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Abstract

Traditional approaches to knowledge base completion have been based on sym-
bolic representations. Low-dimensional vector embedding models proposed re-
cently for this task are attractive since they generalize to possibly unlimited sets
of relations. A significant drawback of previous embedding models for KB
completion is that they merely support reasoning on individual relations (e.g.,
bornIn(X,Y ) ⇒ nationality(X,Y )).

In this work, we develop models for KB completion that support chains of rea-
soning on paths of any length using compositional vector space models. We con-
struct compositional vector representations for the paths in the KB graph from the
semantic vector representations of the binary relations in that path and perform
inference directly in the vector space. Unlike previous methods, our approach can
generalize to paths that are unseen in training and, in a zero-shot setting, predict
target relations without supervised training data for that relation.

1 Introduction

Knowledge base (KB) construction has been a focus of research in natural language understanding,
and large KBs have been created, most notably Freebase [3], YAGO [20] and NELL [5]. These KBs
contain several million facts such as (Barack Obama, presidentOf, USA) and (Tom Brady, memberof,
New England Patriots). However, these KBs are incomplete [11] and are missing important facts,
thus jeopardizing their usefulness for downstream tasks.

Previous work in KB completion [12, 7, 8] use symbolic representations of knowledge and are bound
to a fixed and hand-built schema. Low-dimensional vector embedding models proposed recently
[15, 4] are attractive since they generalize to possibly unlimited set of relations. A drawback of
previous work in using embedding models for KB completion is that they merely support simple
reasoning of the form A ⇒ B (e.g., bornIn(X,Y ) ⇒ nationality(X,Y )).

A more general approach for KB completion is to infer missing relation facts of entity pairs us-
ing paths connecting them in the KB graph [7, 6]. The KB graph is constructed with the entities
as nodes and (typed) edges indicating relations between them. For example, if the KB contains
the facts IsBasedIn(Microsoft, Seattle), StateLocatedIn(Seattle, Washington) and CountryLocate-
dIn(Washington, USA), we can infer the fact CountryOfHeadquarters(Microsoft, USA) using the
rule:
CountryOfHeadquarters(X, Y) :- IsBasedIn(X,A) ∧ StateLocatedIn(B, C) ∧ CountryLocatedIn(C, Y)

Here, (IsBasedIn - StateLocatedIn - CountryLocatedIn) is a path connecting the entity pair (Mi-
crosoft, USA) in the KB and IsBasedIn, StateLocatedIn, CountryLocatedIn are the binary relations
in the path.
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Metric LR LR-b RNN-r RNN RNN + LR RNN + LR-b Random ZS

Average MAP 0.5625 0.5715 0.5505 0.5699 0.5853 0.5923 0.2028 0.3833

Weighted MAP 0.5175 0.5324 0.5185 0.5198 0.5403 0.5492 0.1475 0.3248

Average MAP (flipped) 0.4668 0.4642 0.4390 0.4707 0.4892 0.4965 0.1366 0.3923

Weighted MAP (flipped) 0.5136 0.5139 0.4806 0.4901 0.5289 0.5297 0.1376 0.3767

Table 1: Results on the original and flipped dataset. LR: logistic regression. LR-b: LR with bigram
features. RNN-r: recursive neural network initialized with random relation vectors. RNN: recursive
neural network initialized with pre-trained relation vectors. RNN+LR/LR-b: Combination of RNN
with LR/LR-b. Random: Random baseline. ZS: Zero-shot model.

Relation LR RNN UP Ratio

stadiumlocatedincity 0.2694 0.4029 0.950
countryhascompanyoffice 0.2127 0.2545 0.937
cityliesonriver 0.2634 0.3998 0.910
headquarteredin 0.3088 0.3550 0.910
companyceo 0.7605 0.8525 0.828
citylocatedincountry 0.4326 0.2073 0.783
locationlocatedwithinlocation 0.3679 0.3803 0.710
athleteplaysforteam 0.2404 0.3469 0.642
athleteplaysinleague 0.7600 0.7077 0.597
writerwrotebook 0.8845 0.8129 0.567
publicationjournalist 0.6718 0.5801 0.566
teamplaysagainstteam 0.4301 0.3487 0.211

Table 2: Per relation results on the flipped dataset. UP Ratio: ratio of unseen paths in test.

the same and the other relation pair is semantically equivalent. This leads to data sparsity issues
and drop in performance on large KBs [6]. Our model overcomes this issue by constructing vector
representations for a path using the vector representations of the binary relations in that path.

Modern KBs have thousands of relations and the number of paths in the knowledge graph is expo-
nential in the number of relations. Hence, handling unseen paths is crucial to achieve good perfor-
mance. By creating a feature for every path in the knowledge graph previous methods at prediction
time cannot handle paths that are not observed in the training data. In contrast, our method can
construct vector representation of paths that are unseen while training, if the binary relations in the
path are observed in the training data.

2.1 Pre-Trained Vectors for Binary Relations

We initialize the vector representations of the binary relations using the representations learned in
Riedel et al. [15] which is useful for the following reasons: (1) Good initialization could lead to
a better local optimum solution since the objective function is non-convex. (2) At test time unlike
previous approaches [7, 8], our method can handle any binary relation in the KB even if they are not
seen in the training data. By using the pre-trained vector representations of the binary relations we
can estimate the vector representation of the path even if the binary relations in that path are never
observed during training.

3 Zero-shot KB Inference

In zero-shot or zero-data learning [9], training data for a few classes is omitted and a description
of those classes is given only at prediction time. We propose a zero-shot model for KB inference
where we can predict relations that are unseen during training. Here, instead of learning a separate
composition matrix for every relation that is being predicted we learn a single composition matrix.
The composition operation is always performed using a matrix W ∈ R

d∗2d irrespective of the
relation to be predicted. Given the vector representation of the two children (c1 ∈ R

d, c2 ∈ R
d),

the vector representation of the parent p ∈ R
d is given by p = f(W [c1; c2]), where W is a general

composition matrix learned to construct the vector representation of a path.
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We fix the vectors of the relations in the path and the relations to be predicted with vector repre-
sentations learned using Riedel et al. [15]. A single composition matrix, irrespective of the relation
to be predicted empowers the model to make predictions on relation types for which there are no
training data examples.

The objective function minimized by this model is convex since the parameters to be learned are
only the composition matrix. Hence, training in this model is guaranteed to converge to the global
optimum solution.

4 Related Work

KB Inference: Methods such as Lin and Pantel [10], Yates and Etzioni [21] and Berant et al. [2] learn
inference rules of length one. Schoenmackers et al. [16] learn general inference rules by considering
the set of all paths in the KB and selecting paths that satisfy a certain precision threshold. Their
method does not scale well to modern KBs and also depends on carefully tuned thresholds. Lao
et al. [7] trained a simple logistic regression classifier with NELL KB paths as features. Gardner
et al. [6] add SVO triples to the KB graph, and cluster them in order to overcome feature sparsity.
Our method is not directly comparable with them since their method operates on a different set of
clustered features.

Compositional Vector Space Models: There has been plenty of work on compositional vector space
semantics of natural language [13, 1, 22]. RNNs have been successfully used to learn vector repre-
sentations of phrases using the vector representations of the words in that phrase [18].

5 Experiments

For all our experiments we train the network for 50 iterations using 25 dimensional vectors for the
binary relations and set the L2-regularizer and learning rate to 0.00001 and 0.01 respectively. The
neural network is trained using the back propagation algorithm as described in Socher et al. [19].
When we learn a separate composition matrix for every relation to be predicted we update both the
vector representations and the composition matrix while in the zero-shot experiments we update
only the composition matrix.

First, we tested our approach on the dataset described in Gardner et al. [6]. The methods are eval-
uated on 12 relations. The dataset contains facts from the NELL KB [5] and SVO triples from
Clueweb [14]. This dataset was constructed by aggressive feature pruning so that the classifier can
handle the number of features that are created. Given that the number of relations in the KB graph
is 218, 913 the number of paths that were considered for predicting each relation is only 750. This
makes the number of unseen paths in prediction time unrealistic. The percentage of unseen paths
to the total number of paths in test data is just 1.7% in this dataset, resulting in an unrealistically
optimistic setting.

To make the evaluation more realistic, we therefore flipped the dataset by training on the test data
and evaluating on the training data. The percentage of unseen paths in this case is on average 71.8%.
For the zero-shot model to make predictions on a relation type we train on the examples of the other
eleven relations. The number of entity pairs per relation that are used for training averages to 670
for the original dataset and to 77 for the flipped dataset.

The results for both settings are shown in Table 1. Initialization with pre-trained vectors helps the
RNN model to achieve better performance. The logistic regression classifier and the RNN give
similar performance, while their combination gives best performance on both datasets. Even though
the Zero-shot method does not use any supervised training data for the relation being predicted, it
performs better than the random baseline method. Table 2 shows the per-relation results for the
flipped data-set, sorted by unseen paths ratio. The RNN approach significantly outperforms the
classifier on the five relations having the highest unseen paths ratio.
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6 Conclusion

We developed a compositional vector space model for knowledge base inference that unlike pre-
vious methods generalizes to paths which are unseen in training. Empirical results show that our
method outperforms previous work on predicting relations that have a high unseen paths ratio, and
a combination of our model with a classifier based on path features achieves best performance. The
zero-shot model can successfully predict missing instances of relation types that are unoberved in
training.

Acknowledgments

This work was supported in part by the Center for Intelligent Information Retrieval, in part by
DARPA under agreement number FA8750-13-2-0020, in part by an award from Google, and in
part by NSF grant #CNS-0958392. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon. Any opinions,
findings and conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect those of the sponsor.

References

[1] Marco Baroni and Roberto Zamparelli. Nouns are vectors, adjectives are matrices: Represent-
ing adjective-noun constructions in semantic space. In Empirical Methods in Natural Language
Processing, 2010.

[2] Jonathan Berant, Ido Dagan, and Jacob Goldberger. Global learning of typed entailment rules.
In Association for Computational Linguistics, 2011.

[3] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, 2008.

[4] Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-Durán, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In Advances in Neural
Information Processing Systems., 2013.

[5] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka, and A.
Toward an architecture for never-ending language learning. In In AAAI, 2010.

[6] Matt Gardner, Partha Pratim Talukdar, Bryan Kisiel, and Tom M. Mitchell. Improving learning
and inference in a large knowledge-base using latent syntactic cues. In Empirical Methods in
Natural Language Processing, 2013.

[7] Ni Lao, Tom Mitchell, and William W. Cohen. Random walk inference and learning in a large
scale knowledge base. In Conference on Empirical Methods in Natural Language Processing,
2011.

[8] Ni Lao, Amarnag Subramanya, Fernando Pereira, and William W. Cohen. Reading the web
with learned syntactic-semantic inference rules. In Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning, 2012.

[9] Hugo Larochelle, Dumitru Erhan, and Yoshua Bengio. Zero-data learning of new tasks. In
National Conference on Artificial Intelligence., 2008.

[10] Dekang Lin and Patrick Pantel. Dirt - discovery of inference rules from text. In International
Conference on Knowledge Discovery and Data Mining, 2001.

[11] Bonan Min, Ralph Grishman, Li Wan, Chang Wang, and David Gondek. Distant supervision
for relation extraction with an incomplete knowledge base. In HLT-NAACL, pages 777–782,
2013.

[12] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision for relation ex-
traction without labeled data. In Association for Computational Linguistics and International
Joint Conference on Natural Language Processing, 2009.

[13] Jeff Mitchell and Mirella Lapata. Vector-based models of semantic composition. In Association
for Computational Linguistics, 2008.

5



[14] Dave Orr, Amarnag Subramanya, Evgeniy Gabrilovich, and Michael Ringgaard. 11 billion
clues in 800 million documents: A web research corpus annotated with freebase concepts.
http://googleresearch.blogspot.com/2013/07/11-billion-clues-in-800-million.html, 2013.

[15] Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M. Marlin. Relation extrac-
tion with matrix factorization and universal schemas. In HLT-NAACL, 2013.

[16] Stefan Schoenmackers, Oren Etzioni, Daniel S. Weld, and Jesse Davis. Learning first-order
horn clauses from web text. In Empirical Methods in Natural Language Processing, 2010.

[17] Richard Socher, Cliff Chiung-Yu Lin, Christopher D. Manning, and Andrew Y. Ng. Parsing
natural scenes and natural language with recursive neural networks. In Proceedings of the 26th
International Conference on Machine Learning (ICML), 2011.

[18] Richard Socher, Brody Huval, Christopher D. Manning, and Andrew Y. Ng. Semantic compo-
sitionality through recursive matrix-vector spaces. In Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning, 2012.

[19] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y.
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a senti-
ment treebank. In Conference on Empirical Methods in Natural Language Processing, 2013.

[20] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A core of semantic knowl-
edge. In Proceedings of the 16th International Conference on World Wide Web, 2007.

[21] Alexander Yates and Oren Etzioni. Unsupervised resolution of objects and relations on the
web. In North American Chapter of the Association for Computational Linguistics, 2007.

[22] Ainur Yessenalina and Claire Cardie. Compositional matrix-space models for sentiment anal-
ysis. In Empirical Methods in Natural Language Processing, 2011.

6


	Introduction
	Recursive Neural Networks for KB Inference
	Pre-Trained Vectors for Binary Relations

	Zero-shot KB Inference
	Related Work
	Experiments
	Conclusion

