Efficient Execution of Dependency Models

Samuel Huston
Center for Intelligent Information Retrieval
University of Massachusetts Amherst
Amherst, MA, 01002, USA
sjh@cs.umass.edu

ABSTRACT

Recently, several studies have investigated the efficient exe-
cution of bag-of-words (BOW) retrieval models for large doc-
ument collections. Even though there is a large body of work
that consistently shows that dependency models consistently
outperform BOW models, none of these studies consider the
efficient execution of dependency models. In this study we
present initial investigations into the efficient execution of
the sequential dependence model (SDM), a commonly used
benchmark dependency model. We observe that versions of
the WEAK-AND and MAX-SCORE query processing models
are efficient rank-k-safe query processing algorithms for this
dependence model. Further, we observe that query process-
ing time can be halved using a two-pass heuristic algorithm.

1. INTRODUCTION

Recently, there have been several studies that investigate
the efficient execution of bag-of-words (BOW) retrieval mod-
els for large document collections [5; 6; 7; 12]. None of these
studies consider the execution of dependency models, even
though there is a large body of work demonstrating that de-
pendency models can consistently outperform BOW models.

A simple solution is to index the required dependency fea-
tures. A number of recent studies propose methods of fully
or partially indexing dependency features [3; 8; 9]. These in-
dexes allow the BOW-based query execution algorithms to
operate for dependency models without modification. How-
ever, these indexes have either large space requirements, or
discard a large fraction of dependency features, considerably
reducing the effectiveness of the retrieval model for many
queries.

Alternatively, positional indexes can be used to recreate a
wide range of positional dependency features. However, pro-
cessing positional data to identify instances of term depen-
dencies considerably reduces query processing time. While
this approach may not be appropriate for web-scale search
solutions, it is appropriate for personal search on mobile de-
vices, and for some enterprise settings where available disk

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

W. Bruce Croft
Center for Intelligent Information Retrieval
University of Massachusetts Amherst
Ambherst, MA, 01002, USA
croft@cs.umass.edu

and memory space is limited.

In this initial study, we investigate the adaptation of exist-
ing BOW algorithms for the execution of dependency mod-
els. We adapt two efficient document-at-a-time (DAAT)
query processing algorithms to permit the rank-k-safe pro-
cessing of dependency models using positional term indexes.
We empirically compare the efficiency of versions of MAX-
SCORE [16], and WEAK-AND [2]. We also detail a heuristic
two-pass approach that does not guarantee rank-safety.

We empirically evaluate the execution of the sequential de-
pendence model (SDM) [10], a commonly used benchmark
retrieval model, using each of these query processing algo-
rithms. We compare each of the adapted algorithms to a
naive baseline algorithm using three large-scale TREC col-
lections.

2. RELATED WORK

A well studied alternative to DAAT algorithms are term-
at-a-time (TAAT) algorithms. TAAT algorithms completely
processes each query term, one at a time. This approach re-
quires a significant amount of memory space, in the worst
case, one partial score must be stored for each document
in the collection. Efficient algorithms for early termina-
tion (ET) have been proposed [1; 11; 15]. These algorithms
can be implemented on a variety of index organizations,
including document-ordered, frequency-ordered, or impact-
ordered indexes. However, TAAT algorithms prohibit the
efficient evaluation of term dependency features using a po-
sitional index, as positional data for multiple terms is not
available concurrently.

Two of the most commonly used DAAT algorithms are
MAX-SCcORE and WEAK-AND. We discuss each of these al-
gorithms in detail in Section 3. Some recent studies have
extended these algorithms to use “Block-Max” indexes to
improve the MAX-SCORE [4; 5] and WEAK-AND [5; 6; 12]
algorithms. Block-Max indexes provide access to the high-
est document frequency for each block of each posting list,
allowing tighter estimation of upper bound scores for each
block of each posting list. These studies have shown that the
efficiency of BM25 [4; 5; 6; 12] and a variant of Query Like-
lihood [12] retrieval models may be improved using these
statistics.

As term dependencies are computed from term position
data for each document, the Block-Max values are not di-
rectly applicable to the dependency features. Even so, it
may be possible for term-level Block-Max statistics to be
used to tightly bound the contributions of term dependency
features within a block. We leave the investigation of meth-



Algorithm NAIVE

Algorithm MAX-SCORE

1: Input: Scoringlterator[] scorers

2: Output: ScoredDocument[] ranked-list

3: MinHeap topK

4: int prevDoc = —1

5: while true do

6: int currDoc = oo

7 for Scoringlterator scorer : scorers do
8: scorer.movePast(prevDoc)

9: if not scorer.done() then

10: currDoc = min(currDoc, scorer.doc())
11: end if
12: end for

13: If all scorers are done return topK
14: currScore = . scorers|i].score(currDoc)

15: if topK.size() < k or currScore > topK.minScore()
then

16: topK.pop().push(currDoc, currScore)
17: end if
18: prevDoc = currDoc

19: end while

ods of using these statistics to estimate Block-Max statistics
for term dependency statistics to future work.

Recent studies [7; 14] assert that the efficiency of infor-
mation retrieval can be improved directly by storing large
portions of the index in memory. This step reduces the cost
of random-access disk seek times and allows for more effi-
cient query processing. However, we note that this optimiza-
tion is only appropriate for dedicated information retrieval
systems. Using large amounts of RAM on personal com-
puters or tablets to permit very rapid retrieval could have
the undesirable effect of reducing the performance of other
user applications. For this reason, we focus on disk-based
retrieval in this study.

3. QUERY EXECUTION ALGORITHMS

The evaluation of a retrieval model for an input query is
considered to be rank-equivalent to the weighted sum of a
number of feature scorers. Each scorer is expected to be able
to produce a score for each retrieval unit (document) in the
collection. It is also expected to provide an upper bound of
any document score, and an upper bound of the background
score (a score produced for a zero-frequency document).

We assume access to a document-ordered positional index
of terms. The reconstruction of pairs of terms into the re-
quired window instances is performed by intersecting pairs
of posting lists. Note that this assumption means that term
dependency collection statistics must be extracted from the
pairs of posting lists prior to scoring any documents.

For SDM, the set of feature scorers include unigram, or-
dered window, and unordered window feature scorers. The
posting list for each query term is read in as many as 5 fea-
ture scorers: a unigram and up to two ordered and unordered
window scorers. So, there is a clear optimization available
to all query execution algorithms — repeated reading and
decoding of positional data can be avoided by sharing un-
derlying readers.

3.1 Naive

The NAIVE algorithm is a baseline for each of the other
algorithms tested in this initial study. This algorithm is a

: Input: Scoringlterator[] scorers

Output: ScoredDocument[] ranked-list
MinHeap topK

: scorers = sort(scorers)

UBSum =}, scorers[i].upper()

. int prevDoc = —1

: double threshold = —oo

: while true do

int currDoc = oo

10: for int ¢ = 0; ¢ < |scorers|; i+ =1 do

11: scorer.movePast(prevDoc)

12: if not scorer.done() then

13: allDone = false

14: currDoc = min(currDoc, scorer.doc())
15: end if

16: end for

17: if (all scorers are done) return topK.toArray()
18: double currScore = UBSum

19: inti=0

00 =T D U A W

©

20: while i < [scorers| and currScore > threshold do
21: currScore -= scorers|i].upper|()

22: currScore += scorers|i].score(currDoc)

23: i+=1

24: end while

25: if ¢ == |scorers| then

26: if topK.size() < k) then

27: topK.add(currDoc, currScore)

28: else if currScore > topK.minScore() then
29: topK.add(currDoc, currScore)

30: threshold = topK.minScore()

31: end if

32: end if

33: prevDoc = currDoc

34: end while

baseline that scores all documents that contain at least one
of the query features. It does not attempt to minimize the
number of documents decoded from the posting list data,
or scored. Further, this algorithm allows scorers to share
underlying posting list readers.

3.2 Max-Score

The MAX-SCORE algorithm was originally proposed by
Turtle and Flood [16] for tf-idf-based scoring functions.
We present an adaptation of this algorithm for the execution
of arbitrary dependency retrieval models. The algorithm
uses a threshold score ¢ to determine when to discard the
current document. To ensure rank-safety, t is set to the
score of the k'™ highest document.

In this algorithm, the score of a document is initially as-
sumed to be the sum of the maximum possible contributions
from each feature scorer (UBSwum). The score is then ad-
justed as each feature is scored. Using this method, the
running score can be directly compared to the threshold to
determine if the document scoring can be terminated early.
Similar to the NAIVE algorithm, this algorithm allows scor-
ers to share underlying posting list readers.

Unlike the original formulation of MAX-SCORE, this algo-
rithm does not assume that the score of a zero-frequency
feature is zero. By using the upper bound of the scorer as a
reference point, retrieval models that return negative values,



Algorithm WEAK-AND

Algorithm Two-PAss

1: Input: Scoringlterator[] scorers

2: Output: ScoredDocument[] ranked-list

3: MinHeap topK

4: sort(scorers)

5: UBSum =Y, scorers|i].upper()

6: ZeroUBSum =, scorers|i].zeroUB()

7: int prevDoc = —1

8: double threshold = —oco

9: while true do

10: pivot = FINDPIVOT(scorers, ZeroUBSum,

threshold)
11: if (pivot < 0); return topK.toArray/()
12: if (scorer[pivot].done()); return topK.toArray()
13: currDoc = scorers|pivot].doc()
14: if (currDoc <= prevDoc
or scorers[0].doc() < currDoc) then
15: ADVANCESCORER(scorers,
max(prevDoc, (currDoc-1)))

16: else

17: currScore = 0

18: for Scoringlterator scorer : scorers do
19: currScore += scorer.score(currDoc)
20: end for

21: prevDoc = currDoc

22: if topK.size() < k then

23: topK.add(currDoc, currScore)

24: else if currScore > topK.minScore() then
25: topK.add(currDoc, currScore)

26: threshold = topK.minScore()

27: end if

28: end if

29: end while

30: function FINDPIVOT(scorers[], ZeroUBSum, threshold)
31: estScore = ZeroUBSum

32: for (int ¢ = 0; i<|scorers|; i+=1) do

33: estScore -= scorers[i].zeroUB()

34: estScore += scorers|i].upper()

35: if (estScore > threshold) then return i
36: end for

37: return -1

38: end function
39: function ADVANCESCORER (scorers[], prevDoc)

40: select scorer i, s.t. scorer[i].doc() < prevDoc
41: scorers|[i].findCandidatePast(prevDoc)
42: BUBBLESORTITER(scorers, i) > Only the scorer ¢

needs to be reordered.
43: end function

such as log probabilities, can also be efficiently processed.

3.3 Weak-And

The WEAK-AND algorithm [2] operates by repeatedly se-
lecting the next document to score using the upper bound
of each scorer. Similar to the MAX-SCORE algorithm, the
original algorithm was presented in reference to a strictly
positive scoring function. Further, implicit in the original
formulation of the WEAK-AND algorithm is the assumption
that if a term does not occur in a document, then the score
produced for the document is zero.

The adapted WEAK-AND algorithm, presented here, al-
lows for arbitrary scoring functions. This is achieved through

Input: Scoringlterator|] scorers

Output: ScoredDocument[] ranked-list

Separate unigram-scorers, and dependency-scorers
Using a rank-safe query execution algorithm, collect
the top k1 documents using the unigram-scorers
5: sort(docsy, )

6: MinHeap topK

7: for (doci, score;) in docsy, do

8: for scorer in dependency-scorers do

9

0

1

score;+ = scorer.score(doc;)
end for
if ((topK.size() < k2)
or (score; > topK.minScore())) then
12: topK.add(doc;, score;)
13: end if
14: end for

the use of the upper bounds on background score (zeroUB()).
These values are used to over-estimate the contribution of a
scorer that does not contain the associated term or window.
The FIND PivoT function uses these bounds to select the
next document to be scored.

The underlying readers associated with each scorer are
moved in the ADVANCE SCORER function. This function
also ensure that the scorers are kept in increasing order of
document id. Unlike the previous algorithms, the WEAK-
AND algorithm prohibits the use of shared readers.

A variant of this algorithm that shares underlying read-
ers was tested. We found that the non-sharing version per-
formed significantly faster for SDM across all collections.
This is due to the added complexity of ensuring that the
scorers remain in sorted order in the ADVANCE SCORER func-
tion.

3.4 Two-Pass Heuristic

The above algorithms are all considered rank-k-safe. Each
of these algorithms guarantees that the actual top k£ docu-
ments are identified and returned, relative to the scoring
function. We present here a simple non-rank-safe algorithm
for dependency models. This algorithm is related to the
cascade query execution model [17].

We start by separating the unigram feature scorers from
the dependency feature scorers. A rank-k-safe algorithm is
then used to identify the top k1 documents, using the un-
igram features only. A second pass over the postings data
finishes scoring these ki documents, and to collect the fi-
nal k> documents. Where k> is the number of documents
requested by the user, and ki > ko.

For SDM, this process is equivalent to retrieving the top k1
documents using Query Likelihood (QL) [13], and re-ranking
these top documents using SDM.

While this algorithm reads and decodes each of the term
posting lists twice, the first pass does not require positional
data, and the second pass only scores a small fraction of the
collection. For these reasons, we expect that this algorithm
should be able to significantly reduce query processing time
on larger collections.

4. INITIAL EXPERIMENTS

To empirically evaluate the efficiency of these algorithms
we use the data from the TREC Million Query Tracks (MTQ).
500 short and 500 long queries are sampled from the 20,000



Table 1: Average query processing times for each algorithm, for long and short queries, for each collection. All reported query

times are in seconds.

Query Set | Algorithm || GOV2 | ClueWeb-09-B | ClueWeb-09-A
NAIVE 10-98 11-76 95-28
Short MAX-SCORE 7-45 7-83 45-87
WEAK-AND 7-93 6-67 39-70
Two-PAss-NAIVE 4-25 4-82 30-42
Short Two-PASs-MAX-SCORE 4-14 4-36 27-00
Two-PAass-WEAK-AND 3-72 3-80 24-57
NAIVE 43-44 62-73 527-7
Long MAX-SCORE 30-50 38-56 250-8
WEAK-AND 28-00 36-40 261-1
Two-PAss-NAIVE 14-44 21-42 149-7
Long Two-PASS-MAX-SCORE 14-22 20-67 142-0
Two-Pass-WEAK-AND 11-65 16-41 121-2

queries used in MTQ 2007/8, for the GOV2 collection. A
further 500 short and 500 long queries from the 40,000 queries
used in MTQ 2009, for the ClueWeb-09 collection. A short
query is defined as containing between 2 and 4 words, and a
long query is defined as containing between 5 and 13 words
(inclusive).

For each of the query processing algorithms, we execute
each batch of queries 5 times in randomized order. All ex-
periments are executed in a single thread on a 3.0GHz Intel
Xeon processor with 8G of RAM. 1,000 documents are re-
trieved for each query. The ki parameter for each of the
Two-Pass algorithms is also set to 1000. This parameter
setting maximizes the potential efficiency benefits of this
heuristic algorithm.

The results of this initial experiment are shown in Table 1.
These tables show that average time to execute a query on
each collection using each algorithm. We observe that the
WEAK-AND algorithm is the most efficient rank-k-safe algo-
rithm in several settings. We also observe that the heuristic
Two-PAss-WEAK-AND algorithm can further improve re-
trieval efficiency by between 38% and 53% for short queries,
and between 53% and 58% for long queries.

S. FUTURE DIRECTIONS

Future work will include: the investigation of the trade-off
between retrieval effectiveness and efficiency for the Two-
Pass algorithms; the investigation of the relationship be-
tween the upper-bound scores, the upper bounds on the
background scores and the actual scores for a variety of dif-
ferent retrieval functions; and an investigation of the rela-
tionship between the length of queries and the execution of
the query.

Acknowledgments

This work was supported in part by the Center for Intelli-
gent Information Retrieval and in part by NSF grant #CNS-
0934322. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the au-
thors and do not necessarily reflect those of the sponsor.

References

[1] Vo Ngoc Anh and Alistair Moffat. Pruned query evalua-
tion using pre-computed impacts. In Proceedings of the 29th
ACM SIGIR, pages 372-379, 2006.

[2] Andrei Z. Broder, David Carmel, Michael Herscovici, Aya
Soffer, and Jason Zien. Efficient query evaluation using a
two-level retrieval process. In Proc. of the 12th CIKM, pages
426-434, 2003.

Andreas Broschart and Ralf Schenkel. High-performance
processing of text queries with tunable pruned term and term
pair indexes. ACM Trans. Inf. Syst., 30(1):5:1-5:32, March
2012.

[4] Kaushik Chakrabarti, Surajit Chaudhuri, and Venkatesh
Ganti. Interval-based pruning for top-k processing over com-
pressed lists. In Proc. of the IEEE 27th ICDE, pages 709—
720, 2011.

3

(5] Constantinos Dimopoulos, Sergey Nepomnyachiy, and
Torsten Suel. Optimizing top-k document retrieval strate-
gies for block-max indexes. In Proc. of the 6th ACM WSDM,
pages 113-122, 2013.

[6] Shuai Ding and Torsten Suel. Faster top-k document re-
trieval using block-max indexes. In Proc. of the 3/th ACM
SIGIR, pages 993-1002, 2011.

[7] Marcus Fontoura, Vanja Josifovski, Jinhui Liu, Srihari
Venkatesan, Xiangfei Zhu, and Jason Y. Zien. Evaluation
strategies for top-k queries over memory-resident inverted
indexes. Proc. of the VLDB Endowment, 4(12):1213-1224,
2011.

[8] Samuel Huston, Alistair Moffat, and W. Bruce Croft. Effi-
cient indexing of repeated n-grams. In Proc. of the 4th ACM
WSDM, pages 127-136. ACM, 2011.

[9] Samuel Huston, J. Shane Culpepper, and W. Bruce Croft.
Sketch-based indexing of term dependency statistics. In
Proc. of the 21st ACM CKIM, 2012.

[10] Donald Metzler and W. Bruce Croft. A markov random field
model for term dependencies. In Proc. of the 28th ACM
SIGIR, pages 472-479, 2005.

[11] Alistair Moffat and Justin Zobel. Self-indexing inverted files
for fast text retrieval. ACM Trans. Inf. Syst., 14(4):349-379,
October 1996.

[12] Matthias Petri, Shane Culpepper, and Alistair Moffat. Faster
top-k document retrieval using block-max indexes. In Proc.
of the 18th ADCS, page To appear, 2013.

[13] Fei Song and W. Bruce Croft. A general language model for
information retrieval. In Proc. of the eighth CIKM, pages
316-321, 1999.

[14] Trevor Strohman and W. Bruce Croft. Efficient document
retrieval in main memory. In Proc. of the 30th ACM SIGIR,
pages 175-182, 2007.

[15] Trevor Strohman, Howard Turtle, and W. Bruce Croft. Op-



[16]

(17]

timization strategies for complex queries. In Proc. of the
28th ACM SIGIR, pages 219-225, 2005.

Howard Turtle and James Flood. Query evaluation: Strate-
gies and optimizations. Information Processing and Man-
agement, 31(6):831 — 850, 1995.

Lidan Wang, Jimmy Lin, and Donald Metzler. Learning to
efficiently rank. In Proc. of the 33rd ACM SIGIR, pages
138-145, 2010.



