
Modeling User Interests for Zero-query Ranking

Liu Yang1⋆, Qi Guo2, Yang Song3, Sha Meng2, Milad Shokouhi4, Kieran McDonald2,

and W. Bruce Croft1

1 Center for Intelligent Information Retrieval, University of Massachusetts Amherst, MA, USA
2 Microsoft Bing, Bellevue, WA, USA

3 Microsoft Research Redmond, WA, USA
4 Microsoft Research Cambridge, Cambridge, UK

{lyang, croft}@cs.umass.edu,{qiguo, yangsong, shmeng, milads,

kieran.mcdonald}@microsoft.com

Abstract. Proactive search systems like Google Now and Microsoft Cortana

have gained increasing popularity with the growth of mobile Internet. Unlike tra-

ditional reactive search systems where search engines return results in response

to queries issued by the users, proactive systems actively push information cards

to the users on mobile devices based on the context around time, location, envi-

ronment (e.g., weather), and user interests. A proactive system is a zero-query in-

formation retrieval system, which makes user modeling critical for understanding

user information needs. In this paper, we study user modeling in proactive search

systems and propose a learning to rank method for proactive ranking. We explore

a variety of ways of modeling user interests, ranging from direct modeling of his-

torical interaction with content types to finer-grained entity-level modeling, and

user demographical information. To reduce the feature sparsity problem in entity

modeling, we propose semantic similarity features using word embedding and

an entity taxonomy in knowledge base. Experiments performed with data from

a large commercial proactive search system show that our method significantly

outperforms a strong baseline method deployed in the production system.

1 Introduction

The recent boom of mobile internet has seen the emergence of proactive search sys-

tems like Google Now, Apple Siri and Microsoft Cortana. Unlike traditional reactive

Web search systems where the search engines return results in response to queries is-

sued by users, proactive search systems actively push information cards to users on mo-

bile devices based on the context such as time, location, environment (e.g., weather),

and user interests. Information cards are concise and informative snippets commonly

shown in many intelligent personal assistant systems. Figure 1 shows examples of

proactive information cards presented in Apple Siri (stocks), Google Now (flight and

weather) and Microsoft Cortana (news). There are no explicit queries for these returned

information cards which are triggered by some particular context.

The need for these proactive search systems increases in mobile environments,

where the users’ ability to interact with the system is hampered by the physical limita-

⋆ Work primarily done when interning at Microsoft.

– We conduct in-depth feature analysis, which provides insights for guiding future

feature design of the proactive ranking systems.

2 Related Work

There is a range of previous research related to our work that falls into different

categories including proactive information retrieval, information cards, search person-

alization and recommender systems.

Proactive Information Retrieval. Rhodes and Maes [14] proposed the just-in-time

information retrieval agent (JITIR agent) that proactively retrieves and presents infor-

mation based on a person’s local context. The motivation of modern proactive search

system is very similar to JITIRs, but the monitored user context and presented content

of modern proactive system are more extensive than traditional JITIRs.

Information Cards. Web search has seen rapid growth in mobile search traffic,

where answer-like results on information cards are better choices than a ranked list to

address simple information needs given the relative small size of screens on mobile

devices. For some types of information cards like weather, users could directly find

the target information from contents on cards without any clicks. This problem was

introduced by Li et al. [9] as “good abandonment”. Based on this problem, Guo et al.

[7] proposed a study of modeling interactions on touch-enabled device for improving

Web search ranking. Lagun et al. [8] studied the browser viewport which is defined as

visible portion of a web page on mobile phones to provide good measurement of search

satisfaction in the absence of clicks. For our experiments, we also consider viewport

based dwell time to generate relevance labels for information cards to handle the good

abandonment problem.

Search Personalization. Proactive systems recommend highly personalized con-

tents to users based on their interest and context. Hence, our work is also related to

previous research on search personalization [21,19,6]. Fox et al. [6] showed there was

an association between implicit measures of user activity and the user’s explicit satis-

faction ratings. Agichtein et al. [1] showed incorporating implicit feedback obtained in

a real web search setting can improve web search ranking. Bennett et al. [4] studied

how short-term (session) behavior and long-term (historic) behavior interact, and how

each may be used in isolation or in combination to optimally contribute to gains in

relevance through search personalization. We also consider implicit feedback features

based on user interactions with different card types and compare the relative importance

of this feature group with other feature groups like entity based user interests features

for proactive ranking.

Recommender Systems. Similar to recommender systems [13], we also push the

most relevant content to the user based on user personal interests without a query issued

by the user. However, the recommended items in the proactive system are for a smaller

set of items that are highly heterogeneous and need to be personalized and contextu-

alized in the ranking [15]. Unlike collaborative filtering methods [17] commonly used

in recommender systems, we adopt a learning to rank framework that is suitable for

combining multiple features derived from various user history information.

3 Method Overview

We adopt common IR terminology when we define the proactive search problem.

A proactive impression consists of a ranked list of information cards presented to users

together with the user interaction logs recording clicks and viewports. Given a set of

information cards {C1, C2, ..., Cn} and the corresponding relevance labels, our task is

to learn a ranking model R to rank the cards based on available features θ and optimize

a pre-defined metric E defined over the card ranked list.

We propose a framework for proactive ranking referred to as UMPRanker (User

Modeling based Proactive Ranker). Firstly we mine user interests from multiple user

logs. Each user is distinguished by a unique and anonymized identifier which is com-

monly used in these platforms. The information collected from these different platforms

forms the basis of our user modeling. Then we derive multiple user interest features

including entity based user interests, card type based implicit feedback and user demo-

graphics based on the collected information. Information cards are generated from mul-

tiple pre-defined information sources and templates including weather, finance, news,

calendar, places, event, sports, flight, traffic, fitness, etc. We also extract card features

from the associated URLs and card types. Given user features and card features, we can

train a learning to rank model. Given a trigger context like particular time, location or

event, information cards are ranked by the model and pushed to the user’s device.

4 Mining User Interests From Logs

We can derive user interests from the short text that users specified and the textual

content that users engaged with during their historical activity. Specifically, the infor-

mation sources of user interests we consider include the following user behavior in

logs:

1. Issued queries from the search behavior.

2. Satisfactory(SAT) clicked documents from the search behavior.

3. Browsed documents on an Internet browser and a Web portal.

4. Clicks and viewports on a personal assistant.

Note that users have the right to choose whether they would like the services to col-

lect their behavior data. The logs we collected are from “opt-in” users only. To represent

user interests, we extract entities from the text content specified by user behaviors. We

can also represent information card topics by entities exacted from card URLs. Entities

in user profiles and cards are linked with entities in a large scale knowledge base to get

a richer representation of user interests.

5 Ranking Feature Extraction

5.1 Card Type based Implicit Feedback Features (IF)

This feature group is based on statistics of user interactive history with different card

types like average view time of each card type, accept ratio of each card type, etc. This

group of features aims at capturing individual user preferences of particular card type,

for example, news, based on the statistics of the historical interactions. Specifically,

for each <user, card type> pair, features extracted include historical clickthrough rate

(CTR), SAT CTR (i.e., clicks with more than 30 seconds dwell time on landing pages),

SAT view rate (i.e., card views with more than 30 seconds), hybrid SAT rate (i.e., rate

of either a SAT click or a SAT view), view rate, average view time, average view speed,

accept ratio of the card suggestions, untrack ratio of the card type, ratio of the cards

being a suggestion. The details of these features are explained in Table 1.

Table 1: Summary of card type based implicit feedback features (IF).

Feature Description

CTR Personal historical clickthrough rate of the card type.

SATCTR Personal historical SAT (landing page dwell time > 30 seconds) clickthrough rate of the card type.

SATViewRate Personal historical SAT (card view time > 30 seconds) view rate of the card type.

ViewRate Personal historical view rate of the card type.

AverageViewTime Personal historical average view time of the card type.

AverageViewTimeSpeed Personal historical average view time per pixel of the card type.

AcceptRatio Personal historical accept ratio when the card type was presented as a suggestion.

UnTrackRatio Personal historical ratio untrack the card type.

SuggestionRate Personal historical ratio of seeing the card type being presented as a suggestion.

5.2 Entity based User Interests Features (EF)

As described in Section 4, we can represent user interests by entities extracted from

user behavior across multiple services and devices. For cards with URLs, we can also

represent card topics with entities. So the next problem is how to measure the sim-

ilarity between user entity sets and card entity sets. We consider features including

exact match, term match, language models, word embedding and entity taxonomy in

the knowledge base. In the following parts, we let Ui and Cj denote the entity set of the

i-th user and the j-th card.

Table 2: Summary of entity based user interests features (EF).

Feature Description

RawMatchCount The raw match count of entities by id in Ui and Cj .

EMJaccardIndex The Jaccard Index of entities matched by id in Ui and Cj .

TMNoWeight The cosine similarity between two entity term distributions in Ui and Cj .

TMWeighted Similar to TMNoWeight, but terms are weighted by impression count.

LMScore The log likelihood of generating terms in Cj using a language model constructed from terms in Ui.

WordEBDMin The similarity between Ui and Cj based on word embedding features(single-link).

WordEBDMax The similarity between Ui and Cj based on word embedding features(complete-link).

WordEBDAvgNoWeight The similarity between Ui and Cj based on word embedding features(average-link-noWeight).

WordEBDAvgWeighted The similarity between Ui and Cj based on word embedding features(average-link-weighted).

KBTaxonomyLevel1 The similarity between Ui and Cj based on entity taxonomy similarity in level 1.

KBTaxonomyLevel1Weighted Similar to EntityKBTaxonomyLevel1 but each entity is weighted by its impression counts.

KBTaxonomyLevel2 The similarity between Ui and Cj based on entity taxonomy similarity in level 2.

KBTaxonomyLevel2Weighted Similar to EntityKBTaxonomyLevel2 but each entity is weighted by its impression counts.

Exact Match. The first feature is exact match. It is computed based on the number

of common entities matched by entity ID in Ui and Cj . We consider two variations:

RawMatchCount and EMJaccardIndex. RawMatchCount uses the original match count

as the feature value. EMJaccardIndex computes the Jaccard Index of Ui and Cj .

Term Match. exact match feature suffers from feature sparsity problem. A bet-

ter method is to treat Ui and Cj as two term sets. Then we could get two entity term

distributions over Ui and Cj . The cosine similarity between these two entity term dis-

tributions becomes term match feature.

Language Models. The feature LMScore is based on the language modeling ap-

proach to information retrieval [16]. We treat the card entity term set as the query and

the user entity term set as the document. Then we compute the log likelihood of gener-

ating card entity terms using a language model constructed from user entity terms. We

use Laplace smoothing in the computation of language model score.

Word Embedding. We extract semantic similarity features between entities based

on word embeddings. Word embeddings [11,12] are continuous vector representations

of words learned from very large data sets based on neural networks. The learned

word vectors can capture the semantic similarity between words. In our experiment,

we trained a Word2Vec model using the skip-gram algorithm with hierarchical soft-

max [12]. The training data was from the Wikipedia English dump obtained on June

6th, 2015. Our model outputs vectors of size 200. The total number of distinct words

is 1, 425, 833. We then estimate entity vectors based on word vectors. For entities that

are phrases, we compute the average vector of embedding of words within the entity

phrase. After vector normalization, we use the dot product of entity vectors to measure

entity similarity. To define features for the similarity of Ui and Cj , we consider feature

variations inspired by hierarchical clustering algorithms as shown in table 2.

Entity Taxonomy in Knowledge Base. Another way to extract semantic similarity

features between entities is measuring the similarity of entity taxonomy [10]. As pre-

sented in Section 4, we link entities in the user interest profile with entities in a large

scale knowledge base. From the knowledge base, we can extract the entity taxonomy

which is the entity type information. Two entities without any common terms could

have similarities if they share some common entity types.

Table 3: Examples of entity taxonomy for “Kobe Bryant” and “Byron Scott”.

Entity name Kobe Bryant Byron Scott

Taxonomy 1 award.nominee award.winner

Taxonomy 2 award.winner basketball.coach

Taxonomy 3 basketball.player basketball.player

Taxonomy 4 celebrities.celebrity event.agent

Taxonomy 5 event.agent sports.sports team coach

Taxonomy 6 film.actor film.actor

Taxonomy 7 olympics.athlete tv.personality

Table 3 shows entity taxonomy examples for “Kobe Bryant” and “Byron Scott”.

We can see that these two entities share common taxonomies like “basketball.player”,

“award.winner”. They also have their own special taxonomies. “Kobe Bryant” has

“olympics.athlete” in the taxonomies whereas “Byron Scott” has the taxonomy named

“basketball.coach”. Based on this observation, we can measure the semantic similarity

between two entities base on their taxonomies. Specifically, we measure the similarity

of two entities based on the Jaccard index of the two corresponding taxonomy sets.

Since all taxonomies only have two levels, we compute entity taxonomy similarity fea-

tures in two different granularity. When we measure the similarity of the Ui and Cj ,

we can compute the average similarity of all entity pairs in this two entity sets. We

compute a weighted version where each entity is weighted by its impression count and

a non-weighted version for this features. In summary, in this feature group, we have 4

features that are listed in Table 2.

5.3 User Demographics Features (UD)

Part of user interests are influenced by their demographic information such as age

and gender. The tastes of teenagers and adults are different. Men and women also have

different preferences for information cards. Motivated by this intuition, we also extract

features related to user demographic information. In addition to the raw user demo-

graphics features, we also add user demographics features in a matched version. We

compute the matched features of the user demographics features between the user and

users who clicked the card URLs. To achieve this, we need to compute the average age

and average gender value for users that clicked on each card. The gender value is be-

tween 1 (male) and 2 (female), where the more the value is approaching 1, the more men

clicked the URLs in the corresponding card. Based on this, we compute the differences

between user demographic features. We distinguish zero distance with null cases by

adding an offset to zero distance when we compute the matched version feature values.

The details of these features are explained in the Table 4.

Table 4: Summary of user demographics features (UD).

Feature Description

UserAge Integer value of user’s age.

UserGender Binary value of user’s gender.

UserLanguage Integer value to denote user’s language.

UserRegisterYears Integer value to denote the number of years since user’s registration.

CardAvgAge Average age of all users who clicked the URLs on the card.

CardAvgGender Average gender value of all users who clicked the URLs on the card.

AgeAbsDistance The absolute distance for age between the user with all users who clicked card URLs.

AgeRelDistance The relative distance for age between the user with all users who clicked card URLs.

GenderAbsDistance The absolute distance for gender between the user with all users who clicked card URLs.

GenderRelDistance The relative distance for gender between the user with all users who clicked card URLs.

6 Experiments

6.1 Data Set and Experiment Settings

We use real data from a commercial intelligent personal assistant for the experi-

ments. The training data is from one week between March 18th, 2015 and March 24th,

2015. The testing data is from one week between March 25th, 2015 and March 31st,

2015. The statistics of card impressions and users are shown in Table 5.

The user profiles represented by entities are built from multiple logs presented in

Section 4. The time window from user profile is from March 18th, 2014 to March 17th,

2015. So there is no overlap time between the user profiles and training/testing data.

Since most proactive impressions have only one card with a positive relevance label,

we pick mean reciprocal rank(MRR) and NDCG@1 as the evaluation metric.

Table 5: Statistics of training data and testing data.

Item Training Data Testing Data

Cards 8,499,640 9,400,779

Cards with URLs 4,721,666(55.55%) 4,920,380(52.34%)

Cards with entities 3,934,644(46.29%) 3,960,484(42.13%)

Users 232,413 233,647

Users with entities 210,139(90.42%) 205,067(87.77%)

6.2 Relevance Labels Generation

Following previous research in reactive search personalization [3,6] and proactive

information card ranking[15], we use the SAT-Hybrid method to generate the relevance

labels in our experiments. This method considers all cards with a SAT-Click or a SAT-

View as relevant cards. The definition of SAT-Click and SAT-View are as following.

SAT-Click: For each card in proactive impressions, we consider clicked cards with

≥ 30s dwell time as relevant and other cards as non-relevant. This is a commonly used

strategy for generating relevance labels in reactive search systems.

SAT-View: Some types of cards do not require a click to satisfy users’ information

needs. For instance, users could scan the weather and temperature information on the

cards without any clicking behavior. Stock cards could also tell users the real-time stock

price of a company directly in the card content. Cards with viewport duration ≥ 10s are

labeled as relevant and the others are non-relevant.

6.3 Learning Models

We choose LambdaMART [20] as our learning model to rerank cards based on

features extracted in Section 5. LambdaMART is an extension of LambdaRank [5]. This

learning to rank method based on gradient boosted regression trees is one of the most

effective models for the ranking task. It won Track 1 of the 2010 Yahoo! Learning to

Rank Challenge and was commonly used in previous research on personalized ranking

[3,4,18].

6.4 Comparison of Different Rankers

We compare the performance of different rankers. The baseline ranker is a produc-

tion ranker which has been shipped to a commercial personal assistant system. This

production ranker includes features that statically rank the different information cards

based on their relative importance, and dynamic features that adjust their relevance

scores based on the contextual information and the card content. This ranker is similar

and comparable to the Carre model as described in [15]. We only report the relative

gains and losses of other rankers against this production ranker to respect the propri-

etary nature of this ranker. The rankers which are compared with the baseline ranker

include the following:

– UMPRanker-I(IF): The ranker from adding IF features on top of the features being

used in the production ranker.
– UMPRanker-IE (IF + EF): The ranker from adding IF and EF features on top of the

features being used in the production ranker.
– UMPRanker-IEU(IF + EF+ UD): The ranker from adding IF, EF and UD features

on top of the features being used in the production ranker.

6.5 Experimental Results and Analysis

Table 6 summarizes the relative improvements of the different rankers against the

baseline ranker. Starting from the base set of features used in the baseline model, we

gradually add the three feature groups introduced in Section 5, namely, IF, EF and

UD. IF is the feature group of directly modeling user historical interactions with the

proactive cards, which is a coarser-level modeling, based on the card type, while EF is

the finer-grained modeling at the level of entities. UD is the group of demographical

features, which can be seen as a multiplier/conditioner on top of the first two feature

groups for additional gains.

As we can see, with the IF features, we were able to capture the user interests

nicely, resulting in significant improvements of 2.18% in MRR and 2.25% in NDCG@1

compared to the strong baseline ranker that was shipped to production, which is very

substantial. On top of the baseline features and IF features, adding EF features, we

were able to see significant larger gains of 2.37% in MRR and 2.38% in NDCG@1,

demonstrating the substantial additional values in the entity-level modeling. Finally,

with the UD features added, we were able to see additional statistically significant gains,

even though to a lesser extent, making the total improvements of MRR to NDCG@1

both to 2.39%.

Table 6: Comparison of different rankers with the production ranker. The gains and losses are

only reported in relative delta values to respect the proprietary nature of the baseline ranker. All

differences are statistically significance (p < 0.05) according to the paired t-test.

Method ∆MRR ∆NDCG@1

UMPRanker-I (IF) +2.18% +2.25%

UMPRanker-IE (IF + EF) +2.37% +2.38%

UMPRanker-IEU (IF + EF+ UD) +2.39% +2.39%

6.6 Feature Importance Analysis

Next we perform feature importance analysis. By analyzing the relative impor-

tance, we can gain insights into the importance of each feature for the proactive rank-

ing task. LambdaMART enables us to report the relative feature importance of each

feature. Table 7 shows the top 10 features ordered by feature importance among IF,

EF and UD feature groups. Half of the most important 10 features come from the

IF feature group. 3 features come from the EF feature group and the rest are from

the UD feature group. Features with the highest feature importance are V iewRate,

KBTaxonomyLevel1Weighted, CTR, AverageV iewT ime and LMScore. Fea-

tures like V iewRate, CTR, AverageV iewT ime can capture users’ preferences on

different card types based on user historical interaction with the intelligent assistant

system. Entity based features like KBTaxonomyLevel1Weighted and LMScore

are useful for improving proactive ranking through modeling user interests with user

engaged textual content with term matching and semantic features. UD features, as

shown in Table 7, are not as important as IF and EF features. However, they can still

contribute to a better proactive ranking by capturing user preferences with user demo-

graphics information.

Table 7: The most important features learnt by LambdaMART.

Feature Name Feature Group Feature Importance

ViewRate IF 1.0000

KBTaxonomyLevel1Weighted EF 0.9053

CTR IF 0.8593

AverageViewTime IF 0.7482

LMScore EF 0.6788

ViewRate IF 0.4948

CardAvgAge UD 0.1026

SATCTR IF 0.0705

TMWeighted EF 0.0628

GenderAbsDistance UD 0.0486

6.7 Case Studies of Re-ranking

To better understand the improvements in ranking enabled through our UMPRanker,

we conduct case studies to look into the changes in the re-rankings of the proactive

cards. From the examples, we find that the UMPRanker is able to identify the individ-

ual card types that each user prefers and rank them higher for the user (e.g., for users

who like restaurant cards, the cards are promoted higher), thanks to the IF features; and

provide customized ranking for different demographics, thanks to UD features (e.g.,

promoting sports cards for male users). And finally, we also observe the proposed EF

features allow finer-grained improvements to adapt the ranking according to the user

interests at the entity-level. Table 8 provides an example of this. As we can see, two

News cards were promoted (i.e., News1 from 3rd to 1st, News2 from 4th to 2nd), while

one News card (i.e., News3 from 2nd to 4th) was demoted. A closer look at the data

reveals that the two promoted news cards are of higher weights learned in the EF rep-

resentations of the user interests due to higher historical engagements with the entities

(embedded in the news articles of News1 and News2) for the user, showing the ben-

efits of finer-grained modeling such as EF on top of the coarser-grained user interests

modeling at the card type level through IF.

Table 8: Examples of reranked cards in the testing data. “IsSuccess” denotes the inferred rele-

vance labels based on SAT-Click or SAT-View with the timestamp denoted by “Time”.

CardType RankBefore RankAfter IsSuccess Time

News1 3 1 TRUE (3/28 8:11)

News2 4 2 TRUE (3/28 8:13)

Calendar 1 3 FALSE

News3 2 4 FALSE

News4 5 5 FALSE

Restaurant 7 6 FALSE

Places1 8 7 FALSE

Sports 10 8 FALSE

Places2 9 9 FALSE

Weather 6 10 FALSE

7 Conclusion and Future Work

In this paper, we explore a variety of ways to model user interests, with the focus

on improving the ranking of information cards for proactive systems such as Google

Now and Microsoft Cortana. We propose a learning to rank framework and encode the

various models as features, which include coarser-grained modeling of card type pref-

erences directly mined from the historical interactions, finer-grained modeling of entity

preferences, and features that capture the variations among demographics. Experiments

performed with large-scale logs from a commercial proactive search system show that

our method significantly outperforms a strong baseline method deployed in production,

and show that the fine-grained modeling at the entity-level and demographics enable

additional improvements on top of the coarser-grained card-type level modeling. In the

future, we plan to experiment with different strategies, such as collaborative filtering, to

further address the feature sparsity in entity-level modeling and contextualize the user

interest modeling on factors such as time and location.

8 Acknowledgments

This work was done during Liu Yang’s internship at Microsoft Research and Bing. It

was supported in part by the Center for Intelligent Information Retrieval and in part by

NSF grant #IIS-1419693. Any opinions, findings and conclusions or recommendations

expressed in this material are those of the authors and do not necessarily reflect those

of the sponsor. We thank Jing Jiang and Jiepu Jiang for their valuable and constructive

comments on this work.

References

1. E. Agichtein, E. Brill, and S. Dumais. Improving web search ranking by incorporating user

behavior information. In SIGIR ’06, pages 19–26, New York, NY, USA, 2006. ACM.

2. J. Allan, B. Croft, A. Moffat, and M. Sanderson. Frontiers, challenges, and opportunities for

information retrieval: Report from swirl 2012 the second strategic workshop on information

retrieval in lorne. SIGIR Forum, 46(1):2–32, May 2012.

3. P. N. Bennett, F. Radlinski, R. White, and E. Yilmaz. Inferring and using location metadata

to personalize web search. In SIGIR ’11, July 2011.

4. P. N. Bennett, R. W. White, W. Chu, S. T. Dumais, P. Bailey, F. Borisyuk, and X. Cui. Mod-

eling the impact of short- and long-term behavior on search personalization. In SIGIR ’12,

pages 185–194, New York, NY, USA, 2012. ACM.

5. C. Burges, R. Ragno, and Q. Le. Learning to rank with non-smooth cost functions. In NIPS

’07. MIT Press, Cambridge, MA, January 2007.

6. S. Fox, K. Karnawat, M. Mydland, S. Dumais, and T. White. Evaluating implicit measures

to improve web search. ACM Trans. Inf. Syst., 23(2):147–168, Apr. 2005.

7. Q. Guo, H. Jin, D. Lagun, S. Yuan, and E. Agichtein. Mining touch interaction data on

mobile devices to predict web search result relevance. In SIGIR ’13, pages 153–162, 2013.

8. D. Lagun, C.-H. Hsieh, D. Webster, and V. Navalpakkam. Towards better measurement of

attention and satisfaction in mobile search. In SIGIR ’14, pages 113–122, New York, NY,

USA, 2014. ACM.

9. J. Li, S. Huffman, and A. Tokuda. Good abandonment in mobile and pc internet search. In

SIGIR ’09, pages 43–50, New York, NY, USA, 2009. ACM.

10. T. Lin, Mausam, and O. Etzioni. No noun phrase left behind: Detecting and typing unlinkable

entities. In EMNLP-CoNLL ’12, pages 893–903, Stroudsburg, PA, USA, 2012. Association

for Computational Linguistics.

11. T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations

in vector space. arXiv preprint arXiv:1301.3781, 2013.

12. T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations

of words and phrases and their compositionality. In NIPS’13, pages 3111–3119, 2013.

13. P. Resnick and H. R. Varian. Recommender systems. Commun. ACM, 40(3):56–58, Mar.

1997.

14. B. J. Rhodes and P. Maes. Just-in-time information retrieval agents. IBM Syst. J., 39(3-

4):685–704, July 2000.

15. M. Shokouhi and Q. Guo. From queries to cards: Re-ranking proactive card recommenda-

tions based on reactive search history. In SIGIR’15, May 2015.

16. F. Song and W. B. Croft. A general language model for information retrieval. In CIKM ’99,

pages 316–321, New York, NY, USA, 1999. ACM.

17. X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques. Adv. in Artif.

Intell., 2009:4:2–4:2, Jan. 2009.

18. L. Wang, P. N. Bennett, and K. Collins-Thompson. Robust ranking models via risk-sensitive

optimization. In SIGIR ’12, pages 761–770, New York, NY, USA, 2012. ACM.

19. R. W. White, W. Chu, A. Hassan, X. He, Y. Song, and H. Wang. Enhancing personalized

search by mining and modeling task behavior. In WWW ’13, pages 1411–1420, Republic

and Canton of Geneva, Switzerland, 2013.

20. Q. Wu, C. J. Burges, K. M. Svore, and J. Gao. Adapting boosting for information retrieval

measures. Inf. Retr., 13(3):254–270, June 2010.

21. S. Xu, H. Jiang, and F. C.-M. Lau. Mining user dwell time for personalized web search

re-ranking. In IJCAI’11, pages 2367–2372, 2011.

	Modeling User Interests for Zero-query Ranking
	1 Introduction
	2 Related Work
	3 Method Overview
	4 Mining User Interests From Logs
	5 Ranking Feature Extraction
	5.1 Card Type based Implicit Feedback Features (IF)
	5.2 Entity based User Interests Features (EF)
	5.3 User Demographics Features (UD)

	6 Experiments
	6.1 Data Set and Experiment Settings
	6.2 Relevance Labels Generation
	6.3 Learning Models
	6.4 Comparison of Different Rankers
	6.5 Experimental Results and Analysis
	6.6 Feature Importance Analysis
	6.7 Case Studies of Re-ranking

	7 Conclusion and Future Work
	8 Acknowledgments

