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Abstract. Traditional statistical retrieval models often treat each doc-
ument as a whole. In many cases, however, a document is relevant to a
query only because a small part of it contain the targeted information. In
this work, we propose a neural passage model (NPM) that uses passage-
level information to improve the performance of ad-hoc retrieval. Instead
of using a single window to extract passages, our model automatically
learns to weight passages with different granularities in the training pro-
cess. We show that the passage-based document ranking paradigm from
previous studies can be directly derived from our neural framework. Also,
our experiments on a TREC collection showed that the NPM can signif-
icantly outperform the existing passage-based retrieval models.
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1 Introduction

Ad-hoc retrieval refers to a key problem in Information Retrieval (IR) where
documents are ranked according to their assumed relevance to the information
need of a specific query formulated by users [1]. In the past decades, statistical
models have dominated the research on ad-hoc retrieval. They assume that doc-
uments are samples of n-grams, and relevance between a document and a query
can be inferred from their statistical relationships. To ensure the reliability of
statistical estimation, most models treat each document as single piece of text.

There are, however, multiple reasons that motivate us not to treat a document
as a whole. First, there are many cases where the document is relevant to a
query only because a small part of it contains the information pertaining to the
user’s need. The ranking score between the query and these documents would
be relatively low if we construct the model with statistics based on the whole
documents. Second, because reading takes time, sometimes it is more desirable
to retrieve a small paragraph that answers the query rather than a relevant
document with thousands of words. For instance, we do not need a linux textbook
to answer a query “linux copy command”.

Given these observations, IR researchers tried to extract and incorporate rel-
evance information from different granularities for ad-hoc document retrieval.
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One simple but effective method is to cut long documents into pieces and con-
struct retrieval models based on small passages. Those passage-based retrieval
models are able to identify the subtopics of a document and therefore capture
the relevance information with finer granularities. Also, they can extract rele-
vant passages from documents and provide important support for query-based
summarization and answer sentence generation.

Nonetheless, the development of passage-based retrieval models is limited
because of two reasons. First, as far as we know, there is no universal definition
of passages in IR. Most previous studies extracted passages from documents with
a fixed-length window. This method, however, is not optimal as the best passage
size varies according to both corpus properties and query characteristics. Second,
aggregating information from passages with different granularities is difficult.
The importance of passages depends on multiple factors including the structure
of documents and the clarity of queries. For example, Bendersky and Kurland [2]
noticed that passage-level information is not as useful on highly homogeneous
documents as it is on heterogeneous documents. A simple weighting strategy
without considering these factors is likely to fail in practice.

In this paper, we focus on addressing these challenges with a unified neu-
ral network framework. Specifically, we develop a convolution neural network
that extracts and aggregates relevance information from passages with different
sizes. In contrast to previous passage-based retrieval models, our neural passage
model takes passages with multiple sizes simultaneously and learns to weight
them with a fusion network based on both document and query features. Also,
our neural passage model is highly expressive as the state-of-the-art passage-
based retrieval models can be incorporated into our model as special cases. We
conducted empirical experiments on TREC collections to show the effectiveness
of the neural passage model and visualized the network weights to analyze the
effect of passages with different granularities.

2 Related Work

Passage Extraction . Previous studies have explored three types of passage
definitions: structure-based, topic-based and window-based passages. Structure-
based passage extraction identifies passage boundaries with author-provided
marking such as empty line, indentation etc. [7]. Topic-based passage extrac-
tion, such as TextTiling [3], divides documents into coherent passages with each
passage corresponding to a specific topic. Despite its intuitive motivation, this
approach is not widely used because identifying topic drift in documents is hard
and computationally expensive. Instead, the most widely used methods extract
passages with overlapped or non-overlapped windows [10].

Passage-based Retrieval Model . Most passage-based retrieval models in
previous studies are unigram models constructed on window-based passages with
fixed length. Liu and Croft [5] applied the language modeling approach [6] on
overlapped-window passages and ranked documents with their maximum pas-
sage language score. Bendersky and Kurland [2] combined passage-level language
models with document-level language models and weighted them according to
the homogeneity of each document. To the best of our knowledge, our work is
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the first study that incorporates a neural network framework for passage-based
retrieval models.

3 Neural Passage Model

In this section, we describe how to formulate the passage-based document rank-
ing with a neural framework and aggregate information from passages with dif-
ferent granularities in our neural passage model (NPM). The overall model struc-
ture is shown in Figure 1.

Passage-based Document Ranking. Passage-based retrieval models use
passages as representatives for each document and rank documents according to
their passage scores. Specifically, given a query q and a passage g extracted with
a fixed-length window, the score of g is the maximum log likelihood of observing
q given g’s unigram language model as

logP (q|g) =
∑

t∈q

logP (t|g) =
∑

t∈q

log((1− λc)
tft,g

n
+ λc

cft

|C|
) (1)

where tft,g is the count of t in g, cft is the corpus frequency of t, |C| is the length
of the corpus and λc is a smoothing parameter.
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Fig. 1. The structure of the NPM.

Assuming that passages can
serve as proxies of documents [2],
the ranking score of a doc-
ument d under the passage-
based document ranking frame-
work should be Score(q, d) =
log

∑

g∈d P (g|d) · P (q|g). Intu-
itively, P (g|d) could be a uni-
form distribution since all pas-
sages are extracted following
the same methodology. How-
ever, averaging passage scores
produces poor retrieval perfor-
mance in practice and the state-of-the-art models adopt a winner-take-all strat-
egy that only uses the best passage to compute document scores [5, 2]:

Score(q, d) = max
g∈d

logP (q|g) (2)

Passage Extraction with a Convolution Layer . Given a fixed length
window, window-based passages are extracted by sliding the window along the
document with fixed step size. Formally, given a document d with length nd, the
set of extracted passages G(d) with window size m and step size τ is G(d) =
{gi|i ∈

[

0, ⌊nd

τ
⌋
]

} where gi represents the ith passage starting from the i · τth
term in d with size m. Let nq be the length of query q, then the matching of
terms in q and d is a matrix M(q, d) ∈ R

nq×nd in which M(q, d)i,j represents
the matching between the ith term in q and the jth term in d. In this work, we
define the matching of two terms as a binary variable (1 if the two terms are
same and 0 if they are not). Let K(t, gi) be the score of gi given term t in q,
then the extraction of window-based passages can be achieved with a convolution
filter with size m, stride τ and kernel K over M(q, d). Passages with different
granularities can be directly extracted with different sizes of filters.
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Language Modeling as a Logarithm Kernel . Let M(t, gi) be the binary
matching matrix for term t and gi with shape (1,m) and W ∈ R

m, bt ∈ R be
the parameters for a logarithm convolution kernel K, then we define the passage
model score for q and gi as

Score(q, gi) =
∑

t∈q

K(t, gi) =
∑

t∈q

log(W ·M(t, gi) + bt) (3)

Let W be a vector of 1 and bt be
λc·m·cft
(1−λc)|C| , then K(t, gi) is equal to logP (t|gi)

in Equation 1 plus a bias (log m
1−λc

). Thus, the term-based language modeling
approach can be viewed as a logarithm activation function over the linear pro-
jection of M(t, gi). Further, if we implement the sum of query term scores with
a mean pooling and the winner-take-all strategy in Equation 2 with a max pool-
ing, then the passage-based document ranking framework can be completely
expressed with a three-layer convolution neural network.

Aggregating Passage Models with a Fusion Network . Bendersky and
Kurland observed that the usefulness of passage level information varies on dif-
ferent documents [2]. To consider document characteristics, they proposed to
combine the passage models with document models using document homogene-
ity scores h[M ](d) as Score(q, d) = h[M ](d)P (q|d) + (1− h[M ](d))maxg∈d P (q|g)
where h[M ](d) could be length-based (h[length]), entropy-based (h[ent]), inter-
passage (h[intPsg]) or doc-passage (h[docPsg]):

h[length](d) = 1−
lognd −mindi∈C logndi

maxdi∈C logndi −mindi∈C logndi

h[ent](d) = 1 +

∑

t′∈d P (t′|d) log(P (t′|d))

lognd

h[intPsg] =
2

⌈nd

τ
⌉(⌈nd

τ
⌉ − 1)

∑

i<j;gi,gj∈d

cos(gi, gj), h[docPsg] =
1

⌈nd

τ
⌉

∑

gi∈d

cos(d, gi)

(4)

where cos(d, gi) is the cosine similarity between the tf.idf vector of d and gi.

Inspired by the design of homogeneity scores and studies on query per-
formance prediction [9], we propose a fusion network that aggregates scores
from passages according to both document properties and query characteristics.
We extract features for queries and concatenate them with the homogeneity
features to form a fusion feature vector h(q, d). For each query term, we ex-
tract their inverse document/corpus frequency and a clarity score [9] defined as
SCQt = (1+ log(cft)) log(1+ idft) where idft is the inverse document frequency
of t. For each feature, we compute the sum, standard deviation, maximum, mini-
mum, arithmetic/geometric/harmonic mean and coefficient of variation for t ∈ q.
We also include a list feature as the average scores of top 2,000 documents re-
trieved by the language modeling approach. Suppose that h(q, d) ∈ R

β and
let r(q, d) ∈ R

α be a vector where each dimension denotes a score from one
convolution filter, then the final ranking score f(q, d) is computed as

Score(q, d) = f(q, d) = tanh
(

r(q, d)T · φ(h(q, d)) + bR
)

(5)

where φ(h(q, d)) =
exp(W i

R·h(q,d))
∑

α
j=1

exp(W j

R
·h(q,d))

and WR ∈ R
α×β , bR ∈ R are parameters

learned in the training process.
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Table 1. The performance of passage-based retrieval models. ∗, + means significant
differences over MSP[base] and MSP[docPsg] with passage size (150, ∞) respectively.

MAP NDCG@20 Precison@20 MAP NDCG@20 Precison@20

Passage Size (50, ∞) Passage Size (150, ∞)
MSP[base] 0.193 0.317 0.288 0.207 0.335 0.302

MSP[length] 0.210 0.333 0.298 0.223∗ 0.355∗ 0.315∗

MSP[ent] 0.209 0.338 0.304 0.216∗ 0.349∗ 0.314∗

MSP[interPsg] 0.204 0.329 0.296 0.215∗ 0.346∗ 0.310∗

MSP[docPsg] 0.206 0.331 0.296 0.226∗ 0.362∗ 0.312∗

Passage Size (50, 150, ∞)
NPM[doc] 0.255∗+ 0.412∗+ 0.366∗+ - - -
NPM[query] 0.256∗+ 0.416∗+ 0.369∗+ - - -
NPM[doc+query] 0.255∗+ 0.413∗+ 0.367∗+ - - -

4 Experiment and Results

In this section, we describe our experiments on Robust04 with 5-fold cross val-
idation [4]. For efficient evaluation, we conducted an initial retrieval with the
query likelihood model [6] and performed re-ranking on the top 2,000 docu-
ments. We reported MAP, NDCG@20, Precision@20 and used Fisher random-
ization test [8] (p < 0.05) to measure the statistical significance. Our baselines
include the max-scoring language passage model [5](MSP[base]) and the state-of-
the-art passage-based retrieval model with passage weighting [2] – the MSP with
length scores (MSP[length]), the MSP with entropy scores (MSP[ent]), the MSP
with inter-passage scores (MSP[interPsg]) and the MSP with doc-passage scores
(MSP[docPsg]). We follow the same parameter settings used by Bendersky and
Kurland [2] and tested all models with passage size 50 and 150 separately. We
used filters with length 50, 150 and ∞ for NPMs and set τ as the half of the filter
lengths. The filter with length 50 extracts the same passages used in MSP mod-
els with passage size 50, and the filter with length ∞ treats the whole document
as a single passage. Notice that the MSP with passage weighting [2] also uses
sizes 50 (or 150) and ∞ to combines the scores of passages and the whole doc-
ument. We tested the NPMs with document homogeneity features (NPM[doc]),
query features (NPM[query]) and both (NPM[doc+query]). Due to the limit of
Robust04, we only have 249 labeled queries, which are far from enough to train
a robust convolution kernel with hundreds of parameters. Therefore, we fixed
the convolution kernels as discussed in Section 3.

Overall Performance . Table 1 shows the results of our baselines and the
NPM models with passage size 50 and 150. As we can see, the variations of
MSP significantly outperformed MSP[base] with the same passage size, and the
MSP models with passage size 150 performed better than MSP with passage
size 50. Compared to MSP models, the NPM models showed superior perfor-
mance on all reported metrics. As discussed in Section 3, MSP models can be
viewed as special cases of the NPM with predefined parameters. With passage
size 50, the MSP[base] model is actually a NPM model with filter length 50
and no fusion layer; and the MSP with homogeneity weighting is a NPM model
with filter lengths 50, ∞ and a linear fusion with document homogeneity scores.
From this perspective, the NPM model is more powerful than MSP models as it
automatically learns to weight passages according to document/query features.




