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Abstract

We introduce an algorithm based on Frank-Wolfe for performing marginal infer-
ence in undirected graphical models by repeatedly performing MAP inference. It
minimizes standard Bethe-style convex variational objectives for inference, lever-
ages known MAP algorithms as black boxes, and offers a principled means to
construct sparse approximate marginals for high-arity graphs. We also offer in-
tuition and empirical evidence for a relationship between the entropy of the true
marginal distribution of the model and the convergence rate of the algorithm. We
advocate for further applications of Frank-Wolfe to marginal inference in Gibbs
distributions with combinatorial energy functions.

1 Introduction

Recently, two different algorithms have been proposed that reduce marginal inference in a Markov
Random Field (MRF) to multiple instances of MAP inference [1,[2]. This is desirable because MAP
is better understood and often easier than the counting-style problem of marginal inference. In this
paper, we propose a third reduction based on the Frank-Wolfe algorithm [3]].

Our work has several potential advantages over the previous approaches: (1) The work of Hazan
and Jaakkola (2012) computes marginals as an average over ¢ independent MAP solutions obtained
by sampling, and thus the accuracy of the marginals converges as O(%) while Frank-Wolfe has

the potential to achieve a convergence rate of O(%) [1]. (2) Unlike the work of Ermon et al. (2013),
in which parity constraints are added to the model, our work retains the original constraint structure
and thus allows application of known black-box MAP solvers [2]. (3) In our reduction, the approxi-
mate marginals retain a sparsity structure that may lead to significant memory savings for high-arity
graphs. (See Section 3.2).

However, we also identify several weaknesses of our Frank-Wolfe reduction: (1) The apparent
convergence rate of O(%) buries a constant factor that diverges when the marginals approach the
boundary of the set of feasible marginals, where the marginals have low entropy. This is a numerical
concern if the algorithm’s iterates approach the boundary, which is necessarily the case if the true
marginals are low-entropy . (2) Since our algorithm modifies the model parameters in each step, it
does not always retain structure in the potentials, such as log-submodularity, that make MAP infer-
ence tractable, (3) The reduction begins by approximating the variational problem using a standard
convex Bethe-style approximation over the local polytope, which can also be solved efficiently in
practice using message-passing algorithms. Regarding this third drawback, our presentation and ex-
periments focus on graphical models, but the techniques generalize trivially to marginal inference in
Gibbs distributions given by alternative combinatorial energy functions. We encourage future work
on cases such as matchings, where MAP is tractable but we do not have available marginal inference
algorithms.

We first provide background on Frank-Wolfe and inference in MRFs. We then present our algorithm
and two desirable characteristics: a maneuver based on sparsity allows us to perform exact line



search efficiently at each iteration, and we can store sparse tables of clique marginals. We then
present experiments supporting the relationship between the underlying entropy of the marginals
and the convergence behavior of the algorithm.

2 Background

2.1 Frank-Wolfe Algorithm

Following [3]], we minimize convex function f(x) over convex set X with the following update rule:

V. = arg )r(r&i&(x —Vfxh) (1)
x¢ = (1= y)x" + vy, (2)
where -, is either selected using line search or fixed at 52
2.2 Inference In Markov Random Fields
A joint distribution over x = {x1,...,X,} is defined via a graph G on x and an energy func-

tion ®g(x) = > .. 0c(xc), where C denotes the set of all cliques of G (including single-node
cliques) and x. denotes the subvector of x for a clique c. The joint distribution is given by
P(x) = exp (Pe(x)) /log(Z). For discrete x, Py can always be expressed as a linear function
(0, ) of an indicator vector p for settings of the cliques.

We seek to perform marginal inference, which returns the marginal distribution P.(x.) for every
clique. We concatenate these vectors of marginals into one vector, pyarg. Following [4], pmvarc
can be identified as the solution to the following problem:

MMARG = arg max (p, 0) + Haq(p), 3)
peM

where M denotes the marginal polytope, the set of all marginal distributions realizable from some
joint distribution over x encoded by some 6, and H x4 is the positive entropy of the entropy. Next,
M is relaxed to L, the set of locally consistent marginals (i.e. where two distinct clique marginals
always agree on their overlap, and all clique marginals are properly normalized). The entropy is also
replaced with some Bethe-style approximation Hp(u) that factorizes conveniently over the com-
ponents of p: Hp(p) = > .o WeH (), where W, are counting numbers, designed to maintain
the concavity of Hp, but yield a good approximation to H(pe) [5]. Here, H(p.) is the standard
entropy on the unit simplex: — Y. p; log(p;). F(pn) = —p - 0 — Hp(p) is called the negative
variational free energy, which we seek to minimize over the local polytope.

An alternative problem is MAP inference, the task of finding the assignment to x with highest prob-
ability, i.e. that maximizes ®g(x). This is equivalent to finding the maximum-energy marginals that
assign unit mass to a single possible value for each clique, which the vertices of M satisfy.

Since any discrete energy function can be formulated as a linear function, MAP inference can con-
veniently be written as

y = 0 . 4

Harap = arg max{u, 6) 4)

Many standard MAP algorithms, often based on message passing, relax this constraint to p € L.
Therefore, any linear optimization problem over the local polytope can be expressed as a MAP

problem for some parameter vector 8, provided we use one of many available black-box MAP
algorithms that optimize over the local polytope.

3 Minimizing the Variational Free Energy Using Frank-Wolfe

Minimizing the variational free energy using Frank-Wolfe requires solving a minimization problem
at every iteration given by: p; = arg minger(p, —VF(u'~1)), which can be expressed as MAP

inference with parameter vector 8, = —VF(pu;) = 6 + VHp(p). Let 0., denote the subvector

of @, for clique c at iteration t. We have éc,t =0, + W, (1+log(tee,—1)), where log(peci—1) is
taken coordinate-wise.



Algorithm 1 Frank-Wolfe for Marginal Inference

input 0, a vector of MRF parameters
set pg to some interior point of £ // We exp-normalize local potentials.

1: while ICONVERGED(pf, '~ 1) do

2: ec,t =0.+W, (]- + 10%(#c,t71)) ’ VC? 3

3. fi = MAP-ORACLE(#)

4: v = argmin,ejo,1) £ (1 — y)pe—1 + V1) // We use Newton’s method.
5: pe = (1 =) -1 + it

6: end while

7: return fu;

3.1 Efficient Line Search

We found that line search was very important for improving the convergence speed of the algorithm
and preventing oscillatory behavior in early iterations. Let fi be a 0-1 vector of pseudomarginals re-
turned by the MAP oracle at iteration ¢. Line search chooses a -y that minimizes the one dimensional
function G(7y) given by

F((1— )t + i) = —(0 - (1 — 7)pt + i) +ZWn (1=l + i) + > WeH((1 =)l + vite).
eckE

Evaluating this function requires looping over every entry of every table of values for every node
and edge potential in the MRF. However, we can pre-compute certain quantities for a given p; such
that evaluating G () has computational cost that scales merely with the number of nodes and edges,
not the number of entries in the potentials (which have size O(k'), where k is the number of possible
values that each node can take on and ¢ is the size of the largest clique in the MRF). We exploit the
fact that fi corresponds to a corner of £. For a given node marginal f,, of the MAP assignment

to variable n, let 4,, equal the single index that is nonzero. Consider just the node entropy term
Yo WoH((1 — ) pr, + yf2). This is equal to:

> Wa [(1 - (Z pn (i) log (1 — ¥ pn (i ))> + (1= Mn(in) +7) log((1 = 7)pn(in) + )
n i#in
= AL —)log(l =)+ B(1 =)+ > Wn((1 = V) pn(in)) + 7) log((1 = Ypn(in)) + 7)
Here, A and B are constants independent of +y. The edge-wise entropy can be decomposed similarly.
This is a smooth function of v and can be minimized in a few iterations using Newton’s method.

3.2 Sparse Storage of Marginals

Every iterate p; is a convex combination of at most ¢ distinct vertices of the local polytope £ and the
initial iterate pto. Therefore, every clique marginal pi. ; is a mixture of at most ¢ 0-1 distributions and
Me,0- This means that we can store the clique marginals in terms of sparse vectors, with no more that
t nonzero components, and reconstruct them by adding this sparse vector to p. . We save memory
if we can store . o in small space. This is possible, for example, if we choose . o to be the uniform
distribution, or a ‘cross-product distribution,” where f4(4.5),0(5a, 56) = Ha,0(Sa)Hb,0(S5b)-

3.3 Convergence Rate and Optimality Guarantee

Marginal inference in general is #P-hard, but we are solving an approximation, due to the relax-
ation from the marginal to local polytope and the use of a convex entropy approximation Hpg(u).
The Frank-Wolfe algorithm has been shown to have suboptimality decaying as F'(u;) — F(p*) <

%ig (1 + 6), where (z_% is the additive suboptimality of MAP at iteration ¢ and C'r is a constant

describing the curvature of F over L [3]].

MAP inference is NP-hard in general, so we cannot guarantee fo suboptimality. However, there

are of course many MAP solvers that work well in practice. One solution is to simply use one of
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these and hope for a high-quality solution to the marginal inference problem, as was done by [[1].
We could have focused on graph structures (trees) where MAP inference is tractable, but marginal
inference is also tractable in these, so this scenario is not worth considering. For certain loopy graph
structures, there are conditions on 6 such that MAP is also tractable, such as when the potentials are
submodular [6]. However, we shift the parameters at every iteration of Algorithm|I] and we can not

guarantee the submodularity of @, = —VF(p,) = —0 — VHp ().

Cr quantifies how much F' can differ from its linearization, and is defined formally in [3]. Un-
fortunately, in our case it is unbounded as one approaches the boundary of the local polytope. In
the expression for VF () above, we see that W, (1 + log(pt¢;—1)) has arbitrarily large magnitude
when the marginal probability of certain clique assignements is small.

Observe, however, that log(g. ¢—1) becomes unmanageable only for p. ;1 with components quite
close to 0 (in a Gibbs distribution, no clique assignment ever has zero probability, so VF () is
always well-defined). If the iterates p; never get too close to the boundary of £, then the ‘effec-
tive’ curvature term will reasonable. Therefore, the worst-case convergence rate of Algorithm [I]is
unbounded, but this may not be a concern in practice. Of course, if the true marginals of the distri-
bution encoded by 0 are close to the boundary of £, then C'r will be large in the neighborhood of
the solution, and we should not expect fast convergence. In our experiments, we demonstrate that
the algorithm converges faster when the true marginal distribution encoded by 6 has higher entropy.

4 Experiments

We consider synthetic grid-structured binary MRFs where each component of 8 is drawn indepen-
dently from a mean-O Gaussian. We choose convex counting numbers W, in our entropy approxi-
mation given by a randomly-generated tree decomposition used by the TRW algorithm [7]]. This is
useful because we can use convergent TRW message passing to compute the true target variational
objective. For the sake of convenience, we also perform MAP inference using a MAP version of
TRW with the same tree decomposition [§]], though we could have used any black-box solver. We
use the implementation of these algorithms and the junction tree algorithm from the UGM toolkit [9].

In Figure[Ta] we demonstrate the correctness and convergence of our algorithm on a 10-by-10 grid.
We compare using exact MAP in the inner loop, which is obviously too slow to use in practice, with
using approximate MAP. In general, we find that approximate MAP does not change the overall
scale of necessary iterations until convergence, but it converges to a suboptimal objective.

In the previous section, we suggested a relationship between the entropy of the underlying marginal
distribution and the empirical convergence time of the algorithm. In Figure [Ib] we take a fixed
5-by-5 grid and vary the entropy by mapping & — 6/T for 0.1 < T < 4. MAP is performed
using the junction-tree algorithm, in order to avoid complications from approximations in the inner
loop. We plot the number of iterations to obtain a solution within 0.5% relative optimality gap,
where the suboptimality is with respect to the true minimum objective, computed using TRW. In
this example, and in general, we find a distinct phase transition where the algorithm suddenly starts
converging much faster. After this transition, increasing the temperature further continues to increase
convergence speed, in a seemingly linear fashion. We leave further exploration of this entropy-
convergence relationship to future work.
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