
Training for Fast Sequential Prediction Using

Dynamic Feature Selection

Emma Strubell Luke Vilnis Andrew McCallum

School of Computer Science

University of Massachusetts, Amherst

Amherst, MA 01002

{strubell, luke, mccallum}@cs.umass.edu

Abstract

We present paired learning and inference algorithms for significantly reducing
computation and increasing speed of the vector dot products in the classifiers that
are at the heart of many NLP components. This is accomplished by partition-
ing the features into a sequence of templates which are ordered such that high
confidence can often be reached using only a small fraction of all features. Pa-
rameter estimation is arranged to maximize accuracy and early confidence in this
sequence. We present experiments in left-to-right part-of-speech tagging on WSJ,
demonstrating that we can preserve accuracy above 97% with over a five-fold re-
duction in run-time.

1 Introduction

The heart of the prediction computation in linear NLP models is a dot-product between a dense
parameter vector and a sparse feature vector. The bottleneck in these models is then often a combi-
nation of numerical operations and potentially expensive feature extraction. However, in many cases
not all features are necessary for accurate prediction.

We present a simple yet novel approach to improve processing speed by dynamically determining on
a per-instance basis how many features are necessary for a high-confidence prediction. Our features
are divided into a set of feature templates, such as current-token or previous-tag in the case of POS
tagging. At training time, we determine an ordering on the templates such that we can approximate
model scores at test time by incrementally calculating the dot product in template ordering. We then
use a running confidence estimate for the label prediction to determine how many terms of the sum
to compute for a given instance, and predict once confidence reaches a certain threshold.

We apply our method to left-to-right part-of-speech tagging in which we achieve accuracy above
97% on the Penn Treebank WSJ corpus while running more than 5 times faster than our baseline.

In similar work, cascades of increasingly complex and high-recall models have been used for both
structured and unstructured prediction. Viola and Jones [1] use a cascade of boosted models to per-
form face detection. Weiss and Taskar [2] add increasingly higher-order dependencies to a graphical
model while filtering the output domain to maintain tractable inference.

While most traditional cascades pass instances down to layers with increasingly higher recall, we use
a single model and accumulate the scores from each additional template until a label is predicted with
sufficient confidence, in a stagewise approximation of the full model score. Our technique applies
to any linear classifier-based model over feature templates without changing the model structure or
significantly decreasing prediction accuracy.

1



Our work is also related to the field of learning and inference under test-time budget constraints
[3, 4]. However, common approaches to this problem also employ auxiliary models to rank which
feature to add next, and are generally suited for problems where features are expensive to compute
(e.g vision) and the extra computation of an auxiliary pruning-decision model is offset by substantial
reduction in feature computations [5]. Our method uses confidence scores directly from the model,
and so requires no additional computation, making it suitable for speeding up classifier-based NLP
methods that are already very fast and have relatively cheap features. In fact, the most attractive
aspect of our approach is that it speeds up methods that are already among the fastest in NLP.

He and Eisner [6] have the same goal of speeding test time prediction by dynamically selecting
features, but they also learn an additional model on top of a fixed base model, rather than using
the training objective of the model itself. In the context of NLP, He et al. [7] describe a method
for dynamic feature template selection at test time in graph-based dependency parsing using struc-
tured prediction cascades [2]. However, their technique is particular to the parsing task—making a
binary decision about whether to lock in edges in the dependency graph at each stage, and enforc-
ing parsing-specific, hard-coded constraints on valid subsequent edges. Furthermore, as described
above, they employ an auxiliary model to select features.

2 Method

We present paired learning and inference procedures for feature-templated classifiers that optimize
both accuracy and inference speed, using a process of dynamic feature selection. Since many deci-
sions are easy to make in the presence of strongly predictive features, we would like our model to
use fewer templates when it is more confident. For a fixed, learned ordering of feature templates, we
build up a vector of class scores incrementally over each prefix of the sequence of templates, which
we call the prefix scores. Once we reach a stopping criterion based on class confidence (margin),
we discontinue computing prefix scores, and predict the current highest scoring class. Our aim is
to train each prefix to be as good a classifier as possible without the following templates, in order
to minimize the number of templates needed for accurate predictions. Template ordering is learned
with a greedy approach described at the end of this section.

2.1 Definitions

Our base classifier for sequential prediction tasks is a linear model. Given an input x ∈ X , a set
of labels Y , a feature map Φ(x, y), and a weight vector w, a linear model over feature templates
{Φj(x, y)} predicts the highest-scoring label as

y∗ = argmax
y∈Y

w · Φ(x, y), where w · Φ(x, y) =
∑

j

wj · Φj(x, y).

Our goal is to approximate the overall dot product score sufficiently for purposes of prediction, while
using as few terms of the sum as possible.

Given a model that computes scores additively over template-specific scoring functions, parameters
w, and an observation x ∈ X , we can define the i’th prefix score for label y ∈ Y as:

Pi,y(x,w) =

i∑

j=1

wj · Φj(x, y),

or Pi,y when the choice of observations and weights is clear from context. Abusing notation we will
also refer to the vector containing all i’th prefix scores for observation x associated to each label in
Y as Pi(x,w), or Pi when this is unambiguous.

Given a parameter m > 0, called the margin, we define a function h on prefix scores:

h(Pi, y) = max{0, Pi,y −m−max
y′ 6=y

Pi,y′}

This is the familiar structured hinge loss function as in structured support vector machines [8], which
has a minimum at 0 if and only if class y is ranked ahead of all other classes by at least m. Using this
notation, the condition that some label y be ranked first by a margin can be written as h(Pi, y) = 0.

2



2.2 Inference

At test time we compute prefixes until some label is ranked ahead of all other labels with a margin
m, then predict with that label. At train time, we predict until the correct label is ranked ahead with
margin m, and return the whole set of prefixes for use by the learning algorithm. If no prefix scores
have a margin, then we predict with the final prefix score involving all the feature templates.

2.3 Learning

For a fixed ordering of feature templates, to learn parameters that encourage the use of few fea-
ture templates, we look at the model as outputting not a single prediction but a sequence of prefix
predictions {Pi}. Concretely, we optimize the following structured max-margin loss over training
examples (with the dependence of P ’s on w written explicitly where helpful):

ℓ(x, y,w) =

i∗
y∑

k=1

h(Pk(x,w), y), where i∗y = min i s.t. h(Pi, y) = 0

The per-example gradient of this objective for weights wj corresponding to feature template Φj then
corresponds to

∂ℓ

∂wj

=

i∗
y∑

k=j

Φj(x, yloss(Pk, y))− Φj(x, y)

where yloss(Pi, y) = argmax
y′

Pi,y′ −m · 1(y′ = y),

where 1 is an indicator function of the label y, used to define loss-augmented inference.

Since every prefix includes the prefix before it, we can see that for each training example, each
feature template receives a number of hinge-loss gradients equal to its distance from the index where
the margin requirement is finally reached. We add an ℓ2 regularization term to the objective, and
tune the margin m and the regularization strength to tradeoff between speed and accuracy.

We use a greedy stagewise approach to learn template ordering. Given an ordered subset of tem-
plates, we add each remaining template to our ordering and estimate parameters, selecting as the
next template the one that gives the highest increase in development set performance.

3 Experimental Results

We conduct our experiments on classifier-based, greedy part-of-speech tagging. Sequential classi-
fiers achieve very strong performance on this task - for example, our classifier baseline achieves an
accuracy of 97.22, while Stanford’s CRF-based tagger scores 97.26. The high efficiency of baseline
greedy POS tagging approaches makes this a particularly challenging domain in which to evaluate
our speed-up algorithm. In contrast, it is easier to find gains in complex tasks with more overhead.

Our baseline greedy tagger uses the same features and factors described described in Choi and
Palmer [9]. We evaluate our models on the Penn Treebank WSJ corpus [10], employing the typ-
ical POS train/test split. The parameters of our models are learned using AdaGrad [11] with ℓ2
regularization via regularized dual averaging [12].

This baseline model (baseline) tags at a rate of approximately 23,000 tokens per second on a 2010
2.1GHz AMD Opteron machine with accuracy comparable to similar taggers [13, 9, 14]. On the
same machine the greedy Stanford CoreNLP left3words part-of-speech tagger also tags at approx-
imately 23,000 tokens per second. Significantly higher absolute speeds for all methods can be
attained on more modern machines.

We include additional baselines that divide the features into templates, but train the templates’ pa-
rameters more simply than our algorithm. The stagewise baseline learns the model parameters for
each of the templates in order, starting with only one template—once each template has been trained
for a fixed number of iterations, that template’s parameters are fixed and we add the next one. We

3





Acknowledgments

This work was supported in part by the Center for Intelligent Information Retrieval, in part by
DARPA under agreement number FA8750-13-2-0020, in part by IARPA via DoI/NBC contract
#D11PC20152, and in part by NSF grant #CNS-0958392. The U.S. Government is authorized to re-
produce and distribute reprint for Governmental purposes notwithstanding any copyright annotation
thereon. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect those of the sponsor.

References

[1] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple
features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, volume 1, pages I–511. IEEE, 2001.

[2] David Weiss and Ben Taskar. Structured prediction cascades. In AISTATS, 2010.

[3] Alexander Grubb and J. Andrew Bagnell. Speedboost: Anytime prediction with uniform near-
optimality. In AISTATS, 2012.

[4] Kirill Trapeznikov and Venkatesh Saligrama. Supervised sequential classification under budget
constraints. In AISTATS, 2013.

[5] David Weiss and Ben Taskar. Learning adaptive value of information for structured prediction.
In NIPS, 2013.

[6] He He and Jason Eisner. Cost-sensitive dynamic feature selection. In ICML Workshop on
Inferning: Interactions between Inference and Learning, 2012.

[7] He He, Hal Daumé III, and Jason Eisner. Dynamic feature selection for dependency parsing.
In EMNLP, 2013.

[8] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support
vector machine learning for interdependent and structured output spaces. In Proceedings of
the twenty-first international conference on Machine learning, page 104. ACM, 2004.

[9] Jinho Choi and Martha Palmer. Fast and robust part-of-speech tagging using dynamic model
selection. In ACL, 2012.

[10] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a Large An-
notated Corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330,
1993.

[11] John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online Learn-
ing and Stochastic Optimization. JMLR, 12:2121–2159, 2011.

[12] Lin Xiao. Dual Averaging Method for Regularized Stochastic Learning and Online Optimiza-
tion. In NIPS, 2009.

[13] Jesús Giménez and Lluı́s Màrquez. Svmtool: A general pos tagger generator based on support
vector machines. In Proceedings of the 4th LREC, Lisbon, Portugal, 2004.

[14] Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer. Feature-rich part-
of-speech tagging with a cyclic dependency network. In HLT-NAACL, 2003.

5


	Introduction
	Method
	Definitions
	Inference
	Learning

	Experimental Results

