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ABSTRACT

Music recommender systems (MRS) have experienced a boom in
recent years, thanks to the emergence and success of online stream-
ing services, which nowadays make available almost all music in
the world at the user’s fingertip. While today’s MRS consider-
ably help users to find interesting music in these huge catalogs,
MRS research is still facing substantial challenges. In particular
when it comes to build, incorporate, and evaluate recommendation
strategies that integrate information beyond simple user–item in-
teractions or content-based descriptors, but dig deep into the very
essence of listener needs, preferences, and intentions, MRS research
becomes a big endeavor and related publications quite sparse.

�e purpose of this trends and survey article is twofold. We first
identify and shed light on what we believe are the most pressing
challenges MRS research is facing, from both academic and industry
perspectives. We review the state of the art towards solving these
challenges and discuss its limitations. Second, we detail possible
future directions and visions we contemplate for the further evolu-
tion of the field. �e article should therefore serve two purposes:
giving the interested reader an overview of current challenges in
MRS research and providing guidance for young researchers by
identifying interesting, yet under-researched, directions in the field.
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1 INTRODUCTION

Research in music recommender systems (MRS) has recently expe-
rienced a substantial gain in interest both in academia and indus-
try [121]. �anks to music streaming services like Spotify, Pandora,
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or Apple Music, music aficionados are nowadays given access to
tens of millions music pieces. By filtering this abundance of music
items, thereby limiting choice overload [14], MRS are o�en very
successful to suggest songs that fit their users’ preferences. How-
ever, such systems are still far from being perfect and frequently
produce unsatisfactory recommendations. �is is partly because of
the fact that users’ tastes and musical needs are highly dependent
on a multitude of factors, which are not considered in sufficient
depth in current MRS approaches that are typically centered on the
core concept of user–item interactions, or sometimes content-based
item descriptors. In contrast, we argue that satisfying the users’
musical entertainment needs requires taking into account intrin-
sic, extrinsic, and contextual aspects of the listeners [2], as well
as more decent interaction information. For instance, personality
and emotional state of the listeners (intrinsic) [50, 108] as well as
their activity (extrinsic) [54, 142] are known to influence musical
tastes and needs. So are users’ contextual factors including weather
conditions, social surrounding, or places of interest [2, 74]. Also
the composition and annotation of a music playlist or a listening
session reveals information about which songs go well together or
are suited for a certain occasion [95, 150]. �erefore, researchers
and designers of MRS should reconsider their users in a holistic
way in order to build systems tailored to the specificities of each
user.

Against this background, in this trends and survey article, we
elaborate on what we believe to be amongst the most pressing
current challenges in MRS research, by discussing the respective
state of the art and its restrictions (Section 2). Not being able to
touch all challenges exhaustively, we focus on cold start, automatic

playlist continuation, and evaluation of MRS. While these problems
are to some extent prevalent in other recommendation domains
too, certain characteristics of music pose particular challenges in
these contexts. Among them are the short duration of items (com-
pared to movies), the high emotional connotation of music, and
the acceptance of users for duplicate recommendations. In the
second part, we present our visions for future directions in MRS
research (Section 3). More precisely, we elaborate on the topics of
psychologically-inspired music recommendation (considering human
personality and emotion), situation-aware music recommendation,
and culture-aware music recommendation. We conclude this article
with a summary and identification of possible starting points for the
interested researcher to face the discussed challenges (Section 4).



�e composition of the authors allows to take academic as well
as industrial perspectives, which are both reflected in this article.
Furthermore, we would like to highlight that particularly the ideas
presented as Challenge 2: Automatic playlist continuation in Sec-
tion 2 play an important role in the task definition, organization,
and execution of the ACM Recommender Systems Challenge 20181

which focuses on this use case. �is article may therefore also serve
as an entry point for potential participants in this challenge.

2 GRAND CHALLENGES

In the following, we identify and detail a selection of the grand
challenges, which we believe the research field of music recom-
mender systems is currently facing, i.e., overcoming the cold start
problem, automatic playlist continuation, and properly evaluating
music recommender systems. We review the state of the art of the
respective tasks and its current limitations.

2.1 Particularities of music recommendation

Before we start digging deeper into these challenges, we would first
like to highlight the major aspects that make music recommenda-
tion a particular challenge and distinguishes it from recommending
other items, such as movies, books, or products. �ese aspects have
been adopted from a tutorial on music recommender systems [120],
co-presented by one of the authors at the ACM Recommender Sys-
tems 2017 conference.2

Duration of items: While in traditional movie recommendation
the items of interest have a typical duration of 90 minutes or more,
the duration of music items usually ranges between 3 and 5 min-
utes (except for classical music). Because to this, items may be
considered more disposable.

Magnitude of items: �e size of common commercial music cat-
alogs is in the range of tens of millions music pieces while movie
streaming services have to deal with much smaller catalog sizes,
typically thousands up to tens of thousands of movies and series.
Scalability is therefore a much more important issue in music rec-
ommendation.

Sequential consumption: Unlike movies, music pieces are most
frequently consumed sequentially, more than one at a time, i.e.,
in a listening session. �is yields a number of challenges for a
MRS, which relate to identifying the right arrangement of items in
a recommendation list.

Repeated recommendations: Recommending the samemusic piece
again, at a later point in time, may be appreciated by the user of
a MRS, in contrast to a movie or product recommender, where
repeated recommendations are usually not preferred.

Consumption behavior: Music is o�en consumed passively, in
the background. While this is not a problem per se, it can affect
preference elicitation. In particular when using implicit feedback
to infer listener preferences, the fact that a listener is not paying
a�ention to the music (therefore, e.g., not skipping a song) might
be wrongly interpreted as a positive signal.

Listening intent and context: Listeners’ intents for consuming
or sharing a music piece are manifold and should be taken into
account when building a MRS. For instance, a listener will likely

1h�ps://recsys.acm.org/recsys18/challenge
2h�p://www.cp.jku.at/tutorials/mrs recsys 2017

create a different playlist when preparing for a romantic dinner
than when warming-up with friends to go out at a Friday night.
�is also highlights the importance of the social component of
music listening. Furthermore, a lot of listeners strongly identify
with their liked artists. In this vein, music is also o�en used for self-
expression. Another important and frequent intent is regulating
the listener’s mood, which is discussed below.
Similar to intent, the listening context may strongly influence the
listeners’ preferences. Among others, context may relate to loca-
tion, for instance, listening at the workplace, when commuting,
or relaxing at home. It might also relate to the use of different
listening devices, e.g., earplugs on a smartphone vs. hi-fi stereo at
home, just to give a few examples. �e importance of considering
such intent and context factors in MRS research is acknowledged
by discussing situation-aware MRS as a trending research direction,
cf. Section 3.2.

Emotional connotation: Music is known to evoke very strong
emotions, and one of the most frequent reasons to listen to music
is indeed mood regulation [93]. At the same time, the emotion of
the listener is usually neglected in current MRS. �is is the reason
why we selected emotion-aware MRS as one of the main future
directions in MRS research, cf. Section 3.1.

2.2 Challenge 1: Cold start problem

Problem definition: One of the major problems of recom-
mender systems in general [43, 112], and music recommender sys-
tems in particular [73, 89] is the cold start problem, i.e., when a new
user registers to the system or a new item is added to the catalog
and the system does not have sufficient data associated with these
items/users. In such a case, the system cannot properly recommend
existing items to a new user (new user problem) or recommend a
new item to the existing users (new item problem) [3, 43, 73, 123].

Another sub-problem of cold start is the sparsity problem which
refers to the fact that the number of given ratings is much lower
than the number of possible ratings, which is particularly likely
when the number of users and items is large. �e inverse of the ratio
between given and possible ratings is called sparsity. High sparsity
translates into low rating coverage, since most users tend to rate
only a tiny fraction of items. �e effect is that recommendations
o�en become unreliable [73]. Typical values of sparsity are quite
close to 100% in most real-world recommender systems. In the
music domain, this is a particularly substantial problem. Dror et
al. [34], for instance, analyzed the Yahoo! Music dataset, which as
of time of writing represents the largest music recommendation
dataset. �ey report a sparsity of 99.96%. For comparison, the
Netflix dataset of movies has a sparsity of “only” 98.82%.

State of the art:

A number of approaches have already been proposed to tackle
the cold start problem in the music recommendation domain, fore-
most content-based approaches, hybridization, cross-domain rec-
ommendation, and active learning.

Content-based recommendation (CB) algorithms do not require
the rating of other users. �erefore, as long as some pieces of
information about the user’s own preferences are available, such
techniques can be used in cold start scenarios. Furthermore, in the



most severe case, when a new item is added to the catalog, content-
based methods enable recommendations, because they can extract
features from the new item and use them tomake recommendations.
It is noteworthy that while collaborative filtering (CF) systems have
cold start problems both for new users and new items, content-
based systems have only cold start problems for new users [5].
As for the new item problem, a standard approach is to extract a
number of features that define the acoustic properties of the audio
signal and use content-based learning of the user interest (user
profile learning) in order to effect recommendations. �is is advan-
tageous not only to address the new item problem but also because
an accurate feature representation can be highly predicative of
users’ tastes and interests which can be leveraged in the subse-
quent information filtering stage [5]. Such feature extraction from
audio signals can be done in two main manners: (1) by extracting a
feature vector from each item individually, independent of other
items or (2) by considering the cross-relation between items in the
training dataset. �e difference is that in (1) the same process is
performed in the training and testing phases of the system, and the
extracted feature vectors can be used off-the-shelf in the subsequent
processing stage, for example they can be used to compute simi-
larities between items in a one-to-one fashion at testing time. In
contrast, in (2) first a model is built from all features extracted in the
training phase, whose main role is to map the features into a new
(acoustic) space in which the similarities between items are be�er
represented and exploited. An example of approach (1) is the block-
level feature framework [126, 127], which creates a feature vector
of about 10,000 dimensions, independently for each song in the
given music collection. �is vector describes aspects such as spec-
tral pa�erns, recurring beats, and correlations between frequency
bands. An example of strategy (2) is to create a low-dimensional
i-vector representation from the Mel-frequency cepstral coefficients
(MFCC), which model musical timbre to some extent [39]. To this
end, a universal background model is created from the MFCC vec-
tors of the whole music collection, using a Gaussian mixture model
(GMM). Performing factor analysis on a representation of the GMM
eventually yields i-vectors.

In scenarios where some form of semantic labels, e.g., genres or
musical instruments, are available, it is possible to build models that
learn the intermediate mapping between low-level audio features
and semantic representations using machine learning techniques,
and subsequently use the learned models for prediction. A good
point of reference for such semantic-inferred approaches can be
found in [13, 24].

An alternative technique to tackle the new item problem is
hybridization. A review of different hybrid and ensemble recom-
mender systems can be found in [6, 18]. In [33] the authors propose
a music recommender system which combines an acoustic CB and
an item-based CF recommmender. For the content-based compo-
nent, it computes acoustic features including spectral properties,
timbre, rhythm, and pitch. �e content-based component then as-
sists the collaborative filtering recommender in tackling the cold
start problem since the features of the former are automatically
derived via audio content analysis.
�e solution proposed in [146] is a hybrid recommender system
that combines CF and acoustic CB strategies also by feature hy-
bridization. However, in this work the feature-level hybridization

is not done in the original feature domain. Instead, a set of latent
variables referred to as conceptual genre are introduced, whose role
is to provide a common shared feature space for the two recom-
menders and enable hybridization. �e weights associated with the
latent variables reflect the musical taste of the target user and are
learned during the training stage.
In [128] the authors propose a hybrid recommender system incor-
porating item–item CF and acoustic CB based on similarity metric
learning. �e proposed metric learning is an optimization model
that aims to learn the weights associated with the audio content
features (when combined in a linear fashion) so that a degree of
consistency between CF-based similarity and the acoustic CB sim-
ilarity measure is established. �e optimization problem can be
solved using quadratic programming techniques.

Another solution to cold start are cross-domain recommendation

techniques, which aim at improving recommendations in one do-
main (here music) by making use of information about the user
preferences in an auxiliary domain [20, 46]. Hence, the knowl-
edge of the preferences of the user is transferred from an auxiliary
domain to the music domain, resulting in a more complete and accu-
rate user model. Similarly, it is also possible to integrate additional
pieces of information about the (new) users, which are not directly
related to music, such as their personality, in order to improve the
estimation of the user’s music preferences. Several studies con-
ducted on user personality characteristics support the conjecture
that it may be useful to exploit this information in music recom-
mender systems [48, 52, 63, 98, 108]. For a more detailed literature
review of cross-domain recommendation, we refer to [21, 47, 76].

In addition to the aforementioned approaches, active learning
has shown promising results in dealing with the cold start problem.
Active learning addresses this problem at its origin by identifying
and eliciting (high quality) data that can represent the preferences
of users be�er than by what they provide themselves [43, 112]. Such
a system therefore interactively demands specific user feedback to
maximize the improvement of system performance.

Limitations: �e state-of-the-art approaches discussed above
are restricted by certain limitations. When using content-based fil-

tering, for instance, almost all existing approaches rely on a number
of predefined audio features that have been used over and over
again, including spectral features, MFCCs, and a great number of
derivatives [80]. However, doing so assumes that (all) these features
are predictive of the user’s music taste, while in practice it has been
shown that the acoustic properties that are important for the per-
ception of music are highly subjective [100]. Furthermore, listeners’
different tastes and amount of interests in different pieces of music
influence perception of item similarity [117]. �is subjectiveness
demands for CB recommenders that incorporate personalization in
their mathematical model. For example, in [44] the authors propose
a hybrid (CB+CF) recommender model, namely regression-based
latent factor models (RLFM). In [4] the authors propose a user-
specific feature-based similarity model (UFSM), which defines a
similarity function for each user, leading to a high degree of person-
alization. Although not designed specifically for the music domain,
the authors of [4] provide an interesting literature review of similar
user-specific models.



While hybridization can therefore alleviate the cold start prob-
lem to a certain extent, as seen in the examples above, respective
approaches are o�en complex, computationally expensive, and lack
transparency [19]. In particular, results of hybrids employing latent
factor models are typically hard to understand for humans.

A major problem with cross-domain recommender systems is their
need for data that connects two or more target domains, e.g., books,
movies, and music [21]. In order for such approaches to work prop-
erly, items, users, or both therefore need to overlap to a certain
degree [27]. In the absence of such overlap, relationships between
the domains must be established otherwise, e.g., by inferring seman-
tic relationships between items in different domains or assuming
similar rating pa�erns of users in the involved domains. How-
ever, whether respective approaches are capable of transferring
knowledge between domains is disputed [26]. A related issue in
cross-domain recommendation is that there is a lack of established
datasets with clear definition of domains and recommendation
scenarios [76]. Because of this, the majority of existing work on
cross-domain RS use some type of conventional recommendation
dataset transformation to suit it for their need.

Finally, also active learning techniques suffer from a number
of issues. First of all, the typical active learning techniques pro-
pose to the users the items with the highest predicted ratings in
order to elicit the true ratings. �is indeed is a default strategy in
recommender systems as users tend to rate what have been rec-
ommended to them. Moreover, users typically browse and rate
interesting items which they would like. However, it has been
shown that doing so creates a strong bias in the dataset and ex-
pands it disproportionately with high ratings. �is in turn may
substantially influence the prediction algorithm and decrease the
recommendation accuracy [42]. Moreover, not all the active learn-
ing strategies are necessarily personalized. �e users differ very
much in the amount of information they have about the items,
their preferences, and the way they make decisions. Hence, it is
clearly inefficient to request all the users to rate the same set of
items, because many users may have a very limited knowledge,
ignore many items, and not properly provide ratings for these items.
Properly designed active learning techniques should take this into
account and propose different items to different users to rate. �is
can be very beneficial and increase the chance of acquiring ratings
of higher quality [40].

2.3 Challenge 2: Automatic playlist

continuation

Problem definition: In its most generic definition, a playlist
is simply a sequence of tracks intended to be listened to together.
�e task of automatic playlist generation (APG) then refers to the
automated creation of these sequences of tracks.

Considered a variation of APG, the task of automatic playlist con-

tinuation (APC) consists of adding one or more tracks to a playlist
in a way that fits the same target characteristics of the original
playlist. �is has benefits in both the listening and creation of
playlists: users can enjoy listening to continuous sessions beyond
the end of a finite-length playlist, while also finding it easier to
create longer, more compelling playlists without needing to have
extensive musical familiarity.

A large part of the APC task is to accurately infer the intended
purpose of a given playlist. �is is challenging not only because
of the broad range of these intended purposes (when they even
exist), but also because of the diversity in the underlying features
or characteristics that might be needed to infer those purposes.

Related to Challenge 1, an extreme cold start scenario for this
task is where a playlist is created with some metadata (a title, for
example), but no song has been added to the playlist. �is problem
can be cast as an ad-hoc information retrieval task, where the task
is to rank songs in response to a user-provided metadata query.

�e APC task can also potentially benefit from user profiling,
e.g., making use of previous playlists and the long-term listening
history of the user. We call this personalized playlist continuation.

According to a study carried out in 2016 by the Music Business
Association3 as part of theirMusic Biz Consumer Insights program,4

playlists accounted for 31% of music listening time among listeners
in the USA, more than albums (22%), but less than single tracks
(46%). Other studies, conducted by MIDiA,5 show that 55% of
streaming music service subscribers create music playlists, with
some streaming services such as Spotify currently hosting over 2
billion playlists.6 Studies like these suggest a growing importance
of playlists as a mode of music consumption, and as such, the study
of APG and APC has never been more relevant.

State of the art: APG has been studied ever since digital multi-
media transmission made huge catalogs of music available to users.
Bonnin and Jannach provide a comprehensive survey of this field
in [15]. In it, the authors frame the APG task as the creation of
a sequence of tracks that fulfill some “target characteristics” of a
playlist, given some “background knowledge” of the characteristics
of the catalog of tracks fromwhich the playlist tracks are drawn. Ex-
isting APG systems tackle both of these problems in many different
ways.

In early approaches [8, 9, 101] the target characteristics of the
playlist are specified as multiple explicit constraints, which include
musical a�ributes or metadata such as artist, tempo, and style. In
others, the target characteristics are a single seed track [92] or a
start and an end track [8, 22, 53]. Other approaches create a circular
playlist that comprises all tracks in a given music collection, in such
a way that consecutive songs are as similar as possible [79, 107]. In
otherworks, playlists are created based on the context of the listener,
either as single source [116] or in combination with content-based
similarity [23, 110].

A common approach to build the background knowledge of
the music catalog for playlist generation is using machine learn-
ing techniques to extract that knowledge from manually-curated
playlists. �e assumption here is that curators of these playlists are
encoding rich latent information about which tracks go together
to create a satisfying listening experience for an intended purpose.
Some proposed APG and APC systems are trained on playlists from
such sources as online radio stations [22, 94], online playlist web-
sites [95, 139], and music streaming services [106]. In the study by
Pichl et al. [106], the names of playlists on Spotify were analyzed

3h�ps://musicbiz.org/news/playlists-overtake-albums-listenership-says-loop-study
4h�ps://musicbiz.org/resources/tools/music-biz-consumer-insights/
consumer-insights-portal
5h�ps://www.midiaresearch.com/blog/announcing-midias-state-of-the-streaming-nation-2-report
6h�ps://press.spotify.com/us/about



to create contextual clusters, which were then used to improve
recommendations.

Limitations: While some work on automated playlist contin-
uation highlights the special characteristics of playlists, i.e., their
sequential order, it is not well understood to which extent and in
which cases taking into account the order of tracks in playlists helps
create be�er models for recommendation. For instance, in [139] Vall
et al. recently demonstrated on two datasets of hand-curated
playlists that the song order seems to be negligible for accurate
playlist continuation when a lot of popular songs are present. On
the other hand, the authors argue that order does ma�er when
creating playlists with tracks from the long tail. Another study by
McFee and Lanckriet [95] also suggests that transition effects play
an important role in modeling playlist continuity. In another recent
user study [135] conducted by Tintarev et al., the authors found
that many participants did not care about the order of tracks in
recommended playlists, sometimes they did not even notice that
there is a particular order. However, this study was restricted to 20
participants who used the Discover Weekly service of Spotify.7

Another challenge for APC is evaluation: in other words, how
to assess the quality of a playlist. Evaluation in general is discussed
in more detail in the next section, but there are specific questions
around evaluation of playlists in particular that should be pointed
out here. As Bonnin and Jannach [15] put it, the ultimate crite-
rion for this is user satisfaction, but that is not easy to measure.
In [96], McFee and Lanckriet categorize the main approaches to
APG evaluation as human evaluation, semantic cohesion, and se-
quence prediction. Human evaluation comes closest to measuring
user satisfaction directly, but suffers from problems of scale and
reproducibility. Semantic cohesion as a quality metric is easily mea-
surable and reproducible, but assumes that users prefer playlists
where tracks are similar along a particular semantic dimension,
which may not always be true, see for instance the studies carried
out by Slaney andWhite [131] and by Lee [88]. Sequence prediction
casts APC as an information retrieval task, but in the domain of
music, an inaccurate prediction need not be a bad recommendation,
and this again leads to a potential disconnect between this metric
and the ultimate criterion of user satisfaction.

Investigating which factors are potentially important for a posi-
tive user perception of a playlist, Lee conducted a qualitative user
study [88], investigating playlists that had been automatically cre-
ated based on content-based similarity. �ey made several interest-
ing observations. A concern frequently raised by participants was
that of consecutive songs being too similar, and a general lack of
variety. However, different people had different interpretations of
variety, e.g., variety in genres or styles vs. different artists in the
playlist. Similarly, different criteria were mentioned when listen-
ers judged the coherence of songs in a playlist, including lyrical
content, tempo, and mood. When creating playlists, participants
mentioned that similar lyrics, a common theme (e.g., music to listen
to in the train), story (e.g., music for the Independence Day), or era
(e.g., rock music from the 1980s) are important and that tracks not
complying negatively effect the flow of the playlist. �ese aspects
can be extended by responses of participants in a study conducted
by Cunningham et al. [29], who further identified the following

7h�ps://www.spotify.com/discoverweekly

categories of playlists: same artist, genre, style, or orchestration,
playlists for a certain event or activity (e.g., party or holiday), ro-
mance (e.g., love songs or breakup songs), playlists intended to send
a message to their recipient (e.g., protest songs), and challenges
or puzzles (e.g., cover songs liked more than the original or songs
whose title contains a question mark).

Lee also found that personal preferences play a major role. In
fact, already a single song, which is very much liked or hated by
a listener, can have a strong influence on how they judge the en-
tire playlist [88], in particular if it is a highly disliked song [31].
Furthermore, a good mix of familiar and unknown songs was of-
ten mentioned as an important requirement for a good playlist.
Supporting the discovery of interesting new songs, still contextu-
alized by familiar ones, increases the serendipity [119, 149] of a
playlist. Finally, participants also reported that their familiarity
with a playlist’s genre or theme influenced their judgment of its
quality. In general, listeners were more picky about playlists whose
tracks they were familiar with or they liked a lot.

Supported by the studies summarized above, we argue that the
question of what makes a great playlist is highly subjective and
further depends on the intent of the creator or listener. Important
criteria when creating or judging a playlist include track similar-
ity/coherence, variety/diversity, but also the user’s personal prefer-
ences and familiarity with the tracks, as well as the intention of the
playlist creator. Unfortunately, current automatic approaches to
playlist continuation are agnostic of the underlying psychological
and sociological factors that influence the decision of which songs
users choose to include in a playlist. Since knowing about such
factors is vital to understand the intent of the playlist creator, we
believe that algorithmic methods for automatic playlist continua-
tion need to holistically learn such aspects from manually created
playlists and integrate respective intent models. However, we are
aware that in today’s era where billions of playlists are shared
by users of online streaming services,8 a large-scale analysis of
psychological and sociological background factors is impossible.
Nevertheless, in the absence of explicit information about user in-
tent, a possible starting point to create intent models might be the
metadata associated with user-generated playlists, such as title or
description. To foster this kind of research, the playlists provided
in the dataset for the ACM Recommender Systems Challenge 2018
will include playlist titles.9

2.4 Challenge 3: Evaluating music

recommender systems

Problem definition: Having its roots in machine learning
(cf. rating prediction) and information retrieval (cf. “retrieving”
items based on implicit “queries” given by user preferences), the
field of recommender systems originally adopted evaluation met-
rics from these neighboring fields. In fact, accuracy and related
quantitative measures, such as precision, recall, or error measures
(between predicted and true ratings), are still the most commonly
employed criteria to judge the recommendation quality of a rec-
ommender system [10, 56]. In addition, novel measures that are

8h�ps://press.spotify.com/us/about
9h�ps://recsys.acm.org/recsys18/challenge



tailored to the recommendation problem and o�en take a user-
centric perspective have emerged in recent years. �ese so-called
beyond-accuracy measures [72] address the particularities of rec-
ommender systems and gauge, for instance, the utility, novelty,
or serendipity of an item for a user. However, a major problem
with these kinds of measures is that they integrate factors that
are hard to describe mathematically, for instance, the aspect of
surprise in case of serendipity measures. For this reason, there
sometimes exist a variety of different definitions to quantify the
same beyond-accuracy aspect.

State of the art: �e following performance measures are
the ones most frequently reported when evaluating recommender
systems. �ey can be roughly categorized into accuracy-related
measures, such as prediction error (e.g., MAE and RMSE) or stan-
dard IR measures (e.g., precision and recall), and beyond-accuracy
measures, such as diversity, novelty, and serendipity. Furthermore,
while some of the metrics quantify the ability of recommender
systems to find good items, e.g., precision, MAE, or RMSE, others
consider the ranking of items and therefore assess the system’s
ability to position good recommendations at the top of the recom-
mendation list, e.g., MAP, NDCG, or MPR.

Mean absolute error (MAE) is one of the most common metrics
for evaluating the prediction power of recommender algorithms.
It computes the average absolute deviation between the predicted
ratings and the actual ratings provided by users [58]. Indeed, MAE
indicates how close the rating predictions generated by an MRS are
to the real user ratings. MAE is computed as follows:

MAE =
1

|T |

∑

ru,i ∈T

|ru,i − r̂u,i | (1)

where ru,i and r̂u,i respectively denote the actual and the predicted
ratings of item i for user u. MAE sums over the absolute prediction
errors for all ratings in a test set T .

Root mean square error (RMSE) is another similar metric that is
computed as:

RMSE =

√

√

1

|T |

∑

ru,i ∈T

(ru,i − r̂u,i )2 (2)

It is an extension to MAE in that the error term is squared, which
penalizes larger differences between predicted and true ratings
more than smaller ones. �is is motivated by the assumption that,
for instance, a rating prediction of 1 when the true rating is 4 is
much more severe than a prediction of 3 for the same item.

Precision at top K recommendations (P@K) is a common metric
that measures the accuracy of the system in commanding relevant
items. In order to compute the precision, for each user, the top
K recommended items whose ratings also appear in test set T are
considered. �is metric was originally designed for binary rele-
vance judgments. �erefore, in case of availability of relevance
information at different levels, such as a five point Likert scale, the
labels should be binarized, e.g., considering the ratings greater than
or equal to 4 (out of 5) as relevant. Precision@K is computed as
follows:

P@K =
1

|U |

∑

u ∈U

|Lu ∩ L̂u |

|L̂u |
(3)

where Lu is a set of relevant items of user u in the test setT and L̂u
denotes the recommended set containing the K items in T with the
highest predicted ratings for the user u from the set of all usersU .

Mean average precision (MAP) is a metric that computes the
overall precision of a recommender system based on precision at
different recall levels [90]. It is computed as the arithmetic mean of
the average precision (AP) over the entire set of users in the test
set, where AP is defined as follows:

AP =
1

min(M,N )

N
∑

k=1

P@k · rel(k) (4)

where rel(k) is an indicator signaling if the kth recommended item
is relevant, i.e. rel(k) = 1, or not, i.e. rel(k) = 0;M is the number of
relevant items andN is the number of recommended items in the top
N recommendation list. Note that AP implicitly incorporates recall,
because it considers relevant items not in the recommendation list.

Recall at top K recommendations (R@K) is presented here for
the sake of completeness, even though it is not a crucial measure
from a consumer’s perspective. Indeed, the listener is typically not
interested in being recommended all or a large number of relevant
items, rather in having good recommendations at the top of the
recommendation list. R@K is defined as:

R@K =
1

|U |

∑

u ∈U

|Lu ∩ L̂u |

|Lu |
(5)

where Lu is a set of relevant items of user u in the test setT and L̂u
denotes the recommended set containing the K items in T with the
highest predicted ratings for the user u from the set of all usersU .

Normalized discounted cumulative gain (NDCG) measures the
ranking quality of the recommendations. �is metric has originally
been proposed to evaluate effectiveness of information retrieval
systems [69]. It is nowadays also frequently used for evaluating
music recommender systems [91, 104, 143]. Assuming that the
recommendations for user u are sorted according to the predicted
rating values in descending order. DCGu is defined as follows:

DCGu =

N
∑

i=1

ru,i

loд2(i + 1)
(6)

where ru,i is the true rating (as found in test set T ) for the item
ranked in position i for user u, and N is the length of the recom-
mendation list. Since the rating distribution depends on the users’
behavior, the DCG values for different users are not directly com-
parable. �erefore, the cumulative gain for each user should be
normalized. �is is done by computing the ideal DCG for user u,
denoted as IDCGu , which is the DCGu value for the best possible
ranking, obtained by ordering the items by true ratings in descend-
ing order. Normalized discounted cumulative gain for useru is then
calculated as:

NDCGu =
DCGu

IDCGu
(7)

Finally, the overall normalized discounted cumulative gain NDCG

is computed by averaging NDCGu over the entire set of users.

In the following, we present common quantitative evaluation
metrics, which have been particularly designed or adopted to assess



recommender systems performance, even though some of them
have their origin in information retrieval and machine learning.

Half life utility (HLU) measures the utility of a recommenda-
tion list for a user with the assumption that the likelihood of view-
ing/choosing a recommended item by the user exponentially decays
with the item’s position in the ranking [16, 102]. Formally wri�en,
HLU for user u is defined as:

HLUu =

N
∑

i=1

max (rui − d, 0)

2(rankui−1)/(h−1)
(8)

where rui and rankui denote the rating and the rank of item i for
user u, respectively, in the recommendation list of length N ; d
represents a default rating (e.g., average rating) and h is the half-
time, calculating as the rank of a music item in the list, such that
the user can eventually listen to it with a 50% chance. HLUu can be
further normalized by the maximum utility (similar to NDCG), and
the final HLU is the average over the half-time utilities obtained for
all users in the test set. A larger HLU may correspond to a superior
recommendation performance.

Mean percentile rank (MPR) estimates the users’ satisfaction with
items in the recommendation list, and is computed as the average
of the percentile rank for each test item within the ranked list of
recommended items for each user [66]. �e percentile rank of an
item is the percentage of items whose position in the recommen-
dation list is equal to or lower than the position of the item itself.
Formally, the percentile rank PRu for user u is defined as:

PRu =

∑

ru,i ∈T

ru,i · ranku,i

∑

ru,i ∈T

ru,i
(9)

where ru,i is the true rating (as found in test set T ) for item i

rated by user u and ranku,i is the percentile rank of item i within
the ordered list of recommendations for user u. MPR is then the
arithmetic mean of the individual PRu values over all users. A
randomly ordered recommendation list has an expected MPR value
of 50%. A smaller MPR value is therefore assumed to correspond to
a superior recommendation performance.

Spread is a metric of how well the recommender algorithm can
spread its a�ention across a larger set of items [78]. In more detail,
spread is the entropy of the distribution of the items recommended
to the users in the test set. It is formally defined as:

spread = −
∑

i ∈I

P(i) log P(i) (10)

where I represents the entirety of items in the dataset and P(i) =
count(i)/

∑

i′∈I count(i
′), such that count(i) denotes the total num-

ber of times that a given item i showed up in the recommendation
lists. It may be infeasible to expect an algorithm to achieve the
perfect spread (i.e., recommending each item an equal number of
times) without avoiding irrelevant recommendations or unfulfil-
lable rating requests. Accordingly, moderate spread values are
usually preferable.

Coverage of a recommender system is defined as the proportion
of items over which the system is capable of generating recommen-
dations [58]:

coveraдe =
|T̂ |

|T |
(11)

where |T | is the size of the test set and |T̂ | is the number of ratings
in T for which the system can predict a value. �is is particularly
important in cold start situations, when recommender systems
are not able to accurately predict the ratings of new users or new
items, and hence obtain low coverage. Recommender systems with
lower coverage are therefore limited in the number of items they
can recommend. A simple remedy to improve low coverage is to
implement some default recommendation strategy for an unknown
user–item entry. For example, we can consider the average rating
of users for an item as an estimate of its rating. �is may come at
the price of accuracy and therefore the trade-off between coverage
and accuracy needs to be considered in the evaluation process [7].

Novelty measures the ability of a recommender system to rec-
ommend new items that the user did not know about before [1].
A recommendation list may be accurate, but if it contains a lot
of items that are not novel to a user, it is not necessarily a useful
list [149].
While novelty should be defined on an individual user level, consid-
ering the actual freshness of the recommended items, it is common
to use the self-information of the recommended items relative to
their global popularity:

novelty =
1

|U |

∑

u ∈U

∑

i ∈Lu

log2 popi

N
(12)

where popi is the popularity of item i measured as percentage of
users who rated i , Lu is the recommendation list of the top N rec-
ommendations for user u [149, 151]. �e above definition assumes
that the likelihood of the user selecting a previously unknown item
is proportional to its global popularity and is used as an approxi-
mation of novelty. In order to obtain more accurate information
about novelty or freshness, explicit user feedback is needed, in
particular since the user might have listened to an item through
other channels before.
It is o�en assumed that the users prefer recommendation lists with
more novel items. However, if the presented items are too novel,
then the user is unlikely to have any knowledge of them, nor to
be able to understand or rate them. �erefore, moderate values
indicate be�er performances [78].

Serendipity aims at evaluating MRS based on the relevant and
surprising recommendations. While the need for serendipity is
commonly agreed upon [59], the question of how to measure the
degree of serendipity for a recommendation list is controversial.
�is particularly holds for the question of whether the factor of
surprise implies that items must be novel to the user [72]. On a
general level, serendipity of a recommendation list Lu provided to
a user u can be defined as:

serendipity(Lu ) =

�

�

�L
unexp
u ∩ L

usef ul
u

�

�

�

|Lu |
(13)

where L
unexp
u and L

usef ul
u denote subsets of L that contain, respec-

tively, recommendations unexpected to and useful for the user. �e



usefulness of an item is commonly assessed by explicitly asking
users or taking user ratings as proxy [72]. �e unexpectedness of
an item is typically quantified by some measure of distance from ex-
pected items — those similar to the items already rated by the user.
In the context of MRS, Zhang et al. [149] propose an “unserendipity”
measure that is defined as the average similarity between the items
in the user’s listening history and the new recommendations. Simi-
larity between two items in this case is calculated by an adapted
cosine measure that integrates co-liking information, i.e., number
of users who like both items. It is assumed that lower values cor-
respond to more surprising recommendations, since lower values
indicate that recommendations deviate from the userfis traditional
behavior [149].

Diversity is another important beyond-accuracy measure as al-
ready discussed in the limitations part of Challenge 1. It gauges
the extent to which recommended items are different from each
other, where difference can relate to various aspects, e.g., musical
style, artist, lyrics, or instrumentation, just to name a few. Similar
to serendipity, diversity can be defined in several ways. One of the
most common is to compute pairwise distance between all items in
the recommendation set, either averaged [152] or summed [132].
In the former case, the diversity of a recommendation list L is
calculated as follows:

diversity(L) =

∑

i ∈L

∑

j ∈L\i

disti, j

|L| · (|L| − 1)
(14)

where disti, j is the some distance function defined between items i
and j. Common choices are inverse cosine similarity [111], inverse
Pearson correlation [141], or Hamming distance [75].

Limitations: As of today, the vast majority of evaluation ap-
proaches in recommender systems research focuses on quantitative
measures, either accuracy-like or beyond-accuracy, which are o�en
computed in offline studies. While doing so has the advantage of fa-
cilitating the reproducibility of evaluation results, these approaches
typically fall short of grasping some of the most important user
requirements that relate to user acceptance or satisfaction, among
others.

Despite acknowledging the need for more user-centric evalua-
tion strategies [117], the factor human, user, or, in the case of MRS,
listener is still way too o�en neglected or not properly addressed.
For instance, while there exist quantitative measures for serendipity
and diversity, as discussed above, perceived serendipity and diver-
sity can be highly different from the measured ones [140]. Even
beyond-accuracy measures can therefore not fully capture the real
user satisfaction with a recommender system.

Addressing both objective and subjective evaluation criteria, Kni-
jnenburg et al. [81] propose a holistic framework for user-centric
evaluation of recommender systems. Figure 1 provides an overview
of the components. �e objective system aspects (OSA) are con-
sidered unbiased factors of the RS, including aspects of the user
interface, computing time of the algorithm, or number of items
shown to the user. �ey are typically easy to specify or compute.
�e OSA influence the subjective system aspects (SSA), which are
caused by momentary, primary evaluative feelings while interact-
ing with the system [57]. �is results in a different perception of

the system by different users. SSA are therefore highly individual
aspects and typically assessed by user questionnaires. Examples of
SSA include general appeal of the system, usability, and perceived
recommendation diversity or novelty. �e aspect of experience
(EXP) describes the user’s a�itude towards the system and is com-
monly also investigated by questionnaires. It addresses the user’s
perception of the interaction with the system. �e experience is
highly influenced by the other components, which means chang-
ing any of the other components likely results in a change of EXP
aspects. Experience can be broken down into the evaluation of the
system, the decision process, and the final decisions made, i.e., the
outcome. �e interaction (INT) aspects describe the observable
behavior of the user, such as time spent viewing an item, clicking
or purchasing behavior. �erefore, they belong to the objective
measures and are usually determined via logging by the system.
Finally, Knijnenburg et al.’s framework mentions personal charac-
teristics (PC) and situational characteristics (SC), which influence
the user experience. PC include aspects that do not exist without the
user, such as user demographics, knowledge, or perceived control,
while SC include aspects of the interaction context, such as when
and where the system is used, or situation-specific trust or privacy
concerns. Knijnenburg et al. [81] also propose a questionnaire to
asses the factors defined in their framework, for instance, perceived
recommendation quality, perceived system effectiveness, perceived
recommendation variety, choice satisfaction, intention to provide
feedback, general trust in technology, and system-specific privacy
concern.

While this framework is a generic one, tailoring it to MRS would
allow for user-centric evaluation thereof. Especially the aspects
of personal and situational characteristics should be adapted to
the particularities of music listeners and listening situations, re-
spectively, cf. Section 2.1. To this end, researchers in MRS should
consider the aspects relevant for the perception and preference of
music, and their implications onMRS, which have been identified in
several studies, e.g. [30, 86, 87, 117, 118]. In addition to the general
ones mentioned by Knijnenburg et al., of great importance in the
music domain seem to be psychological factors, including affect
and personality, social influence, musical training and experience,
and physiological condition.

We believe that carefully and holistically evaluating MRS by
means of accuracy and beyond-accuracy, objective and subjective
measures, in offline and online experiments, would lead to a be�er
understanding of the listeners’ needs and requirements vis-à-vis
MRS, and eventually a considerable improvement of current MRS.

3 FUTURE DIRECTIONS AND VISIONS

While the challenges identified in the previous section are already
researched on intensely, in the following, we provide amore forward-
looking analysis and discuss some MRS-related trending topics,
which we assume influential for the next generation of MRS. All of
them have in common that their aim is to create more personalized
recommendations. More precisely, we first outline how psychologi-
cal constructs such as personality and emotion could be integrated
into MRS. Subsequently, we address situation-aware MRS and argue
for the need of multifaceted user models that describe contextual



Figure 1: Evaluation framework of the user experience for recommender systems, according to [81].

and situational preferences. To round off, we discuss the influ-
ence of users’ cultural background on recommendation preferences,
which needs to be considered when building culture-aware MRS.

3.1 Psychologically-inspired music

recommendation

Personality and emotion are important psychological constructs.
While personality characteristics of humans are a predictable and
stable measure that shapes human behaviors, emotions are short-
term affective responses to a particular stimulus [137]. Both have
been shown to influence music tastes [50, 114, 118] and user re-
quirements for MRS [48, 52]. However, in the context of (music)
recommender systems, personality and emotion do not play a major
role yet. Given the strong evidence that both influence listening
preferences [108, 118] and the recent emergence of approaches to
accurately predict them from user-generated data [83, 129], we
believe that psychologically-inspired MRS is an upcoming area.

Personality: In psychology research, personality is o�en defined
as a “consistent behavior pa�ern and interpersonal processes orig-
inating within the individual” [17]. �is definition accounts for
the individual differences in people’s emotional, interpersonal, ex-
periential, a�itudinal, and motivational styles [71]. Several prior
works have studied the relation of decision making and personality
factors. In [108], as an example, it has been shown that personality

can influence the human decision making process as well as the
tastes and interests. Due to this direct relation, people with similar
personality factors are very likely to share similar interests and
tastes.

Earlier studies conducted on the user personality characteristics
support the potential benefits that personality information could
have in recommender systems [41, 62, 64, 136, 138]. As a known
example, psychological studies [108] have shown that extravert
people are likely to prefer the upbeat and conventional music. Ac-
cordingly, a personality-based MRS could use this information to
be�er predict which songs are more likely than others to please
extravert people [63]. Another example of potential usage is to ex-
ploit personality information in order to compute similarity among
users and hence identify the like-minded users [136]. �is similarity
information could then be integrated into a neighborhood-based
collaborative filtering approach.

In order to use personality information in a recommender sys-
tem, the system first has to elicit this information from the users,
which can be done either explicitly or implicitly. In the former case,
the system can ask the user to complete a personality questionnaire
using one of the personality evaluation inventories, e.g., the ten
item personality inventory [55] or the big five inventory [70]. In
the la�er case, the system can learn the personality by tracking and
observing users’ behavioral pa�erns [84, 129]. Not too surprisingly,



it has shown that systems that explicitly elicit personality charac-
teristics achieve superior recommendation outcomes, e.g., in terms
of user satisfaction, ease of use, and prediction accuracy [35]. On
the downside, however, many users are not willing to fill in long
questionnaires before being able to use the RS. A way to alleviate
this problem is to ask users only the most informative questions
of a personality instrument [122]. Which questions are most infor-
mative, though, first needs to be determined based on existing user
data and is dependent on the recommendation domain. Other stud-
ies showed that users are to some extent willing to provide further
information in return for a be�er quality of recommendations [134].

Personality information can be used in various ways, particularly,
to generate recommendations when traditional rating or consump-
tion data is missing. Otherwise, the personality traits can be seen
as an additional feature that extends the user profile, that can be
used mainly to identify similar users in neighborhood-based recom-
mender systems or directly fed into extended matrix factorization
models [46].

Emotion: �e emotional state of the MRS user is an important
factor in identifying his or her short-time musical preferences, in
particularly since emotion regulation is known to be one main
reason why people listen to music [93]. Indeed, a music piece can
be seen as an emotion-laden content and in turn can be described
by emotions. Musical content contains various elements that can
effect the emotional state of a person, such as rhythm, key, tempo,
melody, harmony, and lyrics. For instance, a musical piece that is
in major key is typically perceived brighter and happier than those
in minor key, or a piece in rapid tempo is perceived more exciting
or more tense than slow tempo ones [85].

Several studies have already shown that listeners’ emotions have
a strong impact on their musical preferences [73]. As an example,
people may listen to completely different musical genres or styles
when they are sad in comparison to when they are happy. Indeed,
prior research on music psychology discovered that people may
choose the type of music which moderates their emotional con-
dition [82]. More recent findings show that music can be mainly
chosen so as to augment the emotional situation perceived by the
listener [99].

Similar to personality traits, the emotional state of a user can
be elicited explicitly or implicitly. In the former case, the user
is typically presented one of the various categorical models (emo-
tions are described by distinct emotion words such as happiness,
sadness, anger, or fear) [61, 148] or dimensional models (emotions
are described by scores with respect to two or three dimensions,
e.g., valence and arousal) [113]. For a more detailed elaboration
on emotion models in the context of music, we refer to [118, 144].
�e implicit acquisition of emotional states can be effected, for in-
stance, by analyzing user-generated text [32], speech [45], or facial
expressions in video [38].

Since music can be viewed as an emotionally laden content,
as it is capable of evoking intense emotions in a listener, it can
also be annotated with emotional labels [68, 145, 148]. Doing so
automatically is a task referred to as music emotion recognition
(MER) and is discussed in detail, for instance, in [77, 144]. While
such automatic emotion labeling of music items could be beneficial
for MRS, MER has been shown to be a highly challenging task [77].

Nowadays, emotion-based recommender systems typically con-
sider emotional scores as contextual factors that characterize the
contextual situation that the user is experiencing. Hence, the rec-
ommender systems exploit emotions in order to pre-filter the pref-
erences of users or post-filter the generated recommendations. Un-
fortunately, this neglects the psychological background, in par-
ticular on the subjective and complex interrelationships between
expressed, perceived, and induced emotions [118], which is of spe-
cial importance in the music domain as music is known to evoke
stronger emotions than, for instance, products [120]. It has also
been shown that personality influences in which emotional state
which kind of emotionally laden music is preferred by listeners [50].
�erefore, even if automated MER approaches would be able to
accurately predict the perceived or induced emotion of a given
music piece, in the absence of deep psychological listener profiles,
matching emotion annotations of items and listeners may not yield
satisfying recommendations. We hence believe that the field of
MRS should embrace psychological theories, elicit the respective
user-specific traits, and integrate them into recommender systems,
in order to build decent emotion-aware MRS.

3.2 Situation-aware music recommendation

Most of the existing music recommender systems make recom-
mendations solely based on a set of user-specific and item-specific
signals. However, in real-world scenarios, many other signals are
available. �ese additional signals can be further used to improve
the recommendation performance. A large subset of these addi-
tional signals includes situational signals. In more detail, the music
taste of a user depends on the situation at the moment of recommen-
dation. Location is an example of situational signals; for instance,
the music taste of a user would differ in libraries and in gyms [23].
�erefore, considering location as a situation-specific signal could
lead to substantial improvements in the recommendation perfor-
mance. Time of the day is another situational signal that could be
used for recommendation; for instance, the music a user would like
to listen to in mornings differs from those in nights [28]. �ere
are a lot of other situational signals, including but are not limited
to, the user’s current activity [142], the weather [105], day of the
week [60], and the user’s mood [97]. It is worth noting that situa-
tional features have been proven to be strong signals in improving
retrieval performance in search engines [12, 147]. �erefore, we
believe that researching and building situation-aware music recom-
mender systems should be one central topic in MRS research.

While several situation-aware MRS already exist, e.g. [11, 23, 67,
74, 116, 142], they commonly exploit only one or very few such
situational signals, or are restricted to a certain usage context, e.g.,
music consumption in a car or in a tourist scenario. �ose sys-
tems that try to take a more comprehensive view and consider a
variety of different signals, on the other hand, suffer from a low
number of data instances or users, rendering it very hard to build
accurate context models [54]. What is still missing, in our opinion,
are (commercial) systems that integrate a variety of situational sig-
nals on a very large scale in order to truly understand the listeners
needs and intents in any given situation and recommend music
accordingly. While we are aware that data availability and privacy



concerns counteract the realization of such systems on a large com-
mercial scale, we believe that MRS will eventually integrate decent
multifaceted user models inferred from contextual and situational
factors.

3.3 Culture-aware music recommendation

While most humans share an inclination to listen to music, inde-
pendent on their location or cultural background, the way music is
performed, perceived, and interpreted evolves in a culture-specific
manner. However, research in MRS seems to be agnostic of this fact.
In music information retrieval (MIR) research, on the other hand,
cultural aspects have been studied to some extent in recent years,
a�er preceding (and still ongoing) criticisms of the predominance of
Western music in this community. Arguably the most comprehen-
sive culture-specific research in this domain has been conducted
as part of the CompMusic project,10 in which five non-Western
music traditions have been analyzed in detail in order to advance
automatic description of music by emphasizing cultural specificity.
�e analyzed music traditions included Indian Hindustani and Car-
natic [36], Turkish Makam [37], Arab-Andalusian [133], and Beijing
Opera [109]. However, the project’s focus was on music creation,
content analysis, and ethnomusicological aspects rather than on
the music consumption side [25, 124, 125]. Recently, analyzing
content-based audio features describing rhythm, timbre, harmony,
and melody for a corpus of a larger variety of world and folk music
with given country information, Panteli et al. found distinct acous-
tic pa�erns of the music created in individual countries [103]. �ey
also identified geographical and cultural proximities that are re-
flected in music features, looking at outliers and misclassifications
in a classification experiments using country as target class. For
instance, Vietnamese music was o�en confused with Chinese and
Japanese, South African with Botswanese.

In contrast to this — meanwhile quite extensive — work on
culture-specific analysis of music traditions, li�le effort has been
made to analyze cultural differences and pa�erns of music con-
sumption behavior, which is, as we believe, a crucial step to build
culture-aware MRS. �e few studies investigating such cultural
differences include [65], in which Hu and Lee found differences
in perception of moods between American and Chinese listeners.
By analyzing the music listening behavior of users from 49 coun-
tries, Ferwerda et al. found relationships between music listening
diversity and Hofstede’s cultural dimensions [49, 51]. Skowron et
al. used the same dimensions to predict genre preferences of listen-
ers with different cultural backgrounds [130]. Schedl analyzed a
large corpus of listening histories created by Last.fm users in 47
countries and identified distinct preference pa�erns [115]. Further
analyses revealed countries closest to what can be considered the
global mainstream (e.g., the Netherlands, UK, and Belgium) and
countries farthest from it (e.g., China, Iran, and Slovakia). However,
all of these works define culture in terms of country borders, which
o�en makes sense, but is sometimes also problematic, for instance
in countries with large minorities of inhabitants with different
culture.

In our opinion, when building MRS, the analysis of cultural
pa�erns of music consumption behavior, subsequent creation of

10h�p://compmusic.upf.edu

respective cultural listener models, and their integration into rec-
ommender systems are vital steps to improve personalization and
serendipity of recommendations. Culture should be defined on
various levels though, not only country borders. Other examples
include having a joint historical background, speaking the same
language, sharing the same beliefs or religion, and differences be-
tween urban vs. rural cultures. We believe that MRS which are
aware of the cross-cultural differences and similarities in music
perception and taste, and are able to recommend music a listener in
the same or another culture may like, would substantially benefit
both users and providers of MRS.

4 CONCLUSIONS

In this trends and survey paper, we identified several grand chal-
lenges the research field of music recommender systems (MRS) is
facing. �ese are, to the best of our knowledge, in the focus of
current research in the area of MRS. We discussed (1) the cold start
problem of items and users, with its particularities in the music
domain, (2) the challenge of automatic playlist continuation, which
is gaining particular importance due to the recently emerged user
request of being recommended musical experiences rather than
single tracks [120], and (3) the challenge of holistically evaluat-

ing music recommender systems, in particular, capturing aspects
beyond accuracy.

In addition to the grand challenges, which are currently highly
researched, we also presented a visionary outlook of what we be-
lieve to be the most interesting future research directions in MRS.
In particular, we discussed (1) psychologically-inspired MRS, which
consider in the recommendation process factors such as listeners’
emotion and personality, (2) situation-aware MRS, which holisti-
cally model contextual and environmental aspects of the music
consumption process, infer listener needs and intents, and eventu-
ally integrate these models at large scale in the recommendation
process, and (3) culture-aware MRS, which exploit the fact that mu-
sic taste highly depends on the cultural background of the listener,
where culture can be defined in manifold ways, including historical,
political, linguistic, or religious similarities.

We hope that this article helped pinpointing major challenges,
highlighting recent trends, and identifying interesting research
questions in the area of music recommender systems. Believing that
research addressing the discussed challenges and trends will pave
the way for the next generation of music recommender systems,
we are looking forward to exciting, innovative approaches and
systems that improve user satisfaction and experience, rather than
just accuracy measures.
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