer and discarded in the upper layers,
while the abstract entailment information persists into the model’s
upper layers, even sharing some of the transformations needed to
determine passage relevance. This reinforces the analysis done by

Figure 3: Performance of probes over each layer on all auxiliary
tasks as queries. IR represents the probes inserted into the an-
swer passage network and Auxiliary represents probes inserted
into the identical network trained for the auxiliary task.

Søogaard and Goldberg [27], where they had greater success with
a neural architecture that supervised POS information at the lower
layers for multitask learning. Lastly, we show that two seemingly
similar IR tasks that are considered closely related have significantly
different information needs.

Part of Speech Tagging: The performance during training (Fig-
ure 3) highlights the large degree of stratification of information that
the IR network is undergoing when learning relevance. Reflected
in the loss function, the initial embeddings retain the most POS
information while the subsequent LSTM layers suffer a decrease in
F1 within the IR model. However, moving from the first to second
LSTM layer in the core IR model receives a much greater 50% loss
in performance. This large degradation suggests that as a somewhat
low level feature, POS information is still captured in the hidden
representation of the higher LSTM layer albeit in a much weaker
representation. The slower slope of the loss function on LSTM2 and
significantly degraded F1 score, combined with Palangi et al.’s [23]
work on LSTM networks learning a rough topical model, suggests
that the probe is learning to recognize more abstract topical rep-
resentations and mapping them to POS labels. The difference in
performance across query and passage representations indicates that
the IR network attends to POS information equally.

Named Entity Recognition: Closely related to POS tagging, we
analyze the probes’ performance on the NER auxiliary task. Probe
performance on the auxiliary network shows a greater need for
capturing abstract and contextual information than POS tagging
due to the separation in performance of the embeddings and LSTM
layers in both loss and F1 over epochs on the auxiliary NER network.

Examining the probes within the IR network reinforces the evi-
dence that the second LSTM layer is learning a more topical repre-
sentation. However, as the second LSTM layer discards a significant
amount of POS information, the sustained performance on the NER
task across LSTM layers suggests that the IR model uses named



Collection: nfl6

Q: Why do teachers go abroad?
A: Many reasons: First, because its really ’freakin’ cool to go abroad and sample different cultures and languages. Two: Alot of schools abroad offer great packages, like free room and board while your teaching
there and some even offer to pay for your current or impending degree and any travel expenses. Three:Some american schools offer exchange programs for teachers, so that teachers can go abroad to experiment
and learn about different and alternative teaching styles. Normally teachers are compensated for it, kinda like a sabbatical leave

Collection: Webscope L4

Q: How can I safely open a geode? A: One way to open a geode – to reveal the crystals – is with a chisel and hammer. Score the geode completely around the outside where you want it to crack – usually in two
equal halves. Keep going until it cracks and breaks apart. This will almost always work and won’t damage the crystals.

Table 2: An example query answer pair from the two passage collections being considered.

Table 3: Vocabulary overlap measured by Ai∩Bj
Bj between auxil-

iary collections (Bj ) and the two IR collections (Ai ).

Task L4+nfl6 WikiQA
Unique Total Unique Total

CoNLL 2003 .595 .649 .424 .565
PTB II .769 .815 .584 .673
IMDB .293 .972 .110 .916
SNLI .720 .994 .383 .952

entities for passage length relevance judgements either through ex-
plicit capturing at the cell level, or in a latent representation in the
hidden layer independent of POS information. The F1 drop when
processing the same samples from a passage perspective indicates
that the IR network focuses on capturing more information related to
named entities when processing text at the query stage. However, the
drop in performance could also be due to the lack of relevant query
text priming the network to focus on named entity information.

Sentiment Classification: Moving to a more abstract task requir-
ing an entire sentence, probes trained to label sentiment result in a
significantly different outcome than NER and POS. Each layer re-
mains a close neighbor to its subsequent one when viewed from the
probes’ perspectives. The small decrease in sentiment classification
performance, accompanied with thet large loss of POS information
suggests that some form of more abstract sentiment information
is captured in each layer. Furthermore, this can be assumed to be
explicitly modeled within the cell due to the almost zero slope of the
loss during training that mirrors the entailment task’s rate (Figure 3).
However, while sentiment information is used for establishing rel-
evance, there is no signal present in the actual relevance label, as
shown by Densey ’s result of 0.49 and the random model receiving a
0.50 accuracy score. In addition, the IR network does not seem to
process sentiment information differently across query and passage
text as seen by the relatively stable performance in Table 4.

Entailment: Confirming the results in the previous subsections,
the most abstract task of capturing entailment suffers the least across
layers. Additionally, contrary to the other auxiliary tasks, higher
layers significantly outperform the lower ones as seen in the differ-
ence between LSTM1 and Dense300 in Table 4. Accounting for the
accuracy across other tasks, the increased performance of the third
layer, Dense300, suggests that the transformations used to determine
relevance at this point also act to move entailment classes into a
more linearly separable space.

Lastly, the performance of the probe on the relevance score,
Densey , shows that the relevance of a query passage pair has some in-
formation with respect to logical entailment. We expand this insight
and investigate individual label performance as shown in Table 5.
The individual label evaluations show that each of the three classes
requires unique information. In addition, the relevance model retains
information for detecting entailment, while information for neutral
and contradictory labels is iteratively discarded at each layer. The
following dip in performance in Dense200 indicates that the upper
layers put less emphasis on entailment. Finally, looking at the rela-
tion between the scalar relevance value, Densey , and the individual
label metrics shows that positive entailment information is related to
the relevance of a passage, although non relevant documents provide
no indication that the query and passage pair do not contain some
type of entailment.

4.1 Multitask Inspection
Examining the impact of the auxiliary loss signal for IR, the same
trend as seen in Table 4 occurs in Figure 4, where the layer that
captures the most information with respect to the auxiliary task is
also the most effective layer within the multitask environment for
retrieval. Of particular interest is the NER performance on WikiQA.
This task significantly improves performance when using LSTM1 as
the shared layer, and subsequently suffers the greatest performance
decrease across all tasks when moving upward. This suggests that
for retrieval on this collection, the use of named entities within a
neural model is heavily biased towards the first layer, not only from
an information perspective, but also from a performance view as
well. Lastly, following the trend in Table 5, the multitask model over
CQA benefits from using LSTM2 as the shared layer, where the most
information used for entailment is captured. This also demonstrates
that the optimal shared multitask layer for retrieval is not the lowest
by default, as it is for POS and NER auxiliary tasks.

4.2 Dataset Comparison
WikiQA vs CQA: As mentioned in section 3.5, we perform the
same NLP auxiliary analysis on an additional factoid QA dataset.
Shown in Table 4, there exists a consistent decline in performance
from the lower to upper layers. However, due to the greater amount
of factoid type queries, the WikiQA model retains more information
with respect to NER and POS information at the cost of reduced
performance on sentiment and entailment tasks. Not only does the
WikiQA model perform worse than the CQA model on these tasks,
but the hidden transformations used for determining relevance fail
to provide any assistance regarding separating entailment unlike
the CQA model. While the WikiQA dataset shares significantly



Table 4: F1 score for NER and POS, and Accuracy for Sentiment and Entailment tasks of each layer of the IR network over auxiliary
NLP tasks with input treated as the query. Aux in the second column represents the probes inserted into an identical LSTM network
trained directly on the auxiliary task. Parenthesis indicates performance difference when placing <EOS> prior to sample input, and
bold shows best layer on each task.

CQA

Layer NER POS Sentiment Entailment

IR Aux IR Aux IR Aux IR Aux

Random .200 .022 .500 .333
Embedding .963 .917 .844 .590

LSTM1 .927(-.001) .987 .751(-.001) .951 .721(-.004) .900 .522(+.036) .715
LSTM2 .810(-.002) .987 .305(-.002) .954 .666(-.001) .900 .518(+.040) .873
Dense300 - - - - .689(-.005) .926 .527(+.039) .877
Dense200 - - - - .668(-.007) .932 .454(+.031) .881
Densey - - - - .498(+.006) .934 .366(-.008) .885

WikiQA

Layer NER POS Sentiment Entailment

IR Aux IR Aux IR Aux IR Aux

Random .200 .022 .500 .333
Embedding .963 .917 .844 .590

LSTM1 .934(-.001) .987 .794(-.000) .951 .638(+.001) .900 .464(-.010) .715
LSTM2 .845(-.001) .987 .386(+.051) .954 .593(-.001) .900 .425(+.020) .873
Dense300 - - - - .572(-.003) .926 .400(+.018) .877
Dense200 - - - - .557(-.001) .932 .377(+.021) .881
Densey - - - - .503(+.003) .934 .355(-.002) .885

Table 5: Per label accuracy performance over SNLI entailment
collection on CQA model. E, N, C represent the classes Entail-
ment, Neutral, and Contradiction.

Layer E N C
Random .333 .333 .333
Embedding .593 .531 .624

LSTM1 .569 .466 .517
LSTM2 .596 .473 .470
Dense300 .610 .476 .480
Dense200 .529 .403 .422
Densey .424 .372 .296

less vocabulary overlap than the CQA collection as seen in Table 3,
examining the impact of missing vocabulary on the incorrectly clas-
sified auxiliary samples reveals a Pearson’s correlation of 0.194, and
restricting the CQA collection to the same as the WikiQA training
set, 12,888 random samples, does not significantly reduce perfor-
mance on the auxiliary tasks. This provides insight in why some past
models that perform successfully on shorter QA tasks struggle on
passage retrieval [6].

5 CONCLUSION
The proposed probe based NLP view of retrieval models identifies
key information used by these models that has not been identified
in past work. While we demonstrate the well established result that
increasingly abstract features are learned within an IR network, we

show in detail that the same information is used in a significantly dif-
ferent manner across collection types. Furthermore, this information
can directly improve performance via adding additional structures to
an IR model through multitask learning. While preliminary, this re-
sult indicates that using rigid subtasks to represent retrieval features
is a promising avenue for future work.
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Figure 4: Per-layer performance of NER, POS, and Entailment
tasks measured by MAP on WikiQA and CQA collections.
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[21] TomÃąÅą Mikolov, Ilya Sutskever, Anoop Deoras, Le Hai Son, Stefan Kombrink,
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