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ABSTRACT
Thesequential dependencemodel (SDM) is a popular retrievalmodel
which is based on the theory of probabilistic graphical models.
While it was originally introduced byMetzler andCroft as aMarkov
Random Field (aka discriminative probabilistic model), in this pa-
per we demonstrate that it is equivalent to a generative probabilis-
tic model.

To build an foundation for future retrieval models, this paper
details the axiomatic underpinning of the SDM model as discrim-
inative and generative probabilistic model. The only difference
arises whether model parameters are estimated in log-space or
Multinomial-space. We demonstrate that parameter-estimationwith
grid-tuning is negatively impacting the generative formulation, an
effect that vanisheswhen parameters are estimatedwith coordinate-
gradient descent. This is concerning, since empirical differences
may be falsely attributed to improved models.

1 INTRODUCTION
The sequential dependence model [11] is a very robust retrieval
model that has been shown to outperform or to be on par with
many retrieval models [8]. Its robustness comes from an integra-
tion of unigram, bigram, and windowed bigram models through
the theoretical framework of Markov random fields. The SDM
Markov random field is associated with a set of parameters which
are learned through the usual parameter estimation techniques for
undirected graphical models with training data. Despite its sim-
plicity, the SDM model is a versatile method that provides a rea-
sonable input ranking for further learning-to-rank phases or in as
a building block in a larger model [6]. As it is a feature-based
learning-to-rank model, it can be extended with additional fea-
tures, such as in the latent concept model [2, 12]. Like all Markov
random field models it can be extended with further variables, for
instance to incorporate external knowledge, such as entities from
an external semantic network. It can also be extended with addi-
tional conditional dependencies, such as further term dependen-
cies that are expected to be helpful for the retrieval task, such as
in the hypergraph retrieval model [1].

The essential idea of the sequential dependence model (SDM) is
to combine unigram, bigram, andwindowed bigrammodels so that
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they mutually compensate each other’s shortcomings. The uni-
gram grammodel, which is also called the bag-of-words model and
which is closely related to the vector-space model, is indifferent to
word order. This is an issue for multi-word expressions which are
for instance common for entity names such as “Massachusetts In-
stitute of Technology” or compound nouns such as “information
retrieval” which have a different meaning in combination than in-
dividually. This shortcoming is compensated for in bigram model
which incorporate word-order by modeling the probability of joint
occurrence of two subsequent query wordsqi−1qi or condition the
probability of ith word in the query, qi , on seeing the previous
word qi−1.

One additional concern is that users tend to remove non-essential
words from the information needwhen formulating the query, such
as in the example query “prevent rain basement” to represent the
query “how can I prevent the heavy spring rain from leaking into
my brick house’s basement?”. The bigram model which only cap-
tures consecutive words may not be able to address this situation.
This motivates the use of bigram models that allow for length-
restricted gaps. Literature describes different variants such models
under the names skip gram models or orthogonal sparse bigrams
[14]. In this work, we focus on a variant that has been used suc-
cessfully in the sequential dependencemodel, whichmodels the co-
occurrence of two terms within a window of eight1 terms, which
we refer to as windowed bigrams.

The sequential dependence model combines ideas of all three
models in order to compensate respective shortcomings. The re-
trieval model scores documents for a query though the theoreti-
cal framework of Markov random field models (MRF). However,
there are a set of related models that address the same task and
originate from generative models and Jelinek-Mercer smoothing.
In addition, different variants of bigram models have been used in-
terchangeably, i.e., based on a bag-of-bigrams approach and an n-
gram model approach which leads to different scoring algorithms.
A decade after the seminal work on the sequential dependence
model has been published, we aim to reconsider some of the deriva-
tions, approximations, and study similarities and differences aris-
ing from several choices. Where Huston et al. [8, 9] emphasized a
strictly empirical study, in this work we reconsider the SDMmodel
from a theoretical side. The contributions of this paper are the fol-
lowing.

• Theoretical analysis of similarities and differences forMRF
versus other modelling frameworks and different bigram
paradigms.

1The window length requires tuning in practice; we follow the choice of eight for
compliance with previous work.



• Empirical study on effects on the retrieval performance
and weight parameters estimated2.

• Discussion of approximations made in an available SDM
implementation in the open-source engine Galago.

Outline. After clarifying the notation, we state in Section 3 the
SDM scoring algorithm with Dirichlet smoothing as implemented
in the search engine Galago V3.7. In Section 4 we recap the orig-
inal derivation of this algorithm as a Markov Random Field. A
generative alternative is discussed in Section 5 with connections
to MRF and Jelinek-Mercer models. Where this is modeling bi-
grams with the bag-of-bigrams approach, Section 6 elaborates on
an alternative model that is following the n-gram model approach
instead. Section 7 demonstrates the empirical equivalence the dif-
ferent models when proper parameter learning methods are used.
Related work is discussed in Section 8 before we conclude.

2 NOTATION
We refer to a model as M, and the likelihood of data under the
model as LM , and a probability distribution of a variable as p(X ).
We refer to the numerical ranking score function provided by the
model M for given arguments as scoreM(...). For graphical mod-
els, this score is rank-equivalent to the model likelihood; or equiv-
alently the log-likelihood. In correspondence to conditional prob-
abilities L(X |Y ) we refer to rank equivalent expressions to condi-
tional scores, i.e., score(X |Y ).

We refer to counts as n with subscripts. For example, a num-
ber of occurrences of a term w in a document d is denoted nw,d .
To avoid clutter for marginal counts, i.e., when summing over all
counts for possible variable settings, we refer to marginal counts
as ⋆. For example, n⋆,d refers to all words in the document (also
sometimes denoted as |d |), while nw,⋆ refers to all occurrences
of the word w in any document, which is sometimes denoted as
c f (w). Finally, n⋆,⋆ = |C | denotes the total collection frequency.
The vocabulary over all terms is denoted V .

We distinguish between random variables by uppercase nota-
tion, e.g. Q , D, and concrete configurations that the random vari-
ables can take on, as lower case, e.g., q, d . Feature functions of
variable settings x and y are denoted as f(x ,y). We denote distri-
bution parameters and weight parameters as greek letters. Vector-
valued variables are indicated through bold symbols, e.g., λ, while
elements of the vector are indicated with a subscript, e.g. λu .

3 SEQUENTIAL DEPENDENCE SCORING
IMPLEMENTATION

Given a query q = q1,q2, . . . ,qk , the sequential dependence scor-
ing algorithm assigns a rank-score for each document d . The al-
gorithm further needs to be given as parameters λ = λu , λb , λw
which are the relative weights trading-off unigram (u), bigram (b),
and windowed-bigram (w) models.

Using shorthand Mu for the unigram language model, Mb for
the bigram language model, and Mw for an unordered-window-8
language model, the SDM score for the document d is computed
as,

2Code and runs available: https://bitbucket.org/jfoley/prob-sdm

scoreSDM (d |q,λ) = λu ·scoreMu
(d |q) + λb ·scoreMb

(d |q)
λw ·scoreMw

(d |q) (1)

While the algorithm is indifferent towards the exact language
models used, the common choice is to use language models with
smoothing. The original work on SDMuses Jelinek-Mercer smooth-
ing. Here, we first focus on Dirichlet smoothing to elaborate on
connections to generative approaches. Dirichlet smoothing requires
an additional parameter µ to control the smoothing trade-off be-
tween the document and the collection statistics.

Unigram model. Mu also refers to the query likelihood model,
which is represented by the inquery [4] operator #combine(q1 q2
. . . qk ). Using Dirichlet smoothing, this operator implements the
following scoring equation.

scoreMu
(d |q) =

∑

qi ∈q
log

nqi ,d + µ
nqi ,⋆
n⋆,⋆

n⋆,d + µ
(2)

where, n⋆,d is the document length, and n⋆,⋆ denotes the num-
ber of tokens in the corpus. To underline the origin of sums, we use
the notation for sums over all elements in a vector, e.g.

∑
qi ∈q . . .

for all query terms, instead of the equivalent notation of sums over
a range indices of the vector, e.g.,

∑k
i=1 . . . .

Bigram model. For Mb , a common choice is an ordered bigram
model with Dirichlet smoothing, which is represented by the in-
query operator chain#combine(#ordered:1(q1 q2) #ordered:1(
q2 q3) . . . #ordered:1(qk−1 qk )). With Dirichlet smoothing, this
operator-chain implements the scoring function,

scoreMb
(d |q) =

∑

(qi ,qi+1)∈q
log

n(qi ,qi+1),d + µ
n(qi ,qi+1),⋆
n(⋆,⋆),⋆

n(⋆,⋆),d + µ

where, n(qi ,qi+1),d denotes the number of bigrams qi ◦qi+1 oc-
curring in the document. The number of bigrams in the document,
n(⋆,⋆),d = |d | − 1, equals the document length minus one.

Windowed-Bigrammodel. For thewindowed-bigrammodelMw ,
a common choice is to use a window of eight terms and ignor-
ing the word order. Note that word order is only relaxed on the
document side, but not on the query side, therefore only consecu-
tive query terms qi and qi+1 are considered. This is represented
by the inquery operator chain #combine(#unordered:8(q1 q2)
#unordered:8(q2 q3) . . .#unordered:8(qk−1 qk )). WithDirich-
let smoothing of empirical distributions over windowed bigrams,
this operator-chain implements the scoring function,

scoreMw
(d |q) =

∑

(qi ,qi+1)∈q
log

n{qi ,qi+1}8,d
+ µ

n{qi ,qi+1 }8,⋆

n{⋆,⋆}8,⋆

n {⋆,⋆}8,d
+ µ

where n{qi ,qi+1}8,d
refers to the number of times the query

terms qi and qi+1 occur within eight terms of each other.

Implementation-specific approximations. The implementationwithin
Galgo makes several approximations on collection counts for bi-
grams as n {⋆,⋆}8,d

≈ n(⋆,⋆),d ≈ n⋆,d = |d |. This approximation
is reasonable in some cases, as we discuss in the appendix.



4 MARKOV RANDOM FIELD SEQUEN-
TIAL DEPENDENCE MODEL

In this Section we recap the derivation of the SDM scoring algo-
rithm.

Metzler et al. derive the algorithm in Section 3 through aMarkov
Random Fieldmodel for term dependencies, whichwe recap in this
section. Markov random fields, which are also called undirected
graphical models, provide a probabilistic framework for inference
of random variables and parameter learning. A graphical model is
defined to be aMarkov random field if the distribution of a random
variable only depends on the knowledge of the outcome of neigh-
boring variables. We limit the introduction of MRFs to concepts
that are required to follow the derivation of the Sequential Depen-
dence Model, for a complete introduction we refer the reader to
Chapter 19.3 of the text book of Murphy [13].

To model a query q = q1q2 . . .qk and a document d , Metzler et
al. introduce a random variable Qi for each query term qi as well
as the random variable D to denote a document d from the corpus
which is to be scored. For example, Q1 = ’information’, Q2 =
’retrieval’. The sequential dependence model captures statistical
dependence between random variables of consecutive query terms
Qi and Qi+1 and the document D, cf. Figure 1a.

However, non-consecutive query terms Qi and Q j (called non-
neighbors) are intended to be conditionally independent, given the
terms in between. By rules of the MRF framework, unconnected
random variables are conditionally independent given values of re-
maining random variables. Therefore, the absence of connections
between non-neighbors Qi and Q j in the Graphical model (Figure
1a) declares this independence.

The framework ofMarkov RandomFields allows to reason about
observed variables and latent variables. As a special case of MRFs,
all variables of the sequential dependencemodel are observed. This
means that we know the configuration of all variables during in-
ference relieving us from treating unknowns. The purpose ofMRFs
for the sequential dependence scoring algorithm is to use themodel
likelihood L as a ranking score function for a document d given
the query terms q.
4.1 SDM Model Likelihood
The likelihood L of the sequential dependence model for a given
configuration of the random variablesQi = qi andD = d provides
the retrieval score for the document d given the query q.

According to the Hammersley-Clifford theorem [13], the likeli-
hood L (or joint distribution) of a Markov Random Field can be
fully expressed over a product over maximal cliques in the model,
where each clique of random variables is associated with a non-
negative potential function ψ . For instance in the sequential de-
pendence model, a potential function ψ for the random variables
Q1,Q2, and D, produces a nonnegative real-valued number for ev-
ery configuration of the randomvariables such asQ1 = ’information’,
Q2 = ’retrieval’, and D referring to a document in the collection.

TheHammersley-Clifford theorem states that it is possible to ex-
press the likelihood of every MRF through a product over maximal
cliques (not requiring further factors over unconnected variables).
However, the theorem does not provide a constructive recipe to do
so. Instead, it is part of devising themodel to choose a factorization
of the likelihood into arbitrary cliques of random variables. Where

the MRF notation only informs on conditional independence, the
equivalent graphical notation of factor graphs additionally speci-
fies the factorization chosen for the model, cf. Figure 1b.

In the factor graph formalization, any set of variables that form
a factor in the likelihood are connected to a small box. A consistent
factor graph of the sequential dependence model is given in Figure
1b. The equivalent model likelihood for the sequential dependence
model follows as,

L(Q,D) =
1

Z(λ)

∏

qi ∈q
ψ (Qi ,D |λ) ·

∏

Qi ,Qi+1∈Q
ψ (Qi ,Qi+1,D |λ)

Where Z(λ), the partition function, is a constant that ensures nor-
malization of the joint distribution over all possible configurations
of Qi ∈ V and all documents d . This means that summing L over
all possible combinations of query terms in the vocabulary V and
all documents in the corpus will sum to 1.

However, as the sequential dependence model is only used to
rank documents for a given query q by the model likelihoodL, the
constant Z(λ) can be ignored to provide a rank equivalent scoring
criterion scoreSDM .

4.2 Ranking Scoring Criterion
With the goal of ranking elements by the SDM likelihood function,
we can alternatively use any other rank-equivalent criterion. For
instance, we equivalently use the log-likelihood logL for scoring,
leaving us with the following scoring criterion.

scoreSDM (d |q)
rank

=
logL(q,d) (3)

rank

=

∑

qi ∈q
logψ (Qi ,D |λ) +

∑

qi ,qi+1∈q
logψ (Qi ,Qi+1,D |λ)

Potential functions. The MRF framework provides us with the
freedom to choose the functional form of potential functions ψ .
The only hard restriction implied by MRFs is that potential func-
tions ought to be nonnegative. When considering potential func-
tions in log-space, this means that the quantity logψ can take on
any real value while being defined on all inputs.

The sequential dependence model follows a common choice by
using a so-called log-linear model as the functional form of the po-
tentials logψ . The log-linear model is defined as an inner product
of a feature vector f(. . . ) and a parameter vector λ in log-space.
The entries of the feature vector are induced by configurations of
random variables in the clique which should represent a measure
of compatibility between different variable configurations.

For instance in the sequential dependence model, the clique of
random variables Q1, Q2, and D is represented as a feature vector
of a particular configuration Q1 = q1, Q2 = q2, and D = d which
is denoted as f(q1,q2,d). The log-potential function is defined as
the inner product between the feature vector and a parameter vec-
tor λ as

logψ (Q1,Q2,D |λ) =
m∑

j=1

fj (q1,q2,d) · λj

where m denotes the length of the feature vector or the pa-
rameter vector respectively. Each entry of the feature vector, fj
should express compatibility of the given variable configurations,
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Figure 1: Sequential Dependence Model.

to which the corresponding entry in the parameter vector λj as-
signs relative weight. Since we operate in log-space, both positive
and negative weights are acceptable.

Factors and features. The sequential dependence model makes
use of two factor types, one for the two-cliques of for single query
terms and the document, and another for the three-cliques of con-
secutive query terms and the document. Both factor types are re-
peated across all query terms. Each factor type goes along with its
own feature vector functions and corresponding parameter vector.
While not necessarily the case, in this model, the same parameter
vector is shared between all factors of the same factor type (so-
called parameter-tying).

The sequential dependence model associates each two-clique
logψ (Qi ,D |λ);∀i with a feature vector of length one, consisting
only of the unigram score of qi in the document d , denoted by
Equation 4. The three-clique logψ (Qi−1,Qi ,D |λ); ∀i ≥ 2 is asso-
ciated with a feature vector of length two, consisting of the bigram
score of qi−1 and qi in the document, denoted Equation 5, as well
as the windowed-bigram score Equation 6.

fu (qi ,d) = scoreMu
(d |qi ) (4)

fb (qi−1,qi ,d) = scoreMb
(d |qi−1,qi ) (5)

fw (qi−1,qi ,d) = scoreMw
(d |qi−1,qi ) (6)

In total, themodel uses three features and therefore needs a total
of three parameter weights referred to as λu , λb , and λw .

4.3 Proof of the SDM Scoring Algorithm
Theorem 4.1. The SDM scoring algorithm as given in Equation

1 implements the Markov random field as given in the factor graph
of Figure 1b, with features defined as in Equations 4–6, and given
parameters λu , λb , and λw .

Proof. Starting with Equation 3 and using the choices for fac-
tors and feature of Equations 4–6 yields

scoreSDM (d |q)
rank

=

∑

qi ∈q
fu (qi ,d) · λu+

∑

qi−1,qi ∈q
(fb (qi−1,qi ,d) · λb + fw (qi−1,qi ,d) · λw )

Reordering terms of the sums, and making use of the indepen-
dence of λ from particular the query terms yields

scoreSDM (d |q)
rank

=
λu

∑

qi ∈q
fu (qi ,d)+

λb

∑

qi−1,qi ∈q
fb (qi−1,qi ,d) + λw

∑

qi−1,qi ∈q
fw (qi−1,qi ,d)

= λu scoreMu
(d |q) + λb scoreMb

(d |q) + λw scoreMw
(d |q) (7)

This is the SDM scoring equation given in Equation 1. □

4.4 Parameter Learning
There are two common approaches to optimize settings of param-
eters λ for given relevance data: grid tuning or learning-to-rank.
Due to its low-dimensional parameter space, all combinations of
choices for λu , λb , and λw in the interval (0, 1) can be evaluated.
For example a choice of 10 values leads to 1000 combinations to
evaluate. For rank equivalence, without loss of generality it is suf-
ficient to only consider nonnegative combinations where λu+λb+
λw = 1, which reduces the number of combinations to 100.

An alternative is to use a learning-to-rank algorithms such as
using coordinate ascent to directly optimize for a retrieval metric,
e.g. mean average precision (MAP). Coordinate ascent starts with
an initial setting, then continues to update one of the three dimen-
sions in turn to its best performing setting until convergence is
reached.

Since Equation 7 represents a log-linear model on the three lan-
guage models, any learning-to-rank algorithm including Ranking
SVM [10] can be used. However, in order to prevent a mismatch
between training phase and prediction phase it is important to ei-
ther use the whole collection to collect negative training examples
or to use the the same candidate selection strategy (e.g., top 1000
documents under the unigrammodel) in both phases. In this work,
we use the RankLib3 package in addition to grid tuning.

5 GENERATIVE SDMMODEL
In this section we derive a generative model which makes use of
the same underlying unigram, bigram and windowed bigram lan-
guagemodels. Generativemodels are also called directed graphical
models or Bayesian networks. Generative models are often found
to be unintuitive, because the model describes a process that gen-
erates data given variables we want to infer. In order to perform
learning, the inference algorithm ’inverts’ the conditional relation-
ships of the process and to reason which input would most likely
lead to the observed data.
3http://lemurproject.org/ranklib.php



5.1 Generative Process: genSDM
We devise a generative model where the query and the document
are generated from distributions over unigrams φu

d
, over bigrams

φb
d
andwindowed bigramsφw

d
. These three distributions areweighted

according to a multinomial parameter (λu , λb , λw ) of nonnegative
entries that is normalized to sum to one.

The generative process is visualized in directed factor graph no-
tation [7] in Figure 1c. For a given document d with according
distributions, the query q = q1q2 . . .qk is assumed to be gener-
ated with the following steps:
• Draw a multinomial distribution λ over the set ’u’,’b’,’w’.
• Assume distributions to represent the document d are given to

model unigrams φu
d
, bigrams φb

d
and windowed bigrams φw

d
.

• Draw an indicator variable Z ∼ Mult(λ) to indicate which dis-
tribution should be used.

• If Z = ’u’ then
– For all positions 1 ≤ i ≤ k of observed query terms qi do:

Draw unigram Qi ∼ Mult(φu
d
).

• If Z = ’b’ then
– For all positions 2 ≤ i ≤ k of observed query bigrams qi−1,qi

do: Draw bigram (Qi−1,Qi ) ∼ Mult(φb
d
).

• If Z = ’w’ then
– For all positions 2 ≤ i ≤ k of observed query terms qi−1,qi

do: Draw cooccurrence {Qi−1,Qi } ∼ Mult(φw
d
).

When scoring documents, we assume that parameters λu , λb , and
λw are given and that the random variables Qi are bound to the
given query terms qi . Furthermore, the document representations
φu
d
, φb

d
, φw

d
are assumed to be fixed – we detail how they are esti-

mated below.
The only remaining random variables that remains is the draw

of the indicatorZ . The probability ofZ given all other variables be-
ing estimated in close form. E.g.,p(Z = ’u’|q, λ . . . ) ∝ λu

∏k
i=1 φ

u
d
(qi )

and analogously for ’b’ and ’w’, with a normalizer that equals the
sum over all three values.

Marginalizing (i.e., summing) over the uncertainty in assign-
ments of Z , this results as the following likelihood for all query
terms q under the generative model.

L(q|λ,φu
d
,φb

d
,φw

d
) = (8)

λu

k∏

i=1

φu
d
(qi ) + λb

k∏

i=2

φb
d
((qi−1,qi )) + λw

k∏

i=2

φw
d
({qi−1,qi })

5.2 Document Representation
In order for the generative process to be complete, we need to de-
fine the generation for unigram, bigram andwindowed bigram rep-
resentations of a document d . There are two common paradigms
for bigrammodels, the first is going back to n-grammodels by gen-
erating word wi conditioned on the previous word wi−1, where
the other paradigm is to perceive a document as a bag-of-bigrams
which are drawn independently. As the features of the sequential
dependence model implement the latter option, we focus on the
bag-of-bigram approach here, and discuss the n-gram approach in
Section 6.

Each documentd in the corpus with wordsw1,w2, . . .wn is rep-
resented through three different forms. Each representation is be-
ing used to model one of the multinomial distributions φu

d
, φb

d
, φw

d
.

Bag of unigrams. The unigram representation of d follows the
intuition of the document as a bag-of-words wi which are gener-
ated independently through draws from amultinomial distribution
with parameter φu

d
.

In the model, we further let the distribution φu
d

be governed
by a Dirichlet prior distribution. In correspondence to the SDM
model, we choose the Dirichlet parameter that is proportional to
the empirical distribution in the corpus, i.e., p(w) =

nw,⋆

n⋆,⋆
with the

scale parameter µ. We denote this Dirichlet parameter as µ̃u ={
µ ·

nw,⋆

n⋆,⋆

}

w ∈V
which is a vector with entries for all words w in

the vocabulary V .
The generative process for the unigram representation is:

(1) Draw categorical parameter φu
d
∼ Dir(µ̃u ).

(2) For each wordwi ∈ d do: Drawwi ∼ Mult(φu
d
).

Given a sequence of words in the document d = w1w2 . . .wn , the
parameter vector φu

d
is estimated in closed form as follows.

φu
d
=

{
nw,d + µ

nw,⋆

n⋆,⋆

n⋆,d + µ

}

w ∈V

The log likelihood of a given set of query terms q = q1q2 . . .qk
under this model is given by

logLu (q|φud ) =
∑

qi ∈q
log

nqi ,d + µ
nqi ,⋆
n⋆,⋆

n⋆,d + µ

Notice, that logLu (q|φud ) is identical to scoreMu
(d |q) of Equa-

tion 2.

Bag of ordered bigrams. One way of incorporating bigram de-
pendencies in a model is through a bag-of-bigrams representation.
For a document d with wordsw1,w2, . . .wn for every i, 2 ≤ i ≤ n

a bigram (wi−1,wi ) is placed in the bag. The derivation follows
analogously to the unigram case. The multinomial distribution
φb
d
is drawn from a Dirichlet prior distribution, parameterized by

parameter µ̃b . The Dirichlet parameter is derived from bigram-
statistics from the corpus, scaled by the smoothing parameter µ.

The generative process for bigrams is as follows:

(1) Draw categorical parameter φb
d
∼ Dir(µ̃b )

(2) For each pair of consecutive words (wi−1,wi ) ∈ d : draw
(wi ,wi+1) ∼ Mult(φb

d
)

Given an observed sequence of bigrams in the documentd = (w1,w2)(w2,w3) . . . ,
the parameter vectorφb

d
can be estimated in closed form as follows.

φb
d
=





n(w,u),d + µ
n(w,u),⋆

n(⋆,⋆),⋆

n(⋆,⋆),d + µ



(w,u)∈V xV

The log likelihood of a given set of query terms q with
q = (q1q2), (q2q3) . . . (qk−1qk ) under this model is given by

logLb (q|φbd ) =
∑

(qi−1,qi )∈q
log

n(qi−1,qi ),d + µ
n(qi−1,qi ),⋆

n(⋆,⋆),⋆

n(⋆,⋆),d + µ

Also, logLb (q|φbd ) produces the identical to scoreMb
(d |q) above.



Bag of unorderedwindowed bigrams. Thewindowed-bigrammodel
of document d works with a representation of eight consecutive
words (wi−7 . . .wi ), with derivation analogously to the bigram
case. However, in order to determine the probability for twowords
u and v to occur within an unordered window of 8 terms, we inte-
grate over all positions and both directions. The estimation of the
windowed bigram parameter follows as

φw
d

=





n {u,v }8,d + µ
n{u,v }8,⋆

n{⋆,⋆}8,⋆

n {⋆,⋆}8,d + µ



u ∈V ,v ∈V

where n {u,v }8,d refers to the number of cooccurrences of terms
u and v within a window of eight terms. With parameters φw

d,v
estimated this way, the log-likelihood for query terms q is given
as

logLw (q|φw
d,⋆

) =
∑

qi ∈q
i>1

log
n {qi−1,qi }8,d + µ

n{qi−1,qi }8,⋆
n{⋆,⋆}8,⋆

n {qi−1,⋆}8,d
+ µ

The windowed bigram model Mw introduced above produces
the same score denoted scoreMw

(d |q) as logLw (q|φb
d
).

5.3 Generative Scoring Algorithm
Inserting the expressions of the unigram, bigram and windowed
bigram language model into the likelihood of the generative model
(Equation 8), yields

LGen(q,d) ∝ λu exp scoreMu
(d |q) (9)

+λb exp scoreMb
(d |q) + λw exp scoreMw

(d |q)

Since the expressions such as
∏k

i=1 φ
u
d
(qi ) are identical to

exp scoreMu
(d |q) as it was introduced in Section 3.

5.4 Connection to MRF-SDM model
We want to point out the similarity of the likelihood of the gener-
ative SDM model (Equation 9) and the log-likelihood of the SDM
Markov random field from Equation 7, which (as a reminder) is
proportional to

logLMRF(q,d) ∝ (10)

λu scoreMu
(d |q) + λb scoreMb

(d |q) + λw scoreMw
(d |q)

The difference between both likelihood expressions is that for
MRF, the criterion is optimized in log-space (i.e., logLMRF(q,d))
where for the generative model, the criterion is optimized in the
space of probabilities (i.e., LGen(q,d)). Therefore the MRF is opti-
mizing a linear-combination of log-features such as scoreMu

(d |q),
where by contrast, the generative model optimizes a linear combi-
nation of probabilities such as exp scoreMu

(d |q).
Looking at Equation 10 in the probability space, it becomes clear

that the weight parameter λ acts on the language models through
the exponent (and not as a mixing factor):

LMRF(q,d) ∝
(
exp scoreMu

(d |q)
)λu

·
(
exp scoreMb

(d |q)
)λb

·
(
exp scoreMw

(d |q)
)λw

This difference is the reason why the MRF factor functions are
called log-linear models and why the parameter λ is not restricted
to nonnegative entries that sum to one—although this restriction

can be imposed to restrict the parameter search space without loss
of generality.

5.5 Connections to Jelinek-Mercer Smoothing
Jelinek-Mercer smoothing [5] is an interpolated language smooth-
ing technique. While discussed as an alternative toDirichlet smooth-
ing by Zhai et al. [17], here we analyze it as a paradigm to combine
unigram, bigram, and windowed bigram model.

The idea of Jelinek-Mercer smoothing is to combine a complex
model which may suffer from data-sparsity issues, such as the bi-
gram language model, with a simpler back-off model. Both models
are combined by linear interpolation.

We apply Jelinek-Mercer smoothing to our setting through a
nested approach. The bigram model is first smoothed with a win-
dowed bigram model as a back-off distribution with interpolation
parameter λ̃b . Then the resulting model is smoothed additionally
with a unigram model with parameter λ̃u . This model results in
the following likelihood for optimization.

LJM(q,d) ∝ (1 − λ̃u )
(
λ̃b exp scoreMb

(d |q)+

(1 − λ̃b ) exp scoreMw
(d |q)

)
+ (λ̃u ) exp scoreMu

(d |q)

Wedemonstrate that this function is equivalent to the likelihood
of the generative model (Equation 9), through the reparametriza-
tion of λu = λ̃u , λb = (1 − λ̃u ) · λ̃b and λw = (1 − λ̃u ) · (1 −

λ̃b ). Therefore, we conclude that the generative model introduced
in this section is equivalent to a Jelinek-Mercer-smoothed bigram
model discussed here.

6 GENERATIVE N-GRAM-BASED MODEL
The generative model introduced in Section 5 is rather untypical
in that it considers three bag-of-features representations of a sin-
gle document without ensuring consistency among them. Using
it to generate documents might yield representations of different
content. In this section we discuss a more stereotypical genera-
tive model based on the n-gram process (as opposed to a bag-of-n-
grams). Consistently with previous sections, this model combines
a unigram, bigram, and windowed bigram model.

While the unigram model is exactly as described in Section 5.2,
the setup for the bigram andwindowed bigram cases change signif-
icantly whenmoving from a bag-of-bigram paradigm to an n-gram
paradigm.

6.1 Generative N-gram-based Bigram Process
In the bag-of-bigrams model discussed in Section 5.2, both words
of a bigram (wi−1,wi ) are drawn together from one distribution
φd per document d . In contrast, in the n-gram models we discuss
here, wi is drawn from a distribution that is conditioned on wi−1

in addition to d , i.e., φd,wi−1
. The difference is that where in the

bag-of-bigrams model follows p(w,v |d) =
n(v,w),d

n(⋆,⋆),d
, the n-gram

version follows p(w |v,d) =
n(v,w),d

n(v,⋆),d
.

As before, we use language models with Dirichlet smoothing,
a smoothing technique that integrates into the theoretical genera-
tive framework through prior distributions. For all terms v ∈ V ,
we let each language model φd,v be drawn from a Dirichlet prior
with parameter µ̃bv , which is based on bigram statistics from the
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(a) Generative bag-of-bigrams (Section 5).
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Figure 2: Generative n-gram mixture models.

corpus, which are scaled by the smoothing parameter µ. For bi-
gram statistics, we have the same choice between a bag-of-bigram
and n-gram paradigm. For consistency we choose to follow the n-
gramparadigmwhich yieldsDirichlet parameter µ̃bv =

{
µ
n(v,w),⋆

n(v,⋆),⋆

}

w ∈V.
The generative process for the bigram model is as follows:
(1) For all words v ∈ V in the vocabulary: draw categorical

parameter φb
d,v

∼ Dir(µ̃bv ).
(2) Draw the first word of the document w1 ∈ d from the

unigram distribution,w1 ∼ Mult(φu
d
).

(3) For each remaining wordwi ∈ d; i ≤ 2:
drawwi ∼ Mult(φb

d,wi−1
).

Given a sequence of words in the document d = w1w2 . . .wn , the
parameter vectors φb

d,v
(∀v ∈ V ) can be estimated in closed form

as follows.

φb
d,v

=




n(v,w),d + µ
n(v,w),⋆

n(v,⋆),⋆

n(v,⋆),d + µ


w ∈V

The log likelihood of a given set of query terms q = q1q2 . . .qk

is modeled asp(q) =
(∏

qi ∈q
i>1

p(qi |qi−1)
)
·p(q1). With parameters

φb
d,v

as estimated above, the log-likelihood for query terms q is
given as

logLb (q|φbd,⋆) =
∑

qi ∈q
i>1

log
n(qi−1,qi ),d + µ

n(qi−1,qi ),⋆

n(qi−1,⋆),⋆

n(qi−1,⋆),d + µ

+ logLu (q1 |φ
u
d
)

The second term handles the special case of the first query word
q1 which has no preceding terms and therefore, when marginal-
izing over all possible preceding terms, collapses to the unigram
distribution.

Even when ignoring the special treatment for the first query
term q1, the bigram model Mb referred to above as scoreMb

(d |q)
produces the different score as logLb (q|φbd ) due to the difference
in conditional probability and joint probability.

6.2 Generative Windowed-Bigram Process
The windowed bigram model of document d also represents each
word wi as a categorical distribution. The difference is that the

model conditions on a random word within the 8-word window
surrounding the i’th position. This is modeled by a random draw of
a position j to select thewordw j onwhich the draw ofwordwi will
be conditioned on. In the following, we denote the set of all words
surrounding wordwi by ωi = {wi−7 . . .wi−1wi+1 . . .wi+7}.

The generative process for the windowed bigram model is as
follows:
(1) For all wordsv ∈ V : draw categorical parameterφw

d,v
∼ Dir(µ̃wv ).

(2) For each wordwi ∈ d :
(a) Draw an index j representing word w j ∈ ωi uniformly at

random.
(b) Drawwi ∼ Mult(φw

d,w j
).

Deriving an observed sequence of windows ω1ω2 . . .ωn from an
given sequence of words in the document d = w1w2 . . .wn . The
parameter vectors φw

d,v
(∀v ∈ V ) can be estimated in closed form

by counting all co-occurrences ofwi withv ∈ ωi in the vocabulary
V . This quantity was introduced above as n {w,v }8,d

. In order to
incorporate choosing the position j, the co-occurrence counts are
weighted by the domain size of the uniform draw, i.e., 1

7+7 .

φw
d,v

=





1
14n {v,w }8,d

+ µ
1
14
n{v,w }8,⋆

1
14
n{v,⋆}8,⋆

1
14n {v,⋆}8,d

+ µ



w ∈V

As the factors 1
14 cancel, we arrive at the second line.

With parameters φw
d,v

as estimated above, the log-likelihood for
query terms q is given as

logLw (q|φw
d,⋆

) =
∑

qi ∈q
i>1

log
n {qi−1,qi }8,d + 14·µ ·

n{qi−1,qi }8,⋆
n{qi−1,⋆}8,⋆

n {qi−1,⋆}8,d
+ 14µ

+ logLu (q1 |φ
u
d
)

The second term handles the special case of the q1 which has
no preceding terms and collapses to the unigram model.

Aside from the special treatment for q1, the bigram model Mw

introduced above scoreMw
(d |q) produces a different log score as

logLw (q|φb
d
).

6.3 A New Generative Process: genNGram
Then-gram paradigm languagemodels discussed in this section, al-
lows to generate a term qi optionally conditioned on the previous



term. This allows to integrate unigram, bigram, and windowed bi-
grammodels with term-dependent choices. For instance, after gen-
erating q1 from the unigram model, q2 might be generated from
a bigram model (conditioned on q1), and q3 generated from the
windowed bigram model (conditioned on q2). These term-by-term
model choices are reflected in a list of latent indicator variables Zi ,
one for each query term position qi .

The generative process is as follows.
• Draw a multinomial distribution λ over the set ’u’,’b’,’w’.
• Assume estimated unigram model φu

d
, bigram model φb

d,v
;∀v ∈

V and windowed bigram model φw
d,v

;∀v ∈ V that represent the
document d as introduced in this section.

• For the first query term q1 do: Draw Q1 ∼ Mult(φu
d
).

• For all positions 2 ≤ i ≤ k of query terms qi , do:
– Draw an indicator variable Zi ∼ Mult(λ) to indicate which

distribution should be used.
– If Zi = ’u’ then do: Draw Qi ∼ Mult(φu

d
) from the unigram

model (Section 5.2).
– If Zi = ’b’ then do: Draw Qi ∼ Mult(φb

d,Qi−1
) from the bi-

gram model (Section 6.1).
– If Zi = ’w’ then do:4 Draw Qi ∼ Mult(φw

d,Qi−1
) from the

windowed bigram model (Section 6.2).
Assuming that all variablesQi and parameters φ, λ are given, only
the indicator variablesZi need to be estimated. Since allZi are con-
ditionally independent when other variables are given, their pos-
terior distribution can be estimated in closed-form. For instance,
p(Zi = ’b’|q, λ . . . ) ∝ λbφ

b
d,qi−1

(qi ) and analogously for ’u’ and
’w’.

Integrating out the uncertainty in Zi and considering all query
terms qi , the model likelihood is estimated as

L(q|λ,φu
d
,φb

d
,φw

d
) = φu

d
(q1) ·

k∏

i=2

(
λuφ

u
d
(qi ) (11)

+λbφ
b
d,qi−1

(qi ) + λwφ
w
d,qi−1

(qi )

)

7 EXPERIMENTAL EVALUATION
In this section, the theoretical analysis of the family of dependency
models is complemented with an empirical evaluation. The goal
of this evaluation is to understand implications of different model
choices in isolation.

We compare the MRF-based and generative models with both
paradigms for bigrammodels. In particular, the followingmethods
are compared (cf. Figure 3a):
• mrfSDM:TheoriginalMRF-based sequential dependencemodel

as introduced by Metzler et al. [11], as described in Section 4.
• genSDM: A generative model with the same features, using

the bag-of-bigrams approach introduced in Section 5.
• genNGram: Alternative generative model with using condi-

tional bigram models, closer to traditional n-gram models, dis-
cussed in Section 6.

• mrfNGram: A variant of the MRF-based SDM model using
features from conditional bigram models.

4In spirit with SDM, φw is estimated from eight-term windows in the document, but
only the previous word is considered when generating the query.

• QL:Thequery likelihoodmodelwithDirichlet smoothing, which
is called the unigram model in this paper.

All underlying language models are smoothed with Dirichlet
smoothing, as a preliminary study with Jelinek Mercer smoothing
yielded worse results. (This finding is consistent with a study of
Smucker et al. [15].)

Term probabilities of different language models are on very dif-
ferent scales. Such as is the average probability of bag-of-bigram
entry is much smaller than a probability under the unigrammodel,
which is in turn much smaller than a term under a conditional bi-
gram model. As we anticipate that the Dirichlet scale parameter µ
needs to be adjusted we introduce separate parameters for differ-
ent language models (and not use parameter tying).

7.1 Experimental Setup
Aiming for a realistic collection with rather complete assessments
and multi-word queries, we study method performance on the Ro-
bust04 test set. The test set contains 249 queries5 and perform to-
kenization on whitespace, stemming with Krovetz stemmer, but
only remove stopwords for unigram models. While we focus on
the measure mean-average precision (MAP), similar results are ob-
tained for ERR@20, R-Precision, bpref, MRR, and P@10 (available
upon request).

We use five-fold cross validation using folds that are identical to
empirical studies of Huston et al. [8, 9]. The training fold is used to
select both the Dirichlet scale parameters µ and weight parameters
λ. Performance is measured on the test fold only.

Parameters are estimated in two phases. First the Dirichlet scale
parameter µ is selected to maximize retrieval performance (mea-
sured in MAP) of each language model individually. See Table 1
for range of the search grid, estimated Dirichlet parameter, and
training performance.

In the subsequent phase, Dirichlet parameters are held fixed
while the weight parameter λ = {λu , λb , λw } is selected. To avoid
performance differences due differentmachine learning algorithms,
we evaluate two learning approaches for weight parameter λ: grid
search and coordinate ascent fromRankLib. Despite not strictly be-
ing necessary, for grid searchwe only consider nonnegativeweights
that sum to one, as suggested in the original SDM paper [11]. Each
weight entry is selected on a grid λ ∈ [0.0, 0.05, . . . 0.95, 1.0]while
constraint-violating combinations are discarded. The RankLib ex-
periment does not use a grid, but performs coordinate-ascent with
five restarts.

For single-term queries, all discussed approaches reduce to the
Query Likelihood model, i.e., unigram model. We therefore hold
them out during the training phase, but include them in the test
phase, where they obtain the same ranking for all approaches.

7.2 Empirical Results
The results of the evaluationwith standard error bars are presented
in Figure 3b for the grid tuning experiment and in Figure 3c for the
RankLib experiment.

In the grid-tuning experiment it appears that the MRF-based
SDM model is clearly better than any of the other variants, includ-
ing both generativemodels aswell as theMRF-variantwith n-gram
5Removing query 672 which does not contain positive judgments.





in Figure 3b), where actually this is only due to inabilities of fixed
grid-searches to suitably explore the parameter space.

8 RELATEDWORK
This work falls into the context of other works that study different
common axiomatic paradigms [16] used in information retrieval
empirically and theoretically. Chen and Goodman [5] studied dif-
ferent smoothing methods for language modeling, while Zhai and
Lafferty [17] re-examine this question for the document retrieval
task. Finally, Smucker and Allan [15] concluded which character-
istic of Dirichlet smoothing leads to its superiority over Jelinek-
Mercer smoothing.

Our focus is on the theoretical understanding of equivalences of
different probabilistic models that consider sequential term depen-
dencies, such as [11]. Our work is motivated to complement the
empirical comparison of Huston and Croft [8, 9]. Huston and Croft
studied the performance of the sequential dependence model and
other widely used retrieval models with term dependencies such
as BM25-TP, as well as Terrier’s pDFR-BiL2 and pDFR-PL2 with an
elaborate parameter tuning procedure with five fold cross valida-
tion. The authors found that the sequential dependence model out-
performs all other evaluatedmethodwith the only exception being
an extension, the weighted sequential dependence model [3]. The
weighted sequential dependence model extends the feature space
for unigrams, bigrams, and windowed bigrams with additional fea-
tures derived from external sources such as Wikipedia titles, MSN
query logs, and Google n-grams.

9 CONCLUSION
In this work we take a closer look at the theoretical underpin-
ning of the sequential dependence model. The sequential depen-
dencemodel is derived as aMarkov randomfield, where a common
choice for potential functions are log-linear models. We show that
the only difference between a generative bag-of-bigrammodel and
the SDM model is that one operates in log-space the other in the
space of probabilities. This is where the most important difference
between SDM and generative mixture of language models lies.

We confirm empirically, that all four term-dependency mod-
els are capable of achieving the same good retrieval performance.
However, we observe that grid tuning is not a sufficient algorithm
for selecting the weight parameter—however a simple coordinate
ascent algorithm, such as obtainable from the RankLib package
finds optimal parameter settings. A shocking result is that for the
purposes of comparing different models, tuning parameters on an
equidistant grid may lead to the false belief that the MRF model is
significantly better, where in fact, this is only due to the use of an
insufficient parameter estimation algorithm.

This analysis of strongly related models that following the SDM
model in spirit, but are based on MRF, generative mixture models,
and Jelinek-Mercer/interpolation smoothing might appear overly
theoretical. However, as many extensions exist for the SDMmodel
(e.g., including concepts or adding spam features) aswell as for gen-
erative models (e.g., relevance model (RM3), translation models, or
topicmodels), elaborating on theoretical connections and pinpoint-
ing the crucial factors are important for bringing the two research
branches together. The result of this work is that, when extending

current retrieval models, both the generative and Markov random
field framework are equally promising.
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A APPROXIMATIONS IN GALAGO
We noticed some approximations in Galago’s implementation with respect
to the bigram and windowed bigrammodel which also affects the Dirichlet
smoothing component. For completeness we discuss these approximations
and their effects.

The denominator of both the model and the smoothing term provides
a normalizer reflecting counts of ’all possible cases’. In the unigram case,
the counts of ’all possible cases’ is the document length n⋆,d = |d | and
for the smoothing component the collection length C = n⋆,⋆ =

∑
d |d |.

In the bigram case, the number of all possible bigrams in a document
n{⋆,⋆}8,d

= |d | − 1 ≈ |d | is approximated in the implementation with
the document length. The approximation factors into the smoothing com-
ponent n(⋆,⋆),⋆ =

∑
d ( |d | − 1) = C − C̃ ≈ C with C̃ denoting the

number of documents in the collection. For documents that are long on
average, this is a reasonable approximation.

In the windowed-bigram case, all possible windowed bigrams in a doc-
ument n{qi ,qi+1 }8,d

= ( |d | − 7) · 28 ≈ |d |. This is because the docu-
ment has |d | − 7 windows, each with 8 choose 2 cases. The approxima-
tion of off by a factor of 28. This also affects the smoothing component,
n{⋆,⋆}8,⋆

≈
(
C − 7C̃

)
· 28 ≈ C . However, when the smoothing parame-

ter µ is tuned with relevance data, the constant factor of 28 is absorbed by
µ .
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