




Metric LR LR-b RNN-r RNN RNN + LR RNN + LR-b Random ZS

Average MAP 0.5625 0.5715 0.5505 0.5699 0.5853 0.5923 0.2028 0.3833

Weighted MAP 0.5175 0.5324 0.5185 0.5198 0.5403 0.5492 0.1475 0.3248

Average MAP (flipped) 0.4668 0.4642 0.4390 0.4707 0.4892 0.4965 0.1366 0.3923

Weighted MAP (flipped) 0.5136 0.5139 0.4806 0.4901 0.5289 0.5297 0.1376 0.3767

Table 1: Results on the original and flipped dataset. LR: logistic regression. LR-b: LR with bigram features. RNN-r: recursive
neural network initialized with random relation vectors. RNN: recursive neural network initialized with pre-trained relation
vectors. RNN+LR/LR-b: Combination of RNN with LR/LR-b. Random: Random baseline. ZS: Zero-shot model.

Relation LR RNN UP Ratio

stadiumlocatedincity 0.2694 0.4029 0.950
countryhascompanyoffice 0.2127 0.2545 0.937
cityliesonriver 0.2634 0.3998 0.910
headquarteredin 0.3088 0.3550 0.910
companyceo 0.7605 0.8525 0.828
citylocatedincountry 0.4326 0.2073 0.783
locationlocatedwithinlocation 0.3679 0.3803 0.710
athleteplaysforteam 0.2404 0.3469 0.642
athleteplaysinleague 0.7600 0.7077 0.597
writerwrotebook 0.8845 0.8129 0.567
publicationjournalist 0.6718 0.5801 0.566
teamplaysagainstteam 0.4301 0.3487 0.211

Table 2: Per relation results on the flipped dataset. UP Ratio: ratio of unseen paths in test.

4 Related Work

KB Inference: Methods such as Lin and Pantel, Yates and
Etzioni and Berant, Dagan, and Goldberger learn inference
rules of length one. Schoenmackers et al. learn general in-
ference rules by considering the set of all paths in the KB
and selecting paths that satisfy a certain precision thresh-
old. Their method does not scale well to modern KBs and
also depends on carefully tuned thresholds. Lao, Mitchell,
and Cohen trained a simple logistic regression classifier with
NELL KB paths as features. Gardner et al. add SVO triples
to the KB graph, and cluster them in order to overcome fea-
ture sparsity. Our method is not directly comparable with
them since their method operates on a different set of clus-
tered features.

Compositional Vector Space Models: There has been
plenty of work on compositional vector space semantics
of natural language (Mitchell and Lapata 2008; Baroni and
Zamparelli 2010; Yessenalina and Cardie 2011). RNNs have
been successfully used to learn vector representations of
phrases using the vector representations of the words in that
phrase (Socher et al. 2012).

5 Experiments

For all our experiments we train the network for 50 iterations
using 25 dimensional vectors for the binary relations and
set the L2-regularizer and learning rate to 0.00001 and 0.01
respectively. The neural network is trained using the back
propagation algorithm as described in Socher et al.. When
we learn a separate composition matrix for every relation to
be predicted we update both the vector representations and
the composition matrix while in the zero-shot experiments

we update only the composition matrix.

First, we tested our approach on the dataset described in
Gardner et al.. The methods are evaluated on 12 relations.
The dataset contains facts from the NELL KB (Carlson et al.
2010) and SVO triples from Clueweb (Orr et al. 2013). This
dataset was constructed by aggressive feature pruning so that
the classifier can handle the number of features that are cre-
ated. Given that the number of relations in the KB graph is
218, 913 the number of paths that were considered for pre-
dicting each relation is only 750. This makes the number of
unseen paths in prediction time unrealistic. The percentage
of unseen paths to the total number of paths in test data is
just 1.7% in this dataset, resulting in an unrealistically opti-
mistic setting.

To make the evaluation more realistic, we therefore
flipped the dataset by training on the test data and evalu-
ating on the training data. The percentage of unseen paths
in this case is on average 71.8%. For the zero-shot model to
make predictions on a relation type we train on the exam-
ples of the other eleven relations. The number of entity pairs
per relation that are used for training averages to 670 for the
original dataset and to 77 for the flipped dataset.

The results for both settings are shown in Table 1. Ini-
tialization with pre-trained vectors helps the RNN model to
achieve better performance. The logistic regression classifier
and the RNN give similar performance, while their combi-
nation gives best performance on both datasets. Even though
the Zero-shot method does not use any supervised training
data for the relation being predicted, it performs better than
the random baseline method. Table 2 shows the per-relation
results for the flipped data-set, sorted by unseen paths ratio.



The RNN approach significantly outperforms the classifier
on the five relations having the highest unseen paths ratio.

6 Conclusion

We developed a compositional vector space model for
knowledge base inference that unlike previous methods gen-
eralizes to paths which are unseen in training. Empirical re-
sults show that our method outperforms previous work on
predicting relations that have a high unseen paths ratio, and a
combination of our model with a classifier based on path fea-
tures achieves best performance. The zero-shot model can
successfully predict missing instances of relation types that
are unoberved in training.
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