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ABSTRACT

Many queries, especially those in the form of longer ques-
tions, contain a subset of terms representing key concepts
that describe the most important part of the user’s infor-
mation need. Detecting the key concepts in a query can
be used as the basis for more effective weighting of query
terms, but in this paper, we focus on a method of using
the key concepts in a translation model for query expan-
sion and retrieval. Translation models have been used pre-
viously in community-based question answering (CQA) sys-
tems in order to bridge the semantic gap between questions
and the corresponding answer documents. Our method uses
the key concepts of a question as the translation context and
selectively applies the translation model to the secondary
(non-key) parts of the question. We evaluate the proposed
method using a CQA collection and show that selectively
translating key and secondary concepts can significantly im-
prove the retrieval performance compared to a baseline that
applies the translation model without considering key con-
cepts.

Categories and Subject Descriptors

H.3.3 [Information System]: Information Search and Re-
trieval
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1. INTRODUCTION
Statistical translation models have been used for query

term expansion in a number of previous studies (e.g., [2,
10]) and have been shown to be particularly effective for re-
trieving answer passages in collaborative question answering
(CQA) systems [12, 11]. One of the challenging issues in us-
ing translation models for expansion is incorporating more
of the query context into the translation process. For exam-
ple, Figure 1 shows two example questions that include the
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word “grow”. The first question is about growing hair while
the other question is about growing flowers. The expansion
words generated from the translation for “grow” should be
different in these two contexts.

The hypothesis that we study in this paper is that the
most important, key concepts in a query should be treated
differently in the translation model compared to secondary
concepts. The key concepts of queries represent the main
topics of users’ information needs [1]. For example, “hair”
and“Columbine flower”in Figure 1 are the key concepts. We
propose a translation model for expansion that estimates
the translation probabilities of query terms given the key
concept of a query as the context. This will result in the
translation results (and query expansions) for “grow” being
different depending on whether“hair”or“Columbine flower”
is the key concept.

In addition to the key concepts of queries, we also identify
the secondary (non-key) parts of queries. In our approach,
these concepts are the focus of translation (expansion) since
translating the key concept may significantly change the
meaning of the query. Lee et al. [10] describe an approach
to identifying important terms in documents for training the
translation model. In contrast, we focus on using query anal-
ysis to affect the translation results. We use the secondary
concepts of queries as the focus for translation and the key
concepts as context for the translation.

The rest of the paper is organized as follows. In Section 2,
we describe the key concept-based translation model. Sec-
tion 3 describes a method for classifying question terms for
the proposed translation model. In Section 4, we show ex-
perimental results.

Q: How do you get your hair to grow faster?

A: Supposedly this works but never tried it. prenan-
tal vitamins. they’re just vitimans so they’re not
going to make u grow ...

Q: How to grow Columbine flowers?

A: Plant outside in sun or light shade, they will grow
in both places. Scratch or loosen the soil lightly
with a garden claw or rake. Sprinkle your seeds
on and cover with the loose soil. You just cover
with enough ...

Figure 1: Example questions containing “grow” in
different contexts.



2. A KEY CONCEPT-BASED TRANSLATION

MODEL
Translation models have been used as a query term ex-

pansion method for both document and answer passage re-
trieval [7, 11, 12]. The models estimate probabilities that
terms in documents are translated into terms in queries. We
employ Xue et al’s translation model [12] for CQA retrieval
as follows:

P (qi|D) = (1− β1 − β2) · P (qi|D)+

β1 ·
∑

tj∈D,tj 6=qi

P (qi|tj)P (tj |D)+

β2 ·
∑

tj∈D,tj 6=qi

P (tj |qi)P (tj |D),

(1)

where tj is a term in a document D, P (tj |D) represents the
probability that a term tj is generated by a document D and
P (tj |qi) and P (qi|tj) represent the translation probability
that a document term tj is translated into a query term qi
and vice versa. Note that, since we are focusing on CQA,
we use “question” instead of “query” in the rest of the paper.

In this translation model, Xue et al investigated the is-
sues of self-translation and bi-directional translation. In
a translation model for a single language, every word has
some probability to translate into itself. In order to prevent
low self-translation probabilities from assigning low weights
to matching terms and high self-translation probabilities
from nullifying the effect of the translation approach, Xue
et al separate self-translation from the general translation
model and use the parameter β to control the impact of
self-translation. They use different parameter values β1 and
β2 according to the directions of translation P (tj |qi) and
P (qi|tj).

In order to estimate the translation probabilities P (tj |qi)
and P (qi|tj), IBM model 1 was used. Higher-order versions
of the IBM model were proposed to take into account other
features such as the order of words, the length of aligned
words in source and target expressions, etc. Because the
number of sentences in questions and answer passages (or
documents) vary widely and the goal of the translation is to
generate expansion terms, these higher-order IBM models
are not appropriate for this study.

Instead of using the higher-order models, some previous
studies [8, 11] have used a simpler approach in which a sen-
tence is converted to a sequence of term pairs. For example,
a sentence“A helicopter gets its power from rotors or blades”
is converted to (helicopter-gets) (gets-power) (power-rotors)
(rotors-blades) to estimate the translation probabilities be-
tween adjacent term pairs. Without formulating translation
models for specific types of linguistic features, Surdeanu et
al. model translation between different types of text rep-
resentations such as bags of words, n-grams, syntactically
dependent pairs of terms and predicate-argument pairs of
semantic labels. We use this approach to generate a key
concept-based translation table. For a given question, we
assume one of the terms is the key concept of the question.
We generate a set of term-pair sequences in which we treat
each term in a question as the key concept of the question.
For example, for a question “A helicopter gets its power

from rotors or blades”, we generate four pair sequences
in which each one of the question terms is used as the key
concept of the question as follows:

grow hair−grow PLANT−grow

make hair plant
plant growth soil

healthy biotin cut
take long make
month take water
hair healthy garden
help supplement fruit
biotin take start
fast grow good
water microgram concrete

Table 1: The translation results of “grow” with dif-
ferent contexts. PLANT represents a WordNet cat-
egory.

Q1: helicopter -helicopter helicopter -power helicopter -
rotors helicopter -blades

Q2: power -helicopter power -power power -rotors
power -blades

Q3: rotors-helicopter rotors-power rotors-rotors ro-
tors-blades

Q4: blades-helicopter blades-power blades-rotors
blades-blades

In these pair sequences, each term is concatenated with a key
concept (shown in italics). From a question with n terms,
we produce n pairs. Using these pair-sequence representa-
tions of questions and the original answers, we estimate the
key concept-based translation table. Table 1 shows the top
10 translation terms for grow with different contexts. The
terms in the first column, where grow is translated without
considering context, are a mixture of terms related to vari-
ous topics. The second column uses hair as the key concept
context and contains more specific terms.

We use WordNet senses and named-entity labels to sub-
stitute for words to generate additional data to address the
data sparseness problem [11, 13]. The idea is to replace
terms by their categories so that we can generate more sam-
ples per category and thus obtain better estimations. For
example, Columbine is used once in our test collection, but
the WordNet sense PLANT is used more frequently. We
can then estimate translation probabilities for PLANT-grow
instead of Columbine-grow. The third column of Table 1
is the translation terms for grow using PLANT as the key
concept.

We use the key concept-based translation table for the
translation probability p(tj |qi) in Eq. 1 as follows:

Pmx(qi|D) = (1− β1 − β2) · P (qi|D)+

β1 · ϕ(qi) ·
∑

tj∈D,tj 6=qi

P ((κQ, qi)|tj)P (tj |D)+

β2 · ϕ(qi) ·
∑

tj∈D,tj 6=qi

P (tj |(κQ, qi))P (tj |D),

(2)

in which κQ represents the key concept of a query Q and
ϕ(qi) is the binary function that is 1 when qi is a secondary
concept and 0 otherwise. The translation probability with
key concepts P ((κQ, qi)|tj) can be interpreted in two ways.
We translate a question term qi given the key concept of a
question κQ. Or, we repeatedly interpret the key concept
of a question κQ for each term in the question. The binary



function for secondary concepts ϕ(qi) is used to selectively
apply the translation model to question terms. In the next
section, we will explain how to predict κQ and ϕ(qi) in detail.

3. IDENTIFYING KEY AND SECONDARY

CONCEPTS
In our approach, we classify question terms as key con-

cepts and secondary concepts. Key concepts are used as the
context of translation and secondary concepts are used to se-
lectively apply the translation model for query term expan-
sion. For this purpose, we use a machine learning method to
classify question terms [6]. For the classifier, training data
consists of triplets as follows:

(q1, k1, s1), (q2, k2, s2), . . . , (qn, kn, sn),

in which n is the number of question terms. ki and si are the
labels of a question term qi for key concepts and secondary
concepts, respectively.

The definition of key concepts can differ according to their
intended use. Bendersky and Croft [1] annotated the key
concepts of queries to assign higher weight to the most im-
portant terms in queries. Lee et al. [10] used the TextRank
algorithm in which the importance of terms is measured
by the PageRank scores of terms. Lee et al [9] proposed
a method to empirically select important query terms that
maximizes the mean average precision of retrieval results.
In our case, for the training labels of key concepts, we select
ki values according to the effectiveness of the translation
model when we use qi as the key concept of a question κQ.
The training label of secondary concepts si is selected ac-
cording to the improvement in retrieval effectiveness when
we apply the translation model to qi. We select only one key
concept per question, although there can be more than one
term which can improve the effectiveness of the key concept-
based translation model.

We use three types of features for identifying key concepts
and secondary concepts: lexical features, syntactic features
and semantic features. The aim is to estimate how likely a
given term is to be a key concept or a secondary concept
given these syntactic and semantic characteristics.

Lexical Features. Lexical features are used to take account
of the characteristics of an individual term.

• Is Capitalized: This feature is a Boolean indicator
that is set to TRUE iff the first character is capitalized.

• All Capitalized: This feature is a Boolean indicator
that is set to TRUE iff all characters are capitalized.

• Clarity score: This feature is the relative entropy
between a term in the query language model and the
collection language model [5], which indicates how im-
portant the term is in describing the topic of the query.

• OddRatio: The odds ratio between a given term be-
ing used in a question and the term being used in an
answer. This feature is motivated by the observation
that some terms in questions such as commonly-used
verbs do not occur in answers.

• Unseen: This feature is a Boolean indicator that is
set to TRUE iff a term is not observed in the top 15
retrieved documents.

Syntactic Features. Syntactic features are used to consider
the role of a given term in a question.

Prec@1 Recall@5 MRR

Baseline 0.476 0.774 0.612

TM 0.492(3.4%) 0.794(2.6%) 0.628(2.6%)

Secondary 0.515†‡(8.2%) 0.818†‡(5.7%) 0.650†‡(6.2%)

Key+
Secondary

0.537†‡(12.8%) 0.837†‡(8.1%) 0.669†‡(9.3%)

Significant differences relative to Baseline and TM are
marked by † and ‡, respectively (using the two-tailed
Wilcoxon test with p < 0.05).

Table 2: The experimental results of answer re-
trieval using the CQA collection. MRR represents
Mean Reciprocal Rank.

• Phrase Label: This feature is the types of phrase
that contains a given term.

• Part-of speech (POS) tags: Four Boolean features
represent whether a question term is a noun, verb, ad-
jective, or proper noun.

• Depth in a parse tree: The distance from root node
to a given term in the parse tree of a question.

Semantic Features. We use WordNet sense classes and the
named-entity classes of terms as semantic features [3].

4. EXPERIMENTS AND ANALYSIS

4.1 Experimental Setup
We evaluate the key concept-based translation model us-

ing the Yahoo! Answers Comprehensive Questions and An-
swers test collection (version 1.01). We are interested in
questions containing multiple concepts for which we can clas-
sify the role of these concepts for the proposed translation
model. Therefore, we follow the same refinement process
as [11]. Briefly, we select how-to questions containing more
than four content words. Among selected 148,102 question-
answer pairs, we used 30,761 question answer pairs for which
the baseline system retrieved answers within the top 15 re-
trieval results.

We used 60% of these question-answer pairs for training,
20% for development, and 20% for testing. The training
data is used to estimate the translation probabilities and to
train the key concept classification method. The develop-
ment data is used to select optimal parameter settings of
β1, β2 in Eq 2. We indexed answers as documents. Then,
we retrieved answers by submitting the questions as queries,
using the Galago toolkit [4] for indexing and retrieval, and
the sequential dependence model as the baseline. The Su-
perSenseTag software [3] was used to annotate WordNet cat-
egories for question terms.

4.2 Experimental Results
Our experiments evaluated the effectiveness of using key

concepts and secondary concepts in a translation model for
query expansion in answer retrieval. Table 2 shows the ex-
perimental results for precision at rank 1, recall at rank 5 and
the Mean Reciprocal Rank (MRR) of answers in retrieval re-
sults. The baseline is the sequential dependence model with-
out query expansion. Among 8,715 question-answer pairs in

1http://webscope.sandbox.yahoo.com/



Unchanged Improved Decreased

Secondary 6,759 1,521 435

Key+
Secondary

5,307 2,646 762

Table 3: The number of question-answer pairs for
which retrieval results are unchanged, improved,
and decreased by the translation-based model with
key and secondary concepts.

the test data, the baseline system retrieved the answers at
the first rank for 4,150 (47.6%) of questions. As another
baseline, we use the translation-based model from Eq. 1
(TM ) that does not use key concepts. We do not have a
pseudo-relevance feedback baseline (such as the RM3 model
provided in Galago) because the Xue et al model has already
been shown to be superior to pseudo-relevance feedback for
this type of data [12].

Secondary is the experimental results of the translation-
based model that applies the translation only for the sec-
ondary concepts of question terms. By translating only
secondary keywords in questions, we potentially reduce the
number of non-relevant translation results. Key+ Secondary
shows the results when we translate the secondary concepts
of questions using the key concepts as context.

As we can see, considering key concepts as the context
for translation significantly improves the performance of the
system. To analyze this further, we compare the experi-
mental results of the baseline system and the translation-
based model for individual questions. Table 3 shows the
number of question-answer pairs for which retrieval results
are unchanged, improved and decreased by using key con-
cepts and secondary concepts for the translation model. The
translation-based model without the key concepts affects
fewer retrieval results. This model introduces expansion
terms related to a range of possible contexts, which conse-
quently has less effect on ranking. Using the predicted key
concepts as context, the translation model generates more
precise translation results. However, the ratio of questions
for which results were decreased by the translation-based
model with key and secondary concepts is also higher than
when only using the secondary concepts. This shows that,
if the selection of key concepts is inaccurate, using them as
context can have a negative impact on effectiveness.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed the key concept-based transla-

tion model for query expansion. Key concepts represent the
most important part of the users’ information needs. We use
the key concepts of questions as the context of translation.
In addition, we also classify question terms as secondary con-
cepts to selectively apply the translation model. Key con-
cepts can improve the effectiveness of the query expansion
by constraining the translations of question terms within
the contexts of questions. By translating only secondary
concepts, we can also reduce the non-relevant translation
results. The key concept-based translation model signifi-
cantly improved the effectiveness of translation-based query
expansion for finding answers in a CQA collection.

For future work, we plan to apply the proposed method
to passage retrieval in documents. Because of the lack of

training data, previous work on using a translation model
for retrieval has used pseudo data such as synthesized queries
for given documents [7].
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