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ABSTRACT

SCALING MCMC INFERENCE AND BELIEF PROPAGATION TO

LARGE, DENSE GRAPHICAL MODELS

MAY 2014

SAMEER SINGH

B.E., UNIVERSITY OF DELHI

M.Sc., VANDERBILT UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew McCallum

With the physical constraints of semiconductor-based electronics becoming increasingly limit-

ing in the past decade, single-core CPUs have given way to multi-core and distributed computing

platforms. At the same time, access to large data collections is progressively becoming common-

place due to the lowering cost of storage and bandwidth. Traditional machine learning paradigms

that have been designed to operate sequentially on single processor architectures seem destined

to become obsolete in this world of multi-core, multi-node systems and massive data sets. Infer-

ence for graphical models is one such example for which most existing algorithms are sequential

in nature and are difficult to scale using parallel computations. Further, modeling large datasets

leads to an escalation in the number of variables, factors, domains, and the density of the models,

all of which have a substantial impact on the computational and storage complexity of inference.

To achieve scalability, existing techniques impose strict independence assumptions on the model,
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resulting in tractable inference at the expense of expressiveness, and therefore of accuracy and

utility, of the model.

Motivated by the need to scale inference to large, dense graphical models, in this thesis we

explore approximations to Markov chain Monte Carlo (MCMC) and belief propagation (BP) that

induce dynamic sparsity in the model to utilize parallelism. In particular, since computations

over some factors, variables, and values are more important than over others at different stages

of inference, proposed approximations that prioritize and parallelize such computations facilitate

efficient inference. First, we show that a synchronously distributed MCMC algorithm that uses

dynamic partitioning of the model achieves scalable inference. We then identify bottlenecks in the

synchronous architecture, and demonstrate that a collection of MCMC techniques that use asyn-

chronous updates are able to address these drawbacks. For large domains and high-order factors,

we find that dynamically inducing sparsity in variable domains, results in scalable belief propaga-

tion that enables joint inference. We also show that formulating distributed BP and joint inference

as generalized BP on cluster graphs, and by using cluster message approximations, provides sig-

nificantly lower communication cost and running time. With these tools for inference in hand, we

are able to tackle entity tagging, relation extraction, entity resolution, cross-document coreference,

joint inference, and other information extraction tasks over large text corpora.
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CHAPTER 1

INTRODUCTION

Data, data, data! I cannot make bricks without clay!

Sherlock Holmes

With increasingly cheap availability of computational resources such as storage and bandwidth,

access to large datasets in many application areas of machine learning has experienced explosive

growth. Single processor speed, however, has not followed a similar trend, and instead multi-core

and distributed architectures have progressively become the computational platforms of choice.

These trends have led to an interesting dilemma; the ever-growing datasets need to be analyzed,

yet machine learning algorithms that are traditionally sequential do not translate to the multi-core

setting, and thus, are likely to become obsolete.

Inference in large-scale graphical models is one area of machine learning that has been partic-

ularly affected. Graphical models are used to compactly represent complex distributions defined

over many random variables, and have been widely used in a number of application domains such

as natural language processing, computer vision, computational biology, medical diagnosis, and

social network analysis. For large datasets of our interest, capturing the complex global dependen-

cies in the probability distribution leads to a dense graph defined over a large number of variables,

each of which can take values over a large domain. These characteristics lead to intractable exact

inference, and to approximate inference algorithms that do not scale to such models due to their in-

herent sequential nature. Thus, most existing approaches impose strong restrictions on the model,

often limiting themselves to small independent models over subsets of data that cannot capture

global dependencies. There is a significant need for inference techniques for complex graphical

models that can scale to very large datasets, without sacrificing on the representation capability of

dense models.
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In this thesis, we explore approaches for approximate inference that scale to such large, corpus-

level graphical models using distributed and parallel processing. Our central hypothesis is that by

exploiting sparse structures that emerge dynamically in the posterior distribution during the itera-

tive inference, we can obtain significantly improved parallel scalability for Markov chain Monte

Carlo (MCMC) and Belief Propagation (BP) approaches. For MCMC, we find that a distributed

algorithm that operates on partitions of the model, using the state of inference to discover fruitful

partitions, can obtain significant speedups for large models. We show that asynchronous updates

along with lock-free distribution address the drawbacks of synchronous communication. For be-

lief propagation (BP), dynamically identifying values of the variables that are relevant for inference

results in an accurate, anytime variant of message passing. We also find that compressing the prob-

ability distribution for communication between the computing nodes allows for a trade-off between

accuracy and message size, enabling faster convergence with fewer bits of communication.

1.1 Application to Information Extraction

We are especially motivated by information extraction tasks that have become increasingly rel-

evant with the large amounts of text easily accessible for analysis (see, for example, Sandhaus

[2008] and Common Crawl Foundation [2011]). Given these large text corpora, there is a signifi-

cant need to organize and extract the latent information in these datasets. For the newswire corpus,

for example, this may involve extracting all the people, organizations and locations that appear

in the articles, and identifying the various relations between these entities. For a collection of

scientific publications, we would like to deduplicate the papers, construct the citation graph, iden-

tify the set of authors, and determine the co-authorship trends. This task of extracting structured

representations from unstructured or semi-structured text is known as information extraction, and

has multiple downstream applications, such as in search, bibliometrics, question answering, and

recommendation systems.

Due to widespread application, information extraction has been an active area of research for

many years. Significant progress has been made in designing accurate sentence- and document-
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level models of these tasks, for example named-entity recognition [Finkel et al., 2005], coref-

erence [Haghighi and Klein, 2009], and relation extraction [Bunescu and Mooney, 2007]. For

constructing a corpus-wide repository of the extracted information, these sentence- and document-

level predictions are often followed by an aggregation step, including heuristic record linkage to

remove duplicates.

To reduce the error in the predictions further, there is a need to represent the long-range de-

pendencies in the data. For example, identifying whether a noun phrase refers to an entity can be

greatly aided by looking at all the other noun phrases that refer to the entity, thereby introducing

dependencies between all the noun phrases in the corpus [Haghighi and Klein, 2010, Singh et al.,

2011b]. Similarly, for identifying whether a particular relationship is expressed between two enti-

ties, it may be useful to examine all the sentences in which the two entities are referred [Yao et al.,

2010, Hoffmann et al., 2011]. These examples suggest that to achieve further accuracy gains, it

may be necessary to go beyond the local per-sentence or per-document models, and perform infer-

ence at the corpus-level. Further, recent work has shown the utility of joint inference of multiple

information extraction tasks [Poon and Domingos, 2007, Finkel and Manning, 2009, Yu and Lam,

2010, Kate and Mooney, 2010, Singh et al., 2009]. Both corpus-level dependencies and joint in-

ference results in complex models that have a high-density of edges, a large number of variables,

and variables with large-domains, and thus are an appropriate evaluation of scalable inference.

1.2 Thesis Contributions and Key Findings

Thesis Statement: A combination of distributed computing and dynamic sparsity-based approxi-

mations for MCMC and belief propagation enables inference to scale to complex joint distributions

over millions of random variables.

Parallel and distributed processing for machine learning has recently gained significant inter-

est. In this thesis, we focus on large and complex graphical models that span over many variables

forming a single, dense connected component, as opposed to a majority of existing approaches

that perform efficient distribution of computations for parameter estimation (learning) for a large
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Figure 1.1: Landscape of Challenges in Scaling Inference: Tasks may be defined as large with
respect to the number of variables (X-axis), or with respect to connectivity of the model (Y-axis).
For models that are considered large according to only one of these criteria, inference can scale
quite efficiently; we can use approximate inference for small, dense models (top-left), or trivially
parallelize exact inference for many independent models (bottom-left). Inference problems we
focus on, however, deal with large and dense models (top-right).

number of smaller datasets/models. The main motivation for our proposed approximations and

distributed processing is the complexity of inference for such models, and we do not claim that our

models will not fit in memory, but instead claim that inference for such models will be incredibly

inefficient on a single machine; in other words, we are CPU-bound, not memory-bound. Fur-

ther, we confine our contributions to extensions to MCMC and belief propagation; although these

two approaches combined encompass a large majority of approximate inference approaches, other

existing techniques may be more efficient than MCMC or belief propagation, or our extensions

thereof, for a specific application or model. For the underlying computation architecture, we focus

on multi-core and multi-node systems, avoid the shared-memory assumptions as much as possible,

and do not address graphics processing units (GPUs), remote direct memory access (RDMA), or

other alternatives. Finally, the evaluation in this thesis is primarily through empirical comparison
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on a large number of applications, and the theoretical analysis is not comprehensive for all our

contributions.

We describe the landscape of challenges for scaling inference in Fig. 1.1, illustrating the diffi-

culty of inference for large, dense graphical models that we focus on. Following, specifically, are

the main technical contributions and key results of this work:

1.2.1 Synchronously Distributed MCMC

Motivated by the many advantages of Markov Chain Monte-Carlo (MCMC) inference methods

and by the popularity of Map-Reduce, we explore synchronous distribution for MCMC. The graph-

ical model is partitioned into sub-graphs that are sampled independently by inference workers (in

a “divide and conquer” manner), followed by combining the model and repeating the steps. We

find that naive random partitioning imposes strict restrictions on sampling, leading to sub-optimal

scaling. We show that uninformed partitioning of the model yields valid mixing of the resulting

MCMC chain, and provides speedups with multiple machines on large-scale models (see Fig. 1.2a).

Further, constructing a dynamic, informed partitioning scheme based on a latent variable model

leads to fruitful partitions and high-quality samples. In particular, these informed partitions re-

sult in a much faster rate of convergence for distributed MCMC, as shown for large-scale entity

resolution in Fig. 1.2b.

1.2.2 Asynchronous Updates for MCMC

We observe that the synchronously distributed architecture for sampling contains two major

drawbacks: synchronous communication bottleneck and restrictions imposed on the proposal func-

tion. We investigate a number of approaches that collectively utilize asynchronous updates to ad-

dress these concerns. First, we consider approximate sampling that uses stochastic evaluation of

the proposals which relaxes the constraints imposed on the proposals. The two strategies for ap-

proximating the model, uniform and confidence-based, provide substantial speedups over regular

MCMC on a large-scale entity resolution model, as shown in Fig. 1.3a. Second, we find that an

asynchronous distributed architecture that uses cheap, central locking on variables guarantees valid
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(a) Speedups for Uninformed Partitions (b) Improvements from Informed Partitions

Figure 1.2: Synchronous Distributed MCMC: A synchronously distributed MCMC algorithm
used for large-scale cross-document coreference, implemented on a Map-Reduce architecture.
Super-entities and sub-entities refer to dynamically inferred partitions and block moves.

Method Speedup

Baseline 1x
Uniform
p = 0.5 2.02x
p = 0.2 4.26x
p = 0.1 6.77x
p = 0.02 9.78x
Variance
i = 0.00001 0.96x
i = 0.1 1.38x
i = 1 5.26x
i = 10 7.76x
i = 100 13.16x

(a) Stochastic MCMC
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(b) Comparison to Synchronously Distributed MCMC

Figure 1.3: Asynchronous MCMC: On a large-scale entity resolution task, we obtain impressive
speedups when stochasticity is introduced in MCMC as shown in (a). In (b), we compare the
asynchronous distributed MCMC with the synchronous variant on homogeneous (uniform) and
heterogeneous workers.
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Model
Tagging Relations Coreference

Accuracy Prec Recall F1 PW F1 B3 F1

Tagging æ Coreference, Relations 80.23 53.22 54.92 54.05 53.94 76.34
Tagging + Coreference 81.24 - - - 57.59 78.06
Tagging + Relations 81.77 54.93 54.02 54.47 - -
Tagging + Relations + Coreference 82.69 56.06 54.74 55.39 58.39 78.50

Table 1.1: Single-Value Sparsity: Evaluation on joint inference of entity tagging, relation ex-
traction, and coreference. The baselines models consist of independent models for tagging, and
models for relations and coreference condition on the output of tagging (denoted using æ). Our
contribution consists of three joint models, denoted by +.

MCMC chains, at the same time successfully addressing the bottlenecks of the synchronous com-

munication (see Fig. 1.3b for an example). Finally, the architecture that drops the central locking

requirement leads to approximate MCMC chains on overlapping variables that are able to utilize

parallelism for faster convergence.

1.2.3 Value Sparsity for Efficient Belief Propagation

Belief propagation is not efficient on models that contain variables with large domains and

high-order factors since the message computation is polynomial in the size of the domain and ex-

ponential in the size of the factor neighborhood. We first explore an approach to address these

bottlenecks by dynamically inducing single-value sparsity on variables during the course of infer-

ence by examining their marginals. Reducing domains to a single value induces determinism in

the model, which we find facilitates efficient, accurate, and parallel inference for complex models

such as joint information extraction (as shown in Table 1.1). We also find that an anytime variation

that incrementally grows sparsity achieves consistent marginals during the course of inference,

eventually reaching the fixed point of belief propagation with full variable domains. Figure 1.4

presents the runtime properties of the marginals on grid models, demonstrating low error and high-

consistency through the course of inference.
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Figure 1.4: Anytime Belief Propagation: Comparison of our proposed approaches (Fixed and
Dynamic) with BP, Residual BP, Random growth of domains and fixed Truncated domain on grid
models. (a) Demonstrates low marginal error through the course of inference, and (b) shows aver-
age message residual, indicating our marginals have a local consistency throughout inference.

1.2.4 Approximate Cluster Messages for Generalized Belief Propagation

Loopy belief propagation for large, dense models requires a large iterations of message pass-

ing to converge, and further, may converge to a poor minima, resulting in an expensive overhead

in communication (in distributed inference) and computation (in joint inference). By formulat-

ing joint inference and distributed inference as generalized BP on a cluster graph, and by using

approximate messages between cluster variables instead of full messages, we can perform infer-

ence efficiently on models with large number of variables and domains. We find that the cluster

message approximations can trade-off accuracy with communication/computation, can utilize sub-

structures for additional savings, and can be marginalized more efficiently than BP messages. We

present the accuracy and size of single cluster message approximations in Fig. 1.5a, demonstrating

the gradual trade-off between storage and accuracy, in particular suggesting that the approximation

that combines sparse and merged messages, FRAK, provides accurate representation with a small

amount of storage. From evaluation on a joint citation segmentation and resolution task presented

in Fig. 1.5b, it is also apparent that FRAK outperforms sampling and k-Best approximations.
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Method F1 Time

k-Best

k = 1 59.3 0.08
k = 2 57.6 0.16
k = 5 63.3 0.4
k = 10 64.8 0.8
k = 50 69.3 4.0
k = 100 69.9 8.0
k = 150 70.3 12.0
Sampling

s = 25 79.4 3.1
s = 100 79.5 10.0
FRAK 80.7 0.16

(b) Joint Inference Accuracy

Figure 1.5: Cluster Message Approximations: (a) we compute the approximation error and mes-
sage sizes of a number of proposed approximations to the fully-specified cluster messages (which
has 0 error and 1 relative size), and (b) an application to joint citation resolution and extraction
demonstrating our approach (FRAK) obtains a higher accuracy than k-Best and sampling, while
being much faster (BP is intractable for this task).

1.3 Declaration of Previous Work and Collaborations

Below, the work described in this thesis that have been published or are collaborations with other

researchers is enumerated. I am the lead contributer to all of the work presented in the thesis, and

all contributions have been under the guidance of, and in collaboration with, Andrew McCallum.

• Synchronous distributed MCMC (Chapter 4) was initially conceived as a summer intern at

Google Research, under the mentorship of Amarnag Subramanya and Fernando Pereira,

and was presented at the NIPS Workshop on Learning on Cores, Clusters and Clouds [Singh

et al., 2010] and published in the Annual Meeting of the Association of Computational Lin-

guists (ACL) [Singh et al., 2011b].

• Stochastic proposal evaluation for MCMC (Section 5.1) is in collaboration with Michael

Wick, and published in the Conference on Empirical Methods for Natural Language Pro-
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cessing (EMNLP) [Singh et al., 2012b] and presented at the NAACL 2012 Workshop on

Automated Knowledge Base Construction (AKBC-WEBEX) [Singh et al., 2012c].

• Asynchronous lock-free, distributed MCMC for marginal inference (Section 5.4) was pre-

sented at the NIPS Big Learning workshop [Singh and McCallum, 2011].

• Asynchronous distributed MCMC for MAP inference (Section 5.3) is used for inference by,

but is not the focus of, Wick et al. [2013].

• Value sparsity for multi-core belief propagation (part of Chapter 7) is a collaboration with

Brian Martin, and was presented at the NIPS Workshop on Computational Trade-offs in

Statistical Learning (COST) [Singh et al., 2011a].

• Value sparsity for joint inference of relations, types, and coreference (Chapter 7) is joint work

with Jiaping Zheng, Brian Martin, and Sebastian Riedel, and was published in the CIKM

Workshop on Automated Knowledge Base Construction (AKBC) [Singh et al., 2013a].

• Sparsity in values for anytime belief propagation (part of Section 7.2) is a collaboration

with Sebastian Riedel, and was presented at the NIPS Workshop on Resource Efficient

Learning [Singh et al., 2013b].

• Analysis of approximate cluster messages for joint inference (Chapter 8) is a collaboration

with Sebastian Riedel, and is currently under preparation for submission.

1.4 Thesis Outline

In the next chapter, we introduce probabilistic graphical models, available architectures for

distributed computing, and applications of large graphical models to information extraction.

The remainder of the thesis is organized in two parts. The first part describes our contributions

to Markov chain Monte Carlo (MCMC) methods. We provide an overview of the existing work on

MCMC in Chapter 3, introducing synchronous distribution in Chapter 4 and asynchronous sam-

pling techniques in Chapter 5. We address belief propagation (BP) in the second part. Chapter 6
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introduces belief propagation and its variants, followed by our proposed work on sparse belief

propagation in Chapter 7 and generalized belief propagation with approximate cluster messages in

Chapter 8.

Chapter 9 concludes this thesis with a review of the limitations of this work, and proposes a

number of avenues for future work to address these drawbacks.
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CHAPTER 2

BACKGROUND

It is a very sad thing that nowadays there is so little useless information.

Oscar Wilde

In this chapter we provide introductory material on probabilistic graphical models, architec-

tures for distributed processing, and applications of large, dense graphical models to information

extraction. We briefly describe the MCMC inference and belief propagation algorithms here, but

since much of the thesis focuses on extensions to the two techniques, we provide detailed back-

ground and corresponding literature survey in Chapters 3 and 6 respectively.

2.1 Probabilistic Graphical Models

This section provides a brief introduction to the graphical model formulation for representing

probability distributions over a large number of variables. We also establish the notation for the

rest of this thesis.

2.1.1 Random Variables

Probabilistic graphical models provide a way to represent a joint probability distribution over

a fixed set of random variables (Y). In this work, we constrain ourselves to discrete variables.

We represent each random variable by Yi œ Y and each value of Yi by yi œ Yi, where the set of

values a variable can take, Yi, is also known as the domain of the variable. A subset of variables is

represented by Yc ™ Y and an assignment to the variables Yc by yc œ Yc. Note that the domain

Yc is the cross-product of the domains Yj, ’j, Yj œ Yc. When multiple variables are defined over

the same set of values, i.e. they have the same domain, we will omit the subscript when referring

to the domain (Y instead of Yi).
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Y0 Y1

Y2

ψ01

ψ12ψ02

ψ2

Figure 2.1: Simple Graphical Model: with 3 variables and 4 factors.

2.1.2 Undirected Graphical Models

In this work, we will use the undirected factor graph [Kschischang et al., 1998] notation. The

factor graph G(Y, F , G, Â) defines a bipartite graph G between variables Y and a set of factors

F . Let the neighborhood of each factor f œ F be Yf (also referred by the neighborhood function

N (f)). Each factor contains an associated score function (or log-potential function) Âf : Yf æ R,

i.e. for any assignment yf œ Yf , Âf (Yf = yf ) returns a scalar value. Given the factors, the factor

graph G represents a probability distribution pG : Y æ [0, 1] over the assignments y œ Y as:

pG(Y = y) =
1

Z
exp

ÿ

fœF

Âf (Yf = yf ) (2.1)

ZG =
ÿ

yœY

exp
ÿ

fœF

Âf (Yf = yf ) (2.2)

ZG is known as the normalization constant or the partition function, and sum of the scores of the

factors is known as the log-model score:

fi(y) =
ÿ

fœF

Âf (yf ) p(y) =
eπ(y)

Z
(2.3)

For the sake of brevity, like above, we will often omit “G” and replace “Yc = yc” with “yc”.

We show an example of a simple graphical model in Fig. 2.1. The graphical model is defined

over three variables Y = {Y0, Y1, Y2} and contains four factors with their score functions: Â01 :
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Y0 ◊ Y1 æ R, Â12 : Y1 ◊ Y2 æ R, Â02 : Y0 ◊ Y2 æ R, and Â2 : Y2 æ R. Given an assignment

y = {Y0 = y0, Y1 = y1, Y2 = y2}, the model score is fi(y) = Â01(y0, y1) + Â12(y1, y2) +

Â02(y0, y2) + Â2(y2). The probability given by the graph G for y is p(y) = exp π(y)
Z

, where Z is

defined as above. For some models, it is useful to distinguish fixed (or observed) variables, which

are random variables that take only a single value, from other variables; we use grey filled circles

to denote these, and whenever possible, fold them into the factor potentials they neighbor.

Although we focus only on undirected graphical models in this treatise, factor graphs are a

more expressive class of probabilistic graphical models that extend classical Ising models [Ising,

1925] and pairwise Markov Random Fields [Kindermann et al., 1980], and can also represent

directed graphical models. We also make use of a generalization of factor graphs with dynamic

structure where the set of factors used to compute the model score is dependent on the assignment

to the variables:

fi(y) =
ÿ

fœF(y)

Âf (yf ) (2.4)

This representation is closely related to imperatively defined factor graphs [McCallum et al., 2009],

and similar to case-factor diagrams [McAllester et al., 2004] and gates [Minka and Winn, 2008].

Dynamic graphs can be used with algorithms that work with static structure by fully unrolling the

graph, i.e. F =
t

yœY F(y), however this may in general result in exponential number of factors.

2.2 Inference

Probabilistic inference is the main task performed with graphical models. There are two distinct

inference paradigms commonly discussed in the literature: maximum a posteriori inference and

marginal inference.

2.2.1 Maximum-a-posteriori (MAP) Inference

For a factor graph, the maximum a posteriori (MAP) problem is to find an instantiation of the

variables y that maximizes p(y) or equivalently fi(y), i.e. identifying the assignment (or configu-

14



ration) of the variables that has the maximum probability according to the model.

ŷ = arg max
yœY

p(y) = arg max
yœY

fi(y) (2.5)

Since a large number of tasks in information extraction, NLP, computer vision, etc. require only

the best estimate according to the model (to present to the user, for example), the problem of MAP

inference is a very important one. Unfortunately, a naive implementation that iterates over the

domain Y takes exponential time, and is prohibitively expensive even for small models.

2.2.2 Marginal Inference

The marginal inference problem is to compute the complete distribution over a subset of vari-

ables YA according to the model. Often the marginals of interest are defined over individual

variables or factors:

pi(yi) =
ÿ

yÕœY:yÕ
i
=yi

p(yÕ) (2.6)

pf (yf ) =
ÿ

yÕœY:yÕ
f

=yf

p(yÕ) (2.7)

Similar to MAP inference, marginal inference is non-trivial using a naive approach for all but

the smallest of models due to the size of Y . The marginals are an important requirement for

a number of applications. First, they provide a measure of confidence or uncertainty in the in-

ferred values. Marginals are also required for maximum-likelihood learning of model parameters.

Marginal probabilities are especially important for semi-supervised learning approaches, and for

existing approaches for active learning.

2.2.3 Approximate Inference

Exact inference, both MAP and marginal, is tractable for tree-structured models, however is

NP-hard in general graphical models [Cooper, 1990, Shimony, 1994]. However, many useful ap-

proximations with provable properties make graphical model inference practical in a wide diversity
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of application areas. The two most common approximate inference frameworks are Monte Carlo

sampling methods and message passing.

2.2.3.1 Markov Chain Monte Carlos (MCMC) Methods

A number of methods have been designed to sample variable assignments y according to the

probability distribution p as defined by the graphical model. Markov Chain Monte Carlo (MCMC)

methods are a family of algorithms that generate samples by iterating a Markov chain to conver-

gence [Smith and Roberts, 1993]. We focus specifically on the Metropolis Hastings (MH), one of

the general formulations of MCMC [Metropolis et al., 1953, Hastings, 1970]. MH algorithm uses

the current sample y and a proposal distribution q(yÕ|y) to generate the next sample, iterating till

the samples are being drawn from p. Evaluating acceptance of a sample is quite inexpensive since

it depends only on variables and factors local to the proposed change. Due to this efficient compu-

tation, MCMC methods are able to scale to large models with dense structures and large-domain

variables.

We can use the set of samples to estimate the expectations of functions under p, for example

computing marginals requires aggregating the counts of the values across the samples. MCMC

chains can be used for MAP inference by selecting the sample with the highest probability/model

score, although in practice a temperature may be used to encourage high-probability samples,

similar to simulated annealing [Kirkpatrick et al., 1983]. The details of the MCMC algorithm, and

their utility for large, dense graphical models, is presented in Chapter 3.

2.2.3.2 Belief Propagation

In belief propagation [Pearl, 1988], the factors in the factor graph “negotiate” with each other

regarding the marginal probabilities of their neighboring variables by passing messages. The mes-

sages from variable Yi to factor f and factor f to variable Yi are given below.
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miæf (y œ Yi) =
Ÿ

f Õ:YiœYf Õ

f Õ ”=f

mf Õæi(y), (2.8)

mfæi(y œ Yi) =
ÿ

yÕ
f

:yÕ
i
=y

exp{Âf (yÕ
f )}

Ÿ

iÕ:YiÕ œYf

iÕ ”=i

miÕæf (y) (2.9)

Messages are iteratively selected and updated until they converge or a maximum number of it-

erations is reached. Approximate marginal distributions are then extracted from the messages.

The max-product algorithm, an alternate form of BP, can be used to obtain an approximate MAP

configuration instead of marginals by replacing the
q

in Eq. (2.9) with a max.

BP is guaranteed to converge to the exact marginals for tree-shaped models. Although BP

is also widely used and has achieved considerable empirical success for loopy models, it is not

guaranteed to converge, hence a number of convergent variants have been proposed [Yuille, 2002,

Wainwright et al., 2003, Hazan and Shashua, 2008]. We describe belief propagation and extensions

to it in detail in Chapter 6.

2.3 Architectures for Parallel and Distributed Computing

In this section, we present a brief outline of the different architecture available for parallel

computing, and existing machine learning toolkits for distributed processing.

2.3.1 Graphical Processing Units

Graphical Processing Units (GPUs), although designed for fast computations of transforma-

tions in computer graphics, have gained recent traction in the machine learning community. GPUs

contain a large number of processors (about a hundred in consumer level devices) that can compute

floating point vector operations extremely efficiently, providing fine-grained parallelism. For ma-

chine learning, a large number of bottlenecks can be traced to vector/matrix products, and GPUs

are appropriate for techniques that heavily rely on linear algebra. Unfortunately, inference in

graphical models, particularly for information extraction, contains a number of characteristics that

make it unsuitable for GPUs. First, due to the large number of factors and variables, we need to
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control the prioritization of the computations dynamically, which is difficult to perform in GPUs.

Second, a number of bottlenecks in the system, such as identifying neighborhoods, extracting fea-

tures, proposing changes, etc. are not vector/matrix operations. Last, our models may be too large

to fit in the memory for GPUs.

2.3.2 Multi-core Systems

With the speeds of individual processors reaching their peak, computing hardware has started

moving towards multi-core architectures, with 4≠8 processors on consumer-level machines. These

architectures provide a suitable parallelization environment with shared memory access amongst

the processors. There are a number of concerns to consider before these architectures can be used

directly for our applications. First, even though the memory is shared, splitting of data across

the processors has to be done in a way that maximizes reuse in the cache. A number of machine

learning methods on multi-core systems faced speedup problems due to this problem, and had to

use heuristics for better caching [Gonzalez et al., 2009b, Subramanya and Bilmes, 2009]. Second,

methods that are designed for multi-core architectures cannot scale easily if the magnitude of data

increases since the number of cores is fixed, and the cost per core for additional cores increases sub-

stantially. Although we make considerable use of multi-core architectures in this work, we address

the above concerns by implementing generic parallelization algorithms that do not make the shared

memory assumption, and can easily be used on multi-node or cloud-computing architectures.

2.3.3 Multi-Node Clusters

Multi-node clusters are the most popular form of addressing scale using parallelization. These

systems consist of a large number of computing nodes, with no shared memory, and communica-

tion is usually through the network, making it costly. In fact, most impressive results in scalability

minimize communication, or only communicate in phases [MapReduce; Dean and Ghemawat,

2004]. Algorithms designed for this architecture can also be used on multi-core architectures, by

treating each core as an individual computing node in a cluster. Further, depending on the need,

the size of the cluster can be increased easily by adding additional machines, and the cost is pro-
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portional to the number of machines. Due to these reasons, for the most part, we focus on these

architectures for parallelization.

2.3.4 Cloud Computing

Cloud computing is an upcoming paradigm for providing computing as a service. Although

similar to the multi-node architecture described above, and most algorithms can work directly, the

differences provide potential for some interesting concerns and trade-offs. Homogeneity amongst

the machines is harder to achieve (may require a higher cost), and algorithms that are robust to

variation in speed, memory, and communication capacities of the nodes fare better. Furthermore,

given a limited budget, performance of the algorithm needs to be characterized precisely to decide

the configuration of the computational resources, for example, choosing between a large number

of slow machines or a small number of high-performance nodes. Last, often decisions will need

to be made between adding more machines or waiting for more time; the anytime and speedup

properties of the algorithms need to be studied to allow such decisions given a budget. Most of

the methods proposed in this work can be used in the cloud computing setting, and we hope we

provide adequate evaluation of the methods to inform the decision-making that is unique to cloud

computing architectures.

2.3.5 Parallel and Distributed Programming Frameworks

There are a variety of existing frameworks for parallel and distributed programming that can

be applied to the problem of probabilistic inference. These frameworks vary in the level of par-

allelism they support ranging from fine-grained parallelism to very high-level abstractions. The

Message Passing Interface (MPI) standard and related libraries provides very general parallel pro-

gramming constructs that can be used in the distributed setting [Gropp et al., 1996]. However,

MPI is not explicitly targeted at parallel data processing so the programmer must manage the dis-

tribution of data to compute nodes. At the other end of this spectrum is Map-Reduce [Dean and

Ghemawat, 2004], which provides a simple, high-level parallelism abstraction targeted specifically

at distributed data processing. Implementing algorithms in Map-Reduce imposes strict constraints
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on the computation, however, when these constraints can be easily incorporated, Map-Reduce can

provide impressive speedups [Chu et al., 2007].

Complex machine learning algorithms that do not meet these constraints are often difficult to

parallelize efficiently using Map-Reduce. Along with the open-source implementation Hadoop [White,

2009], there exist a number of extensions to the Map-Reduce framework. Dryad [Yu et al., 2008,

Isard et al., 2007] support computations that can be represented as an arbitrary directed, acyclic

graph, instead of the 2-layer bipartite graph imposed by Map-Reduce. The Spark framework [Za-

haria et al., 2010] augments Map-Reduce with parallel collections and accumulators that gather

the results of the distributed computations efficiently. More recently, there has been increasing

interest in distributed processing with streaming data, and a number of packages have been intro-

duced [Zaharia et al., 2013, Apache Storm]. However, since none of these approaches are designed

specifically for computations over general graphs, they induce artificial restrictions when imple-

menting probabilistic inference algorithms for graphical models.

Recent research has seen the introduction of mid-level graph-based parallel computing abstrac-

tions that sit between the complexity and generality of MPI on one hand, and the simplicity and

restrictiveness of Map-Reduce on the other. For the specific Cray XMT supercomputer architecture

that provides massive-scale shared-memory parallelism, GraphCT [Ediger et al., 2012] provides

a framework for analysis of billion-scale graphs. Pregel was introduced for graph-based compu-

tations that can be represented using a bulk-synchronous parallel framework [Malewicz et al.,

2009, 2010]. A number of machine learning approaches that cannot be efficiently implemented

using Map-Reduce are suitable for bulk-synchronous computation. However, belief propagation

and MCMC inference methods are not in this category of algorithms and their correct imple-

mentations in Pregel are not efficient. To address the shortcomings of Pregel in the context of

machine learning, GraphLab [Low et al., 2010] (and its offsprings GraphChi [Kyrola et al., 2012]

and PowerGraph [Low et al., 2012, Gonzalez et al., 2012]) allow partially asynchronous process-

ing of the graph computations. Given a graph consisting of data and computations on nodes and

edges, GraphLab schedules the multiple computations asynchronously such that neighborhood

20



constraints are met. By partially removing the synchronization barrier, implementations of Belief

Propagation [Gonzalez et al., 2009b] and MCMC [Gonzalez et al., 2011] inference methods in

GraphLab can achieve better parallel scalability.

2.4 Applications to Information Extraction

In this section, we explore a number of applications of the proposed work. Although there

are a large number of potential applications of inference and learning in the fields of bioinfor-

matics, vision, etc., here we focus primarily on information extraction. Given a large corpus of

unstructured text, the goal of information extraction is to extract a structured representation of the

information in the corpus. For example, given business newswire articles, information extraction

can be used to identify all the companies that are mentioned in the articles, and to also extract the

various events and relations between them. As an additional example, consider a large collection

of citations extracted from the References section of scientific papers. The goal of information

extraction, given these citations, may be to identify the sets of citations that are referring to the

same paper (useful for computing citation counts), and extracting the authors, title and venues of

each of these papers. We describe some tasks for corpus-wide information extraction, and describe

some graphical models that may be appropriate for them.

2.4.1 Coreference or Entity Resolution

Coreference or Entity Resolution is the task of de-duplicating a number of records, or, in other

words, identifying the set of underlying entities that a number of mentions refer to. A large number

of relevant tasks fit under this definition. Within-document coreference is concerned with noun

phrase mentions in a single document (for example, “she”, “him”, “Clinton”, “Mrs. Clinton”,

“Hillary”, “president”), and identifies the sets of mentions that refer to the same underlying entity

({“she”, “Mrs. Clinton”, “Hillary”} and {“him”, “Clinton”, “president”}) [Haghighi and Klein,

2009, Culotta et al., 2007]. On the other hand, cross-document coreference refers to resolving the

entities where the set of mentions originate from documents across the corpus [Singh et al., 2011b,
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Rao et al., 2010, Mayfield et al., 2009]. Haghighi and Klein [2010] provides some preliminary

work on combining these two types of coreference. Finally, the task of record de-duplication, such

as identifying the underlying set of papers from a collection of citations, is known as record-linkage

or entity resolution [Singla and Domingos, 2006].

The models of coreference are notoriously challenging when represented as graphical models.

Some models of coreference consist of binary decisions between pairs of mentions, indicating

whether or not they are coreference. This results in a quadratic number of binary variables, along

with cubic number of deterministic factors to enforce transitivity1. Instead, we explore models

that consist of mention and entity variables [McCallum and Wellner, 2003, Culotta et al., 2007].

Mention variables are random variables that take one of the entities as their values. Entity variables,

on the other hand, are set-valued variables that can take any subset of the mentions as their values.

This representation allows factors both over pairs of mentions (capturing pairwise similarity) and

entity-wide statistics (capturing the coherence of the entity). Unfortunately, the pairwise factors

and set-valued variables result in exponential sized domains and a fully-connected graph when

unrolled, leading to intractable inference.

2.4.2 Relation Extraction

Given a pair of entities that appear in a corpus (such as Bill_Gates and Microsoft), the

task of relation extraction is to identify the relation between them (i.e. Is_CEO_Of). Extracting

such relations is an integral component of the resulting structured representation, and useful for

downstream components (such as coreference) and presentation of information to users.

The task is often decomposed over sentences, and pairs of entity mentions that appear in a

sentence (known as a relation mention) are classified as one of the relation types [Zhou et al.,

2005]. The predictions over the relation mentions are aggregated over pairs of entities by using a

simple coreference system to identify coreferent mentions. This representation of the task cannot

propagate information across the corpus, i.e. evidence from a relation prediction in one sentence

1Often the transitivity factors are ignored, and applied heuristically as a post-processing step
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cannot be used for improving the prediction on the relation mention in a different sentence. We

are interested in models of relation extraction that consist of both sentence-level (relation men-

tions) and corpus-level variables (relations), all of which take a value from a fixed set of relation

types [Riedel et al., 2010b, Hoffmann et al., 2011]. Factors exist over relation mentions (evidence

from the sentence), between relation mentions and relation variables (coherence between sentence-

and corpus-level), and between relations that describe the same entity (to capture similarity of re-

lations for entities). Although we expect this model to provide significant accuracy gains, the

inference and learning gets prohibitively expensive due to the number of variables and factors in

the model.

2.4.3 Joint Inference

An information extraction pipeline is usually decomposed into a number of individual tasks,

such as part of speech tagging, chunking, named-entity recognition, within-doc coreference, rela-

tion extraction, and cross-document coreference. These tasks are performed independently, with

the best prediction from each task used as an input to the next task. Unfortunately, this leads to

cascading errors, since a small error made earlier on in the pipeline can amplify as it propagates

through the pipeline. Further, for many tasks the ordering between them in the pipeline is not clear

since the tasks may depend on each other, for example both relation extraction and coreference

improve if they have access to each others’ predictions.

Joint inference approaches have been proposed to address these concerns [McCallum and

Jensen, 2003, Poon and Domingos, 2007, Sutton and McCallum, 2005, Wellner et al., 2004].

Many of the earlier approaches propose methods for each task to communicate its uncertainty

in the predictions [Finkel et al., 2006, Finkel and Manning, 2009], however significant success

is achieved when both the tasks are created as a single model [Poon and Domingos, 2007, Singh

et al., 2009]. In this work, we will explore models of joint inference defined both over sentence-

level and corpus-level variables. For example, named-entity recognition and relation extraction

are strongly tied tasks that can benefit from joint modeling. As mentioned above, coreference and
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relation extraction are also dependent on each other, and provide potential for joint inference at the

corpus-level. Even the coreference task at different levels, such as within-doc and cross-doc, can

be represented in the same model.

Modeling multiple tasks in a joint manner introduces considerable complexity to the resulting

models. Although the number of variables may not change, the additional cross-task factors make

independent components depend on each other. For example, once sentence-level tasks are mod-

eled with corpus-level tasks, inference on each sentence is not independent. Further, joint inference

usually adds a large number of strong dependencies that introduce loops in the models, increasing

the tree-width. By using the inference and learning approaches in the thesis for joint inference, we

hope to address these drawbacks and achieve significant accuracy gains.

2.4.4 Probabilistic Databases

As described above, the output of information extraction is a structured representation of the

information extracted from the input corpus. To allow computation of confidences for ranking and

filtering of query results, it is often required to store the uncertainty associated with the output of

the information extraction pipeline. It is incredibly difficult to incorporate such uncertainties in

traditional database systems in a way that allows efficient inference. Motivated by this problem

(amongst others), there has been a recent surge in research on probabilistic databases [Dalvi et al.,

2009]. Some of the most promising approaches to probabilistic databases represent the uncertainty

as a graphical model [Wick et al., 2010, Sen et al., 2009, Singh and Graepel, 2013].

Depending on the underlying structure of the uncertainty being represented in the database, the

model can become quite large and complex, making traditional forms of inference impractically

slow. This provides potential for parallelization based inference techniques to allow efficient infer-

ence. Further, a large number of our proposed techniques are anytime in nature, and can be used

to answer queries under a time constraint, which is especially useful in probabilistic databases.
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CHAPTER 3

MCMC OVERVIEW

The sun comes up just about as often as it goes down, in the long run, but this

doesn’t make its motion random.

Donald Knuth

In this chapter, we provide an introduction to the class of inference techniques known as

Markov Chain Monte Carlo (MCMC) methods. MCMC is a Monte Carlo approach (Section 3.1)

that constructs a Markov chain used to generate samples from the desired distribution, pG . We

focus on Metropolis Hastings (Section 3.2.2), an MCMC algorithm that uses a flexible proposal

function to generate samples efficiently. MCMC algorithms can be used both for approximate

MAP and marginal inference simply by retaining the correct statistics across samples; we describe

the various algorithm parameters for marginal inference in Section 3.2.4 and the application to

MAP in Section 3.3. In Section 3.4, we outline the advantages and disadvantages of using MCMC

for large, dense graphs, and highlight related work in Section 3.4.3.

3.1 Monte Carlo Methods

Monte Carlo methods include rejection sampling, importance sampling, and Markov chain

Monte Carlo (MCMC). These algorithms sample instantiations y according to a probability dis-

tribution p : Y æ [0, 1], which, in our case, is the distribution pG induced by a graphical model

G. Rejection sampling and importance sampling assume that p(y) can be computed efficiently.

Rejection sampling samples from the uniform distribution and then applies a stochastic acceptance

step to ensure that samples are drawn from p(y). Many samples can be drawn independently in

parallel, but in high dimensions the probability that any sample is accepted can be vanishingly

small. Importance sampling improves on rejection sampling by drawing initial samples from a
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proposal distribution q(y). It retains all samples and accounts for the discrepancy between q(y)

and p(y) by weighting the samples. While samples can be drawn independently and in parallel,

in high dimensions the chance of generating a sample with high probability under p(y) can again

be vanishingly small unless an accurate proposal distribution q(y) is known. More importantly,

computing p(y) is intractable for non-trivial models, as it requires computation of the partition

function Z.

3.2 MCMC Inference

Markov Chain Monte Carlo (MCMC) is a collection of methods used for sampling from a com-

plex probability distribution with computing the partition function. MCMC approaches construct

a Markov chain that whose stationary distribution converges to the desired probability distribution

at equilibrium. Further, they are anytime in nature; running more steps of the algorithm improves

the quality of the solution. While a wide variety of MCMC algorithms exist, we focus on the

Metropolis-Hastings (MH) algorithm, which is one of the most general approaches.

3.2.1 Markov Chain Monte Carlo

Consider a sequence of random variables y0, y1, . . . such that ’t = 0, 1, 2, . . . , yt œ Y . The

sequence is called a Markov chain if the distribution over yt depends only on yt≠1, i.e.:

P (Yt+1 = y|Yt = yt, Yt≠1 = yt≠1, . . . , Y0 = y0) = P (Yt+1 = y|Yt = yt) (3.1)

We represent P (Yt+1 = yi|Yt = yj) as Pij : Y ◊ Y æ [0, 1], also known as the transition

probability. Given a distribution p0 over initial values y0, we can compute the distribution over

samples yt at time t as:

pt(yj) =
ÿ

yiœY

pt≠1(yi)Pij = (pt≠1P )(yj) = (p0P
t)(yj) (3.2)
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where pt(y) refers to the probability distribution over y at step t (with slight abuse of notation we

use pt as the corresponding vector).

We would like the Markov chain to converge to our desired model, i.e. the stationary distribu-

tion of the chain should be pG . This can be guaranteed if the chain obeys the following detailed

balance property, pG(yi)Pij = pG(yj)Pji, and the transition probability matrix is irreducible (non-

zero probability for reaching all states from every state) and aperiodic (states do not have a finite

period, i.e. ÷N s.t. ’n > N, P n
ii > 0). MCMC algorithms thus describe a family of algorithms for

specifying a Markov chain that converges to the desired distribution [Smith and Roberts, 1993].

3.2.2 Metropolis-Hastings

Metropolis-Hastings algorithm [Metropolis et al., 1953, Hastings, 1970] constructs a Markov

chain to sample from the desired probability distribution by using a flexible proposal function.

Specifically, the algorithm takes as input an initial configuration of the variable y0 and a proposal

function q : Y ◊ Y æ [0, 1], s.t.’y
q

yÕœY q(y, yÕ) = 1. Thus the proposal function, given any

current configuration y, provides a distribution over the next configurations1. To generate each

sample, the algorithm first proposes a change to the current configuration y using the distribution

induced by q(y, _) to obtain the next configuration yÕ. The algorithm then accepts yÕ as the current

sample with the following probability (otherwise retains y as the current sample):

–(y, yÕ) = min

A

1,
pG(yÕ)

pG(y)

q(yÕ, y)

q(y, yÕ)

B

(3.3)

The MCMC samples are thus continually generated, eventually drawn from the desired distribu-

tion, as we show next. This algorithm is summarized in Algorithm 3.1.

The transition probability of the algorithm may be computed as follows:

1The Metropolis algorithm [Metropolis et al., 1953] assumes that the proposal function is symmetric, Hastings
[1970] generalize this condition to asymmetric distributions.
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Algorithm 3.1 MH-MCMC: Metropolis-Hastings Markov Chain Monte Carlo

1: procedure METROPOLISHASTINGS(G, q, N , y0)
2: y Ω y0

3: S Ω {} Û Set of samples
4: for N samples do

5: yÕ ≥ q(y, ·)

6: – Ω min

A

1,
pG(yÕ)

pG(y)

q(yÕ, y)

q(y, yÕ)

B

Û Acceptance Ratio

7: if flip(–) then

8: y Ω yÕ Û Accept the Sample
9: end if

10: S
+
Ω y Û Accumulate Sample

11: end for

12: return S
13: end procedure

Pij = q(yi, yj) min

Q

c

c

a

1,
pG(yj)

pG(yi)

q(yj, yi)

q(yi, yj)

R

d

d

b

(3.4)

Note that –(y, yÕ) < 1 =∆ –(yÕ, y) = 1. For such a pair, without loss of generality, it is

straightforward to show detailed balance with respect to pG as:

pG(yi)Pij = pG(yj)Pji

pG(yi)q(yi, yj)–(yi, yj) = pG(yj)q(yj, yi)–(yj, yi)

pG(yi)q(yi, yj)
pG(yj)

pG(yi)

q(yj, yi)

q(yi, yj)
= pG(yj)q(yj, yi)

pG(yj)q(yj, yi) = pG(yj)q(yj, yi)

To ensure that the transition probabilities are irreducible and aperiodic, the proposal function also

needs to be irreducible and aperiodic, which is often quite easy to show in practice.

Metropolis-Hastings is a popular algorithm for inference in graphical models for a number of

reasons. Since the acceptance probability only depends on the ratio of model scores, it allows

the algorithm to ignore the partition function Z, and further, if the proposals make changes to
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variables local in the graph, only the factors neighboring the changed variables are needed to

compute the acceptance probability. Similarly, we need to be able to sample conditionally from

proposal function, and compute it only up to a constant, allowing significant flexibility in designing

fruitful proposal functions. Finally, if an appropriate proposal function is used, the algorithm

complexity does not depend on the size of the variable domains, allowing models with large-

domain variables and higher-order factors.

3.2.3 Gibbs Sampling

Gibbs sampling is a special case of the Metropolis-Hastings algorithm that does not require a

proposal function [Geman and Geman, 1984, Gelfand and Smith, 1990]. To generate each sample,

the algorithm iterates through all the variables and samples a value of each variable conditioned

on the values of the other variables. This algorithm is usually efficient since sampling a variable

conditioned on other model variables is often computationally inexpensive. Unfortunately, for

variables with with large domains, sampling from the conditional distribution is not cheap. Further,

consecutive samples from Gibbs sampling are often correlated2, and a number of extension have

been proposed in the literature for addressing the correlation [Liu et al., 1994, Jensen et al., 1995,

Venugopal and Gogate, 2013].

3.2.4 Algorithm Parameters

For marginal inference, a set of counts for the variable values is maintained. As the samples

are generated, the counts are updated using the sampled configuration. As the number of samples

grows, the normalized counts approach the true marginal distribution of the variables.

To compute these marginals, a number of parameters need to be specified. The total number of

samples directly determines the quality of the marginals, however with an accompanying increase

in computation cost. To allow the chains to mix (start sampling from the stationary distribution),

samples are only aggregated after a burn-in period. Since consecutive samples are correlated,

2Metropolis Hastings can avoid correlated samples, to a certain degree, by using sophisticated proposal functions.
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samples are often aggregated every ith sample (where i is known as the thinning period). Further,

parallel MCMC chains may be used to aggregate samples across the chains. Although higher

values for burn-in, number of parallel chains, and thinning steps are useful to produce accurate

marginals, each results in additional computation cost. These parameters are usually specified

heuristically based on the run-time requirements of the inference algorithm.

3.3 MCMC Inference for MAP

MCMC can also be used for MAP inference. The algorithm, in this case, keeps track of the

sample with the highest model score fi, where MCMC is used to explore the high-probability

regions. To facilitate convergence to the mode of the distribution, the model score is tempered

with a temperature.

–(y, yÕ) = min

Q

a1,

A

pG(yÕ)

pG(y)

B1/t
q(yÕ, y)

q(y, yÕ)

R

b (3.5)

This use of a temperature is closely related to the simulated annealing algorithm [Kirkpatrick et al.,

1983], which converges to the MAP configuration if the temperature is lowered slowly enough.

To prove that we can employ MCMC for MAP inference, the Markov chain needs to show

irreducibility and aperiodicity, and the acceptance ratio needs to compute the ratio of the model

probability correctly. Convergence to MAP configuration is guaranteed even if detailed balance

does not hold, and even if q(yÕ,y)
q(y,yÕ)

is not included in the acceptance probability [Granville et al.,

1994]. This allows for usage of customized, domain-specific proposal functions that result in

fruitful samples, but for which we cannot compute forward-backward probability ratio correctly.

3.4 MCMC for Large, Dense Models

MCMC algorithms have been a popular choice of inference for large models. We describe

the advantages below, and list some of the drawbacks that restrict their use in practice. Existing

approaches that scale MCMC to large models are outlined in Section 3.4.3.
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3.4.1 Advantages

For large, dense graphical models, MCMC provides an appropriate tool for inference for a

number of reasons. First, inference is able to handle models with high-degree factors with little

or no impact on time to generate a single sample. Second, generating a single sample is based

on the local structure around the proposed change, and is independent of the number of variables

in the model or the domain of the variables, aiding scalability. Third, by maintaining only a

single configuration of the variables, inference requires minimal memory, and is able to handle

variables with very large domains (such as set-valued variables). Last, MCMC inference can be

made significantly more efficient by changing the proposal distribution; this allows injection of

domain knowledge to directly impact the speed of convergence. For these reasons, we feel MCMC

is the suitable choice for inference in the large, dense graphical models.

3.4.2 Potential Drawbacks

As we describe above, the time for generating a single sample is (for the most part) independent

of the number of variables, the domain size of the variables, and the density of the model. Unfortu-

nately, the number of samples required to capture arbitrarily complex distributions increases expo-

nentially with the number of variables and domain sizes. Further, the number of variables and the

structure of the model have an adverse effect on the number of samples required for the chains to

mix (burn-in period) and on the correlations between consecutive samples. Parallel MCMC chains

are often not practical due to the storage requirements, and parallelizing a single chain of MCMC

is non-trivial, since the MCMC algorithm is inherently sequential.Finally, the proposal function

has a significant impact on the performance of sampling, and designing a proposal requires con-

siderable manual effort and domain expertise. For the large models we want to perform inference

over, these drawbacks lead to a need for more efficient samplers than those currently available.

3.4.3 Related Work

MCMC is a popular method among researchers for inference with large and dense graphical

models [Richardson and Domingos, 2006, Poon and Domingos, 2006, Poon et al., 2008, Singh
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et al., 2009, Wick et al., 2009]. Some probabilistic programming packages popular amongst NLP

practitioners also rely on MCMC for inference and learning [Richardson and Domingos, 2006,

McCallum et al., 2009]. Although most of these methods apply MCMC directly, the rate of con-

vergence of MCMC has become a concern as larger and more densely-factored models are being

considered, motivating the need for more efficient sampling.

A few approaches to distributing MCMC have been recently introduced [Doshi et al., 2009,

Yan et al., 2009]. Along similar lines, there has been considerable work in distributing topic

models [Newman et al., 2006, Asuncion et al., 2009], and recent work has demonstrated impressive

scalability to large document collections [Smola and Narayanamurthy, 2010, Ahmed et al., 2012].

Many of these schemes are designed for custom models, are applicable only to shared-memory

multi-core architectures, or make strong synchronization assumptions that we do not desire in

large-scale models. Gonzalez et al. [2011] introduce an approach that is partially synchronous and

provides linear speedups on a multi-core setup, but requires analysis of global properties of the

graph that is not possible for large, dynamic graphs. A popular option for distributing MCMC

is to use multiple chains, which is useful for both marginal [Murray, 2010] and MAP [Earl and

Deem, 2005] inference. Distributing single chains across multiple machines or cores requires each

chain to converge independently, which can be quite inefficient [Rosenthal, 2000], and we would

like to utilize all the available computational resources to make the convergence for a single chain

more efficient. Further, MCMC with multiple chains requires maintaining copies of the variable

assignments, which may require a prohibitive amount of memory.

Recent work on parallelizing multiple chains addresses this concern for certain models by

sharing information across chains [Nishihara et al., 2012], however relies on shared-memory par-

allelism and does not perform informative partitioning. In addition, these approaches are clearly

not suitable for massive problems that require distribution of a single chain across multiple com-

pute nodes. Pre-fetching has recently been used to sample multiple possible next configurations in

parallel under the assumption that a certain fraction of proposals will be rejected [Brockwell, 2006,

Strid, 2010]. However, these approaches can result in a significant amount of wasted computation,
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and are not suitable for the case where the complete model cannot be placed on a single compute

node. There has also been work on Metropolis-Hastings updates that do not depend on the current

state of the chain [Jacob et al., 2011]. This method can lead to greater asynchrony, but requires

an accurate proposal distribution, which is unlikely to be a reasonable assumption in the case of

large-scale graphical models. Most similar to our motivation is an existing MPI-based approach for

single chains [Wilkinson, 2004]. However, this approach has heavy inter-process communications

costs and synchronization requirements, which make it better suited for the multi-core setting than

the distributed setting. It also relies on a fixed partitioning of the graph. Recent work on identifying

super-clusters for Dirichlet process mixtures [Lovell et al., 2012] is also relevant as it models the

partitioning for distributed MCMC as auxiliary variables, however the approach is model-specific,

relies on synchronous distribution, and has only been applied to small datasets.

In the next two chapters, we will propose techniques for scaling single MCMC chains, using

a combination of distributed processing and asynchronous updates. In Chapter 4 we propose a

distributed sampling approach using the MapReduce framework. Our method partitions the model

and assigns sub-graphs to computation nodes. While performing local inference, our approach

compensate for the variables and factors that are shared between machines. We also propose parti-

tioning and block creation that uses the dynamic sparse structures which arise during inference for

efficient sampling. Motivated by the adverse effects of the synchrony bottleneck, we explore asyn-

chronous updates for MCMC in Chapter 5. For single machine sampling, we investigate stochastic

evaluation proposals by sampling the factors. We also propose distributed frameworks with asyn-

chronous communication for MCMC, exploring both lock-free and locking based architectures.

These contributions efficiently sample from a single chain of MCMC, providing speedups that

facilitate inference on large, dense models.
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CHAPTER 4

SYNCHRONOUSLY DISTRIBUTED MCMC

Divide each difficulty into as many parts as is feasible & necessary to resolve it.

Rene Descartes

Given the widespread use of MCMC inference for complex graphical models, there is a signifi-

cant need for scaling MCMC to larger models. Distributing the computations is a challenging task

because MCMC sampling is inherently sequential in nature. A number of approaches have pro-

posed techniques to parallelize MCMC [Gonzalez et al., 2011, Smola and Narayanamurthy, 2010,

Ahmed et al., 2012, Nishihara et al., 2012, Lovell et al., 2012], but most are either model-specific

or make shared memory assumptions. Many of these approaches also introduce custom communi-

cation protocols that are not easily deployable on existing distributed computing architectures.

In this chapter, we will explore a MapReduce [Dean and Ghemawat, 2004] based distribution

strategy of parallelizing single-chain MCMC. The variables are assigned randomly to machines,

leading to some factors that neighbor variables on separate machines. Parallel MCMC-chains are

initiated using modified proposal distributions that only propose local changes such that factors

that lie across machines are not examined. After a fixed number of samples on each machine,

we redistribute the variables amongst the machines to explore proposals across variables that were

assigned to different machines. We describe the algorithm and the architecture in Section 4.1.

Since dividing the variables randomly is often quite wasteful, we explore more efficient partitioning

strategies in Section 4.2. In Section 4.3, we analyze our algorithm’s convergence and correctness

properties.

To demonstrate the proposed distributed MCMC algorithm, we provide experimental evalua-

tion in Section 4.4. We first explore the utility of parallel sampling for efficient marginal inference

by evaluating on synthetic models in Section 4.4.1. Specifically, we study the affect of the number
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Algorithm 4.1 Synchronous MCMC: Markov Chain Monte Carlo with Synchronous Distribution

1: procedure SYNCMCMC(y0, G, N )
2: y Ω y0 Û Initialize to the initial configuration
3: while convergence do

4: {Yc}N Ω PARTITION(Y, N ) Û Partition the variables, see Section 4.2
5: for Yc in parallel do

6: yc Ω SAMPLE(yc, G) Û Use restricted proposals, see Section 4.1.1
7: end for

8: y Ω COMBINE({yc}) Û Direct concatenation
9: end while

10: end procedure

4.1 Distributed Inference

Our architecture for distributed inference, shown in Fig. 4.1, is built on iterative Map-Reduce [Dean

and Ghemawat, 2004], allowing direct deployment on existing systems. The distributor takes the

current assignment of all the variables, and partitions the model into as many partitions as workers

to create disjoint subsets of variables. This partitioning may be performed randomly, although

we study more efficient partitioning later (in Section 4.2). Further, the distributor need not be

implemented on a single machine and, depending on the partitioning strategy and the size of the

model, can also be parallelized. Each of the sub-models (set of variables) are assigned to inference

workers, and the current value of the variables and the factors that lie between them are commu-

nicated to the worker. Each worker performs inference on the set of variables that is assigned to

it independently (details in the next section). This results in changed values for all the variables

without any conflicts since each variable is assigned to only one worker. At the end of the itera-

tion of sampling, resulting configuration of the variables is combined. We repeat the process with

the distributor taking this new assignment as input, and initiating another iteration of sampling as

described above. We summarize the algorithm in Algorithm 4.1. The distributed synchronous in-

ference can be directly implemented in the MapReduce framework, by combining and distributing

in the Map phase, and performing inference in the Reduce phase (or, for sophisticated partitioning

schemes, combine and distributor is a single MapReduce, and sampling a separate MapReduce).
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4.1.1 Restricting the Proposals

Since MCMC is a sequential process in which each sample may depend on the complete con-

figuration of the previous sample (values assigned to all the variables) as defined by the proposal

function, in general it is not possible to parallelize the computation by sampling sub-models in-

dependently. However, in practice, proposal functions often make local changes to the model,

and MCMC inference requires examination of the local neighborhood of the change to evaluate

and accept the proposal. If multiple proposals are created such that their local neighborhoods are

non-overlapping, then the order in which they are evaluated and accepted are equivalent (i.e. either

ordering is a valid Markov chain).

We can utilize this property to evaluate and accept such sets of proposals in parallel. We

restrict the proposal function of each inference worker to only propose the changes that require

factors that are local to the worker (and do not need to examine the shared factors). By restricting

factors to those local to the worker, the sets of factors required to evaluate such proposals across all

the workers is disjoint. This removes any ordering constraints between the proposals on different

workers, and thus each worker can accept the proposals in parallel without any approximations.

Formally, consider a set of variables Yc assigned to a worker c on which inference is performed.

The set of factors local to c is defined by the factors whose neighbors also belong to c, i.e. Fc =

{f : ’Yi œ N (f), Yi œ Yc}. For a given proposal q : y æ yÕ, the factors local to q, Fq, are those

that participate in the evaluation of q, i.e. appear in fi(y) ≠ fi(yÕ) after cancellation. The restricted

set of proposals for c, therefore, are the proposals that only use the factors local to c for evaluation,

i.e. qc = {q : Fq ™ Fc}.

For static factor graphs, i.e. graphs for which the set of factors does not depend on the values of

the variables, Fq is the set of factors neighboring the changed variables in q. Thus a worker c will

propose a change q that modifies a single variable Yi only if the Markov blanket of Yi is also local

to c. This condition can often be quite restrictive in practice. On the other hand, the condition for

qc can be substantially less strict for dynamic factor graphs, in which the set of factors instantiated

for a proposal q : y æ yÕ depend not on the changed variables, but on the assignments y and yÕ. In
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this case, the Markov blanket for the modified variables in a given proposal can be much smaller

than that of the static graph1, leading to a smaller Fq and hence a larger set of valid proposals qc.

Consider, for example, a model that is fully-factorized for a part of its domain Y
C , i.e.

fi(Y = y) =

Y

_

_

]

_

_

[

Âf (y) if y œ Y
C

q

i Âi(yi) otherwise
(4.1)

For a proposal q : y æ yÕ such that a single variable Yj is changed yÕ = (y|Yj = yÕ
j), if y, yÕ /œ Y

C ,

we can evaluate q by only examining the single factor Âj . The Markov blanket for Yj for the

equivalent static graph, however, consists of all the variables due to the joint factor Âf , and thus Yj

cannot be sampled by a worker that only has a subset of the variables assigned to it.

The above structure can appear as part of a model containing other such structures, and hence

this example is more generally applicable. In particular, such factors are common in entity res-

olution models that contain pairwise factors that specify a preference only if the mentions are in

the same cluster, without taking into account which exact clusters the mentions are in. Similarly,

skip-chain CRFs [Sutton and McCallum, 2011] contain factors that encourage the labels of their

neighbors to be the same. Tree factors prevalent in dependency parsing [Smith and Eisner, 2008]

are also examples of such models. Dynamic factors are a formulation of a number of existing

representations, such as gates [Minka and Winn, 2008], case-factor diagrams [McAllester et al.,

2004], and imperatively-defined factor graphs [McCallum et al., 2009].

Compared to a single machine chain that uses the same restricted proposal function (i.e.
t

c qc),

this approach provides linear speedup. However, note that a single machine implementation need

not use the restricted proposal distribution, and thus may converge using a smaller number of

samples. It is difficult to analyze the difference in quality of these samples, since the restrictions

placed on the proposal function depends considerably on the graph properties of the neighborhood,

number of machines, exploitable structure within the factors, and the partitioning strategy.

1A Markov blanket of a variable in a dynamic graph is a subset of the Markov blanket of the same variable in the
equivalent static graph (generated by unrolling).
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As we describe here, the proposals are evaluated correctly in terms of computing the model

ratio. The other component of the acceptance score, the backward-forward probability ratio of the

proposal function (see Eq. (3.3)), may be difficult to compute in general since it depends on the par-

titioning strategy and the restrictions imposed on the proposal function. We will provide analysis

later in the chapter for a number of partitioning strategies and assumptions on the model structure.

Further, fortunately, when performing MAP inference with MCMC, computing backward-forward

ratio probability is not required to be exact, and we can use our distributed inference approach

directly to compute the MAP configuration for really large, dense models in a scalable fashion.

4.2 Partitioning

The above method of distributed inference assigns each partition of the variables to the workers,

i.e. given the set of variables Y, the objective is to create N subsets Y1, Y2, . . . , Yc, . . . , YN

such that
t

c Yc = Y and ’c, d, Yc fl Yd = ÿ. As described in the previous section, the set of

variables assigned to a worker defines the set of proposals that the worker can explore, and hence

the partitioning can have a significant impact on the performance. In this section, we propose a

number of different strategies, and present a case study with entity resolution.

4.2.1 Random Variable Partitions

The most direct approach to partitioning a set of variables is to create a random split, i.e. each

variable is randomly assigned to a worker. Such partitions create a significant restriction on the

proposals that can be explored on each worker. If we assume a simple proposal function that modi-

fies a single variable in a static factor graph, the restrictions arise from the Markov blanket, and the

only way a variable will be sampled is if all of its neighbors are assigned the same worker. For a

variable that has dv
i neighbors (set of variables that neighbor the factors, i.e. dv

i = |
t

fœN (i) N (f)|),

the probability that all of the neighbors will be assigned to the same partition is N≠dv
i . This is quite

unfortunate as this probability is quite low for non-trivial number of machines, or for models that

have high-degree variables. From a different perspective, out of the
|Y|

N
variables that are assigned
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to a machine, the expected number of variables that will be actually be sampled is
|Y|

Ndv+1
, which

indicates that sampling will be ineffective unless |Y| >> Ndv+1. Thus we expect distributed

inference with random partitioning to fare poorly on non-trivial sized models and high-density

variables and factors, however it might be useful for models with low degree components and very

few number of machines. We see an example of random partitioning of a 4 ◊ 4 grid in Fig. 4.2a

for which only a single variable can be sampled (in white).

4.2.2 Random Factor Partitions

The restrictions imposed on the proposals arise due to the factors that lie across the workers.

Random partitioning is impractical since it does not take the model structure into account, resulting

in a large number of factors that lie across workers. Alternatively, one can create a round-robin

partitioning that randomly assigns each factor and its neighbors to the workers. Since variables

cannot be assigned to multiple machines, we can only select factors for which none of the neigh-

bors have been assigned. The probability that a variable can be sampled by a worker depends on

whether all its neighboring factors are assigned to the same machine, which in turn depends on the

exact structure of the variable neighborhood, and is upper-bounded by N≠df
i , where df

i = |N (i)|.

Although this strategy may improve upon the random partitioning of variables on models with

high-order factors, it is not substantially different.

4.2.3 Neighborhood-based Partitioning

In this section, we focus on a partition strategy that specifically targets locality. In particular, we

pick a random variable, and perform a bread-first search around its neighborhood till the adequate

sized partition is created. We perform such a partition in a round-robin fashion, removing the

variables that have been assigned to a worker for subsequent searches. Note that this is similar to

the splitting strategy used by Gonzalez et al. [2011]. We expect this partition strategy to create

partitions where many of the variables have their Markov blanket assigned to the same worker

(disconnected components may be created for the last few workers, leading to multiple connected
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(a) Random by Variables (b) Neighborhood

(c) Over partitioning (2 ◊ 1 blocks) (d) Using Latent Variables

Figure 4.2: Partitioning of the Grid Model: Examples of 4 ◊ 4 grids over 3 machines using the
various strategies for partitioning, where colored lines indicate the partitions, and filled-in variable
are ones that cannot be sampled (assuming Markov blanket restriction). This examples illustrates
the advantages and drawbacks of the proposed approaches.

components assigned to the same worker). One drawback with such a partitioning strategy is that

it is not easy to parallelize the partitioning, since assignments for subsequent workers depend on

the variables that have already been assigned. Figure 4.2b shows the clear benefits over alternate

strategies for a sample 4 ◊ 4 model since it results in 5 variables that can be sampled.
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4.2.4 Over-partitioning

Here we propose an alternative to neighborhood partitioning that retains the locality benefits

but is distributable. We pre-compute an over-partitioning of the model into M partitions based on

locality (M >> N ), using similar process as neighborhood-based partitioning. Then, at each itera-

tion, M/N of these partitions are randomly assigned to each worker. This partitioning strategy can

be easily parallelized, we are selecting a random worker for each of the over-partitions. Although

we lose some of the locality benefits as partitions that are not overlapping may get assigned to the

same worker, this approach provides additional flexibility in using domain-expertise for the pre-

computed graph partitioning schemes, as it is performed only once. In Fig. 4.2b, over-partitioning

results in fewer variables that can be sampled than neighborhood-based partitioning (3 versus 5),

however it may be preferred due to the benefits in scalability and flexibility in initial partitioning.

4.2.5 Using Latent Variables

One of the drawbacks of the above strategies is that it not easy to take into account the values

of the variables, the dynamic structure of the model, or the state of inference, in a scalable manner.

In particular, the pre-computed set of partitions introduced in the previous section may not always

lead to fruitful proposals for the duration of the inference. As inference progresses, the fraction

of proposals that are fruitful diminishes considerably, and a large number of samples are required

to reach convergence. The goal of partitioning the variables should be to encourage the fruitful

proposals, often requiring information not available at pre-computation. Further partitioning with

dynamic models is extremely difficult, since it may be too expensive to fully unroll the graph, and

local variables as per the partitions constructed using the initial configuration may not remain local

during inference (due to changing structure of the model). Finally, it may be difficult to encode

sophisticated forms of domain knowledge for dynamic models in the pre-partitioning scheme.

In this section we propose a novel strategy that represents the partitioning task as a graphical

model. We represent the partitions as a group of additional N random variables S = {Sc}, one

for each worker. Each of the random variables is a set-valued variable that takes a subset of Y as
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(a) Model used during inference of Y using S

for partitioning
(b) Model for inferring S to identify fruitful par-
titions, conditioned on Y

Figure 4.3: Latent Variables for Partitioning: The regular model is represented as usual by using
circles for Y and solid lines/squares for F , while the partitioning model is represented by rounded,
grey boxes for S and dotted lines/squares for Φ. Distributed inference of Y uses S for partitioning,
while inference of S uses values of Y, or other statistics.

its value, i.e. Sc œ P (Y), where P is the power set function. To represent efficient partitions,

we can add factors Ψ between the set-valued variables S such that these factors encourage fruitful

partitions by assigning a higher score to them. The factors in the partition model can observe the

dynamic structure of the model, the current values of the variables, and other statistics that reflect

the state during inference, providing flexibility of using arbitrary preferences over which partitions

are useful. The task of partitioning is now reduced to that of inference of these set-valued variables.

In general the structure of the partition model itself may be quite complicated, and due to

set-valued variables, inference is intractable. Although it seems that we have just introduced yet

another model to perform inference over, note that our discussion so far is a scalable approach to

distributing MCMC inference. Thus, to perform inference for the partition variables, we use our

proposed distributed approach as described in the previous sections, however we do not sample the

partition variables till convergence. Instead, we switch between inference over regular variables

Y (using the current value of the partition variables to define the assignment of the variables to

the workers) and inference over the partition variables S (i.e. explore different partitions using
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distributed MCMC to discover more efficient partitions). The models used in these two phases is

shown in Fig. 4.3. Unfortunately, we have increased the space over which sampling is defined, and

in general this requires more samples to converge (as will be the case on a single machine). How-

ever, if the partitioning model is defined such that these additional variables and factors facilitate

efficient partitioning, distributed inference can lead to much faster convergence.

Finding the optimal partitioning is a difficult task, and even heuristic/greedy algorithms can

take a long time for large graphs. By including it as a graphical model, the task of finding parti-

tions for distributed inference is left to MCMC, which is a good anytime algorithm for optimiza-

tion. The partitions that are inferred depend on the factor scores, and the model designer can thus

declaratively define the properties of a good partitioning. Unfortunately these factors have to be

task-specific, and we explore the design for the task of cross-document coreference in the next

section.

4.2.6 Case Study: Cross-Document Coreference

In this section we describe the partitioning strategies in context of the model used for large-

scale entity resolution, introduced earlier in Section 2.4.1. Given a number of mentions, the task

of coreference is to cluster the mentions such that mentions in the same cluster refer to the same

latent entity (the identity and the number of entities is unknown). The model consists of mention

variables that take one of the entities as their values, and entities are set-valued variables over

the mentions. The model is defined using a pairwise dynamic factor graph, with affinity factors

between mentions that are assigned the same entity, and repulsion factors between mentions that

are not assigned to the same clusters. We describe the model and inference in further detail later in

the chapter, in Section 4.4.2.

This model contains a number of properties that make inference challenging. First, the entity

variables contain set-valued variables for which the size of the domain is exponential in the number

of mentions. Second, the structure of the model is dense and extremely dynamic; number of

factors for each configuration is quadratic in the number of mentions, and unrolling the model
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is intractable. Finally, the number of mentions for entity resolution is often quite high, often

numbering in the millions. MCMC inference is able to address a number of these concerns, and is

particularly efficient in evaluating proposals. For example, if a single mention m is moved from

an entity e to another entity eÕ as a proposal, the set of factors that are used in evaluation of such a

proposal are ones that neighbor m and mentions in e and eÕ, and are independent of the rest of the

entities and mentions.

We would like to employ our distributed inference framework for large-scale entity resolution,

and below, we describe the various partitioning schemes as they apply to this model.

4.2.6.1 Random Partitioning

As mentioned above, to be able to sample a mention variable, we need all the mentions that

belong to its entity. If we perform a random partitioning of these variables, the probability that

all the mentions of the mention’s entity will be assigned to the same machine is incredibly small,

since dv
i as used in Section 4.2.1 is the size of the entity. Similarly, random partitions of factors as

described in Section 4.2.2 is likely to fare quite poorly as well.

4.2.6.2 Neighborhood

The local neighborhood selects random variables, and performs breadth-first search with the

selected variable as the root. For the entity-resolution model, selecting a random mention and

performing naive BFS would result in all variables, as all the mentions are connected to each

other. However, as described earlier, the model is structured such that mentions belonging to the

same entity as the mention that is selected are required for evaluating proposals, and other mentions

are not. Although we can easily modify this scheme to select other mentions in the entity first, it is

not clear how to augment the set of variables if the number of mentions is smaller than the required

size of the partition. To expand the neighborhood to other mentions or entities, one has to identify

similar mentions and entities, in general requiring a quadratic number of similarity values. Instead,

our neighborhood partitioning takes all the entities in the model, and assigns them randomly to the

partitions (each mention is assigned to the worker that its entity is assigned to).
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4.2.6.3 Over partitioning

In the context of entity resolution, a precomputed over-partitioning corresponds to finding small

sets of similar mentions that are constrained to be assigned to the same machine for the purpose

of inference. Unfortunately, this requires a quadratic number of comparisons in general, and more

importantly, a random assignment of these partitions to workers may not result in all mentions of

an entity assigned to the same worker, leading to ineffectual sampling. On the other hand, one can

imagine the neighborhood model above as an instance of dynamic over-partitioning, whereby each

entity acts as a partition, and are randomly assigned to the workers.

Identifying sets of similar mentions, however, can be extremely useful for sampling. Consider,

for example, a successful proposal that moves a mention m from entity e to eÕ. The acceptance of

such a proposal indicates that the mention did not belong in e, and it is likely that other mentions

in e that are very similar to m also belong to eÕ. However, the probability of the sampler proposing

such moves is incredibly small, especially with a large number of entities and mentions. To address

this problem, we propose a model that identifies such clusters of mentions (sub-entities) that are

very similar to each other. The model is similar to the latent partitioning model described in

Section 4.2.5 and in the next section, and differs in that the factors encourage a very large number

of small clusters. As with the latent variables for partitioning, we use the distributed inference to

both sample the regular mentions (the proposals move sub-entities of mentions instead of single

mentions) and the sub-entities (the proposals move mentions between sub-entities). Although

over-partitioning scheme is not appropriate for partitioning for distributed MCMC, the dynamic

variation proposed here improves per-machine proposals.

4.2.6.4 Latent Variables

To use latent variables for partitioning the model, we need to define the partitions that we prefer.

As we near convergence, many of the entities tend to be quite accurate, with a small fraction of

mentions from the wrong entities. Proposals that move the mentions to the correct entities are only

possible if the correct destination entities is also assigned to the same worker. Random partitioning
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of entities, as described above in the neighborhood scheme, would likely not assign such entities

to the same worker, especially for a large number of workers. To perform fruitful proposals, we

would like to assign entities to the same worker that are similar to each other, since the mentions

between them are more likely to be mixed up.

This suggests that the partition model that encourages similar entities to be assigned to the same

worker may be more efficient. To facilitate such a clustering over the entities, the partition model

contains set-variables that represent groups of similar entities (we call these additional variables

super-entities). The factors between super-entities are similar to the pairwise affinity factors, the

former computes the similarity of two entities, while the latter between two mentions. As we

describe in Section 4.2.5, inference switches between inference of entities by using super-entities

as the partition, and inference of super-entities by using the current assignment of the entities.

4.3 Analysis

In this section, we analyze the validity of our approach for synchronous distribution in context

of different partitioning schemes. We make the following assumptions for the rest of this section.

First, we assume that the unrestricted proposal function is a valid proposal function for the single-

machine implementation, i.e. it is irreducible and aperiodic. Second, we assume each proposal is a

change to a single variable at a time, and further, that the proposals are restricted due to the Markov

blanket property (we only sample variables that have all the variables in their Markov blanket also

assigned to the same worker). Third, although we perform a fixed number of iterations per worker

before re-partitioning, the analysis is described for a single sample per worker (same result applies

to multiple samples per worker). Fourth, we assume that for each variable in our model, there

exists at least one partitioning of the model that allows the variable to be sampled, and further, at

least one such partitioning for each variable can be generated by our partitioning schemes from

Section 4.2.
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4.3.1 MAP Inference

We first consider maximum a posteriori (MAP) inference. Since the objective of MAP infer-

ence is to identify the assignment to the variables with the highest model score, we can perform

the MCMC chain and keep track of the highest-scoring sample. This is not trivial in the distributed

setting, since the variables are distributed over multiple machines. However, since the variables

are not conflicting, we can keep track of the local assignment that has the highest score as defined

by the local factors. In the combine stage, we compute the global assignment by combining the

local highest scoring assignments. To see that the combined assignment will be the highest scor-

ing assignment even when the cross-machine factors are included, note that the proposals on each

machines do not use the cross-machine factors during sampling. Thus the score according to the

cross-machine factors is the same at the beginning of iteration as it is at the end, and hence the

combined assignment is the highest scoring assignment. When partitioning the variables and as-

signing them to the workers, we also communicate the values of the variables from the best-scoring

assignment, and each worker computes an initial best local score by using the factors that are local

to the worker.

The model score is computed exactly for the restricted set of proposals by design, as we show in

Section 4.1.1. For many of the partitioning schemes, we can compute the forward-backward ratio

exactly, as we describe in Section 4.3.2. However, since the forward-backward ratio condition

can be relaxed for MAP inference, we have a lot more flexibility in the choice of partitioning

strategy. Thus we can easily employ latent variable partitioning or manually-specified partitions

such as blocking and canopies [McCallum et al., 2000], or any arbitrary combinations of partition

schemes. To encourage MAP inference to explore high-probability regions of the distribution, we

include an additional temperature as described in Section 3.3. The temperature is lowered after

every partitioning stage, however can be just as easily included in the workers if necessary.
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4.3.2 Marginal Inference

To show that our distributed inference converges to a valid Markov chain with the desired

stationary distribution, we have to show the following properties:

1. Model ratio: The ratio of model scores is computed exactly for each proposal

2. F/B ratio: The forward-backward ratio is computed exactly for each proposal

3. Proposals: The restricted proposal function is irreducible and aperiodic

By the definition, the restricted proposal function only proposes the changes to local variables

that do not use factors across the machines for computing the ratio of the model scores, i.e. (1) is

trivially true for all of the partitioning schemes.

For the purpose of this analysis we assume our proposal function modifies a single variable at

a time. The forward-backward ratio for such a proposal depends on the forward-backward ratio of

the original proposal function, and the probability that the variable will be in the sample pool again

(will have its Markov blanket on the same machine). If the partitioning does not depend on the

values of the variables, the probability of the variable being selected for sampling does not change,

and hence the forward-backward ratio of the proposal function can be used directly. Thus we see

that (2) is true for random, neighborhood, and over-partitioning.

With our random, neighborhood, and over-partitioned schemes, there is a non-zero (but small)

probability that a variable and its Markov blanket will be assigned to the same worker. Thus every

variable will be sampled with a non-zero probability, demonstrating irreducibility. Further, since

the partitioning and the sampling per worker is random, the proposal distribution is also aperiodic.

Hence (3) is also true.

4.3.2.1 Latent Variables Partitioning

Analysis of (2) and (3) do not hold for the partition scheme with the latent variable models.

If inference for latent variables converges, the partitioning might be near deterministic. i.e. some
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variables may not be sampled as their Markov blanket is split across partitions. This breaks the irre-

ducibility condition, however, it can be easily fixed by using a single round of random partitioning

after every k rounds of latent variable based partitioning.

The more crucial issue arises from the fact that for latent variable partitions, the partitioning

depends on the values of the variables (potentially along with other sources of information). This

changes the probability that a variable will be selected for sampling, hence changing the backward

probability. To compute the exact forward-backward probability, one would need to combine the

forward-backward ratio of the latent variable partition model with the forward-backward ratio of

the original proposal function. This is difficult to compute in general; we thus use latent variable

partitions only for MAP inference.

4.4 Experiments

We now turn to empirical evaluation of our synchronous distributed MCMC architecture. In

Section 4.4.1, we provide experiments on synthetic models to assess the utility of the architecture

for marginal inference. In order to demonstrate applications to real-world tasks, we perform MAP

inference for citation deduplication in Section 4.4.2, and large-scale cross-document coreference

task containing millions of variables in Section 4.4.3.

4.4.1 Marginal Inference on Synthetic Models

In this section, we evaluate the utility of our approach on marginal inference for synthetic

models for which we can compute the exact marginals. We generate synthetic models with 24

binary variables, each with a local factor s.t. Âi(y) = (≠1)yei where ei ≥ N (0, 1). For every

variable, we select 2 other random variables as neighbors, and create the following pairwise factor

Âij =

Y

_

_

]

_

_

[

eij yi = yj

≠eij o.w.
, where eij ≥ N (0, 1). We simulate our distributed inference scheme

with random, over-partitions and neighborhood-based partitions on N = 1, 2, 3, 4 and evaluate

the marginal error over time (measured as effective number of samples). The plots are shown in
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Fig. 4.4. Note that this experiment assumes the time for partitioning and communication over the

network is negligible in comparison to sampling.

We can observe a number of interesting aspects from these figures. First note that the random

partitioning performs poorly with higher number of workers. Since the model is quite small,

creating random partitions often allows only a small number of variables that can be sampled, e.g.

for N = 3 the average number of variables out of 24 that can be sampled in each round is only

2.67. Over-partitions do take the locality of the graph into account, however assign the partitions

randomly, leading to a significant improvement over random partitioning in Figs. 4.4c and 4.4d yet

still fail to demonstrate faster convergence for more workers. Finally, in Figs. 4.4e and 4.4f we

see that for the neighborhood partitioning, performing a breadth-first search on the graph results in

effective use of more cores, leading to a faster convergence to lower error marginals.

4.4.2 Citation Resolution

As an evaluation of synchronously-distributed MCMC on a real-world application, we select

the task of citation resolution. Given a large number of citations (that appear at the end of research

papers, for example), the task is to group together the citations that refer to the same paper. The

citation matching problem is an instance of entity resolution (introduced in Section 2.4.1 and stud-

ied in Section 4.2.6), in which observed mentions need to be partitioned such that mentions in a

set refer to the same underlying entity. Note that neither the identities, or the number of underlying

entities, is known.

The graphical model of entity resolution consists of observed mentions m (citations in this

case), and set-valued entities e that take sets of mentions as their values and represent whether the

mentions refer to the same latent entity (in our case, whether all the citations refer to the same

paper). The model consists of two sets of pairwise factors: (1) affinity factors between mentions

that belong to the same entity (their score is high if the mentions are similar), and (2) repulsion

factors between mentions that belong to different entities (the score is high if the mentions are

dissimilar). The model is therefore an instantiation of dynamic factor graphs since the set of
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Figure 4.4: Synchronous MCMC for Marginals: Error in marginals using KL divergence and
L2 metrics, when varying the number of cores, and for different partitioning schemes.
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Figure 4.5: Graphical Model for Entity Resolution: Two entity resolution configurations defined
over 5 mentions (solid, grey circles), with the setting of the variables resulting in 2 entities (light-
gray circles). The factors between mentions in the same entity represent affinity (solid lines), and
the factors between mentions in different entities represent repulsion (dashed lines). For clarity,
we omit the squares from the factors.

factors depends on the current assignment of the entities. Thus,

fi(e) =
ÿ

mi:miœe

ÿ

mjœe

Âa
ij +

ÿ

mj /œe

Âr
ij. (4.2)

The set of possible worlds consists of all settings of the e variables, i.e. all possible clusterings

over the mentions. Examples of the model defined over 5 mentions is given in Fig. 4.5. This repre-

sentation is equivalent to Model 2 as introduced in McCallum and Wellner [2004]. As opposed to

belief propagation and other approximate inference techniques, MCMC is especially appropriate

for the task as it can address set-valued variables and directly enforces transitivity. This model can

be easily extended to using entity-based factors [Culotta et al., 2007].

When performing MCMC, we initialize to singleton entities. Our proposal function for Metropo-

lis Hastings selects a random mention m and moves it form its current entity e to a random entity

eÕ. It is easy to see that to evaluate such a proposal, all the factors but for the ones between m
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and mentions in e and eÕ cancel out in the model ratio. Evaluation of such a proposal thus requires

scoring a number of factors linear in the size of the entities involved in the change.

Returning to our problem of citation resolution, our mentions consist of citation strings from the

References section of a collection of scientific articles. In particular, we evaluate on the Cora

dataset [McCallum et al., 1999], used previously to evaluate a number of information extraction

approaches [Pasula et al., 2003], including MCMC based inference [Poon and Domingos, 2007,

Singh et al., 2009]. The dataset consists of 1295 mentions, that refer to 134 true underlying entities.

We use the same features for our model as Poon and Domingos [2007], using true author, title,

and venue segmentation for features. Since our focus is on evaluating scalability of inference, we

combine all the three folds of the data, and train the model using Samplerank [Wick et al., 2011].

Since the size of this dataset is quite small, we use our own multi-core implementation of the

distribution architecture, instead of using an off-the-shelf Map-Reduce implementation.

As we describe in Section 4.2.6, all the mentions of each entity need to be assigned to the same

partition to be able to sample the entity. We focus only on random partitioning of the entities in

this section, and perform 10, 000 steps of sampling within each worker. Since we are interested

in the MAP configuration in this section, we use a low temperature (t = 0.001) during sampling.

The speedups as the number of machines are varied is presented in Fig. 4.6, showing the accuracy

(measured using two standard entity resolution metrics2) against wall-clock running time. We

present an alternate representation of the same data in Figs. 4.6c and 4.6d, showing the time taken

and the speedup obtained to achieve a fixed level of B3 accuracy. From the results, we find that

an increase in the number of inference worker leads to faster convergence. This speedup is almost

linear for up to 4 workers (single machine implementation is 4 times slower to reach an accuracy

of 95% B3 F1). However, using additional processors do not provide substantial gains, for example

N = 8 only slightly outperforms N = 4 workers on B3, and for the pairwise (PW) metric even

that benefit is not evident. For the initial rounds of sampling, we find that the speedup is in fact

2Pairwise metric uses standard precision and recall using decisions between pairs of mentions as a binary task,
while B3 is a coreference evaluation metric introduced by Bagga and Baldwin [1998].
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Figure 4.6: Citation Resolution with Synchronous MCMC: Evaluation of scalability of Syn-
chronous MCMC by varying the number of workers for citation resolution on the Cora dataset.

super-linear, providing up to 12◊ speedup for N = 8 and up to 6◊ speedup for N = 4. This

can be attributed to the fact that any partitioning of the mentions in the beginning is useful by

itself (without taking parallelism into account), and the acceptance rate is higher at this stage for

sampling under the partitioning constraints than over all the mentions as in the single machine

scenario. This suggests that our approach would benefit single-machine implementations as well.
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And we can see Barack Obama walking slowly, behind Speaker Nancy Pelosi and Senator Dianne Feinstein...

... the economy by unleashing another frustrated tirade against Barack Obama,’’ Tommy Vietor, an Obama campaign spokesman...

People who heard President Barack Obama out on the subject here last month left a meeting divided...

Secretary of State Hillary Rodham Clinton, just last week, proclaimed that the world was entering...

Hillary Rodham Clinton speaks no foreign languages, but has visited 90 countries...

... played a central role, with Secretary of State Hillary Rodham Clinton and Mr. Mitchell taking part in the meetings.

(a) Original set of mentions

And we can see Barack Obama walking slowly, behind Speaker Nancy Pelosi and Senator Dianne Feinstein...

... the economy by unleashing another frustrated tirade against Barack Obama,’’ Tommy Vietor, an Obama campaign spokesman...

People who heard President Barack Obama out on the subject here last month left a meeting divided...

Secretary of State Hillary Rodham Clinton, just last week, proclaimed that the world was entering...

Hillary Rodham Clinton speaks no foreign languages, but has visited 90 countries...

... played a central role, with Secretary of State Hillary Rodham Clinton and Mr. Mitchell taking part in the meetings.

XXX

XXX

XXX

XXX

XXX

XXX

(b) Mentions when provided to the coreference system

Figure 4.7: Person-X Evaluation: We illustrate the evaluation by taking 3 mentions each of
Hillary Clinton and Barack Obama, and hide the string representations before sending them to the
coreference system. Output is evaluated using the original entity names. Note that the disambigua-
tion is quite a difficult task for this evaluation.

4.4.3 Large-scale Cross-document Coreference

In this section, we describe results on a large-scale coreference task. In particular, we study

the task of cross-document coreference, i.e. given a large number of mentions from a text corpus,

the task of identifying the latent entities and assigning the mentions to the entities. The model

is same as described earlier in Section 4.2.6, consisting of set-valued entity variables, and pair-

wise affinity and repulsion factors. For synchronous distribution, we randomly assigns entities to

workers (assigning the mentions of an entity to the same worker). The restricted proposal requires

moving the mentions amongst the entities assigned to the same worker. See Singh et al. [2011b]

for a description of the model and the restricted proposal function.

Due to the lack of labeled cross-document coreference data, we use Person-X evaluation [Gooi

and Allan, 2004] for benchmarking our approach. Person-X evaluation identifies a number of
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Figure 4.8: Speedups on PersonX Evaluation from Synchronous Distribution

entities and their mentions that are unambiguous based on the string names, however hides the

string names (replacing them by X) so that the mentions need to be disambiguated solely based

on the context. This is an artificially difficult task, as we can see in Fig. 4.10a. We extract 25, 000

mentions for 50 entities from the NYT dataset [Sandhaus, 2008]. The similarity of mentions is

computed using a shifted cosine distance of the bag of words of the context around the mentions.

We perform rounds of 1 million inference steps between re-partitioning of the model. The results

are averaged over five runs.

Figure 4.8 shows accuracy obtained by our proposed inference technique as the number of

machines is varied. As we increase number of machines, the rate of convergence increases dra-

matically. For the lower end of the plot, we can see at least a linear speedup (super-linear in the

very early stages, as we observed in the previous section). This gain drops off as we increase the

number of machines, since the proposal function gets more restricted as the number of partitions

of the model increase, and thus requires more samples to obtain the same accuracy. For example,
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Method
Pairwise B3 Score

P/ R F1 P/ R F1
String-Match 30.0 / 66.7 41.5 82.7 / 43.8 57.3

Subsquare 38.2 / 49.1 43.0 87.6 / 51.4 64.8
Our Model 44.2 / 61.4 51.4 89.4 / 62.5 73.7

Table 4.1: F1 at Convergence on WikiLinks Data: . The results are significant at the 0.0001
level over Subsquare according to the difference of proportions significance test.

complete dataset has since been released for public use [Singh et al., 2012a]. Inference is run for

20 rounds of 10 million samples each, distributed over N machines. We use N = 100, 500 and the

B3 F1 score results obtained for each case are shown in Figure 4.10b. It can be seen that N = 500

converges to a better solution faster, showing effective use of parallelism. Note that for a corpus

of this size, evaluating the pairwise scores at the end of each round is computationally expensive.

As a result, we compute the B3 scores at each iteration and compute the pairwise scores only for

the final converged model. Table 4.1 compares the results of our approach (at convergence for

N = 500), the baseline mention-string match and a state of the art distributed clustering algorithm,

Subsquare [Bshouty and Long, 2010]. Our approach significantly outperforms the competitors.

4.5 Related Work

In this section we contrast our approach directly with some of the related approaches. For a

general overview of scaling MCMC, we refer the reader to Section 3.4.3.

Asuncion et al. [2009] and Smola and Narayanamurthy [2010] distribute MCMC-based infer-

ence for topic models. Our approach is similar, but we do not calculate probabilities (marginals)

for the entity resolution applications. This allows us to specify non-random redistribution and cus-

tomized proposal functions, which can lead to faster convergence. Further, these techniques do not

apply to general undirected graphical models, although the class of models they address have been

expanded recently by Ahmed et al. [2012]. Low et al. [2010] introduce the GraphLab library that

distributes computation when specified on nodes and edges. It is not straightforward to express our

model as computations on nodes and edges because of set-valued variables and hierarchical mod-
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(a) New York Times

(b) WikiLinks data

Figure 4.10: Accuracy Improvements when using Latent Variables for Partitioning
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els. In comparison to the above approaches, we allow the most flexibility in specifying structure,

partitioning strategy, and the proposal function.

Our latent variable model for partitions and blocked sampling is similar to some approaches

proposed since we published this work. Work on identifying super-clusters for Dirichlet process

mixtures [Lovell et al., 2012] is relevant as it models the partitioning for distributed MCMC as

auxiliary variables, however the approach is model-specific and has been applied only to small

datasets. It is also one of the few examples of distributed MCMC on a synchronous distribution

framework. Recent work by Venugopal and Gogate [2013] propose an approach similar to sub-

entities for identifying which variables to sample in combination. Their approach is also dynamic,

however they solve the optimization for identifying sub-entities in a greedy manner, as opposed to

our use of MCMC.

Our work on informed partitions is also related to Gonzalez et al. [2009b], where message

passing is distributed by efficiently splitting the graph to minimize communication. This method

is not applicable when the graph structure changes with every configuration, or the ground graph3

is fully connected. Furthermore, set-valued variables are difficult to incorporate into message

passing.

4.6 Conclusion and Future Work

Motivated by the need for scalable, distributed inference for large, dense graphical models

that can be deployed on existing architectures, we proposed synchronous distributed MCMC. In

each iteration, the algorithm partitions the model amongst the workers, which then sample their

local variables independently using a restricted sampler. We proposed a number of partitioning

strategies, including a novel model-based partitioning that is dynamic, adaptive to the state of

inference, and can employ domain knowledge for fruitful partitions. We compared the convergence

3In our work, as in much of the previous work [Culotta, 2008, McCallum et al., 2009], the dynamic model is
specified implicitly. The ground graph is the result of instantiating all the factors into a possibly very large graph-
structured model.
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correctness of the resulting MCMC chain, and demonstrated speedups on citation resolution and

large-scale cross-document coreference.

A number of avenues exist for future efforts. Our architecture assumes that the model is suffi-

ciently compact such that the transfer of all the variables and their assignments over the network

is not a bottleneck, which may not be reasonable for many models. Further, the partition scheme

may not be load balanced well, and may assign a large number of variables to a single machine.

Although our asynchronous MCMC approaches introduced in the next chapter partly address this

concern, it is possible to design a partitioning scheme that is load-balanced yet efficient and con-

verges to the desired posterior. Finally, although we show that our samplers converge, we do not

have a theoretical understanding of how the number of machines influences the convergence speed.

Although more machines leads to more samples per minute, each sample is of a poorer quality as

the proposals are restricted, and we do not expect a linear speedup.
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CHAPTER 5

ASYNCHRONOUS MCMC SAMPLING

Many shall run back and forth, and knowledge shall be increased.

Daniel 12:4

Although we obtain impressive results when using synchronously distributed MCMC inference

in the last chapter, there exist a number of concerns that may restrict scalability. One of the biggest

drawbacks of the system is the synchronization barrier imposed by the distributor, i.e. we require

all workers to finish inference before re-partitioning can begin, and for partitioning to finish before

any inference can begin. This causes a significant hit on performance in a heterogeneous cluster of

nodes, since the approach is only as fast as the slowest machine (also known as the curse of the last

reducer [Suri and Vassilvitskii, 2011]). Second, even though some of our partitioning schemes can

be distributed, it still provides a significant bottleneck to inference, especially for large models.

Third, the restrictions imposed on the proposal function can sometimes be extremely severe and

lead to lower quality samples. Last, the synchronous inference architecture is designed around

a fixed number of machines, and it is not trivial to add/remove computing nodes as inference is

progressing.

In this chapter we explore a number of techniques that provide efficient MCMC inference

whilst addressing some of the concerns above. Since the restrictions on proposal function arise

from exact computation of the model scores, in Section 5.1 we propose a novel sampling tech-

nique that approximates the model score evaluation by using only a subset of the factors for every

sample. Although this results in inexact sampling, experiments show significant improvements

on a single machine implementation, suggesting approaches that break some of the restrictions on

the proposal functions imposed in the previous chapter may still provide efficient inference. In

Section 5.2 we demonstrate that the synchronous bottleneck can have a substantial impact on the
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scalability. We propose a distributed MCMC inference framework in Section 5.3 that supports

the advantages of the using asynchronous communication however retains the restrictions on the

proposals to allow exact model score computation. We evaluate the approach on two real-world en-

tity resolution tasks, citation resolution and author disambiguation, demonstrating improvements

over synchronous distribution, especially for heterogeneous workers. Finally, in Section 5.4, we

investigate a completely lock-free distribution framework for MCMC inference, that combines

asynchronous communication with no restrictions on the proposals (leading to inexact sampling).

We provide a number of strategies for resolving conflicts amongst the inference workers. The

work presented in this chapter has previously appeared as Singh and McCallum [2011], Singh

et al. [2012b], and Singh et al. [2012c], and conflict-free asynchronous distributed MCMC was

used for inference in Wick et al. [2013].

5.1 MCMC with Stochastic Proposal Evaluation

In the previous chapter, we proposed a synchronously distributed MCMC inference algorithm

that partitions the model in each iteration, and performs sampling independently on each sub-

graph using a restricted proposal function. The proposal function is restricted since the factors that

cross workers cannot be used for exact computation of the model score ratio. These restrictions

imposed on the proposal function, due to sub-optimal partitioning or high density of the model,

lead to poor quality of samples on each worker, and can result in poor scalability as the number of

workers is increased. Here, we study the effect of not imposing an exact model score constraint,

and investigate its utility on single-machine, single-chain inference.

Computing acceptance exactly for Metropolis Hastings can be slow in situations where (a) the

model exhibits variables that have a high-degree (neighbor many factors), (b) proposals modify

a substantial subset of the variables to satisfy domain constraints (such as transitivity in entity

resolution), or (c) evaluating a single factor is expensive, such as when features are based on

string-similarity. For example, the seemingly innocuous proposal changing the entity type of a

single entity requires examining all its mentions, i.e. scoring a linear number of factors (in the
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number of mentions of that entity). Similarly, evaluating coreference of a mention to an entity also

requires scoring factors to all the mentions of the entity, as we saw in the previous chapter. Often,

however, the factors are somewhat redundant, for example, not all mentions of the “USA” entity

need to be examined to confidently conclude that it is a COUNTRY, or that it is coreferent with a

“US of A” mention.

In this section we propose an approximate MCMC framework that facilitates efficient infer-

ence in high-degree graphical models. In particular, we approximate the acceptance ratio in the

Metropolis Hastings algorithm by replacing the exact model score with a stochastic approximation

that samples from the set of relevant factors. We explore two sampling strategies, a fixed proportion

approach that samples the factors uniformly, and a dynamic alternative that samples factors until

the method is confident about its estimate of the model score. We evaluate our method empirically

on both synthetic and real-world data. On synthetic classification data, our approximate MCMC

procedure obtains the true marginals faster than a traditional MCMC sampler. On real-world tasks,

our method achieves 7 times speedup on citation matching, and 13 times speedup on large-scale

author disambiguation.

5.1.1 Monte Carlo MCMC

Instead of evaluating the log-score fi of the model exactly, we propose a Monte-Carlo estima-

tion of the log-score. In particular, if the set of factors for a given proposal y æ yÕ is F(y, yÕ), we

use a sampled subset of the factors S ™ F(y, yÕ) as an approximation of the model score. In the

following we use F as an abbreviation for F(y, yÕ). Formally,

fi(y, yÕ) =
ÿ

fœF

Âf (yÕ
f ) ≠ Âf (yf ) = |F| ·

1

EF

Ë

Âf (yÕ
f )

È

≠ EF [Âf (yf )]
2

(5.1)

fiS(y, yÕ) = |F| ·
1

ES

Ë

Âf (yÕ
f )

È

≠ ES [Âf (yf )]
2

(5.2)

We use the sample log-score (fiS) in the acceptance probability – to evaluate the samples. Since we

are using a stochastic approximation to the model score, in general we need to take more MCMC
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Algorithm 5.1 MCMCMC: Monte Carlo Markov Chain Monte Carlo

1: procedure MCMCMC(G, q, N , y0)
2: y Ω y0

3: Sy Ω {}
4: for N samples do

5: yÕ ≥ q(y, ·)
6: S Ω SAMPLE(F(y, yÕ)) Û Uniform (5.1.1.1) or Confidence-Weighted (5.1.1.2)

7: – Ω min

A

1,
q(yÕ, y)

q(y, yÕ)
exp fiS(y, yÕ)

B

Û Approximate acceptance probability

8: if flip(–) then

9: y Ω yÕ Û Accept the Sample
10: end if

11: S
+
Ω y Û Accumulate Sample

12: end for

13: return Sy

14: end procedure

samples before we converge, however, since evaluating each sample will be much faster (O(|S|)

as opposed to O(|F|)), we expect overall sampling to be faster. The algorithm is summarized in

Algorithm 5.1.

In the next sections we describe two strategies for sampling the set of factors S. The primary

restriction on the set of samples S is that their mean should be an unbiased estimator of EF [Â].

Further, time taken to obtain the set of samples should be negligible when compared to scoring all

the factors in F . Note that there is an implicit minimum of 1 to the number of the sampled factors.

5.1.1.1 Uniform Sampling

The most direct approach for subsampling the set of F is to perform uniform sampling. In

particular, given a proportion parameter 0 < p Æ 1, we select a random subset Sp ™ F such

that |Sp| = p · |F|. Since this approach is agnostic as to the actual factors scores, ES [f ] ©

EF [f ]. A low p leads to fast evaluation, however it may require a large number of samples due to

the substantial approximation. On the other hand, although a higher p will converge with fewer

samples, evaluating each sample is slower.
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5.1.1.2 Confidence-Based Sampling

Selecting the best value for p is difficult, requiring analysis of the graph structure, and statistics

on the distribution of the factors scores; often a difficult task in real-world applications. Further,

the same value for p can result in different levels of approximation for different proposals, either

unnecessarily accurate or problematically noisy. We would prefer a strategy that adapts to the

distribution of the scores in F .

Instead of sampling a fixed proportion of factors, we propose to sample until we are confident

that the current set of samples Sc is an accurate estimate of the true mean of F . In particular, we

maintain a running count of the sample mean ESc
[Â] and variance ‡Sc

, using them to compute a

confidence interval IS around our estimate of the mean. Since the number of sampled factors S

could be a substantial fraction of the set of factors F1, we also incorporate finite population control

(fpc) in our sample variance computation. We compute the confidence interval as follows:

‡2
S =

1

|S| ≠ 1

ÿ

ψf œS

(f ≠ ES [f ])2 (5.3)

IS = 2z
‡S

Ò

|S|

ˆ

ı

ı

Ù

|F| ≠ |S|

|F| ≠ 1
(5.4)

where we set the z to 1.96, i.e. the 95% confidence interval. This approach starts with an empty

set of samples, S = {}, and iteratively samples factors without replacement to add to S, until the

confidence interval around the estimated mean falls below a user specified maximum interval width

threshold i. As a result, for proposals that contain high-variance factors, this strategy examines a

large number of factors, while proposals that involve similar factors will result in fewer samples.

Note that this user-specified threshold is agnostic to the graph structure and the number of factors,

and instead directly reflects the score distribution of the relevant factors.

1Specifically, the fraction may be higher than > 5%
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5.1.2 Negative Proof of Convergence

By using a stochastic evaluation of the proposal, we are in effect include stochastic noise to the

log ratio of the model scores. In particular, since fi(y, yÕ) = fi(yÕ) ≠ fi(y), then

fiS(yÕ, y) = fi(yÕ, y) + ›S (5.5)

where ›S is the additive noise due to the stochastic evaluation, and as such, E [›S ] = 0.

Let us consider the transition probability as defined by the set of samples S

P S
ij = q(yi, yj) min

Q

c

c

a

1,
q(yj, yi)

q(yi, yj)
exp (fiS(yj, yi))

R

d

d

b

(5.6)

= q(yi, yj) min

Q

c

c

a

1,
q(yj, yi)

q(yi, yj)
exp (fi(yj, yi) + ›S)

R

d

d

b

(5.7)

= q(yi, yj) min

Q

c

c

a

1,
q(yj, yi)

q(yi, yj)
exp (fi(yj, yi)) exp ›S

R

d

d

b

(5.8)

Assume that the same set of samples S is used for yi æ yj as for yj æ yi. Without loss of

generality we can let P S
ij = q(yi, yj)

q(yj, yi)

q(yi, yj)
exp (fi(yÕ, y)) exp ›S , which implies P S

ji = q(yj, yi).

Therefore,

p(yi)P
S
ij =

exp fi(yi)

Z
q(yi, yj)

q(yj, yi)

q(yi, yj)
exp (fi(yj, yi)) exp ›S (5.9)

=
exp fi(yi)

Z
q(yj, yi)

exp fi(yj)

exp fi(yi)
exp ›S (5.10)

= p(yj)P
S
ji exp ›S ”= p(yj)P

S
ji (5.11)

Thus detailed balance does not hold with stochastic evaluation. Further, it does not hold in expec-

tation either, since E [exp ›S ] ”= 1. The main issue arises from the fact that P S
ij ”= Pij exp ›S due to

the asymmetric nature of min in the acceptance probability.
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Although MAP inference does not require detailed balance to hold, it does require the model

probability ratio to be computed exactly. With approximate sampling, we do not compute the

model ratio exactly, and thus even for MAP inference approximate sampling does not converge.

5.1.3 Experiments

Although the chain may not converge to the exact marginals, it can still be used for speeding

up inference at the earlier stages of sampling, after which we can switch to non-stochastic MCMC

evaluation to produce accurate samples. This is akin to the literature in adaptive sampling that

show convergence by assuming the adaptive nature vanishes asymptotically [Andrieu and Thoms,

2008, Atchadé et al., 2011]. In this section we provide empirical evidence of the utility of the

stochastic evaluation of the proposals for marginal and MAP inference.

5.1.3.1 Marginal Inference on Synthetic Data

Consider the task of classifying entities into a set of types, for example, POLITICIAN, VEHICLE,

CITY, GOVERMENT-ORG, etc. For knowledge base construction, this prediction often takes place

on the entity-level, as opposed to the mention-level common in traditional information extraction.

To evaluate the type at the entity-level, the scored factors examine features of all the mentions of

the entity, along with the labels of all relation mentions for which it is an argument. See Yao et al.

[2010] and Hoffmann et al. [2011] for examples of such models. Since a subset of the mentions

can be sufficiently informative for the model, we expect our stochastic MCMC approach to work

well.

We use synthetic data for such a model to evaluate the quality of marginals returned by the

Gibbs sampling MCMC. Since the Gibbs algorithm samples each variable using a fixed assignment

of its neighborhood, we represent generating a single sample as classification. We create star-

shaped models with a single unobserved variable (entity type) that neighbors many unary factors,

each representing a single entity- or a relation-mention factor (See Fig. 5.1a for an example).

We generate a synthetic dataset for this model, creating 100 variables consisting of 100 factors

each. The scores of the factors are generated from gaussians, N (0.5, 1) for the positive label, and
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(b) Distribution of Factor scores

Figure 5.1: Synthetic Model for Binary Classification: containing a single variable that neigh-
bors 100 factors, forming a star graph, shown in (a). Each factor score is sampled from N (±0.5, 1),
depending on the value of the variable. The similarity of the potentials is shown in (b).

N (≠0.5, 1) for the negative label (note the overlap between the weights in Fig. 5.1b). Although

each structure contains only a single variable, and no cycles, it is a valid benchmark to test our

sampling approach since the effects of the setting of burn-in period and the thinning samples are

not a concern.

We perform standard Gibbs sampling, and compare the marginals obtained during sampling

with the true marginals, computed exactly. We evaluate the previously described uniform sampling

and confidence-based sampling, with several parameter values, and plot the L1 error to the true

marginals as more factors are examined. Note that here, and in the rest of the evaluation, we shall

use the number of factors scored as a proxy for running time, since the effects of the rest of the steps

of sampling are relatively negligible. The error in comparison to regular MCMC (p = 1) is shown

in Fig. 5.2, with standard error bars averaging over 100 models. Initially, as the sampling approach

is made more stochastic (lowering p or increasing i), we see a steady improvement in the running

time needed to obtain the same error tolerance. However, the amount of relative improvements

slows as stochasticity is increased further; in fact for extreme values (i = 0.05, p = 0.1) the chains

perform worse than regular MCMC.
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Method Factors Examined Speedup

Baseline 57,292,700 1x
Uniform Sampling
p = 0.75 34,803,972 1.64x
p = 0.5 28,143,323 2.04x
p = 0.3 17,778,891 3.22x
p = 0.2 12,892,079 4.44x
p = 0.1 7,855,686 7.29x
Variance-Based Sampling
i = 0.001 52,522,728 1.09x
i = 0.01 51,547,000 1.11x
i = 0.1 47,165,038 1.21x
i = 0.5 32,828,823 1.74x
i = 1 18,938,791 3.02x
i = 2 11,134,267 5.14x
i = 5 9,827,498 5.83x
i = 10 8,675,833 6.60x
i = 20 8,295,587 6.90x

Table 5.1: MCMCMC Speedups for Citation Resolution: Speedups to obtain 90% B3 F1

the size of the clusters. For author coreference, the number of author mentions and the number of

references to an author entity can often be in the millions, making the evaluation of the MCMC

proposals computationally expensive.

We use the publicly available DBLP dataset2 of BibTex entries as our unlabeled set of men-

tions, which contains nearly 5 million authors. For evaluation of accuracy, we also include author

mentions from the Rexa corpus3 that contains 2, 833 mentions labeled for coreference. We use the

same Metropolis-Hastings scheme that we employ in the problem of citation matching, however

it uses manually-specified blocking to encourage fruitful proposals. As before, we initialize to the

singleton configuration and run the experiments for a fixed number of samples, plotting accuracy

versus the number of factors evaluated (Fig. 5.4a) as well as accuracy versus the number of samples

generated (Fig. 5.4b). We also tabulate the relative speedups to obtain the desired accuracy level

2http://www.informatik.uni-trier.de/~ley/db/

3http://www2.selu.edu/Academics/Faculty/aculotta/data/rexa.html
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Method Factors Examined Speedup

Baseline 1,395,330,603 1x
Uniform
p = 0.5 689,254,134 2.02x
p = 0.2 327,616,794 4.26x
p = 0.1 206,157,705 6.77x
p = 0.05 152,069,987 9.17x
p = 0.02 142,689,770 9.78x
Variance
i = 0.00001 1,442,091,344 0.96x
i = 0.0001 1,419,110,724 0.98x
i = 0.001 1,374,667,077 1.01x
i = 0.1 1,012,321,830 1.38x
i = 1 265,327,983 5.26x
i = 10 179,701,896 7.76x
i = 100 106,850,725 13.16x

Table 5.2: MCMCMC Speedups for Author Resolution: Speedups to reach 80% B3 F1

in Table 5.2. Our proposed method achieves substantial savings on this task: speedups of 13.16

using the variance sampler and speedups of 9.78 using the uniform sampler. As expected, when we

compare the performance using the number of generated samples, the approximate MCMC chains

appear to converge more slowly; however, the overall convergence for our approach is substantially

faster because evaluation of each sample is significantly cheaper. We also present results on using

extreme approximations (for example, p = 0.01), resulting in convergence to a low accuracy.

5.1.4 Discussion

This section explores a stochastic MCMC algorithm that performs stochastic evaluation of

the proposals during MCMC. Although the empirical results show impressive speedups to obtain

accurate marginals and MAP configurations, we also show that the detailed balance does not hold

for these chains. Thus, when we increase stochasticity of the approach, the chains often do not

converge, for example p = 0.01 and i = 10 in Fig. 5.4 and i = 0.1, 0.05 for Fig. 5.1.

These results suggests sampling with unrestricted proposals in the synchronous distribution

will add undesirable biases to our chains, however may be useful in initial stages of inference
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before switching to synchronous distribution with restrictions imposed on the proposal functions.

In the rest of the chapter, we explore frameworks that are directly asynchronous, and address both

the restrictions imposed on the proposal function, and the synchrony bottleneck inherent in the

iterated Map-Reduce framework.

5.2 Synchronous Bottleneck, an illustration

A significant motivation for the rest of the chapter is the bottleneck created in distributed sys-

tems due to synchronous communication. This is a commonly studied problem in the popular

Map-Reduce framework, in which it is often known as the curse of the last reducer [Suri and Vas-

silvitskii, 2011]4. The problem can arise due to data skew, i.e. the variance in worker loads leads

to some of the workers taking a longer time than others. Load-balancing, thus, has been a well-

studied field in order to address this challenge. However, even if the loads are homogenized, it is

not guaranteed that all the workers will perform equally well. Heterogeneity can arise from differ-

ent architectures, memory access patterns, load from external processes, network load, and so on.

It is not possible to compensate for all of these issues without constructing customized hardware

dedicated to the task at hand; an expensive and increasingly impractical solution in today’s world

of elastic and cluster computing.

Data skew is also a concern for synchronously distributed MCMC. First, since we are partition-

ing a graph, it is not always possible to preserve locality and partition in a balanced manner, and we

have to compromise one in order to maintain the other. Consider, for example, nodes of the graph

that have an incredibly high degree; assigning all the neighbors of the node to the same worker will

maintain locality, however will lead to unbalanced load. Graphs with power law degree distribu-

tion are common in large datasets and models, for example we describe a power law distribution of

entity sizes in Singh et al. [2012a], and Gonzalez et al. [2012] describe techniques to handle such

graphs in a distributed manner. A more-challenging concern arises from the fact our models may

4This is a version of Amdahl’s Law [Amdahl, 1967], which is used to compute the maximum theoretical speedup
in performance if only a part of the system is improved.
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Figure 5.5: An Illustration of the Synchronous Bootleneck: Comparison of an asynchronous
architecture with a synchronous architecture on simulated loads and workers. The speedups from
asynchronous distribution stay near linear, while the synchronous framework is not scalable for
large number of heterogeneous workers or with heterogeneous loads.
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be dynamic, and in general, the load on a worker can actually vary during inference. For example,

in the entity resolution models described in the last chapter, the overall load is quadratic in the size

of the entities, and thus if the sizes of the entities change during inference, the load on the worker

can vary dramatically. This can be partially addressed by sampling less and communicating often,

at an additional cost that substantially affect speedup.

We present an illustration of the adverse effects of the synchronous bottleneck on scalability.

We create a number of synthetic loads and simulate their running time on synchronous and asyn-

chronous framework, where the asynchronous approach is implemented as a queue of jobs that

each worker queries once it has processed its previous load. We create ≥ 2500 simulated loads

and vary the number of workers from 1 to 30. Homogeneous loads (number of operations) and

worker speeds (time per operation) are set to 1, while for heterogeneous loads and speeds we sam-

ple from the gamma distribution with k = 2, ◊ = 2. We average the speedups over 20 runs, and

compare ideal speedup (linear) with the speedups from synchronous and asynchronous distribution

in Fig. 5.5. It is evident that heterogeneity in either the loads or worker speeds has a significant

impact on the speedups of the synchronous framework, while the asynchronous framework still

provides near linear speedups. Further when both loads and workers are heterogeneous, as shown

in Fig. 5.5d, synchronous framework only provides a speedup of ≥ 3 for 30 machines, while

asynchronous is still scalable (≥ 27 speedup for 30 machines).

Note that this comparison does not take into account the cost of communication, and it is

possible to design synchronous frameworks that have cheaper communication than asynchronous.

Further we also ignore the time for dequeuing a job for the asynchronous framework; conflicts can

arise when a worker has to wait while the queue is serving a job to another worker. Nonetheless,

we feel this simulation provides a valuable insight into the impact that the synchronous bottleneck

can have on scalability.
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5.3 Conflict-free Asynchronously Distributed MCMC

In Section 5.1 we propose stochastic evaluation of proposals to investigate the effect of drop-

ping the restrictions placed by synchronous distribution. Although we show dropping the restric-

tions can benefit sampling, the synchronous bottleneck in the architecture is still the major concern,

as we show on comparison with asynchronous distribution of the same load in Section 5.2. Here

we focus on addressing the synchronous bottleneck, but maintain the restrictions imposed by exact

model score computation.

In this section we propose an architecture for asynchronous distributed inference that maintains

locks on variables for conflict-free inference. A central control on the locking/partitioning allows

each worker to independently query for the set of variables to infer over. The locking ensures

there is no overlap amongst the variables assigned to the workers, and hence the ratio of the model

scores can be computed exactly for the restricted proposals. We show that the chains with such a

distribution converge to the correct stationary distribution.

5.3.1 Architecture

The synchronously distributed MCMC technique proposed in the previous chapter provides

efficient sampling, however faces restricted scalability due to the synchronous bottleneck. We want

to design an architecture that maintains the benefits of distributed inference but communication

amongst the workers is asynchronous.

Our proposed architecture is shown in Fig. 5.6. A distributed persistence layer maintains all the

current values of the variables. A separate variable-locking mechanism coordinates the partitioning

of the variables, and locking the variables that are assigned to a worker, and freeing the lock when

the worker has finished inference. The overall algorithm works as follows:

1. The inference worker requests a partition to perform inference over.

2. The variable-locking mechanism selects a partition over the unlocked variables, hands them

off to the inference worker, and marks the variables in the partition as locked.

3. The inference worker reads the current values of the variables from the distributed DB.
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4. The worker performs inference over the partition assuming (correctly) that no other worker

is sampling the same variables. Note that the same restrictions are imposed on sampling as

in the previous chapter, i.e. only the proposals that examine the local factors for scoring can

be proposed.

5. On completion (sampling for a fixed number of samples), the inference worker writes the

new values of the variables to the distributed DB. There will be no conflicts since the vari-

ables cannot be assigned to any other worker.

6. The inference worker notifies the variable-locking mechanism the set of variables it sampled.

The variable-locking mechanism marks the variables as unlocked. Repeat step 1.

For the above architecture to work for multiple inference workers, we only allow a single-

threaded access to the variable-locking mechanism, i.e. it is only handling the requests of a single

inference worker at a time. Although this adds a bottleneck, the task of variable-locking and assign-

ing a partition is much faster than performing inference and communication, and hence we expect

the impact this bottleneck to be negligible. This architecture also supports the various partitioning

strategies from the previous chapter since the variable-locking mechanism is free to construct ar-

bitrary partitions over the free variables while inference workers are performing inference. This is

also a significant improvement over the synchronous distribution since inference workers in latter

cannot perform inference before partitioning is complete, and vice versa. For the rest of the sec-

tion, we assume that only a small fraction of variables are locked at any time, i.e. we focus on

sampling for very large models while the load on each inference worker is relatively small.

5.3.2 Analysis

Our assumption that only a small fraction of the model is assigned to the workers is important

for the analysis. In particular, if the model is exactly partitioned over the workers and all the

variables are locked, then the variable locking mechanism would have no choice to assign the very

same variables to the inference worker as the ones the worker performed inference on, since the rest
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Figure 5.6: Conflict-free Asynchronous Distributed Inference: Variable locking is a lightweight
index that maintains the locking status of each variable. Each inference worker requests locks and
reads/writes to the DB completely asynchronously.

of the variables are locked. This would prevent the chain from being irreducible, hence resulting

in non-stationarity. We further assume that workers perform inference over the partition assigned

to them in finite time, i.e. each worker eventually unlocks the variables that were assigned to it.

If this assumption is broken, i.e. if a worker fails, the variables will remain locked for the rest of

sampling, resulting in reducible chains.

The rest of the analysis is similar to Section 4.3.2, and makes similar assumptions. To show

correctness, we need to show exact model score ratio computation, irreducibility and aperiodicity

of the proposals, and exact computation of the forward-backward ratio.

• Model Score: Since the proposals are restricted to examine the factors local to the workers,

the model score is computed exactly.

• Proposal Function: Since we assume only a fraction of the variables are ever locked, it

is easy to see that we will explore all the various partitions if any of the random partition-

ing schemes is used. Thus if the proposal function used in each worker is irreducible and

aperiodic, the overall propsal function maintains irreducibility and aperiodicity.
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• F/B Ratio: To show that the forward-backward ratio remains unchanged, we have to show

that the probability of a variable being selected for sampling is independent of its value.

Since the variable locking mechanism does not take the values of the variables into account,

and since each variable is unlocked in finite time, the probability of selecting a variable is

independent of its value. Note that this probability does not depend on the speed of the

various inference workers since every variable has the same probability of being assigned to

every inference worker.

Given these conditions, we can see that the chain will converge to the desired distribution.

We can also use the latent variable partitioning scheme, however we cannot guarantee correctness

since the forward-backward ratio cannot be computed exactly. However latent variable can still be

used for MAP inference.

5.3.3 Experiments

To assess the utility of asynchronous distribution, we evaluate MCMC inference on two entity

resolution tasks: citation deduplication and author disambiguation.

5.3.3.1 Citation Deduplication

In this section, we revisit the citation resolution task. In Section 4.4.2, we demonstrate that

synchronous distribution for this task is able to achieve significant speedups for up to 4 inference

workers, however is unable to provide additional gains for more workers. We also use the same

dataset in Section 5.1.3.2 to show that using stochastic MCMC can used to speed-up single ma-

chine inference, the chains may converge to the desired distribution. Here, we will return to the

distributed MCMC architecture, and investigate whether asynchronous distribution with locking is

able to address the drawbacks of the synchronous case.

We present the performance of asynchronously distributed MCMC in Fig. 5.7, plotting the B3

and pairwise F1 against the wall-clock running time, and presenting the time taken/speedup to

obtain a fixed level of accuracy. As evident from the figures, increasing the number of workers
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Figure 5.7: Speedups for Citation Resolution with Asynchronous MCMC: Evaluation of scal-
ability of Asynchronous MCMC by varying the number of workers for citation resolution.
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Figure 5.8: Comparing Synchronous versus Asynchronous for Citations: Evaluation of scal-
ability of Asynchronous MCMC compared to Synchronous MCMC by varying the number of
workers for citation resolution on the Cora dataset.
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consistently improves the rate of convergence for both the metrics, with N = 8 providing a nearly

linear speedup over N = 1. We describe the possible explanation for super-linear speedups for

entity resolution in Section 4.4.2.

To compare against the synchronous distribution, we plot the accuracy of our previous exper-

iment in Fig. 5.8 with uniform and heterogeneous workers. For N = 4, as shown in Fig. 5.8a,

asynchronous and synchronous with uniform workers perform nearly identical. For N = 8, al-

though the accuracy is identical for the initial part of the curve (where the entities are small and

hence the load is uniform), we see from Figs. 5.7c and 5.7d that asynchronous (uniform) outper-

forms synchronous (uniform) substantially for higher accuracies (where entities are large and of

different sizes), obtaining upto 1.5 ≠ 2◊ speedup over the synchronous architecture.

The processors are nearly identical in our experiment setup, the worker speeds are the same as

each other, and hence the heterogeneity arises from the variance in the loads. To investigate the

effect of heterogeneous workers, we artificially inject delays in some of the machines, such that

the slowest machine is half as fast as the fastest (linearly interpolating the delays for the remaining

workers). Synchronous distribution is substantially affected by this imbalance, performing signif-

icantly worse for both N = 4 and N = 8 in Figs. 5.8a and 5.8b, respectively. Asynchronous

distribution, on the other hand, is robust to heterogeneous loads and workers, getting affected only

in the slightest for both N = 4 and N = 8. In particular, we find asynchronous MCMC on hetero-

geneous workers obtains almost 3◊ speedup over synchronous distribution on N = 8, as shown in

Fig. 5.8d.

5.3.3.2 Large-Scale Author Disambiguation

We also evaluate our conflict-free asynchronous inference approach to large-scale author dis-

ambiguation, used earlier in Section 5.1.3.3. In particular, we use the same datasets and the model,

but instead subsample a tenth of the dataset to obtain nearly 500, 000 mentions. Each worker

requests 25000 mentions at a time, and performs 1 million sampling steps before releasing the

mentions. A significant difference between the earlier results and experiments presented here is
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Figure 5.9: Speedups for Author Disambiguation with Asynchronous MCMC: Evaluation of
scalability of Asynchronous MCMC by varying the number of workers.
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that we do not use any manual blocking information, and hence we expect a slower convergence

and lower accuracy. We perform 2500 rounds of sampling, and plot the accuracy of the labeled

mentions over time in Fig. 5.9. The results indicate that even on this large dataset, the asynchronous

distributed inference is able to scale with more cores. Specifically, N = 5 provides a 4◊ speedup

over N = 1 and 2.3◊ speedup over N = 2, while N = 2 provides a 1.8◊ speedup over N = 1,

to achieve a B3 F1 of 60%. However, interestingly, N = 10 does not provide any significant gains

over N = 5. We suspect this is due to our implementation choice of merging variable locking and

the value storage into a single thread that causes a bottleneck for large number of workers.

5.3.4 Discussion

In this section we introduce an approach to address the synchronous bottleneck prevalent in

iterated Map-Reduce distribution frameworks. Using a central control on the variable locking and

partitioning, we allow each inference worker to independently query for partitions and perform

inference. By using a separate distributed DB to store the values of the variables, the central

locking is relatively free of bottlenecks, further improving scalability. We show that the chains

will converge to the correct distribution, and show results on entity resolution demonstrating the

utility of asynchronous communication over synchronous distribution.

5.4 Lock-free Distributed Inference

Earlier in the chapter, in Section 5.1, we demonstrate that using subsets of factors to evaluate

proposals can lead to impressive speedups, however the chains are not guaranteed to converge to

the stationary distribution. On the other hand, we maintain the restrictions on the proposal function

in Section 5.3, but introduce an asynchronous distributed inference architecture that addresses the

synchrony bottleneck. Here we combine the two approaches of asynchronous communication and

unrestricted proposals.

In this section, we propose a distributed inference algorithm similar to the one proposed in

Section 5.3, but without any locks on the variables. The inference workers may perform sampling
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on overlapping sets of variables, and ignore cross-worker factors when evaluating proposals on

each machine. When the inference worker is writing the values of the values to the persistence

layer, it is possible a different value has been written, leading to a conflict. We propose a number

of conflict-resolution techniques that vary in the computation cost and the quality of the resulting

sample. Since we are interested in evaluating the correctness of the resulting chains, we evaluate

the approach on a synthetic marginal inference task. We show that additional machines result in

faster convergence. Further, amongst the proposed conflict resolution approaches, we show that

the simple strategy of overwriting the conflict (fast but noisy) with the new value performs as well

as resampling the variables (slow but accurate).

5.4.1 Architecture

Our proposed architecture for asynchronous MCMC is shown in Fig. 5.10, which is identical

to the architecture in Section 5.3.1 but without the variable locking mechanism. The variables and

their current state is maintained by the data repository, which may be a distributed file system or

database. Inference is performed by independent workers that:

1. Request a set of variables and their current values, and the current value of the neighboring

variables, from the repository.

2. Perform independent inference by sampling the local variables and unrestricted proposal

function.

3. After sampling for a fixed number of samples, use the accepted proposals to write a set of

values back to the repository, and repeat (1).

There is no communication between the workers, allowing the architecture to scale to large number

of inference workers.

As long as the variables and the neighborhood that each worker reads is exclusive to the worker

for the duration of the inference, the proposals have been evaluated correctly. However, without

communication, multiple workers may write to the same variable, invalidating the evaluations
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Figure 5.10: Lock-free Asynchronous Distributed Inference: Each worker independently reads
the values of the variables when performing inference. Since there are no-locks, it is possible that
the value of the variable has been changed during inference. Hence, a conflict-resolution strategy
needs to be adopted before the worker can submit the variable values to the DB.

made by other workers that are using the obsolete value. Due to the restriction in communication,

the workers can only detect new values when writing back to the repository after inference. Thus

the inference workers will need to resolve the conflict created between the value they used for

inference with the new value in the repository.

5.4.2 Conflict Resolution Strategies

We study several resolution policies in an attempt to better understand these conflicts and their

affects on inference. Some of these are more accurate (but slower) than the others; the main

question we want to ask is whether, in terms of wall clock running time, is it better to do something

approximate quickly in order to generate a large number of inaccurate samples, or to generate

fewer, higher quality samples. In particular, given the set of accepted proposals for a inference

worker as y1, . . . , ym, and y0 is the value of the variables when inference was initiated, we study

different strategies for resolving the value for variable Yk when the new value yk is the repository

differs from y0
k. Although we describe the strategies for a single changed variable below, they can

be extended to multiple conflicts.
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• Overwrite: The simplest and the quickest strategy is to simply ignore the changed variables

with the assumption that the accepted proposals are still as informative in the new context.

This corresponds to Yk = ym
k . This technique ignores the model score of the conflict, and

in general, will often write values to the repository that have a low score according to the

model.

• Combined Proposal: Since directly over-writing the value can lead to low-scoring values

in the repository, we need to take the model score into account. A direct approach of in-

corporating model score is to evaluate the aggregate change that the worker is proposing.

This is equivalent to treating all the changes that the worker accepted as a single combined

proposal, and to evaluate it using the new configuration. Formally, we create a joint proposal

(y0|Yk = yk) æ ym and compute the acceptance probability using only the model score

ratio.

• Separate Evaluations: The previous approach evaluates all the accepted proposals as a

single proposal. However, it is possible that a large number of accepted proposals are still

high-scoring, however the the aggregated proposal is low-scoring, and hence, may be re-

jected. The inference, thus, loses out on the high quality samples. Instead, we propose a

finer-grained search for good proposals, by re-evaluating the proposals. This method will re-

set the values of the variables to (y0|Yk = yk), and iterate through all the samples y1, . . . , ym

to evaluate them separately. Although this method is likely to retain the high-scoring pro-

posals, it will be substantially slower than the previous approaches.

• Restricted to Proposals Neighboring the Conflict: Out of all the proposals that were

accepted, some of the proposals lie in the Markov blanket of the changed variable and are

directly affect by the change, while others are not. To improve efficiency of the previous

approach, we iterate through all proposals, but only evaluate ones that are directly affected

by a changed variable. The set of changed variables grows every time the worker accepts

a proposal. In particular, we initialize the set of changed variables as C = {Yk} and the
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current sample to (y0|Yk = yk). For each proposal yi æ yi+1, we only evaluate it if any

variable in C touches the factors used to evaluate the proposal. If the proposal is accepted,

we append C with the changed variables. This strategy will reduce the number of proposal

evaluations massively since variables in C will not be in the neighborhood of most proposals

(depending on the model).

• Resampling the Variables: Many of the above approaches take a subset of the accepted

proposals, re-evaluate them, and potentially reject some of them. This is two significant

drawbacks for correctness. First, since these proposals are being evaluated twice, the transi-

tion probability for such proposals is not correct (double scores the transition). Second, it is

not possible to compute the forward-backward ratio of such proposals, since it relies on the

proposal being accepted in the first place, and not just on the probability of a conflict (which

is easier to compute). Instead, we propose to reject the old proposals, and resample all the

changed variables given the new context. This way the accepted proposals are evaluated only

once, and hence their transition probability is well-defined. Further, since the probability of

a conflict of the variable does not depend on the value but only on the properties of the fac-

tor graph (we assume a static graph), the forward-backward ratio is the same as that of the

proposal function.

5.4.3 Analysis

Our analysis of correctness of distributed MCMC relies on discovering the sequential ordering

of the parallel computations, and analyzing the properties of the chain resulting from the single-

machine ordering in terms of whether the model and forward-backward ratios are computed cor-

rectly. For our results on synchronous and conflict-free distribution, we can sequentially order the

proposals since we make a strong restriction that proposals that examine factors across workers,

i.e. the ones that will prevent a sequential ordering of the proposals, cannot be proposed. For

synchronous distribution, any ordering of proposals within each iteration is a valid one, while for
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asynchronous workers, the locking imposes partial ordering constraints that can be used to define a

total ordering over the proposals. We then analyze these chains (see Section 4.3 and Section 5.3.2).

With our lock-free architecture, since the writes are atomic, we can use the writes to create

an ordering amongst the proposal, i.e. the proposals are ordered according the order in which

the workers write to the repository. In particular, for a worker i that started sampling when the

repository is at y0 and ended when the repository is at yt, the proposal evaluations of worker i

need to be a valid chain as if it was executed after yt, independent of y0. For the case of no conflict

(i.e. no writes between y0 and yt to variables assigned to i), the analysis is same as the conflict-free

case and demonstrating valid chain after y0 is adequate. However, in case of a conflict, the proposal

evaluations within the worker are invalid since they are conditioned on y0 and not yt, and thus the

worker has to resample in order to generate a set of proposals that can be ordered sequentially after

yt. Amongst our proposed conflict resolution strategies, resampling is the only one that meets this

criterion; the other strategies are much faster however they break the Markov chain assumptions.

For our analysis we make all the same assumptions as Section 5.3.2, including the assumption

that only a small fraction of variables are being sampled at any time, which provides a non-zero

probability that there is no conflict when a worker is writing values to the repository.

We show that the chain is a valid MCMC chain by induction. For the first worker that writes

values to the repository, there are no conflicts, and all of its proposals have been evaluated correctly

(as shown in Section 5.3.2 for conflict-free distribution). For the purpose of induction, assume that

all proposals up to the ith write have been evaluated correctly, and thus the assignment of the

variables yi is a valid state of the chain. When the (i + 1)th write is taking place, there can be two

cases:

1. If no other writes have been performed on the overlapping variables, then the proposals have

been evaluated exactly as well (as shown in Section 5.3.2), and yi+1 is a valid state, or

2. In case of a conflict, the resampling strategy drops all the proposals that cannot be ordered

after yi, initializes a new chain at yi, and generates new proposals, effectively restarting the

sampling that will end at yi+1+j for some j Ø 0. Since there is a non zero-probability that

92



Figure 5.11: Skip-Chain model: The model consists of chains of factors, with skip factors be-
tween variables in separate chains, creating a dense, loopy structure.

there will be no conflicts when sampling is finished, eventually the chain will reach case (1),

resulting in exact samples.

The probability that a variable has a conflict depends only on the graph structure, and not on

its value. Hence the forward-backward ratio remains the same as the conflict-free architecture.

5.4.4 Experiments

To evaluate the convergence properties of the various approaches outlined above, we run ex-

periments on synthetic models. Our synthetic model is inspired by the skip-chain models used in

information extraction [Sutton and McCallum, 2007a]. The model consists of multiple chains of

discrete variables, with factors on every variable, and a factor on pairs of neighboring variables

in the chain. Additionally we include a number of skip factors that lie between pairs of variables

across chains (see Fig. 5.11), creating a loopy dense graph for which inference is incredibly expen-

sive. We set number of labels to 25, and create 100 chains of 25 variables each. We randomly add

skip factors such that on average half of the variables have a skip factor, and set its log potential to

5. The local log potentials are uniformly sampled from (3, 5) (with random sign switching), and

the transition potentials from (≠5, 5).
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For evaluation, we run three single worker Gibbs chains independently till they have converged

(by comparing within-chain variance to cross-chain). We treat the empirical distribution of the

samples as the “true” marginals to compare convergence against. We run three random initializa-

tion chains for each choice of conflict resolution strategy and number of parallel workers. The

marginals obtained from each MCMC chain is compared to the true marginals using the L1 dis-

tance between the probabilities (total variation loss) and by counting the number of times the max

marginal values match.

Figure 5.12 shows the quality of the marginals versus running time for different numbers of

workers using our exact “resampling” strategy (Gibbs). The plot clearly shows that a larger number

of workers result in faster convergence to better marginals. As we can see in Figs. 5.12c and 5.12d,

this speedup is not linear, however even 16 workers provide small but noticeable advantage over 8.

To compare the various ways to handle conflicts, we examine their convergence for a fixed number

of workers in Fig. 5.13. Combined and Separate perform substantially worse than others on both

accuracy and L1, but most surprisingly the simple strategy of Overwrite works as well the exact

Gibbs resampling.

5.5 Related Work

Our contributions in this chapter focus on asynchronous updates for MCMC.

A number of existing approaches in statistics are related to our Monte Carlo MCMC algo-

rithm. Leskovec and Faloutsos [2006] propose techniques to sample a graph to compute certain

graph statistics with associated confidence. Christen and Fox [2005] also propose an approach

to efficiently evaluate a proposal, however, once accepted, they score all the factors. Murray and

Ghahramani [2004] propose an approximate MCMC technique for Bayesian models that estimates

the partition function instead of computing it exactly. Related work has also applied such ideas

for robust learning, for example Kok and Domingos [2005], based on earlier work by Hulten and

Domingos [2002], uniformly sample the groundings of an MLN to estimate the likelihood.
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5.6 Conclusion and Future Work

We identify a number of important drawbacks in the synchronous distributed MCMC frame-

work. First, the partitioning of the model imposes strict restrictions on the proposals that can be

explored on each worker. Second, the Map-Reduce framework contains an inherent synchrony

bottleneck that is exacerbated with multiple iterations and dynamic loads. In this chapter, we

propose a number of alternatives that collectively explore asynchronous updates for MCMC, and

address these concerns. In Section 5.1, we propose a stochastic evaluation of the proposal function,

demonstrating impressive empirical speedup, but negative theoretical properties, when factors are

ignored during inference. We describe the synchrony bottleneck in Section 5.2, and propose an

asynchronous version of the distributed MCMC that is conflict-free, however imposes restrictions

on the proposals to guarantee convergence in Section 5.3. In Section 5.4, we explore an extension

that drops the locking requirement to allow potentially conflicting updates, and propose a number

of conflict-resolution strategies ranging from exact but slow, to inaccurate but fast. Experiment

results for all the proposed techniques show asynchronous updates can be useful in practice for

large, dense graphical models.

A number of possible future studies are apparent. We would like to provide an analysis of a

broader range of algorithms, such as showing convergence for multiple conflict resolution strate-

gies. The issue of combining the approaches proposed in this chapter with adaptive MCMC is

intriguing and worth exploring. A large-scale deployment on a cluster with many compute nodes,

and on a large graphical model, would be useful in validating the scalability of the proposed ap-

proaches.
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CHAPTER 6

BELIEF PROPAGATION OVERVIEW

Knowledge is like money: to be of value it must circulate, and in circulating it can

increase in quantity and, hopefully, in value.

Louis L’Amour

In this chapter we provide an overview of belief propagation, a widely studied variational in-

ference technique for marginal inference. Since the model distribution p is often intractable to

perform inference over, variational approaches usually introduce an approximating distribution q

that lies in a tractable family, and perform optimization to discover the q that is closest to the desired

distribution p. A popular instantiation of variational inference is belief propagation, which opti-

mizes the variational objective by employing message passing over variables and the factors. The

algorithm is deterministic, exact for tree-shaped models, and often produces accurate marginals in

practice. Belief Propagation is primarily used for computing marginals, however a simple modifi-

cation results in the Max-Product algorithm that can be used to compute the MAP configuration,

and is often more efficient than alternative formulations [Yanover et al., 2006]. We contrast belief

propagation with sampling in Section 6.1, followed by a detailed introduction to the BP algorithm

and its variants in Section 6.2, focusing particularly on generalized BP in Section 6.3. Finally, in

Section 6.4, we describe the advantages and disadvantages of BP for large, dense graphical models.

6.1 Sampling versus Belief Propagation

In the chapters so far, we describe approaches to scale sampling-based inference, and demon-

strate its utility on large graphical models. However, sampling is not appropriate for all situations,

and can sometimes take a long time to converge. First, if the model contains strong dependencies

(large potentials) then MCMC has trouble getting out of local maximas. Second, sampling can
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take a long time before it escapes the dependence on the initial configuration and starts drawing

samples from the model distribution (burn-in period). Furthermore, it is non-trivial to detect when

the chains have converged (mixing time). Third, the utility of MCMC for computing marginals

over the variables is limited. It usually involves running a number of parallel chains, and using

the number of samples to compute marginals over, specifying both of which is more of an art than

a science. Last, the MCMC process cannot easily utilize tractable sub-structures in the model,

i.e. if the model mostly consists of independent chains, the inference can be performed exactly,

however naive samplers are unable to do so. Depending on the number of machines available, and

the complexity and scale of the model, even the distributed inference approaches introduced in the

first part of the thesis may not be practical.

Belief propagation addresses a number of these concerns. Deterministic nature of the algorithm

is often desirable in practice. By maintaining the distribution over all the values of the variables

(that are directly multiplied with the potential), belief propagation can often escape local modes

that accompany strong dependencies. Although initialization of messages can have an effect on

convergence, in practice the maximum entropic messages (uniform over the domain) often work

well. Since the messages can be computed independently, parallelizing belief propagation is often

trivial (we elaborate in Section 6.4). Finally, the schedule of message computation can be varied

to efficiently utilize tractable sub-structures such that trees and chains.

The choice of inference algorithm eventually depends on the model and particular needs of

the application, since sampling does provide a number of benefits over belief propagation. First,

the variational approximation may not be tight enough for certain models, resulting in poor any-

time properties (quickly obtains marginals that may be inaccurate but further inference does not

improve them). MCMC, on the other hand, can obtain accurate marginals for complex marginals

in the asymptote. Second, the variational objective may not be easy to optimize, and often non-

convex approximations are introduced for efficiency, resulting in no guarantees of convergence,

or convergence to the global optima if the algorithms do converge. Although some of the conver-

gence considerations are well-understood (we provide a brief survey in Section 6.2.3), for example
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cycles of strong dependencies prove challenging, it is often not clear in practice how the algorithm

will behave for a given model. Third, since BP represents the full marginals for each variable and

factor, it scales poorly with large domains and high-order factors (see Section 6.4 for an overview).

Except in restricted cases [Minka and Winn, 2008], BP is not able to perform inference for general

dynamic factor graphs (the set of instantiated factors depend on the value of the variables) without

unrolling all the factors. Finally, depending on the structure of the factor potentials and the vari-

ational approximation desired, it is not trivial to implement the inference algorithm, and we often

need to derive the message update rules specific to the factors. Given the various advantages and

disadvantages for sampling and belief propagation, a number of approaches known collectively

as Rao-Blackwellization [Doucet et al., 2000] have been proposed to combine the two, including

application to parallel inference for large graphs [Gonzalez et al., 2011].

To illustrate the behavior of sampling as compared to belief propagation, we generate synthetic

model of 4 ◊ 4 grid containing binary variables, with local log factor scores sampled from shifted

gaussians, Âi = N (0, 1) ± 1 and pairwise factors Âij = 1 if yi = yj , ≠1 otherwise. We show

the accuracy of marginals obtained by BP and 10 chains of Gibbs sampling in Fig. 6.1. For all the

of marginal error metrics, we notice that BP converges very quickly to low-error marginals while

Gibbs sampling takes a substantially longer time to reach the same level of accuracy. On the other

hand, if Gibbs is run for a longer time, it achieves marginals with a lower error. Note that although

the marginals for BP are fairly accurate for this model, the variational objective for a different

model may result in marginals with considerably higher error.

Belief Propagation is especially appropriate for joint inference (Section 2.4.3). Although the

composition of multiple tasks results in a dense, intractable model, the individual tasks themselves

are often small and tractable. Given these subs-structures, belief propagation can utilize their

tractability to converge faster for the global, joint model. Second, the additional factors that repre-

sent dependencies between the tasks are often very strong. Sampling is likely to use a large number

of samples to escape these dependencies, and requires “joint” proposals that are difficult to design.

On the other hand, belief propagation directly incorporates factors with strong potentials. Last, the
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number of maximas in the joint configuration space is much larger than the number of maximas in

the separate spaces of individual tasks. Sampling will require a larger number of samples to escape

these maximas, however belief propagation can keep the spaces of individual tasks separate.

6.2 Belief Propagation

We now cover background material on belief propagation for marginal inference. We introduce

the algorithm and the message computations of belief propagation in Section 6.2.1. To provide

understand of the BP fixed points, Section 6.2.2 describes the variational objective and the Bethe

approximation, and present the convergence properties in Section 6.2.3.

6.2.1 Algorithm

Belief propagation is a form of marginal inference based on message-passing over the edges

of the factor graph. Since each factor can be seen as inducing a distribution over its neighborhood

using Âf , the belief propagation can be interpreted as the factors negotiating with each other on the

marginals of the variables. The algorithm maintains a set of directed messages for all edges of the

graph that are a real-valued functions over the domain of the variable they touch, i.e. ’f œ F , Yi œ

Y,mfæi and miæf represent a distribution over yi œ Yi. The algorithm consists of iterating

through the factors in the model, and updating the messages in the neighborhood of the factor to

be consistent with each other and with the factor potential (as they all represent distributions over

the same variable). Iteratively, a message is selected and updated using the neighboring messages.

We present the outline of belief propagation in Algorithm 6.1. A number of variations of belief

propagation arise from various ways the message queue is prioritized, ranging from simply iter-

ating through the factors or picking randomly, to tree-based schedules, and to dynamic schedules

based on the state of inference. Initially belief propagation was defined as a synchronous algorithm,

however the asynchronous version described here has been shown to converge faster [Elidan et al.,

2006]. Approaches also vary in the message update rules. Next we describe the standard loopy
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Algorithm 6.1 Belief Propagation: Queue-based framework for Belief Propagation

1: procedure BELIEFPROPAGATION(G)
2: ’f œ F ; Qm

+
Ω f ; Û Add all factors to the message queue

3: while converged do

4: f Ω Qm.pop Û If prioritizing, factor with maximum priority
5: MESSAGEPASSING(f , G)
6: for Y Ω N (f); f Õ Ω N (Y ) do

7: Qm
+
Ω f Õ Û Update message priorities if prioritizing

8: end for

9: end while Û Converged on whole graph
10: end procedure

11: procedure MESSAGEPASSING(f , G)
12: ’Yi Ω N (f), Compute miæf Û Compute all incoming messages, Eq. (6.1)
13: ’Yi Ω N (f), Compute mfæi Û Compute all outgoing messages, Eq. (6.2)
14: end procedure

belief propagation algorithm that we will use in the rest of the paper, and mention a few of the

variations.

6.2.1.1 Message Computations

In loopy belief propagation [Pearl, 1988], the message from a variable i to a factor f is com-

puted as follows (miæf : Yi æ R):

miæf (y œ Yi) =
Ÿ

f ÕœN (Yi),f Õ ”=f

mf Õæi(y) (6.1)

While the message from a factor f to a variable i is computed as follows (mfæi : Yi æ R):

mfæi(y œ Yi) =
ÿ

yÕ
f

:yÕ
i
=y

exp{Âf (yÕ
f )}

Ÿ

Y Õ
i

œYf ,iÕ ”=i

miÕæf (yÕ
iÕ) (6.2)

The belief propagation iteratively updates the messages until convergence. Note that all messages

miæf are initialized to be uniform, and messages mfæi may be initialized to the distribution
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induced by Âf . The messages are often represented in the log space for numerical and efficiency

benefits. The final marginals can be computed for each variable i from its incoming messages:

pi(y œ Yi) =

r

f :YiœYf
mfæi(y)

q

yÕœYi

r

f :YiœYf
mfæi(yÕ)

(6.3)

A variation of the belief propagation can also be used to perform MAP inference. In particular,

if we replace the summation in Eq. (6.2) with a maximization, the resulting algorithm is known

as Max-Product and can be used for MAP inference. Similar to the choice of schedules for reg-

ular belief propagation, the schedule that propagates messages from the leaves to root (and back)

computes the exact MAP configuration for tree-shaped models.

6.2.1.2 Dynamic Message Scheduling

The schedule of which messages to propagate has a significant impact on the quality of the

resulting marginals, and and may be controlled by specifying the priority in the message queue.

In fact, for tree-shaped models (where the factors form a tree), a fixed schedule that goes from

leaves to a root (and back) results in exact marginals on the variables. For such models, we include

the direction of messages in the queue when adding a factor, and only include the factors in the

reverse direction when the leaves (as per the BFS ordering) of the model are reached. For non-tree

shaped, loopy models there are no such guarantees, however tree-based schedules have also been

employed successfully for loopy models [Wainwright et al., 2003].

More recently, a number of dynamic scheduling algorithms have been proposed for loopy mod-

els. By using the residual of the messages, i.e. the change in the message in the last update, belief

propagation inference can target message passing to the areas of the graph that would benefit the

most from an update [Elidan et al., 2006]. Extensions to this approach have proposed more ef-

ficient alternatives [Sutton and McCallum, 2007b], alternatives to message residuals [Ihler et al.,

2005b], and use in parallel inference Gonzalez et al. [2009a].
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6.2.2 Optimization perspective of BP

To understand the runtime-properties of belief propagation, and to analyze its extensions, it is

important to characterize the objective that the message updates are trying to optimize. With this

aim, we describe the variational inference framework for marginal inference in Section 6.2.2.1,

followed by the description of the Bethe approximation for loopy belief propagation in Sec-

tion 6.2.2.2.

6.2.2.1 Variational Inference

When performing approximate inference, we represent the approximate marginals µ © (µX ,µF)

that contain elements for every assignment to the variables µX © µi(yi), ’Yi, yi œ Y and factors

µF © µf (yf ), ’f, yf œ Yf . The variational marginals µ may be used to define a distribution

qµ(y) over our configuration space. Correct marginals corresponds to µF = {. . . , p(yf ), . . .} and

µX = {. . . , p(yi), . . .} as defined in Section 2.2.2. Minimizing the KL divergence between the

desired marginals defined by p and approximate marginals results in the following optimization:

min
µœM

KL(qµ||p) = min
µœM

ÿ

y

qµ(y) log qµ(y) ≠ qµ(y) log p(y) (6.4)

∆ min
µœM

≠
ÿ

y

qµ(y)fi(y) + log Z
ÿ

y

qµ(y) +
ÿ

y

qµ(y) log qµ(y) (6.5)

∆ min
µœM

≠
ÿ

fœF

ÿ

yf

µf (yf )Âf (yf ) + log Z ≠ H(µ) (6.6)

∆ max
µœM

ÿ

fœF

ÿ

yf

µf (yf )Âf (yf ) + H(µ) (6.7)

where M is the set of realizable mean vectors µ that constrains µ to be valid distributions, and

H (µ) is the entropy of the distribution that yields µ. The maximizer µ
ú œ M is the mean

vector that corresponds to the result of marginal inference for Equation (6.7). The corresponding

minimization (negative of the variational objective) is often known as the Gibbs free energy.
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6.2.2.2 Bethe approximation

Both the polytope M and the entropy H need to be approximated in order to efficiently solve

the maximization. Belief propagation approximates M using the local polytope:

L ,

I

µ Ø 0, ’f œ F :
ÿ

yf

µf (yf ) = 1,

’f, i œ N (f), yi œ Yi :
ÿ

yÕ
f

,yÕ
i
=yi

µf

1

yÕ
f

2

= µi (yÕ
i)

J

, (6.8)

that defines consistency and normalization constraints locally for each factor, ignoring global con-

sistency. BP also approximates the entropy using Bethe approximation:

HB (µ) ,
ÿ

f

H (µf ) ≠
ÿ

i

(di ≠ 1) H (µi) , (6.9)

The combination of using the local marginal polytope and the Bethe approximation to entropy

leads to the the Bethe optimization (or Bethe free energy for the minimization):

max
µœL

ÿ

fœF

ÿ

yf

µf (yf )Âf (yf ) + HB (µ) (6.10)

Note that although we are relaxing the marginal polytope constraint, Bethe entropy in fact is not

an upper bound on the complete entropy, hence the above approximation is not an upper bound on

the variational objective.

To show that belief propagation is related to the Bethe optimization, we write the Lagrangian

relaxation of this optimization as:

LBP (µ,λ) ,
ÿ

fœF

ÿ

yf

µf (yf )Âf (yf ) + HB(µ) +
ÿ

f

⁄fCf (µ) +
ÿ

f

ÿ

iœN (f)

ÿ

yi

⁄
yi

fiCf,i,yi
(µ)

(6.11)
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where

Cf,i,yi
= µi(yi) ≠

ÿ

yÕ
f

:yÕ
i
=yi

µf (yf ) (6.12)

Cf = 1 ≠
ÿ

yf

µf (yf ) (6.13)

are the constraints that correspond to the local polytope L. BP messages correspond to the dual

variables, i.e. mfæi(yi) Ã exp ⁄
yi

fi. If the messages converge, Heskes [2002] show that the

marginals correspond to a µ
ú and λ

ú at a saddle point of LBP, i.e. ÒµLBP (µú,λú) = 0 and

ÒλLBP (µú,λú) = 0. In other words: at convergence BP marginals are locally consistent and

locally optimal.

6.2.3 Convergence and Convergent Variants

Although in practice belief propagation often converges and computes accurate marginals [Mur-

phy et al., 1999], it is not guaranteed to do so. A number of approaches have characterized the

convergence properties of BP to better understand the fixed points [Tatikonda and Jordan, 2002,

Ihler et al., 2005b, Mooij and Kappen, 2012], and use damping of messages to ensure conver-

gence [Heskes, 2004]. Apart from non-convergence, it’s also possible that loopy belief propagation

does converge, but to a poor local minima.

Extensions to loopy belief propagation have been proposed to that instead optimize convex ob-

jectives [Globerson and Jaakkola, 2007a]. Tree-reweighted belief propagation [Wainwright et al.,

2003] uses a distribution over spanning trees of the model to define a convex objective for message

passing. Although it provides strong convergence guarantees [Roosta et al., 2008], the distribu-

tion over spanning trees is difficult to specify, and loopy belief propagation often produces better

marginals. Hazan and Shashua [2008] generalize TRBP to propose a family of convergent objec-

tives using counting numbers, which they use in conjunction with the model structure to identify

convex objectives closest to the Bethe objective. By realizing that these convex approximations

still fare poorly as compared to Bethe approximation, Meshi et al. [2009] propose computing the
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counting numbers to directly find a convex approximation of Bethe, using the model structure and

the factor potentials to do so.

In the next section, we will describe a class of algorithms that specify messages on clusters

of variables. By operating on junction graphs (or region graphs), these approaches optimize a

tighter approximation than Bethe, and are exact on a larger class of models (all low-tree width

models). However, the computational complexity of such algorithms is exponential in the size of

the clusters, and these also face the non-convergence and convergence to a local minima issues of

belief propagation.

6.3 Generalized Belief Propagation

As we show in Eq. (6.7), the true marginals maximize the variational objective. Belief propaga-

tion, however, optimizes an approximation known as the Bethe free energy, as defined in Eq. (6.10).

Kikuchi [1951] generalizes the Bethe free energy and propose a family of approximations that are

tighter than Bethe energy, known collectively as Kikuchi free energies. Yedidia et al. [2000] intro-

duce generalized belief propagation (GBP), a family of of message passing algorithms that send

messages between clusters of variables and factors (of which loopy belief propagation is a special

case), and show that GBP optimizes the Kikuchi free energy. In this section we provide back-

ground on cluster graphs and the GBP algorithm, and then define the Kikuchi approximation that

GBP optimizes.

Give our graphical model G containing variables Y and factors F , we define a cluster graphical

model CG containing cluster variables C and cluster factors Φ. Each variable Y belong to one and

only cluster in the cluster graph, i.e. ’C œ C, C ™ Y,
€

CœC

C = Y and ’Ci, Cj œ C, Ci fl Cj =

ÿ1. Each cluster factor Ψ œ Ψ contains all the factors Âf that neighbor variables only in the

cluster variables of Ψ, i.e. ’f œ Ψ, ’C œ N (Ψ), ÷Y s.t. Y œ C · Y œ N (f). Hence given

1Note that although generalized BP supports overlapping clusters/regions, we assume cluster variables as used
in Pearl’s clustering method [Pearl, 1988]. Yedidia et al. [2000] show GBP is a generalization of the cluster graph
approach, however one can also include overlapping clusters in the above approach by creating auxiliary copy of the
variables and additional deterministic equality factors.
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(a) Factor Graph G
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(b) Cluster Graph for G, CG

Figure 6.2: Example of a Graphical Model and a Cluster Graph

the graphical model G and a partitioning of its variables C, the cluster graphical model CG is

directly determined based on the variable-factor neighborhoods. It is straightforward to see that

the probability distribution defined by CG is same as that by G, i.e. the following holds, where

Ψ(yΨ) =
q

fœΨ Âf (yf ):

pG(Y) =
exp

q

fœF Âf (yf )
q

yœY exp
q

fœF Âf (yf )
(6.14)

=
exp

q

ΨœΨ Ψ(yΨ)
q

yœY exp
q

ΨœΨ Ψ(yΨ)
= pCG

(y) (6.15)

Figure 6.2a shows a simple 6 variable factor graph, and a possible cluster graph with 3 cluster

variables and 5 cluster factors is shown in Fig. 6.2b.

Inference for cluster graphs can be performed using generalized belief propagation. Gener-

alized BP operates on a region graph that contains subsets of variables as nodes/regions, with a

hierarchy amongst the regions as defined by subset containment. The edges in the region graph

exist between a region and its direct sub-regions, and message passing operates along these edges.

The region graphs with the original set of variables and factors consist of a separate region for

each factor (assuming each variable includes a local factor), resulting in a 2-layer region graph

(see Fig. 6.3a for an example). The cluster graph formulation described above also results in a
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(a) Region Graph for Loopy BP (G)

1 2 5 63 4

1 2 3 4 3 4 5 6

(b) Region Graph for Cluster BP (CG)

Figure 6.3: Region Graphs for Generalized Belief Propagation for models from Fig. 6.2

similar region graph, defined over the cluster factors (again, assuming a local cluster factor accom-

panies each cluster variable), as shown in Fig. 6.3b.

For a given region graph, it can be shown that the fixed point of generalized BP corresponds

to the Kikuchi approximation, which generalizes the Bethe approximation to region graphs. In

particular,

max
ÿ

rœR

cr

A

ÿ

yr

µr(yr)Ψr(yr) + Hr(µr)

B

(6.16)

where Ψr(yr) =
q

fr
Âfr

(yfr
), Hr(µr) = ≠

q

yr
µr(yr) log µr(yr), and cr = 1 ≠

q

sœsuper(r) cs.

This approximation is formulated for a general region graph, and using the region graphs as pre-

sented in Fig. 6.3 we can define the optimization for loopy belief propagation and cluster belief

propagation (the former, not surprisingly, results in the Bethe objective from Eq. (6.10)).

Kikuchi approximation to the original variational objective can be much tighter than the Bethe

approximation. If the cluster graph forms a tree, generalized BP is exact even if the original
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model contains loops (for example the model in Fig. 6.2b). Further, large clusters lead to tighter

approximations even if the resulting cluster graph contains cycles, and generalized BP takes fewer

iterations of message passing to achieve the fixed point. Unfortunately, the computational cost

increases exponentially with the size of the clusters, and hence generalized belief propagation is

often not practical for model where the variables have a large domain, or the factors are incredibly

dense such that the Kikuchi approximation is not much tighter.

6.4 Belief Propagation for Large, Dense Models

Since the message passing operations are local, and asynchronous updates to messages have

been shown to converge well, we expect belief propagation to scale to large models by parallelizing

the message computations. Unfortunately, there are a number of drawbacks for using BP on large,

dense models that we describe next.

6.4.1 Expense of each message computation

The graphical models of our interest often contain variables with large domains, and factors

with a large number of neighbors (high-order factors). This is especially common in joint infer-

ence, in which combining multiple tasks naturally increases the neighborhood of the factors that

capture the dependencies across the tasks. Even though the probability distribution is extremely

complex, such variables and factors do not pose a computational challenge for sampling since it

operates on a per value basis. Belief propagation, on the other hand, maintains a full distribution

on the domain of the variables, and hence is directly affected by large domains. More importantly,

the message computations for factors iterates through all the value assignments to the neighboring

variables, requiring O(|Y||N (f)|) operations. In Chapter 7 we focus on techniques to reduce the

number of operations for marginalizing such factors.

6.4.2 Too many messages or iterations to converge

As we show in Section 6.2.2, loopy belief propagation optimizes the Bethe free energy that is

exact for tree-shaped model, but is a substantially poorer approximation for models with large tree-
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widths. Apart from the fact that this objective may result in poor marginals, a poor approximation

also indicates belief propagation will require a larger number of iterations of message passing to

converge. Although this is a concern even on a single machine, more iterations of message passing

on a distributed system implies more communication between nodes, which is a costly operation.

In Chapter 8 we focus primarily on designing approximations that reduce the number of iterations

(across machine communication) at the expense of additional local computations.

6.4.3 Related Work

Due to the importance of belief propagation marginal inference, a number of techniques have

scaled belief propagation to large models. As we mention above, belief propagation can be paral-

lelized by computing the messages in parallel for general graphs. Kozlov and Singh [1994, 1996]

improve upon this by additionally parallelizing the computations within each message. [Gonza-

lez et al., 2009a] adaptively identify subsets of variables to perform inference over for each core,

essentially combining synchronous parallelism and message scheduling in the shared memory set-

ting. However, inference on massive data sets requires distributed inference frameworks deployed

over large clusters where the shared-memory assumption of the multi-core setting does not hold.

Work on distributed belief propagation [Gonzalez et al., 2009b] performs independent inference

on the partitions of the model, asynchronously communicating the messages; the model is parti-

tioned such that within-partition variables are more likely to communicate. A similar approach

by Schwing et al. [2011] consists of independent inference interleaved with synchronous commu-

nication phases (similar to running multiple Map-Reduce iterations). Ihler et al. [2005a] address

the communication cost of distributed inference messages by sampling. There has been work on

distributing message passing for specific models [Paskin et al., 2005, Funiak et al., 2006, Smola

and Narayanamurthy, 2010, Strandmark and Kahl, 2010] however it is difficult to use the resulting

algorithms for other tasks. The concerns with scaling belief propagation that we raise earlier are

only partially addressed by these existing approaches.
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Due to the widespread applicability of belief propagation as the choice of inference, studying

approximations to belief propagation is an active field of research in machine learning. A number

of approaches have studied pruning of variables values for more efficient inference. Early work

by Coughlan and Ferreira [2002] prunes values when their current belief falls under a threshold,

followed by a dynamic extension by Coughlan and Shen [2007]. Also similar, Komodakis and

Tziritas [2007] combine label pruning with entropy-based message scheduling. Instead of ap-

proximating the variable domains, efficient approximations to messages have also been proposed.

Song et al. [2011] introduce a kernel-based representation of the messages to provide efficient

update computations independent of the domain size. Ihler et al. [2004, 2005b] provide a theo-

retical framework to analyze the bounds on errors for BP with message approximations. Work by

Sudderth et al. [2003] and the following generalization by Ihler and McAllester [2009] maintains

samples on messages. Noorshams and Wainwright [2011] directly address the complexity of factor

marginalization by proposing stochastic updates on the message computations, thus reducing the

polynomial dependence on the domain size.

Motivated by real-world applications of joint inference, our work presented in the next two

chapters is focused on combining the insights from parallel and distributed computing with ap-

proximations to messages. Both provide advantages that are mutually beneficial, can can lead to

approaches that are able to obtain accurate marginals for complex models with high-order factors

and large domains, with minimal communication and synchronization cost.
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CHAPTER 7

BELIEF PROPAGATION WITH SPARSE DOMAINS

Knowledge is power only if man knows what facts not to bother with.

Robert Staughton Lynd

For marginal inference on graphical models, belief propagation (BP) has been the algorithm

of choice due to impressive empirical results on many models. These models often contain many

variables and factors, however the domain of each variable (the set of values that the variable can

take) and the neighborhood of the factors is usually small. In this chapter, we focus on inference

for models that contain variables with large domains and higher-order factors, for which BP is

often intractable (Section 6.4). Large domain problems, unfortunately, are becoming increasingly

important due to growing interest in joint inference in applications such as computer vision [Yao

et al., 2012], natural language processing [Finkel and Manning, 2009], and bioinformatics [Wei

and Pan, 2012]. These models represent the joint distribution over multiple tasks, resulting in

variables with large domains and factors that neighbor a number of such variables. There is a need

for efficient marginal inference that represents the full distribution across these multiple tasks, and

current BP methods are impractically slow.

The primary reason BP is unsuitable for large domains is the cost of message computations

and representation, which is on the order of the cross-product of the neighbors’ domains. In this

chapter we propose techniques that prevent the computation of beliefs on all the values, instead

approximate the belief by defining it only on a subset of the values, and assume a zero probability

on the rest of the values (Sparsification). This provides a number of benefits to belief propagation:

(1) Computation of messages for each variable is efficient as it is proportional to the size of the

sparse domains, (2) Messages for high-order factors can also be computed quickly for the same

reason, (3) Reduction of the sparse domain to a single value allows conditioning of the model on
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the variable value, simplifying and reducing the structural complexity of the graph (speeding up

inference), and (4) conditioning the model on single-valued variables can facilitate independence,

resulting in higher speedups from parallelism.

First, in Section 7.1, we describe our belief propagation algorithm for single-value sparsity. Our

approach is motivated by the observation that the marginal probabilities of random variables are

often extremely peaked, where a single value has a substantially higher marginal probability com-

pared to the rest of the values. We propose a simple technique to identify such high-probability

values during the early stages of inference, to allow efficient inference for the remaining itera-

tions. Further, we continually monitor the marginals and revoke sparsity if the beliefs imply so,

thus dynamically revisiting and correcting our sparsity decisions. To overcome the restrictions

of a single-value sparsity and a fixed level of approximation, we propose a novel anytime belief

propagation algorithm with sparse domains in Section 7.2. The algorithm makes strong sparsity

assumption at the early stages of inference, but dynamically grows the domains of variables as in-

ference progresses. We use message-scheduling based belief propagation to ensure the consistent

marginals throughout the run, and improve the quality of the marginals to eventually obtain the BP

marginals.

We evaluate the two contributions on a number of models that have variables with a large

domain. On linear chains for which belief propagation cannot be parallelized over more than 2

cores, we demonstrate single-value sparsity based inference that obtains high speedups with as

many as 8 processors, while retaining much of the accuracy of exact inference. On synthetic

grids with large domains, we use anytime BP to obtain up to 12 times speedup over regular belief

propagation. For a real-world information extraction task, we introduce a model for joint inference

of within-document entity types, relations, and coreference. Single-value sparsity allows joint

inference to obtain higher accuracy on all three tasks over their independent, non-joint models,

achieving an error reduction of up to 12.4% for entity types. For fine-grained entity type and

relation prediction, we obtain more than 5 times speedup over the baseline by using Anytime BP.
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(a) Example of a Dense Graphical Model

(b) Graph after inducing single-value sparsity (grey)

Figure 7.1: Inducing Single-Value Sparsity: Illustration of the benefit of inducing single-value
sparsity that results in deterministic nodes. Along with decreasing the overall complexity of the
model (tree width) and reducing factor neighborhood, it also results in independent components.

Work presented in this chapter has appeared as Singh et al. [2011a], Singh et al. [2013a], and Singh

et al. [2013b], which can be referred to for more details.

7.1 Single-Value Sparsity

Variables with large domains are quite common in natural language processing, for example for

fine-grained entity type prediction or relation extraction with a large set of possible relations. Some

approaches to joint inference over multiple tasks combine variables of multiple tasks into a single

one, with a domain that is the cross product of the domains of the individual tasks. Computing

messages for factors that neighbor such variables is extremely expensive as the complexity is poly-

nomial in size of the domain. This cost can be prohibitive even for exact inference in chains and

trees, making BP difficult for use when models are large and/or inference needs to be fast. There is

116



a need for efficient approximate inference that is able to handle variables with large domains, and

provide speedups over exact inference in chain- and tree-shaped models.

Since belief propagation is not directly applicable, we propose to extend the algorithm to induce

single-value sparsity. Our main extension stems from the observation that variables often have

probability mass concentrated on a single value, and these variable marginals often peak during the

initial stages of inference, without changing substantially during the rest of the course of inference.

We detect such low-entropy marginals in earlier phases and fix the variables to their single high-

probability values. The proposed algorithm continuously reassesses the sparsity decisions through

the course of inference. Sparsifying the domain to a single-value provides a number of benefits

to belief propagation. First, since the domain now contains only a single value, the factors that

neighbor the variable can marginalize much more efficiently. Second, these fixed variables result

in fewer cycles in the model and allow decomposition of the model into independent inference

problems by partitioning at these fixed variables. Lastly, factors that only neighbor fixed variables

can be effectively removed during inference, reducing the amount of messages that are passed.

These benefits are illustrated in Fig. 7.1.

We also explore the utility of the above approach for fast, parallel inference for chains and

trees. The problem of inference for tree-shaped models (such as chains) also plays an important

role as a large number of real-world problems are best modeled as linear-chains or trees [Tang

et al., 2006, Peng and McCallum, 2006, Settles, 2005, Liu et al., 2006, Torralba et al., 2010]. A

fast approximate inference approach can allow inference over very large models (such as those that

model documents instead of sentences) for which exact inference is slow. Second, even for smaller

(sentence level) models, the computational limits for certain tasks may be too severe to allow exact

inference, such as for query analysis for real-time search [Li et al., 2009]. Fixing the domain to

a single value makes the variable deterministic, blocking the information from propagating across

it. We utilize this property to effectively split the chain at the deterministic variables, facilitating

parallelism.
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7.1.1 Inducing Single Value Sparsity

In this work, we introduce an approach to utilize the inherent sparsity in variable marginals

for faster inference. As described above, inducing value sparsity provides a number of bene-

fits to belief propagation. For early detection of peaked marginals during inference, we examine

the marginals of all the variables that have changed after every message propagation. When the

marginal probability of a value for a variable according to the current set of beliefs goes above a

predetermined probability threshold ’ , we approximate the marginals by replacing the distribution

with a deterministic distribution that has probability of 1 for the mode of the distribution (and 0 for

the others). By setting the variable to its maximum probability value, inference treats it as a fixed

variable for the rest of inference.

The parameter ’ decides when to induce the sparsity on a variable, i.e. ’ defines the assumption

that if the mode of the marginal has probability Ø ’ , the marginal is not likely to be affected

significantly by its neighboring variables. The parameter ’ directly controls the computational

efficiency and accuracy trade-off, which we study in our evaluation in Section 7.1.5.1.

7.1.2 Revisiting Sparsity

Marginals of a variable may vary considerably over the course of inference, and committing

to a deterministic value at an early stage of inference can lead to substantial errors. We allow

revisiting of our sparsity decisions by storing the actual marginals as a separate value m
Õ
i. After

every message propagation, we update mÕ
i and compare the resulting distribution probabilities with

’ . If the probability of all the values is < ’, we unsparsify the variable by setting mi to m
Õ
i. We

also allow modification of the deterministic value if the mode of mÕ
i is different from mi and the

probability of the mode is Ø ’ .

7.1.3 Algorithm

We outline our approach in Algorithm 7.1 that consists of minor variations on Algorithm 6.1.

The underlying message-passing uses a queue of factors to operate upon. Each set of message

computation consumes a factor, updates the outgoing messages and marginals of the neighboring
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Algorithm 7.1 Single-Value Sparsity: Belief Propagation with Single-Value Sparsity

1: procedure SINGLEVALUESPARSITY(G, ’)
2: Qm

+
Ω f ; ’f œ F

3: while converged do Û If prioritizing, max(Qm) < ‘

4: f Ω Qm.pop Û If prioritizing, factor with maximum priority
5: MESSAGEPASSING(f , G) Û Compute messages and update neighbor marginals
6: for y Ω Nf do

7: SPARSIFY(y, ’) Û If maxy pm(Y ) Ø ’ , sparsify outgoing messages
8: for f Õ Ω N (y) do Û Unless marginal of y is unchanged
9: Qm

+
Ω f Õ Û Update priorities if prioritizing

10: end for

11: end for

12: end while

13: end procedure

variables, and appends the neighboring factors to the queue (with de-duplication). This framework

directly supports message scheduling (Section 6.2.2.2); we use a heap-based priority queue that

updates the priorities of factors as they are added. The framework can be deployed on multiple

cores directly; the message updates are independent of each other and can be parallelized, and thus

the speedup is restricted by the size of the queue.

We include a few additional operations in the above message passing framework to support

single-value sparsity. First, if we encounter a factor for which all neighboring variables are fixed,

we remove the factor from the queue and do not compute its messages. Once the messages of a

factor have been computed, we examine the marginals of the neighboring variables, and sparsify or

unsparsify their domains as appropriate. If the marginal of the variable is unchanged, for example

the variable marginal is sparse with the same value, we do not add its neighboring factors to the

queue. The combination of these modifications implements our single-value sparsity approach.

For single-value sparsity on tree-shaped models, when the marginal of a variable becomes

peaked, we add factors in both directions to the queue (instead of only in one direction in the non-

sparse case), since the variable has effectively partitioned the chain/tree into independent compo-

nents.
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(a) Exact Inference

(b) Inference with Sparse Values

Figure 7.2: Parallel Inference in Chains: Messages with the same arrow style are required to be
assigned to the same core. By inducing sparsity on the shaded variables (b), upto 6 cores can be
used, as opposed to only 2 in exact inference (a).

7.1.4 Parallelism and Sparsity for Chains

As we mention above, the number of threads that can compute messages simultaneously is

restricted by the queue size. For exact inference, the queue is initialized with only 2 computations,

and each step consumes a single message and adds a single message, thereby limiting the size of

the queue to Æ 2. This results in a speedup of 2 when using 2 cores, and increasing the number

of cores do not provide any benefit. With our approximation, however, computations that results

in a deterministic variable consume a single factor, but potentially add two more computations to

the queue (in both directions). The queue can therefore grow to sizes > 2, thus allowing multiple

cores can be utilized to provide speedups. Alternatively, one can view the deterministic variables

as “islands of certainty” that each split the chain into two. This results in multiple forward and

backward passes that are independent of each other. See Fig. 7.2 for an example.

Although we describe our approach on linear-chain models, the algorithm generalizes to the

case of the tree. Exact inference in the tree is defined by selecting a root, and performing message

passing in upstream and downstream passes. However, the queue size is not limited to 2; particu-

larly the queue at the beginning of upstream pass and the end of downstream pass contains as many

factors as leaves of the tree. Thus we can achieve speedups > 2 even for exact inference (see Xia
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and Prasanna [2008]). When including our approximation, we expect further speedups. In exact

inference, as the message propagate up the tree, the size of the queue shrinks. In our approach,

we are splitting the tree into multiple smaller trees, thus providing potential for utilizing multiple

cores at every stage of inference. However, we do not expect the speedups to be as significant as

in chains.

7.1.5 Experiments

In this section, we compare the accuracy and the speedups of our single-value sparsity approach

to exact inference on linear chains by evaluating on both synthetic and real-world models. Further,

our single-value sparsity enables joint inference amongst three within-document tasks; we define a

novel joint model and demonstrate improved accuracy for all the three tasks, made feasible by our

approach.

7.1.5.1 Parallel Inference for Chains

As described above, the speedup provided by multiple cores depends on the size of the queue

of computations, i.e. linear speedups can be obtained if the queue size is always greater than the

number of cores. However, for linear chains the queue size doesn’t depend on ’ as much as it de-

pends on which variables turn deterministic during inference. To study the behavior of our system

as we vary the position of deterministic variables, we create synthetic chains with random poten-

tials of length 128 with 15 deterministic variables each. The position of the deterministic variables

within the chain is controlled by · , where · = 1 denotes ideal placement (uniformly across the

chain) and · = 0 denotes the worst placement (all deterministic placed together). Figure 7.3a

shows the speedups obtained when using multiple cores (averaged over 100 iterations) and varying

· . We observe near-linear speedups when the placement is close to ideal, and never worse than the

speedup obtained using parallel exact inference.

To observe the performance of our approach on real-world dataset, we run inference on a model

of part of speech tagging on the CONLL 2003 dataset [Tjong Kim Sang and De Meulder, 2003].

A linear chain model with features on the observed word (capitalization, lowercase, etc.), chunk,
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Figure 7.3: Accuracy and Speedups for Chains with Single-Value Sparsity
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Figure 7.6: Joint Model of Tagging, Relations, and Coreference: The joint model for a docu-
ment with 3 observed mentions (for illustration), two of which belong to the same sentence (m0

and m2).

or coreference levels should be used to improve the entity tagging task. Certain relations, for

example, only appear between entities of a specific type. Similarly, for two mentions that are

coreferent, by definition their entity types have to be the same. Isolated models do not have any

direct mechanism to facilitate this bi-directional flow of information.

Joint Model: We need to define a model that directly represents the dependencies between the

three tasks by modeling the joint distribution over them. Since the individual models defined in

the previous section represent the individual tasks, we construct a joint model by combining all the

variables and factors into a single graphical model, but do not fix the entity tags to be observed.

See Fig. 7.4 for an illustration of the joint model as defined over 3 mentions. Note that even with

such a small set of mentions, the underlying joint model is quite complex and dense. Formally, the

probability for a setting to all the document variables is:

p(t, r, c|m) Ã
Ÿ

tiœt

ÂT (mi, ti)
Ÿ

cijœc

ÂC(cij, mi, mj, ti, tj)
Ÿ

rijœr

ÂL
R(mi, mj, rij)Â

J
R(rij, mi, mj, ti, tj)

The factors here denote different distributions than for the individual classification models. Instead

of representing a distribution over the labels of a single task conditioned on the predictions from
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Data #Mentions #Coreference #Relation

Train 15,640 637,160 82,479
Dev 5,545 244,461 34,057
Test 6,598 342,942 38,270

Table 7.1: ACE Dataset: Number of variables in the various folds.

another task, these factors now directly represent the joint (unnormalized) distribution over the

tasks that they are defined over. The coreference resolution and relation extraction are not directly

connected in the model, as the dependency between these two tasks is much weaker in practice.

Nonetheless they are not independent. As part of the same graphical model, information can flow

between the two via entity tags, resulting in indirect improvements to relation extraction when

coreference improves, and vice versa.

Inference: Due to the number of variables, non-trivial domain sizes, strong dependencies, and a

loopy structure, belief propagation cannot be applied directly. However, joint inference in this

model an ideal use case for single-value belief propagation. A large number of factors exist

amongst binary coreference variables, suggesting that sparsifying the binary variables can pro-

vide substantial benefits in speed. Further, the factors have strong dependencies across tasks that

naturally sparsify, for example given a single choice for the relation, the entity type of the argu-

ment may only be able to take a single value. We perform 4 rounds of iteration with a relative high

’ = 0.8. Since transitivity is not a learned potential, but instead deterministically propagates deci-

sions, we incorporate transitivity into the inference technique by directly propagating the positive

coreference decisions over their transitive closure after every iteration of message passing.

Results: We use the Automatic Content Extraction (ACE) 2004 English dataset for the experi-

ments, a standard labeled corpus for the three tasks [Doddington et al., 2004]. ACE consists of

443 documents from 4 distinct news domains, with 7, 790 sentences and 172, 506 tokens. Counts

of each type of variable are shown in Table 7.1. For these experiments, we use gold mention

boundaries, and the coarse-grained labels for tagging and relations (7 and 8 respectively).
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Model
Tagging Relations Coreference

Accuracy Prec Recall F1 PW F1 B3 F1

Tagging æ Coreference, Relations 80.23 53.22 54.92 54.05 53.94 76.34
Tagging + Coreference 81.24 - - - 57.59 78.06
Tagging + Relations 81.77 54.93 54.02 54.47 - -
Tagging + Relations + Coreference 82.69 56.06 54.74 55.39 58.39 78.50

Table 7.2: Joint Inference with Single-Value Sparsity: Evaluation on Tagging using per mention
accuracy, Relations using pairwise precision/recall, and Coreference using the pairwise decision
and B3 metrics. The baselines models consist of independent models for tagging, and models for
relations and coreference condition on the output of tagging (denoted using æ). Our contribution
consists of three joint models, denoted by +.

We train the isolated models using standard features, described in detail in Singh et al. [2013a].

Our model for entity tagging achieves an accuracy of 80.2%, which is impressive considering many

of the mentions are pronouns and pronominals with little evidence in the context. Our relation

extraction model achieves an F1 score of 54.05% which is comparable to existing research that

uses only predicted entity tags (we obtain 61% F1 with gold entity tags). The coreference model

achieves a macro B3 F1 score of 76.34%, which is competitive with related approaches.

We first present joint inference between pairs of tasks. In particular, we separately evaluate

the result of joint inference between entity tagging and each of the other two tasks. The results,

when compared to the isolated models, are shown in Table 7.2. Allowing uncertainty in entity tags

improves the accuracies of both the tasks, demonstrating the importance of propagating uncertainty

along the pipeline. Further, there are significant error reductions for entity tagging, corroborating

the need for flow of information from relations and coreference to the tagging model. When

performing inference together on all the three tasks, we achieved further improvements for all of

them, most significantly an error reduction of 12.4% for the entity tagging task.

7.2 Anytime Belief Propagation

The primary reason BP is unsuitable for large domains and higher-order factors is the cost

of message computations and representation, which is on the order of the cross-product of the
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neighbors’ domains. Existing extensions to BP that address this concern, including single-value

sparsity (Section 7.1), use determinism [Shen et al., 2007], state-space pruning [Coughlan and Fer-

reira, 2002], sampling [Ihler and McAllester, 2009], smoothing [Sudderth et al., 2003], stochastic

updates [Noorshams and Wainwright, 2011] and dynamic domains [Coughlan and Shen, 2007].

These techniques use parameters that define the desired level of approximation, and return the ap-

proximate marginals at convergence. This results in poor anytime properties such as: 1) providing

accurate and consistent marginals when stopped early, 2) improving the approximation when run

longer, and 3) converging to the fixed point of BP. Since these algorithms try to directly achieve

the desired approximation, the marginals during inference cannot be characterized, and are often

inconsistent with each other. Further, the relationship of the parameter that controls the approxima-

tion to the quality of the intermediate marginals is often unclear. As a result, these approaches are

not suitable for applications that require consistent, anytime marginals but are willing to trade-off

error for speed, for example applications in vision and natural language processing that involve

real-time tracking or user interactions. There is a need for an anytime algorithm that can be in-

terrupted to obtain consistent marginals corresponding to fixed points of a well-defined objective,

and can improve the quality of the marginals over the execution period, eventually obtaining the

BP marginals.

To this end, we propose a class of message passing algorithms that works on sparse (par-

tially instantiated) domains, and compute accurate, anytime-consistent marginals. Initialized with

a sparse domain for each variable, the approach alternates between two phases: (1) augmenting

values to sparse variable domains, and (2) converging to a fixed point of the approximate marginal

inference objective as defined by these sparse domains. We tighten our approximate marginal in-

ference objective by selecting the value to add to the sparse domains by estimating the impact of

adding the value to the variational objective; this is an accurate prioritization scheme that depends

on the instantiated domains and requires runtime computation. We also provide an alternate prior-

itization scheme based on the gradient of the primal objective that can be computed a priori, and

provides constant time selection of the value to add. To converge to a fixed point of the approximate
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marginal objective, we perform message passing on the sparse domains. Since naive schedules that

update messages in a round robin or random fashion are wasteful, we use residual-based dynamic

prioritization [Elidan et al., 2006]. Inference can be interrupted to obtain consistent marginals at

a fixed point defined over the instantiated domains, and longer execution results in more accurate

marginals, eventually optimizing the BP objective.

7.2.1 Overview of the Approach

In practice, graphical models are often defined over variables with large domains and factors

that neighbor many variables. Message passing based algorithms perform poorly for such models

since the complexity of message computation for a factor is O
1

|Y||Nf |
2

, where Y is the domain

of each variable. Further, if inference is interrupted, the resulting marginals are not locally con-

sistent, nor do they correspond to a fixed point of a well-defined objective. In this section, we

describe an algorithm that meets the following desiderata: (1) anytime property that results in con-

sistent marginals, (2) more iterations improve the accuracy of marginals, and (3) convergence to

BP marginals (as obtained at a fixed point of BP). To obtain accurate marginals quickly, we utilize

the current state of inference to instantiate high-likelihood values before picking low probability

ones.

Instead of directly performing inference on the complete model, our approach maintains partial

domains for each variable. Message passing on these sparse domains converges to a fixed point of

a well-defined objective (Section 7.2.2). This is followed by incrementally growing the domains

(Section 7.2.3), and resuming message passing on the new set of domains till convergence. At

any point, the marginals are close to a fixed point of the sparse BP objective, and we tighten this

objective over time by growing the domains. If the algorithm is not interrupted, entire domains are

instantiated, and the marginals converge to a fixed point of the complete BP objective.

7.2.2 Belief Propagation with Sparse Domains

First we study the propagation of messages when the domains of each variables have been

partially instantiated (and are assumed to be fixed here). Reconsider the BP dual objective for
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complete domains, defined earlier in Eq. (6.11) on Page 106:

LBP (µ,λ) ,
ÿ

fœF

ÿ

yf

µf (yf )Âf (yf ) + HB (µ)

+
ÿ

f

⁄fCf (µ) +
ÿ

f

ÿ

iœN(f)

ÿ

yi

⁄
yi

fiCf,i,yi
(µ)

where recall that µ refers to the variable and factor marginals, λ is (log) proportional to the mes-

sages, HB is the Bethe Entropy, and Cf and Cf,i,yi
refer to the local consistency constraints on the

marginals.

Let Si ™ Y , |Si| Ø 1 be the set of values associated with the instantiated domain for variable

Yi. During message passing, we fix the marginals corresponding to the non-instantiated domain to

be zero, i.e. ’yi œ Y ≠ Si, µi(yi) = 0. By setting these values in the BP dual objective, we obtain

the optimization defined only over the sparse domains:

LSBP (µ,λ, S) ,
ÿ

f

ÿ

yf œSf

µf (yf )Âf (yf ) + HB (µ)

+
ÿ

f

⁄fCf (µ) +
ÿ

f

ÿ

iœN(f)

ÿ

yiœSi

⁄
yi

fiCf,i,yi
(µ) (7.1)

Note that LSBP(µ,λ, Yn) = LBP(µ,λ). Message computations for this approximate objective,

including the summations in the updates, are defined sparsely over the instantiated domains. In

general, for a factor f , the computation of its outgoing messages requires O
1

r

YiœNf
|Si|

2

opera-

tions, as opposed to O
1

|D||Nf |
2

for whole domains. Variables for which |Si| = 1 are treated as

observed, similar to Section 7.1.

7.2.3 Growing the Domains

As expected, BP on sparse domains is much faster than on whole domains, however it is opti-

mizing a different, approximate objective (7.1). The approximation can be tightened by growing

the instantiated domains, that is, as the sparsity constraints of µi(yi) = 0 are removed, we obtain
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more accurate marginals when message passing for newly instantiated domain converges. How-

ever, identifying which values to add is crucial for good anytime performance, and we propose two

approaches here based on the gradient of the variational and the primal objectives.

7.2.3.1 Dynamic Prioritization of Values

When inference with partial domains converges, we obtain marginals that are locally consistent,

and define a saddle point of the approximation, i.e. Eq. (7.1). We would like to add the value yi

to Si for which removing the constraint µi(vi) = 0 will have the most impact on the approximate

objective LSBP. In other words, we select yi for which the gradient
ˆLSBP

ˆµi(yi)

-

-

-

-

-

-

-

-

µi(yi)=0

is largest. From

Eq. (7.1) we derive

ˆLSBP

ˆµi(yi)
= (di ≠ 1)(1 + log µi(yi)) +

ÿ

fœN (Yi)

⁄
yi

fi. (7.2)

Although log µi(yi) æ ≠Œ when µi(yi) æ 0, we ignore the term as it appears for all i and

yi
2. The rest of the gradient is the priority:

fii(yi) = di +
ÿ

fœN (Yi)

⁄
yi

fi (7.3)

Since ⁄
yi

fi is undefined for yi /œ Si, we estimate it by performing a single round of message

update over the sparse domains:

⁄
yi

fi = log
ÿ

yf œSf /Yi

exp

Y

]

[

Âf (yf ) +
ÿ

YjœNf /Yi

⁄
yf (j)
jf

Z

^

\

(7.4)

To compute priority of all values for a variable Yi, this computation requires O
1

q

f |Y≠Si|
r

Nf /xi
|Si|

2

operations, i.e. an efficient O
1

|Y||S|Nf ≠1
2

. Since we only need to identify the value with the high-

2For an alternative justification, consider the approximation to LSBP that replaces the variable entropy ≠
q

p p log p

with its second order Taylor approximation
q

p p(1 ≠ p). The gradient at µi(yi) = 0 of the approximation is di +
q

f∈N (Yi) λ
yi

fi.
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est priority, we can improve this search by sorting factor scores Â, and further, we only update the

priorities for the variables that participated in message passing.

7.2.3.2 Precomputed Priorities of Values

Although the dynamic strategy selects the value that improves the approximation the most, it

also spends time on computations that may not result in a corresponding benefit. As an alternative,

we propose a prioritization that precomputes the order of the values to add; even though this

does not take the current beliefs into account, the resulting savings in speed may compensate.

Intuitively, we want to add values to the domain that have the highest marginals in the final solution.

Although the final marginals cannot be computed directly, we estimate them by enforcing a single

constraint µi(yi) =
q

yf /Yi
µf (yf ) and performing greedy coordinate ascent for each f on the

primal objective in (6.10). We set the gradient w.r.t. µf (yf ) to zero to obtain:

fii(yi) = µ̂i(yi) =
ÿ

yÕ
f

,yÕ
i
=ys

µ̂f

1

yÕ
f

2

=
ÿ

fœN (Yi)

log
ÿ

yf œYf /Yi

exp Âf (yf ) (7.5)

Since fii is independent of the current messages or marginals, this priority can be precomputed and

identifies the next value to add in constant time. Nonetheless, this is an approximation, and its

relative benefit over dynamic prioritization will be empirically evaluated.

7.2.4 Dynamic Message Scheduling

After the selected value has been added to its respective domain, we perform message passing

as described in Section 7.2.2 to converge to a fixed point of the new objective. A naive scheduling

of messages during this phase (random or round-robin) results in wasteful computations since the

marginals are already consistent and favorable in most areas of the graph. Identifying the regions

of the graph that are inconsistent and avoiding wasteful updates is crucial for fast convergence

of message passing. Fortunately there has been existing work to identify schedules for messages

that speed up BP convergence [Elidan et al., 2006, Sutton and McCallum, 2007b] by dynamically

prioritizing message updates in areas with least consistency. We use these dynamic schedules to
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identify messages to propagate once the domains have grown. As the choice of the message norm,

we use the dynamic range of the change in the messages as the residual, as explored by Ihler et al.

[2005b] and Sutton and McCallum [2007b]. Instead of computing individual message priority,

we aggregate over the messages of a factor; this significantly reduces the number of entries to

prioritize over. Formally, a factor priority is:

fi(f) = max
YiœNf

max
yi,yjœSi

log
e(yi)

e(yj)
, e(yi) =

mfi(yi)

m
Õ
fi(yi)

(7.6)

As shown by Elidan et al. [2006], residuals of this form bound the reduction in distance between

the factor’s messages and its fixed point. This allows us to use the priorities in two ways: first, we

pick the message with the highest priority, since it indicates the part of the graph that is least locally

consistent. Second, the maximum priority over all the factors is an indication of convergence and

consistency; a low max residual implies a low bound on the distance to convergence.

7.2.5 Algorithm

The proposed approach is outlined in Algorithm 7.2. We initialize the sparse domains using

a single value for each variable with the highest priority. The domain priority queue contains the

priorities for the rest of the values of the variables, which remain fixed or are updated depending

on the prioritization scheme of choice (Section 7.2.3). Once message passing has converged to

obtain locally-consistent marginals (according to some small ‘), we select another value to add to

the domains using one of the value priority schemes, and continue till all the domains are fully-

instantiated. If the algorithm is interrupted at any point, we return either the current marginals,

or the last converged, locally-consistent marginals. We use a heap-based priority queue for both

messages and domain values, in which update and deletion take O(log n), where n is often smaller

than the number of factors and total possible values.
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Algorithm 7.2 Anytime Belief Propagation: Qd represents the domain priority queue and Qm

the message priority queue. The outer loop in here grows domains by selecting the value from the
top of the queue Qd in Algorithm 7.3. With the updated domains, we perform priority-based BP,
propagating local changes to Qm and Qd in Algorithm 7.4.

1: ’xi, Si Ω {vi} Û where vi = arg max
vs

fii(vs)

2: Qd
+
Ω È(i, vi), fii(vi)Í Û ’xi, vi œ Yi ≠ Si

3: Qm = {}
4: while |Qd| > 0 do

5: GROWDOMAIN(S, Qd) Û Add a value to a domain, Algorithm 7.3
6: CONVERGEUSINGBP(S, Qm) Û Converge to a fixed point, Algorithm 7.4
7: end while Û Converged on full domains

Algorithm 7.3 Grow Domain for Anytime BP: Growing Domains by a single value (Sec-
tion 7.2.3)

1: procedure GROWDOMAIN(S, Qd)
2: (i, vp) Ω Qd.pop Û Select value to add
3: Si Ω Si fi {vp} Û Add value to domain
4: for f Ω N (xi) do

5: Qm
+
Ω Èf, fi(f)Í Û Update message priority

6: end for

7: end procedure

Algorithm 7.4 Sparse Message Passing: BP on Sparse Domains (Sections 7.2.2 and 7.2.4)

1: procedure CONVERGEUSINGBP(S, Qm)
2: while max(Qm) > ‘ do

3: f Ω Qm.pop Û Factor with max priority
4: MESSAGEPASSING(f , G) Û Compute messages and update neighbor marginals
5: for xj Ω Nf ; f Õ Ω N (xj) do

6: Qm
+
Ω Èf Õ, fi(f Õ)Í Û Update message priorities

7: Qd
+
Ω È(k, vq), fik(vk)Í Û ’xk œ Nf Õ , ’vk

8: end for

9: end while Û Converged on sparse domains
10: end procedure
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7.2.6 Anytime Convergent Belief Propagation

To address the convergence issues of belief propagation, there has been work on convergent

message passing algorithms using damping and convex approximations [Yuille, 2002, Wainwright

et al., 2003, Hazan and Shashua, 2008], however these approaches often come with a cost to

speed and/or accuracy, and introduce several extra parameters that need tuning. Although our

work focuses on faster convergence to a BP fixed point due to its importance in practice, we can

incorporate these convergent versions into our framework. Message passing on partial domains

(Section 7.2.2), for example, can optimize the convex approximations of BP instead; this corre-

sponds to using an algorithm such as tree re-weighted BP in the inner loop of of our approach

(Algorithm 7.4). Additionally, we can also incorporate other heuristics used in practice to com-

pensate for non-convergence, such as damping or running for some maximum number of iterations,

and then grow the domains regardless; although we may lose low consistency marginals, we retain

the anytime property.

7.2.7 Experiments

We evaluate our approaches by examining the convergence rate and accuracy of the marginals

for the following methods. Our primary baseline is Belief Propagation (BP) using random, asyn-

chronous scheduling. We also evaluate Residual BP (RBP) that uses the dynamic range for mes-

sage scheduling, as described in Section 7.2.4. Our first baseline that uses sparsity, Truncated Do-

main (TruncBP), is initialized with domains that contain a fixed fraction of values (0.25), sorted

according to precomputed priorities (Section 7.2.3). We do not modify the domains after initial-

ization, and perform message passing as in Section 7.2.2. We evaluate on three variations of our

framework. Random Instantiation (Random) is the simplest version in which the value to be added

to the domains is selected at random, followed by priority based message passing. Our approach

to prioritization that uses the incoming messages to estimate the gradient of the dual objective is

called Dynamic, while the approach that uses precomputed priorities is named Fixed. We set ‘,

the maximum residual for convergence, to 10≠10.
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7.2.7.1 Grids

Our first testbed for evaluation consists of synthetically generated grid models that are often

used as inference benchmarks. We generate models for an n ◊ n grid of variables (each with a

domain size of L), consisting of unary and pairwise factors. We design the factors to induce a

consistent, decaying distribution on the neighbor domains by using geometric distributions with

random Gaussian noise, i.e. “(k) = k log(1 ≠ p) + log(p) + N (0, 0.1), where p œ [0.0, 1.0]

is uniformly sampled for each factor. In particular, for unary factors Âi(vi) = “(vi) while for

pairwise factors Âij(vi, vj) = “(vi + vjL). Experiments are performed on n = 5, 10, and averaged

over 10 runs, with the per-variable domain size L = 10, 20, 50, 100, 250.

Convergence Rate: To examine the runtime error, we compare against the marginals obtained by

BP at convergence in Fig. 7.7. It is possible that these marginals are not the true marginals since

BP is an approximate algorithm. However our objective in this work is to reach a BP fixed point

faster, thus comparing the runtime marginals to ones obtained at convergence is valid. We compare

a number of error metrics in Fig. 7.7. The runtime performance for our approaches is significantly

better than BP; up to 12 times faster to obtain L2 error of 10≠7. TruncBP is efficient, however

converges to an inaccurate solution, suggesting that prefixed sparsity in domains is not desirable.

Similarly, Random is initially fast, since adding any value has a significant impact, however as the

selections become crucial, the rate of convergence slows down considerably. Although both Fixed

and Dynamic approach provide desirable trajectories, Fixed is much faster initially due to constant

time growth of domains. However as messages and marginals become accurate, the dynamic

prioritization that utilizes them becomes faster, and eventually overtakes the Fixed approach. These

experiments also demonstrate the inefficiency of RBP for models with large domains.

Runtime Behavior: To examine the anytime local consistency, we examine the average residuals

on the current messages (see Fig. 7.8a). As described earlier, the max-residuals are an upper-

bound on the reduction in distance to the locally-consistent BP fixed point, and low residuals

imply a consistent set of marginals for the objective defined over the instantiated domain. Since

we converge to a consistent solution on partially instantiated domains before growing domains,
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Figure 7.7: Error on Marginals: for 10◊10 grid with domain size of 100, averaged over 10 runs.
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Figure 7.8: Runtime Analysis: for Fig. 7.7: (a) average message residual (signifying local con-
sistency), (b) number of messages, and (c) total size of the instantiated domains (maximum 104),
all axes are in log-scale.
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Figure 7.9: Convergence for different domain sizes: Time to achieve a low L2 error (10≠4) of
the marginals computed over 10 runs of 5 ◊ 5 grids.

our approaches demonstrate low residuals throughout. In comparison, the residuals for existing

techniques remain significantly higher for most of the runtime (note the log-scale for Y-axis),

lowering only near convergence. We also present the number of messages computed as a function

of time in Fig. 7.8b; even though our approaches send many more messages, they are faster due to

the sparse domains (Fig. 7.8c).

Varying the Domain Size: We also examine the performance as the total domain size is varied.

We run 10 runs of 5 ◊ 5 synthetic grids and observe the time to converge for different domain sizes

to a low L2 error in Fig. 7.9. Although our proposed approaches are slower on problems with small

domains, they obtain significantly higher speedups on larger domains (25≠40 times on 250 labels).

Fixed fares somewhat better than the dynamic approach, as the domain size has an adverse impact

on the priority computations of the latter. Note that although per iteration complexity for BP and

RBP is quadratic in the domain size, the time to converge depends on the model potentials. We

also demonstrate that although message scheduling is helpful when L = 10, BP outperforms RBP

for larger domain sizes since the cost of computing message priorities supersedes their benefit.
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t0 t1 t2

m0 m1 m2

Figure 7.10: Joint Information Extraction: (a) Sentence consisting of 3 entities, with the anno-
tated types and relations. (b) Instantiated model with observed entities (mi) and their type (ti) and
relation (rij) variables.

# Entities 4 6 8
# Vars 16 36 64
# Factors 28 66 120
BP 41,193 91,396 198,374
RBP 54,577 117,850 241,870
Fixed 24,099 26,981 49,227
Dynamic 24,931 36,432 41,371

Table 7.3: Speed of Anytime Joint Inference : Avg time taken (in milliseconds) to obtain a low
error in marginals (L2 < 0.001)

7.2.7.2 Joint Inference for Types and Relations

We also evaluate on the real-world task of joint information extraction. Given a sentence and its

entities, a crucial step for information extraction is to determine the entity types, and to identify the

relations between the entities (see Fig. 7.4 for an example, we do not model coreference here). The

domain for entity types consists of fine-grained labels such as PERSON, COUNTY, WATERBODY,

PROJECTILEWEAPON, etc., while the relations are labeled with BASEDIN, STAFFEMPLOYEE,

SPOUSEOF, and so on. We represent the distribution over variables of these dependent tasks jointly

as a single model (shown in Fig. 7.10), containing joint factors Ψ
R
ij that neighbor variables of both

the tasks. The domain for entity types contains 42 labels and the domain for relations contains

24 labels, resulting in 42, 336 neighbor assignments for joint factors Ψ
R
ij . We run inference on
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ACE 2004, and average over 5 runs. Table 7.3 shows the time taken to obtain a low error in

marginals, as compared to the marginals at convergence. For smaller sentences, sparsity does

not help much since BP converges in a few iterations. However, for longer sentences containing

many more entities, we observe a significant speedup (up to 6 times). Further, although Fixed

is sufficient for smaller models, Dynamic is faster for the large models; taking messages into

account is crucial as the structure becomes complex. These improvements are less dramatic than

on grids, we suspect this is due to the medium sized domains, and the extremely dense structure

of the model (each entity variable is connected to n relation variables). Such structures violate the

locality assumptions made in our prioritization; on the other hand, the regular structure prevalent

in common graphical models is conducive to our approach.

7.3 Related Work

Considerable effort has been invested in designing message passing algorithms that converge

quickly for models with large domain variables. Our proposed approaches are extensions to, and

combination of, a number of related techniques.

Approximate Inference for Chains: Some existing work addresses approximate inference in

chains. Tsuruoka and Tsujii [2005] present a heuristic for performing inference in “easiest-first"

order, avoiding full bidirectional inference. Shen et al. [2007] have proposed learning the order

of inference instead of employing runtime heuristics. These differ from our proposed approach as

they do not revisit earlier decisions, address parallelism or computational resources.

Sparse Message Passing: The bottleneck introduced by large domains has motivated several

approaches that use sparse message approximations, some of which we outline here. The single-

value sparsity is partly inspired by cutset conditioning introduced in [Pearl, 1988] which identifies

variables in a model that, if fixed to a single value, results in tree-shaped model. Although we

focus on approximate inference, work on cutset conditioning can be combined with our approach

to prioritize the variables to be fixed. Song et al. [2011] propose a kernel-based representation

of the messages to provide efficient update computations independent of the domain size. Early
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work by Coughlan and Ferreira [2002] prunes values when their current belief falls under a thresh-

old. Ihler et al. [2004, 2005b] provide a theoretical framework to analyze the bounds on errors

for BP with message approximations. Also relevant to our approach is work by Sudderth et al.

[2003] and the following generalization by Ihler and McAllester [2009] that maintains samples on

messages, factors and variables, iteratively improving their approximation to minimize the error.

Coughlan and Shen [2007] use threshold based pruning of the label spaces to perform efficient

inference. Also similar, Komodakis and Tziritas [2007] combine label pruning with entropy-based

message scheduling. All these approaches operate on a fixed level of approximation; in contrast

our work grows domain when needed, is guaranteed to consider all values, and eventually give

full BP marginals. As an exception to this, Noorshams and Wainwright [2011] propose stochastic

updates on the message computations, thus reducing the polynomial dependence on the domain

size, leading to faster convergence. In contrast to their approach, we constantly work in a near-

primal-feasible region (with respect to local consistency), providing the anytime flavor. We also

differ by directly using the gradient of the primal or the dual objective to select high likelihood

values to add to the sparse domains.

Similar to our approach, a number of researchers propose modifications to BP that perform

inference without visiting all the factors. Recent work introduces dynamic schedules to prioritize

amongst the factors [Coughlan and Shen, 2007, Sutton and McCallum, 2007b] that has been used to

only visit a small fraction of the factors [Riedel and Smith, 2010]. Gonzalez et al. [2009a] utilize

these schedules to facilitate parallelization. Structured prediction cascades [Weiss and Taskar,

2010] also dynamically pick the set of values to use during inference, however differ from our

approach since the utility of the approach relies on learning parameters for this purpose, while our

proposed approach does not make such assumptions about the parameters of the model.

Message Passing Schedules: Scheduling between messages was introduced by Elidan et al.

[2006], followed by an efficient approximation [Sutton and McCallum, 2007b]. These schedulers

operate on full domains, and for problems with large domains, can often be slower than BP, as we

show in our experiments (Fig. 7.9). Instead of including all the factors in the model, Riedel et al.
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[2010a] explicitly sparsify the model by selecting only the factors with a high priority. Similarly,

Choi and Darwiche [2009] perform inference with similar approximations, then improve the so-

lution by compensating for them at a later stage. Our approach is one of the first to investigate

the interactions between residual-based message scheduling and value prioritization, and make it

practical on models with large domains.

MAP Inference: Although MAP inference is different, many of the ideas that we use are shared

by the MAP inference literature. A number of approaches relax the problem, and iteratively tighten

it by reintroducing constraints till the optimum is reached. These differ from each other based on

how the problem is relaxed, and how the constraints are discovered, for example, using equality

constraints [Choi and Darwiche, 2009, Sontag et al., 2011], integrality constraints [Globerson and

Jaakkola, 2007b] and cutting planes [Sontag and Jaakkola, 2008]. Our approach is similar, but in-

troduces sparsity constraints for efficiency, and removes them iteratively to reduce the approxima-

tion. Amongst the work in value sparsity, Sontag et al. [2009] introduce higher-order constraints

that represent the marginal polytope, and partition cluster domains for efficiency. Although our

work also selects subsets of the values to represent, and may be applied directly to a cluster graph,

the objective is to improve the anytime properties of convergence to a local polytope fixed point.

Recent work by Belanger et al. [2012] and Wang and Koller [2013] uses value sparsity for efficient

MAP inference, in contrast, our approach targets marginal inference. Our work differs from MAP

in another crucial way; obtaining a global optimum for MAP is possible without exploring all

values, while sparsifying the domains in marginal inference necessarily results in an unavoidable

approximation error.

7.4 Conclusion and Future Work

In this work we are primarily motivated with problems that have high-order factors and large

domain variables, but may not have many variables or factors. We introduced two set of algorithms

have explore the use of sparsity in variable domains for more efficient inference. In the first part

of this chapter, we introduce single-value sparsity, a straightforward extension to belief propaga-
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tion that encourages variables to have deterministic marginals. The approach allows approximate

inference to parallelize for chains, and facilitates tractable inference on a joint within-document in-

formation extraction task. In the second part of this chapter, we describe a novel family of anytime

message passing algorithms designed for marginal inference on problems with large domains. The

approaches maintain sparse domains, and efficiently compute updates that quickly reach the fixed

point of an approximate objective by using dynamic message scheduling. Further, by growing do-

mains based on the gradient of the objective, we improve the approximation iteratively, eventually

obtaining the BP marginals.

In future work, we will use tools to analyze the effects of approximate messages [Ihler et al.,

2005b] for a better theoretical understanding of our approaches. We also want to study the effect

of sparsity on global properties, for example, does the sparsity induce an exploitable structure

such as low tree-width? There are a number of further alternatives that we would like to explore,

such as growing domains by more than a single value at a time, inducing sparsity at the level of

factor assignments, and so on. Research is also needed to combine our approach with convergent

marginal inference algorithms.
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CHAPTER 8

BELIEF PROPAGATION WITH CLUSTER MESSAGE COMPRESSION

With four parameters I can fit an elephant, and with five I can make him wiggle his

trunk.

John von Neumann

For scaling belief propagation to large, dense models frequent in joint inference, we may need

to employ distributed processing, and utilize structure-specific inference that can provide efficient

inference for sub-structures of the model. In the previous chapter we focus mainly on variables

with large domains, and introduce approaches that utilize the low-entropy marginals to induce

sparsity in the earlier stages of inference. Although our approaches provide efficient inference

for a number of tasks, the complexity in the model arises from the domain size and not size of

the model, and it is not clear how the approaches would generalize to larger models, or to the

distributed setting. Further it is difficult to combine the sparsity based algorithms with customized

algorithms that may be more efficient for specific parts of the model.

Let us consider a straightforward solution to distributing belief propagation. Since message

passing is naively distributable, we can partition the model into components (each variable is as-

signed a single component), and compute messages within each component in parallel. Occasion-

ally, variables lying on the boundary of the components will have to communicate their messages

to their neighbors that lie on a separate node; we can use asynchronous, node-to-node commu-

nication to achieve this. Unfortunately, a number of weaknesses are inherent in this framework:

(1) Since asynchronous, node-to-node communication is often slow in most distributed process-

ing architectures, the framework should communicate minimally, and each message should be

informative. The above framework does not differentiate between within-node and across-node

messages, making it difficult to take the cost of communication into account. (2) Although loopy
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belief propagation works well on small models, it may be a poor choice for large graphs due to

non-convergence or convergence to a poor solution (Section 6.2.2.2), requiring a large number of

iterations before obtaining reasonable marginals. (3) If there are existing inference algorithms for

sub-structures, for example sampling for large-domain variables or efficient MAP algorithms, this

framework for distribution cannot utilize them. It is clear that this proposed framework for belief

propagation lacks a number of desired properties.

In this chapter we introduce a framework for efficient inference that builds upon generalized be-

lief propagation. The clusters of variables for generalized BP are defined to reflect the exploitable

sub-structures of the model and the communication boundaries across the nodes (Section 8.1). Per-

forming message passing with complete cluster messages would result in convergence to accurate

marginals in with very few messages (iterations), however complete messages are not practical

since both the computation and the size of each message is prohibitively expensive (exponential

in the number of variables in the cluster). Instead in Section 8.2 we propose a number of ap-

proximations of cluster messages that trade-off size (communication cost) and information content

(number of iterations), ranging from the special case of loopy belief propagation as small but in-

formation poor messages, to full generalized BP messages that are informative but impractical to

compute/communicate. Since our approximations are based on sampling and search techniques,

we can exploit sub-structures for which such algorithms are available.

We provide convergence analysis using expectation propagation in Section 8.3. Empirical ev-

idence, presented in Section 8.4, demonstrates convergence to more accurate marginals compared

to loopy belief propagation on a single machine, and with less communication for the distributed

setting, on a number of synthetic and real-world joint inference tasks.

8.1 Cluster Graph for Modular Belief Propagation

In this section we describe our formulation of modular belief propagation as as instance of

cluster graph based generalized belief propagation (we refer the reader to Section 6.3 for a review

of cluster graphs and generalized BP). We then represent both distributed BP and joint inference
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(a) Distributed BP (b) Joint Inference

Figure 8.1: Examples of Cluster Graphs: (a) shows an example of a 4 ◊ 4 grid distributed over
4 machines, where the factors between cluster variables represent inter-machine communications,
and (b) shows a joint inference task between two chains. The top task contains 3 variables, while
the bottom 7, and the model is similar to factorial CRFs with a window of 3. Variables shared
between clusters are repeated with an equality factor (double-stroke) between them. Note that
inference for each local factor is efficient (they are chains), however inference for factors across
tasks is not.

between multiple tasks as instances of this framework. Let G be the given graphical model, consist-

ing of variables Y and factors F . In the cluster graph representation, we further assume C is a set

of clusters where each C œ C consists of a subset of variables C ™ Y. For distributed inference,

we treat all the variables assigned to each node as part of a single cluster, as illustrated in Fig. 8.1a.

Each local cluster factor represents the part of the model that is local to the computation node,

while cluster factors across the cluster variables represents the dependencies across the machines.

For joint inference, we can treat groups of variables for each task in a single cluster, as shown in

Fig. 8.1b. The local cluster factors in this represent factors that define the distribution for each

task, while the cluster factors across the clusters represent dependencies across the tasks. When

performing generalized BP on the cluster graph, the cluster messages (messages to/from cluster

variables and cluster factors) represent the joint distribution over the variables that are part of the

cluster.
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Message passing on the cluster graph using generalized BP converges to the Kikuchi approx-

imation to the variational objective, a tighter approximation than loopy belief propagation (i.e.

Bethe approximation), and in much fewer iterations of message passing; both desired properties

for distributed BP and joint inference. Unfortunately the size fully-specified cluster messages is

|Y||C|. Such messages are prohibitively expensive both to compute and communicate, and we do

not expect to use generalized BP for inference. On the other hand, it is possible to consider fully-

factorized messages as approximations to the fully-specified message, i.e. mCæΨ =
r

YiœC miæΨ.

This is equivalent to performing loopy belief propagation on the underlying model; the messages

are small in size (|Y|◊ |C|) and easy to compute and communicate. However, since these message

fail to capture the dependencies accurately, they result in convergence to the Bethe fixed point (a

poor objective), and take a large number of iterations to get there.

8.2 Approximations of Cluster Messages

The previous section suggests an inherent trade-off in cluster belief propagation. If the cluster

messages are fully-specified and exact, they are informative and capture the dependencies accu-

rately, resulting in accurate marginals and fewer iterations of message passing; however the mes-

sages are exponential in size. On the other hand, factorized cluster messages are small and efficient

to compute and communicate, however lack the information necessary to converge fast to a good

solution. In this section we define a number of representations of cluster messages mCæΨ that to-

gether span a spectrum of representation/message size trade-offs from factorized to fully-specified.

8.2.1 Factorization over Individual Variables (Loopy BP)

Analogous to performing regular belief propagation, we can represent the joint distribution

over all the variables in the cluster variable as a product of local distributions on each variable. As

we mention above, this corresponds to mCæΨ =
r

YiœC miæΨ. Although this is reasonably small

in size (|Y| ◊ |C|), it does not capture any global correlations present amongst the variables. This

is very restrictive in the loopy models that we are interested in, and can cause belief propagation
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to take many iterations to converge. Furthermore, depending on the structure of the consuming

factor f , this may not lead to efficient marginalization, i.e. the marginalization may iterate over the

complete cross-product of the domains.

8.2.2 Sampling

To represent the global correlations that are ignored by the fully-factorized messages, the joint

distribution can be approximated using a set of samples S, where each sample ys œ S is a complete

configuration of the inner variables Y œ C. The probability of each configuration can be set

proportional to the counts, i.e. mCæΨ(y) Ã
q

sœS I(y==ys). However, since the log model score fi

is often easy to compute, we can also set mCæΨ(y) Ã exp fi(y); this way we are using sampling to

identify a representative set of configurations, but not relying on sampling to be exact to compute

the probabilities. Probability of zero is assigned to the configuration that do not appear in the set

of samples. This facilitates efficient marginalization since marginalization only needs to iterate

over the set of samples (instead of all possible configurations, as in the previous approximation).

By using methods such as MCMC, the sampling task itself can be performed tractably (the size of

the message is Ã S, and the computation time is approximately linear in the number of samples).

This approach also provides control over the degree of approximation and performance; a larger

set of samples can represent the joint distribution better, however computation and marginalization

is slower.

8.2.3 k-best Configurations

Samples can often be a very inefficient way to represent the joint distribution. If the the dis-

tribution contains multiple peaked modes, a large number of samples may be required to obtain

samples from each of the nodes. On the other hand, if the distribution is relatively flat, a large

number of samples may be required to discover the modes. Instead we would like methods that

directly represent the modes of the distribution. To achieve this, top k complete assignments to the

variables {y1, y2, . . . , yk} can be selected (ranked according to the model probability), resulting

in the k-best approximation. The probability of the selected configurations may be set uniformly,
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mCæΨ(y) = 1/k, however since we can compute the model score, we set mCæΨ(y) Ã exp fi(y).

This approximation also assumes 0 probability mass outside the k-best configurations, and the size

of the messages is Ã k. Similar to sampling, k allows a direct trade-off between approximation and

performance, however by selecting the top configuration, it can adequately capture the modes of

the distribution. Further, we can utilize existing literature on k-Best algorithms (including beam-

search for approximate k-Best) to compute the messages efficiently.

8.2.4 Merged and FRAK Messages

The sparse messages described by k-best configurations (Section 8.2.3) and set of samples

(Section 8.2.2) are efficient to perform marginalization over, capture global properties of the

joint distribution, can utilize existing efficient algorithms to compute samples/modes, and allow

a smooth trade-off between message size and representation capability. However, they assume that

the probability outside the sparse set is 0. This restricts the consuming factor to represent the dis-

tribution only on a limited set of configurations, and thus it cannot induce the distribution to prefer

configurations outside the sparse set of samples/configurations.

Instead, along with the set of samples/configurations, we introduce a “default” probability that

is assumed to be spread uniformly over the rest of the space (merged set of configurations). To com-

pute the probability mass assigned to the merged space, we compute mCæΨ(y) Ã 1
|C|≠k

1

Z ≠
q

yk
exp fi(yk)

2

,

which can be computed exactly or approximately depending on the structure of the local factors

of C (for example, loopy BP is exact for chains and trees). If the total size of the domain is

known, as is usually the case (|Y||C|), the marginalization of these messages by the receiving

factor f is still computationally tractable. Further since it assigns a probability mass to the rest

of the domain, the downstream messages can express preference for rejecting all of the selected

samples/configurations.

For computing the sparse set of configurations, we would like to utilize MAP inference instead

of sampling or k-Best since MAP algorithms are often much faster and often exact. Since MAP

provides the 1-best configuration, we maintain a list of previously selected configurations, and
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augment the list with the 1-best if it is not already in the list. This allows the system to adaptively

select states during inference, growing the list to more configurations if the list of selected config-

urations is not a good representation of the message. We call this approximation the factorized,

relaxed and adaptive k-best (FRAK) lists, retaining all the benefits of the sparse representation

(small size, representation of global properties, fast marginalization) with ability to adapt in size

during inference.

8.2.5 Other Approximations

Although we restrict our experiments to the approximations listed above, the framework allows

alternative forms of approximation that may be more appropriate for certain classes of problems.

For example, it is possible to project the joint distribution over the variables in a cluster to a

simpler family of models (known as the approximating family), such as a chain or a tree [Welling

et al., 2005]. Full factorized messages described above in Section 8.2.1 is a special case where the

approximating family consists of completely independent factors. Although working with these

messages is intractable in general (as mentioned above), depending on the structure within the

consuming potential, certain approximations can still be tractable. For example, if the consuming

cluster factor itself is a product of independent factors, then the fully-factorized approximation

messages offer an appropriate approximation.

Since different variables have different forms of dependencies, it may be possible to combine

the approximations above, for example use a fully-factorized distribution for a subset of the vari-

ables of C, while using a fully-specified or FRAK based distribution for the remaining variables.

It is also possible to utilize context specific independence by using algebraic decision diagrams as

the choice of representation [Gogate and Domingos, 2013].

8.3 Expectation Propagation

Expectation Propagation (EP; Minka [2001]) provides a theoretical framework for us to study

the approximations. EP generalizes the belief propagation algorithm to allow each message to
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have a tractable form that approximates the original distribution. In particular, it requires the ap-

proximating family to be in the exponential family. The EP algorithm consists of the following

three steps to compute a message: 1) multiplication of incoming messages with the factor score,

2) minimizing the KL divergence between the distribution computed in previous step and the ap-

proximation family, and 3) computing the outgoing message by dividing the incoming message. If

the three operations can be computed efficiently and exactly for a given choice of approximation,

EP defines the fixed point of the resulting algorithm. Unsurprisingly, choice of fully factorized

marginals reduces the EP objective to the Bethe free energy. Welling et al. [2005] extend EP to

generalized belief propagation.

Let us describe EP message computations as it applies to cluster BP with approximate mes-

sages. Consider a cluster variable C consisting of variables YC , and a potential over it, ΨC . We

want to approximate the message mCæa from the cluster variable C to a cluster factor Ψa, where

the message from Ψa to C is maæC . Given a sufficient statistics function ÷ : YC æ Rd that de-

fines the approximating family, Expectation Propagation first computes the moments µη of ÷ over

the distribution maæC · Ψa:

µη Ω EmaæC ·Ψa
[÷] (8.1)

Then a matching distribution is computed, match(µη), that matches the moments µη of the full

message. The projection step is followed by dividing out the incoming message maæC to compute

the desired message mCæa.

mCæa Ω
match(µη)

maæC

(8.2)

Different choices of the sufficient statistics represent different approximations.

• Exact messages: Performing generalized belief propagation (i.e. with full messages) will

correspond to ÷ of size k = |YC | such that ÷(yC) is 0 everywhere except for 1 at the index

of the value yC . This is equivalent to running full generalized belief propagation.
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• Factorized: For the fully-factorized case (Section 8.2.1), which is equivalent to performing

loopy belief propagation, ÷ contains a single bit for each individual variable and value com-

bination. This is much smaller than the full message; |Y| ◊ |C| in this case versus |Y||C| in

the full message case, where |C| is the number of variables in YC and |Y| is the size of the

domain of individual variables in YC .

• Samples/k-Best: Similarly, for the k-best or sampling configurations (Sections 8.2.2 and 8.2.3),

the sufficient statistics ÷ = {÷s}sœS , where S is the set of k-best configurations (|S| = K)

or samples, and ÷s(yC) = ”ys,yC
. In other words, ÷(yi) is a vector that is 0 everywhere

except at the index corresponding to a configuration yi = ys that is part of the k-best list

or samples1. The sparse matching distribution does not match these expectations exactly,

instead they assign zero probability outside of S, and renormalize probabilities within. Note

that the size of ÷ is |S| here, which is much smaller than |Y||C|.

• Merged and FRAK Messages: For the merged messages, the statistics are same as for

k-Best, with an additional bit ÷m that is 1 if yC ”œ S. The matching distribution implicitly

divides the probability mass on ÷m equally amongst the merged configurations. FRAK may

incrementally extend the list S by adding the MAP state if absent, making it difficult to

directly apply EP (EP requires a fixed approximation family). However, FRAK will either

fully expand to all states (hopefully not), or arrive to a point where the following iterations

do not add any more items to the lists. In either case the remaining iterations will perform

conventional EP with fixed S.

In this section we have presented our various approximations in context of the approximating

families of expectation propagation, and described how the matching distributions are computed

for each. This characterizes the fixed point of cluster belief propagation with compressed mes-

sages.

1If yi is not part of the n-best list, then η(yi) is 0 everywhere.
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8.4 Experiments

We explore the utility of our approach on a number of different evaluations. First, we compare

the representation capability and the storage size of our approximations for single cluster messages,

outside the context of inference. We then present performance of our approximations on synthetic

factorial chains with large domains and a wide window, for which running belief propagation is

inefficient. To evaluate the utility of our approach for compressing messages for distributed BP,

we simulate distributed processing on large grids, and compare accuracy of the marginals to the

amount of bandwidth used. Finally, we present results on real-world joint inference task of citation

segmentation and resolution.

8.4.1 Single Message

In order to gain a better understanding of the various approximations afforded by our proposed

techniques, we compare the proposed approximate distributions to the true distribution. We gener-

ate a random 3◊3 synthetic grid, with each variable domain of size 3 and local and pairwise factors

generated randomly from the normal distribution. Specifically, the local factors Âi(yi) are sampled

independently from N (0, 1), while the pairwise factors Âij(yi, yj) =

Y

_

_

]

_

_

[

◊ij, if yi = yj

≠◊ij, o.w.
, where

◊ij ≥ N (0, 1). The total number of values over which the message is defined is 39 = 19, 683. The

model is shown in Fig. 8.2.

We compute the approximate cluster messages for the above factor using Factorized, Sam-

pling, k-Best, and the FRAK methods, varying the different parameters such as the k and number

of samples. We also compute the fully-specified message for this model that defines the true dis-

tribution, and compare the accuracy and the storage used by the approximate distributions to the

fully-specified message. We present the results in Fig. 8.3. Although the Factorized message

is small in size, it achieves a relatively high error, suggesting it does not represent the distribu-

tion well. Although our proposed approximations are bigger in size, they achieve much lower
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Figure 8.2: Grid Model a Cluster Variable and Cluster Potential: Each variable has a domain
size of 3, resulting in 19, 683 values in the completely specified cluster message.

error than factorized messages2, providing a smooth tradeoff between the message size and the

approximation. Further, FRAK outperforms all of the remaining approximations, indicating that

representation of the merged probability is crucial for representing such distributions.

8.4.2 Factorial Chains

To closely represent a real-world joint inference task, we generate a large number of factorial

CRFs (introduced by Sutton et al. [2007]). These models are commonly used to represent two

tagging tasks over the same sequence, where the tasks are usually divided into top and bottom

tasks. Each variable in the top task may be connected to a number of bottom variables in the

context, with the clique size defined by the context window w. We generate random potentials,

and compare: 1) Regular BP (fully-factorized messages), 2) k-Best (incrementally adds the next

best configuration), and 3) FRAK, our combination of sparse and merged messages. With large

window and domain sizes, computing even the regular BP messages is expensive, and we expect

the sparse representations of messages can outperform loopy BP in speed.

Figure 8.4 summarizes the performance on these chains. For small clique size (w = 3) we

compare the performance of the three approaches using error when compared to exact marginals.

2With the exception of KL divergence. Since Sampling and k-Best messages contain 0 probabilities, the KL is not
defined. We use a small probability (10−10) for the purpose of evaluation
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Figure 8.3: Accuracy of Cluster Message Approximations: compared on the memory used to
represent the messages (normalized by the size of the fully specified message). Error is computed
relative to the distribution of the fully-specified message.
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Figure 8.5: Cluster Model over Synthetic 9 ◊ 8 Grids: Consisting of 3 ◊ 2 sized clusters. Each
cluster variable is assigned to a single node/processor of computing its messages, i.e. we simulate
12 processors for the above model. Local factors have been omitted for both the regular and the
cluster graph for clarity, along with the black squares that represent regular pairwise factors.

We create synthetic grids with 9 ◊ 8 binary variables. The underlying model consists of lo-

cal factors (randomly generated from N (0, 0.25) and pairwise factors (random generated eij ≥

N (0, 1), with Âij(yi, yj) = (≠1)Iyi ”=yj eij). We create cluster variables consisting of 3 ◊ 2 grids,

and generate the corresponding cluster potentials. The model and cluster graph is shown in Fig. 8.5.

We perform inference in the cluster graph using Loopy BP, GBP, and the sparse-merged messages

(k-Best and sampling do not perform well in this task). We compare the accuracy of the marginals

to true marginals (computed using a separate cluster chain) and measure message sizes for each

update. We repeat our experiments 20 times, and average the results.

The results of the experiment are presented in Fig. 8.6. In the left column (Figs. 8.6a, 8.6c

and 8.6e), we plot the accuracy of the marginals with the total size of transmitted messages. A

number of aspects are evident from these figures. First, we notice that Loopy BP stays at a high-
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Figure 8.6: Cluster Message Compressions on Synthetic Grids: showing that the sparse and
merged approximation converges to an accurate solution and is substantially faster.
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error for the course of inference. Second, GBP converges to a much lower error than Loopy BP,

demonstrating that the cluster Kikuchi approximation leads to more accurate marginals. Third, the

sparse messages offer much lower error with smaller message sizes, and further, provide a trade-off

with k = 8 converging to a slightly higher error quickly. This plots, however, do not differentiate

between local (no approximation) and remote (with approximations) messages, and thus are unfair

to Loopy BP and other approximations that are small in size. In the right column (Figs. 8.6b, 8.6d

and 8.6f) we present the same results with messages across the (simulated) network associated

with a much higher cost (100◊ that of the local messages). Although these plots capture a much

large proportion of Loopy BP (compare the final error to the left plots), we see that Loopy BP

still converges to a much higher error. Further, our sparse-merged approximations, since they are

much smaller in size than full messages, converge to a low error substantially faster (fewer bits

communicated) than GBP. From these observations, it is apparent that the sparse-merged cluster

messages provide much more accurate inference techniques as compared to Loopy BP, but are

much cheaper to compute and communicate than the GBP messages.

8.4.4 Joint Segmentation and Entity Resolution

To evaluate our approach on a real-world joint inference problem, we apply it to the task of

citation segmentation and resolution. We study the problem that, given a number of citation strings

of scientific publications, identifies the author, title and venue fields within each citation, and

resolves citations that are duplicates of each other. This task is usually solved as a pipeline with

the segmentation task forming the first component that consumes raw citation text, and identifies

the author, title and venue fields. The entity resolution (or coreference) component takes a pair

of citations as an input and predicts whether the citations refer to the same underlying paper. We

use the Cora dataset [McCallum et al., 1999] used in evaluation of MCMC-based joint inference

approaches [Poon and Domingos, 2007, Singh et al., 2009] and contains 1295 labeled citations.

This is the same dataset we use earlier for evaluating MCMC on citation disambiguation, see

Sections 4.4.2, 5.1.3.2 and 5.3.3.1, although using a substantially different model.
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Figure 8.7: Joint model of Segmentation and Coreference: Citations Xa and Xb have an identi-
cal substring Xa(1, 2, 3)=Xb(0, 1, 2)

Our model for segmentation consists of a linear-chain CRF, consisting of local factors between

each token and its label, and transition factors between neighboring label variables. Independent of

other components, exact inference can be performed efficiently for this model using the forward-

backward algorithm. The model of coreference, being the downstream component, consumes the

output labels of the citation pair (a and b) it is defined over. We would like to the model to capture

the intuition that citations that refer to the same paper should have the same tags on the identical

tokens, i.e. if the same sequence appears in both citations a and b is labeled as the citations’ titles,

then this provides evidence for the citations being coreferent. For every subsequence of tokens of

fixed length (4 in our experiments) between pairs that are string-identical, the model contains a

factor consisting of the common subsequence labels, and the coreference variable (see Fig. 8.7).

Note that conditioned on a fixed assignment to the label variables of the segmentation layer, exact

inference for coreference is very efficient (in fact, the problem reduces to classification). However,

if there is uncertainty in the citation segmentation, coreference has to incorporate the incoming

message on the labeling of the substrings. Since this space is very large, messages that contain the

full distribution are intractable.

We compare sampling and k-Best approaches with our proposed FRAK approach on the re-

sulting accuracy of coreference, and present the experiment results in Table 8.1. Note that the

k = 1 baseline corresponds to the pipeline system of conditioning the downstream task on the best
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Method Prec Rec F1 Time

(hours)
k-Best n = 1 98.8 42.3 59.3 0.08

k = 2 98.9 40.6 57.6 0.16
k = 5 99.1 46.5 63.3 0.4
k = 10 98.8 48.1 64.8 0.8
k = 50 98.2 53.6 69.3 4.0
k = 100 98.2 54.3 69.9 8.0
k = 150 98.2 54.8 70.3 12.0

Sampling s = 25 96.3 67.6 79.4 3.1
s = 100 96.9 67.3 79.5 10.0

FRAK 95.3 69.9 80.7 0.16

Table 8.1: Approximate Cluster Messages for Citation Resolution: Pairwise evaluation of cita-
tion resolution when performed jointly with citation segmentation.

prediction of the upstream task. As we can see from the table, Sampling outperforms k-best on this

task, but does not match our performance. FRAK messages, by assigning non-zero probability to

the “merged” states, allow the coreference layer to recover from the mistakes made in the segmen-

tation layer. FRAK shows substantial accuracy gains; an error reduction of 52.5% is achieved over

the pipeline 1-Best approach. Further, our system takes approximately 10 minutes to run, which is

much faster than sampling (s = 100 takes ≥ 10 hours) and k-Best (k = 150 takes ≥ 12 hours).

8.5 Related Work

A number of existing approaches are closely related to the contributions in this chapter.

Distributed BP: Various approaches have been proposed to mitigate the costly communication of

messages for distributed belief propagation. Gonzalez et al. [2009b] partition the model such that

inter-node messages are less relevant for accurate marginals than the intra-node messages. It is also

possible to use bulk synchronous model for distributed processing over graphs [Malewicz et al.,

2010] to reduce the communication overhead due to asynchronous processing. The idea of using

samples as an approximation to messages for distributed belief propagation was also proposed by

Ihler et al. [2005a], however for acyclic, non-cluster graphs.
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GBP and Cluster Graphs: Generalized belief propagation was introduced by Yedidia et al.

[2000], describing the algorithm for a fixed region graph and fully-specified messages, and its re-

lation to Kikuchi approximations. Welling et al. [2005] analyze the approximations of GBP, and

describe connections to expectation propagation Minka [2001]. More recently, independent in-

vented from out approach, Gogate and Domingos [2013] explore message passing with structured

representation of factor potentials such as sparse hash-tables and algebraic decision diagrams, and

describe convergence using expectation propagation. They mention that non-parametric BP [Sud-

derth et al., 2003] and particle BP Ihler and McAllester [2009] that represent each message as a set

of samples (similar to Section 8.2.2) can be analyzed using EP. Heskes and Zoeter [2002] is similar

to our work in that it frames approximate inference for DBNs as expectation propagation. Further,

the convergent algorithm they propose which is orthogonal to our contribution; there is potential

to combine the approaches. Although we do not describe how the clusters are identified in this

chapter, approaches have been proposed to describe fruitful regions [Welling, 2004], however we

imagine we can utilize splash propagation to partition the models [Gonzalez et al., 2009a].

Approximate Joint Inference: A number of approaches have proposed various approximations

to allow efficient but approximate joint inference. Finkel et al. [2005] uses sampling as an approach

to approximate the messages between joint inference tasks [Finkel and Manning, 2009], while

Wellner et al. [2004] uses k-best list of configurations. Both of these assume 0 probability outside

the sparse set of configurations. Even though Gibbs sampling [Finkel et al., 2005] performs only

slightly worse for joint inference, our approach provides significant advantages. First, sampling is

comparatively very slow. Second, there is inherent variance in the results, as the set of samples

may not be representative (due to local minima), and multiple chains may be required. Further,

there are a number of hyper-parameters that need to be tuned, such as number of samples, burn-in

period, iterations between samples, etc. that can severely impact the results. Factorized frontier

algorithm [Murphy and Weiss, 2001] and its variants aim to reduce the complexity of message

passing between components from |Y||C| to |Y||N (f)|, where N (f) the max fan-in of variables.

In most joint-inference problems of our focus, the fan-in is large enough that |Y||N (f)| is still very
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high, making these approaches intractable. Further, our cluster variables are designed to encourage

|C| = |N (f)| for joint inference.

8.6 Conclusion and Future Work

For distributed inference over large models that span across machines, or for joint inference

over multiple tasks with large domains, loopy belief propagation is not practical due to slow

marginalization, large number of iterations required to converge, and low accuracy of the resulting

marginals. Generalized belief propagation addresses some of these concerns by obtaining the fixed

point of a considerably tighter approximation in much fewer iterations, however marginalization

is still slow and the messages are exponentially larger. There is a need for approximate inference

that can overcome these problems, and perhaps combine the advantages of these two approaches.

In this chapter we introduced a cluster graph based formulation of distributed BP and joint

inference that allowed us to present a number of approximations of cluster messages. These ap-

proximations span the spectrum of message sizes and approximation factor, providing an easy way

to trade-off accuracy with storage/computation time. We also proposed a novel approximation

scheme called FRAK that combines the low-storage and fast computation of sparse approxima-

tions (such as sampling and k-Best) with a more accurate and adaptive representation of the true

message. Results on synthetic models demonstrate FRAK outperforms BP, Sampling and k-Best

based messages. Further, on a real-world joint task of citation segmentation and resolution, FRAK

is able to obtain an error reduction of 52.5% over the pipeline approach, while being much faster

that Sampling or k-Best.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

We can only see a short distance ahead, but we can see plenty there that needs to

be done.

Alan Turing

This thesis was motivated by the need to represent complex distributions over the ever-growing

datasets available to machine learning, and to allow probabilistic queries efficiently and in a scal-

able manner on such models. Factor graphs are commonly used to compactly represent the com-

plex dependencies in such distributions, however the resulting models contain massive number

of random variables with large domains, along with a dense connectivity of high-order factors.

Exact inference for such models is intractable, and even approximate inference schemes such as

Markov chain Monte Carlo (MCMC) and belief propagation (BP) do not scale adequately. Instead

of making approximations in the complexity of the model (as is common in existing literature),

this thesis set out to investigate the utility of scalable approximate inference techniques that make

dynamic sparsity approximations and distribute the computations to facilitate efficiency, allowing

the models to retain complexity and expressiveness.

9.1 Summary of Contributions

Our first set of contributions focused on extensions to MCMC techniques (Chapter 3 provides

an overview). Even though MCMC is an inherently sequential algorithm, in Chapter 4 we found

that a Map-reduce based distributed MCMC algorithm that uses a combination of restricted pro-

posals and informed partitioning of the variables can scale to large, dense models. We further

discovered that a collection of asynchronous alternatives in Chapter 5 that use stochastic evalua-
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tion of the proposals and perform asynchronous communication for distributed processing are able

to address some of the undesirable characteristics arising from the synchronous distribution.

The second part of the thesis focused on the belief propagation methods, introduced and con-

trasted with MCMC in Chapter 6. We found that our proposed techniques in Chapter 7 that induce

sparsity on the variable domains in a dynamic and adaptive manner are able to address the large

domains and high-order factors, along with providing anytime characteristics and facilitating ef-

ficiency and parallelism. Framing joint inference and distributed message passing as generalized

BP on a cluster graph in Chapter 8 results in a family of algorithms that we showed can trade-off

computation/communication time with accuracy of inference.

9.2 Potential Impact and Lessons Learned

This thesis contributes to existing knowledge in a number of ways. Since the proposed infer-

ence algorithms are general-purpose, their application is not limited to the empirical evaluation

presented in this thesis. The proposed algorithms can be applied to complex models over large

datasets from any application domain, and further, enables future studies on novel probabilistic

models that are currently considered intractable. This thesis has also demonstrated the utility of

approximate inference with complex models over exact/near-exact inference on simpler models,

indicating, for example, the utility of joint modeling and inference of multiple tasks for accurate

decision-making with uncertainty. This work also adds to a growing body of literature on un-

derstanding the interplay between systems and machine learning, in particular relating theoretical

approximations in inference to efficiency in computation and communication.

9.3 Limitations and Future Work

A number of important limitations of the work need to be considered, many of which bring up

interesting questions that require further investigation.

166



9.3.1 Theoretical Analysis

Although we present analysis for a number of our approaches, the generalisability of our results

is restricted due to lack of the following theoretical insights.

• We show the validity of synchronously distributed MCMC chains only for random partition-

ing (Section 4.3), even though the informed partitioning performs much better in practice.

Future Work: Along with showing validity of these chains, further work needs to be done

to identify the properties of the informed partitioning that provide this advantage, and to

characterize the speedups.

• Stochastic evaluation of proposals with a fixed level of approximation is limited by lack of

detailed balance (Section 5.1.2).

Future Work: Further investigation is needed to show an adaptive version with vanishing

approximation results in valid chains, akin to Andrieu and Thoms [2008] and Atchadé et al.

[2011].

• Asynchronously distributed MCMC is shown to maintain valid MCMC chains in a restric-

tive setting (Sections 5.3.2 and 5.4.3), however fails to demonstrate correctness in the general

case of MCMC with overlapping variables.

Future Work: Possible future studies might extend related work in parallel tempering [Earl

and Deem, 2005], distributed optimization [Pan et al., 2013], and asynchronous topic mod-

els [Asuncion et al., 2009] to our setting.

• Our current investigation into value sparsity for belief propagation (Chapter 7) was unable

to provide convergence analysis.

Future Work: It would be interesting to see if future work is able to characterize the fixed

point of single value sparsity or provide regret on the sparse values that are chosen for any-

time belief propagation.
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• Future Work: More research is needed to better understand the convergence with approxi-

mate cluster messages for generalized belief propagation (Chapter 8), in particular the theo-

retical framework introduced by Ihler et al. [2004] may be suitable for such analysis.

9.3.2 Systems Considerations

While this thesis primarily deals with machine learning, we mention a number of systems as-

pects such as synchronous and asynchronous communication in Section 5.2 and bandwidth conser-

vation by compressing probability distribution in Chapter 8. However, this study fails to consider

the following:

• This study restricts itself to fairly simple communication patterns, i.e. we either use syn-

chronous communication (Section 4.1), via a central repository (star, in Sections 5.3 and 5.4),

or network customized to the model (cluster graph in Section 8.1).

Future Work: Further work should explore direct, point-to-point communication, or more

sophisticated network topologies such as rings and trees.

• The proposed techniques are also limited by the ways memory access is specified; in partic-

ular we assume either data is in the processor memory, or needs to be communicated via the

network.

Future Work: What is needed is a study of different data access patterns, such as from

RAM, solid-state drives, disk drives, and network file systems, and their effect on the choice

of inference.

• The algorithms presented in this work have been designed, for the most part, to be architec-

ture agnostic. This can, however, sometimes be a disadvantage.

Future Work: In future, we recommend investigation of approaches that are parameter-

ized by system considerations, such as memory limit, memory access speed, communication

speed etc. so as to adapt to different existing (and future) architectures.

168



• Future Work: Another interaction of machine learning and systems can take in form of

an application of scalable inference to probabilistic databases. We describe this in the next

section.

9.3.3 Potential Applications

In this work we present empirical evaluation on a number of different applications, including

cross-document coreference resolution, author disambiguation, citation segmentation and dedupli-

cation, named entity tagging, relation extraction, within-document coreference, and part of speech

tagging. Our work, however, need not be limited to these applications:

• One of the primary motivation for this work has been to perform joint inference. Although

we have proposed a number of joint models of information extraction that did not exist in

the literature, the improved results suggest this paradigm can be fruitful.

Future Work: Further studies should explore joint inference for tasks and domains that are

not modeled yet, perhaps using the algorithms presented in this thesis to scale.

• We perform corpus-level inference on cross-document coreference, and perform joint infer-

ence on complex models of within-document coreference.

Future Work: It is clear that a combination of these, i.e. joint inference of cross-document

information extraction, should be an interesting potential application of this approach.

• Apart from synthetic experiments, the empirical evaluation in this work has limited itself to

information extraction and natural language tasks.

Future Work: These are not the only applications of graphical models, and in fact, graphical

models have been used in many different domains such as computer vision, bio-informatics,

speech recognition, medical applications, and robotics. Many of these applications can ben-

efit from scalable inference alternatives.

• In recent years, a number of proposed approaches for representing uncertainty in databases

in a scalable manner have been introduced as probabilistic databases (Section 2.4.4). The
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underlying uncertainty is sometimes represented by graphical models, with MCMC [Wick

et al., 2010] or message passing [Singh and Graepel, 2013] as the choice of inference.

Future Work: This suggests further work should, therefore, use the presented approaches

for scalable probabilistic databases.
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