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Abstract

We employ universal schema for slot fill-

ing and cold start. In universal schema,

we allow each surface pattern from raw

text, and each type defined in ontology, i.e.

TACKBP slots to represent relations. And

we use matrix factorization to discover im-

plications among surface patterns and tar-

get slots. First, we identify mentions of

entities from the whole text corpus and ex-

tract relations between entity pairs to con-

struct a knowledge base. Finally, we query

this knowledge base to produce our sub-

missions for slot filling and cold start.

1 Introduction

Due to its importance in information extraction

pipelines, relation extraction has attracted atten-

tion in TAC KBP for a number of years as the

Slot Filling track, and as a vital sub-task of the

recently-introduced Cold-Start track. Many exist-

ing relation extraction techniques (Liu and Zhao,

2012; Min et al., 2012; Roth et al., 2012) of the

following: (1) matching of textual mentions to

the query mentions, often utilizing information re-

trieval techniques, (2) the extraction of the con-

text around the mention, (3) identification of the

relation being expressed in the context (if any),

(4) aggregation of the individual classifications

to resolve redundancies and inconsistencies. Al-

though this overall architecture is common, the ap-

proaches differ considerably in the approach used

for matching, extraction, identification (using so-

phisticated rules, lexicons, classifiers, graphical

models, etc.) and aggregation.

There are a number of disadvantages, unfortu-

nately, inherent in such systems. The foremost

problem is obtaining training data for learning the

extractors, as the amount of training data available

as part of TACKBP is quite inadequate. Many sys-

tems use manually-created seed patterns to boot-

strap a labeling (often in combination with the

TACKBP training data), followed by induction to

expand the set of patterns for the extractors. More

recently, distant supervision approaches that use

the relations in external knowledge bases such as

Freebase or Wikipedia (manually aligned to the

TACKBP schema) have achieved huge improve-

ments (Roth et al., 2012). However, the resulting

training data from both seeded patterns and distant

supervision is often noisy due to the assumptions

made when expanding the labeled data. Further, it

is often not the case that a single pattern in a sen-

tence is indicative of a relation between two en-

tities, and instead, multiple relations/patterns may

in combination imply a relation that is not evident

when the patterns are observed separately. As a

simple example, consider that recognizing Apple

Inc. is headquartered in California might require

an extraction that provides evidence that Apple is

located in Palo Alto, and a separate extraction that

indicates Palo Alto is in California. Along with

requiring inference of relations across multiple ex-

tractions, this example further requires extraction

of slots for non-query entities (Palo Alto in this ex-

ample) and also would benefit from leveraging the

implicit implications amongst relations.

In this work, we introduce a novel approach to

the TAC KBP slot filling and cold start tasks that

produces answers jointly on all entities and rela-

tions, rather than on a query-by-query or a per-

extraction basis. From a large collection of doc-

uments consisting of both training and test KBP

documents, we construct a knowledge-base over

all the entities (including many that do not appear

in the queries or the reference KB). The relations

are extracted by using the matrix factorization-

based universal schema approach (Riedel et al.,

2013) that learns the correspondences between co-

occurring entity pairs, observed textual patterns,

and the labeled relations, as part of a joint op-



timization over training and test data in order to

predict the unknown relations. Due to the nature

of the factorization, the model is able to not only

learn the implications between text patterns and

relations, but is also able to leverage soft associa-

tions between patterns, between relations, and be-

tween entities, to generalize the observed text pat-

terns to new entities and extracted relations in the

knowledge base. In order to provide our slot fill-

ing submission, we query the extracted knowledge

base with the query entities (the complete knowl-

edge base is our cold start submission).

The overall system consists of the following ar-

chitecture. First, we process the text corpus us-

ing a natural language processing pipeline. This

includes part-of-speech tagging, dependency pars-

ing, mention finding and coreference, as described

in section 2. Second, we extract binary relations

between pairs of entities using universal schema

(section 3). In order to predict the string-valued

slots (such as alternate name) that are not

supported by universal schema, we use manually

constructed rule-based heuristics (Section 5). The

extractions from two steps are combined to pro-

duce an internal knowledge base about the corpus.

Since this is our first year at TAC KBP Slot-

filling and Cold Start, we do not expect to outper-

form the existing approaches. In Section 4, we

provide an investigation of our 2013 predictions,

and demonstrate the various associations that our

model learns. Using a provenance-agnostic met-

ric, we obtain 12.5% F1 for the entity-valued slots

and 19.3% for the string-valued slots. Further,

we observe that our universal schema extraction

method achieves high recall, but suffers from low

precision. Conversely, our rule-based extractors

produce high precision and low recall. Using the

official metrics (that take the provenance into ac-

count) we achieved 13.7% F1 for slot filling.

2 Data Processing Pipeline

Figure 1 outlines our processing pipeline, which is

almost identical for both our slot filling and cold

start systems (differs only in the set of documents

and queries that are fed into the pipeline, and the

filtering, if any, of the resulting knowledge base).

2.1 Corpus Selection

Recall that universal schema performs relation ex-

traction jointly on train and test data. Therefore,

we need to assemble a sub-collection of the TAC
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Figure 1: Description of the overall pipeline.

KBP training documents that are relevant either

for training or for the submission. For slot filling,

we select 120K documents by performing query

expansion on the 2013 queries (both training and

test) using the Galago search engine on all the

TAC KBP 2013 documents (Cartright et al., 2012),

used for entity linking in TAC KBP 2012 (Dietz

and Dalton, 2012). For the cold start track, we ex-

tend this collection with the cold start source doc-

uments.

2.2 Natural Language Processing

We employ the open-source FACTORIE pack-

age (McCallum et al., 2009) as our natural lan-

guage processing pipeline for processing the doc-

uments. This software package includes a number

of state-of-the-art low-level NLP processing tools,

including part-of-speech, dependency parsing, and

named entity recognition (NER), all based on ma-

chine learning models.

2.3 Mention Finding and Entity Discovery

Mention finding and entity discovery play a crit-

ical role in our pipeline, since without accurate

entities, we cannot build a high quality knowl-

edge base to answer the TACKBP slot filling and

cold start queries. Our set of mentions consist of

the detected named entities and pronouns, as well



as all queries and annotations. We use the FAC-

TORIE within-doc coreference system to cluster

mentions for each document into anaphoric sets.

This system performs greedy left-to-right group-

ing of mentions with features based on Bengtson

and Roth (2008).

To assemble the cross-document entities for the

knowledge base, all the within-document entities,

along with entities from the reference KB, need

to be aggregated. The observed string names

of the within-document and the reference entities

are normalized by removing prefixes and suffixes

such as titles and honorifics, followed by a string-

matching based grouping. For cold-start, we also

include relation annotations from Freebase (de-

scribed in the next section) for which we perform

trivial linking of Freebase entities and our cross-

document entities based on available names and

redirects in Freebase.

3 Slot Filling Using Universal Schema

We cast slot filling as relation extraction, consid-

ering each slot as a relation instance of the query

and the slot value. We employ universal schema

for slot filling (Riedel et al., 2013). Instead of clas-

sifying entity pairs into pre-defined relation types,

universal schema takes both the surface patterns

and pre-defined types as relations, and uses ma-

trix factorization to discover implications among

them. This approach can leverage unlabeled data,

while avoiding brittle alignment errors in the dis-

tant supervision methods that have been popular

in past TAC/KBP competitions i.e. entity pairs la-

beled in the text or from existing knowledge bases.

We fill a matrix with relation instances, where

each row corresponds to an entity pair and each

column to a relation, including surface patterns

and slot names. The surface patterns include the

sequence of words between two entity mentions,

the dependency path connecting two mentions

and so on. We only include TACKBP slots that

describe relations between two entities (entity-

valued slots).

Our goal is to predict target slots for the entity

pairs. The task is analogous to collaborative fil-

tering. In collaborative filtering, items are recom-

mended to users based on collecting many users’

ratings about the items. For example, if both users

X and Y like item A, and user X also likes item

B, it is likely that user Y likes item B as well. In

our scenario, an entity pair corresponds to a user;

a relation (pattern or slot name) corresponds to an

item; and an observed cell (i.e. entity pair is either

observed with the surface pattern, or is annotated

with having the slot name) corresponds to a pos-

itive rating by the user for the item. By collect-

ing information about observations of other entity

pairs, we can “recommend” relations that hold for

the entity pair of interest.

In our matrix factorization approach, we em-

bed each entity pair and relation as latent vectors

ae and vr in a K-dimensional space, respectively.

Each dimension is a component (c). Since squared

loss is not appropriate for discrete data, a logistic

regression version of matrix factorization is a bet-

ter choice for our binary data (Collins et al., 2001).

Thus we have:

θe,r =
∑

c

ae,cvr,c

xe,r = σ(
∑

c

ae,cvr,c)

σ(θ) =
1

1 + exp(−θ)

The first formula is factorizing a matrix into

multiplication of two matrices. We apply a logis-

tic function to this θ score to model a binary cell.

This has a probabilistic interpretation: each cell

is drawn from a Bernoulli distribution with nat-

ural parameter θ. Note that an observed pattern

or slot r between an entity pair e is encoded by

σ(θe,r) ≡ 1.

Figure 2 shows an illustration of universal

schema. In training, we learn low dimensional

embeddings for entity pairs and relations. We

can complete the whole matrix using these em-

beddings. For slot filling we only need to

query specific rows that have one argument from

the TACKBP queries. We predict top ranked

slots based on the scores. For example, con-

sider the query entity “McDonald’s”; we have

one pair (McDonald’s, Walt Riker), and pre-

dict org:top members with confidence 0.81 and

org:members with confidence 0.60. In post pro-

cessing, we use the prediction probabilities and

basic consistency rules to filter these predictions.

We describe how we leverage geometric interpre-

tation of our embeddings to extract the provenance

at the end of section 4.2.

In the following, we describe how to train our

model. We learn low dimensional representations

for entity pairs and relations by maximizing the





Feature Type Example

Dep-path ↑pobj↑in↑prep↑die↓nsubj↓

Words die in:BACK

Type-Words-Type ORG-die in:BACK-PER

Type-Trigger-Type ORG—die—PER

Table 1: Surface patterns used in universal

schema. These patterns are extracted for entity

pair (Abbey Church, Father Daniel) from sentence

“Father Daniel died in the Abbey Church at Saint

Anselm”

slot names, such as per:spouse or org:founded by,

appear as columns with observed cells for en-

tity pairs that are annotated either in TAC KBP

training documents or in the reference KB. These

columns are crucial for learning from surface pat-

terns, and for predicting a TAC KBP relation be-

tween any entity pair. For cold start, we also in-

clude a number of entity pairs from Freebase, in-

cluding additional columns that denote relations as

per Freebase schema (allowing our system to learn

the associations between surface patterns, TAC re-

lations, and the Freebase relations).

4.2 Embeddings

To interpret the embeddings of the surface pat-

terns, we calculate the cosine similarity between

vectors of a TAC relation column and every col-

umn. We list the top ranked patterns with respect

to each target slot in Table 2. For simplicity, we

translate the dependency path to word sequence.

To generalize the patterns, we replace tokens of

part-of-speech tag “NNP” with their tags. For ex-

ample, in pattern “replace NNP NNP as face of,”

those two “NNP” tokens may stand for a person

name. The suffix “:INV” indicates that the two ar-

guments are in inverse position. Some patterns are

augmented with entity types of the two arguments.

Slots that are similar to the target slots are also

shown, for example, per:organizations founded is

indicative of slot employee of.

We observe here that our approach can learn

diverse and accurate patterns that are indicative

of the target slots. For example, we extract pat-

terns that contain “ex-wife,” “hubby,” “file di-

vorce” for spouse, patterns that include “pay by,”

“resign from” for employee of. We also ana-

lyze errors made by our approach. Some er-

rors are caused by incorrect dependency path ex-

tracted from the text. For example, pattern “X

into a career to Y” is closely related to spouse

due to incorrectly extracting the path for entity

pair (Lucinda, Robert Morgenthau) from the sen-

tence “Lucinda into a Pulitzer Prize-winning ca-

reer in journalism and marriage to New York Dis-

trict Attorney Robert Morgenthau.” Since anno-

tation data is limited, this pattern is in the top

ranked list for predicting spouse. Some errors are

that our model cannot distinguish two slots from

each other. For example, some surface patterns

that are similar to employee of are also in the top

ranked list for schools attended. Generally speak-

ing, schools attended should be a sub relation of

employee of. Our model does learn patterns spe-

cific to schools, such as “be junior at,” “his/her col-

lege in,” and “graduate of.”

Embedding all relations, both from the target

schema and from surface patterns, in a common

euclidean space allows us to provide provenance

for our predictions. First, we keep the pairwise

similarity between the embeddings for every pair

of columns cached. Suppose we predict that X is

related to Y by the TAC KBP relation employee of.

Then, we consider all surface pattern columns that

were observed for the pair (X,Y), and find the one

that has an embedding most similar to the embed-

ding for employee of. We use the sentence that

produced the observed cell for this column as our

provenance.

4.3 Results

We evaluate our predictions on 2013 data without

considering provenance. A prediction is correct if

it matches the annotation. Table 3 lists precision,

recall and F1 measures for different slots. We can

see that our approach achieves higher recall.

5 Attribute Relation Extraction

Some slots fillers are string-valued (i.e. attribute-

value) as opposted to entity-valued as listed in Ta-

ble 4. We employ rules to extract these fillers. We

build separate relation extractors for each attribute

slot based on a set of hand-tuned rules. Each ex-

tractor takes an entity mention and the sentences

in which it appears as input, and outputs a se-

quence of attribute relation instances. Extractors

also provide a confidence score for each extracted

relation that is hard-coded and determined empir-

ically. These confidence scores are used in post-

processing for determining which relations should

be included in the final output.



Slot Patterns

PER—pay by state of—LOC, pay by state of, who resign from,

have resign in protest from, have be select as candidate of,

PER—cartoonist at—UKN, be announce as be, LOC—NNP attend summit of—ORG

employeeOf have make his/her legend since sign from, make start in,

work as register lobbyist for, PER—defender in NNP—ORG

PER—executive who run—UKN, replace NNP NNP as face of,

per:organizations founded , PER—be play position for—ORG

be perform with NNP NNP at, PER—revenue NNP—PER, PER—have be from—ORG

PER—be live in—LOC, NNPS on death row in, PER—citizen of—LOC

cityOf PER—family live in—LOC, PER—his/her brother live in—LOC,

Residence be wheel into court in, PER—where X grow up—LOC, who be away from,

be son of NNP NNP NNP of, PER—who be a native of—LOC

X, a Y prisoner; bounce between his/her home in, since X live in Y

from his/her days in college at, be junior at, revel in NNP NNP success at

hockey player for, be graduate of NNP NNP NNP,

schools have be select as candidate of, have resign in protest from, per:employee or member of

Attended director of NNP for NNPS at; PER—pay by state of—LOC;

X, Y deputy managing director; PER—lawyer be hire by—ORG; policy adviser on NNP at

PER—be coach at—ORG, PER—professor of education at—ORG, who earn at

into a career to, doled punishment, PER—X’s ex-husband, Y—PER

have file for divorce from her husband, file for divorce from,

spouse PER—X, Y’s ex-husband—PER, PER—hubby—PER, marry actress,

file for divorce from music producer, marry socialite; accompany by his wife;

X, Y’s ex-wife; X join her/his fiance Y,

photographed with fiance, PER—X, Y’s girlfriend—PER

ORG—research growth rate for—LOC, its parent firm NNP NNP NNP, be subsidiary of,

X, operated by Y:INV, UKN—populace be obliterate—ORG

ORG—headquarters that NNP—ORG, UKN—court while—ORG,

subsidiaries headquarters that NNP, sell NNP brokerage business, ORG—mecca—ORG

ORG—X, a venture of Y:INV—ORG, ORG—X company Y—ORG,

PER—be split into—ORG, ORG—which is bought by:INV—ORG

ORG—which own percent of—ORG, ORG—NNP parent of—ORG

ORG—parent company of—ORG, own NNP broadcast network

ORG—lender base in—UKN, NNP announce at

ORG—NNP NNP program in—LOC, ORG—be headquartered in—LOC

headquarters ORG—think tank in—LOC, ORG—research center in—LOC

ORG—X, a Y-based bank—LOC , ORG—X, Y organization—LOC

ORG—policy group in—LOC, tenant right organization base in downtown

Table 2: Top similar patterns to the target slots.



Slot Prec Rec F1

children 0.154 0.266 0.195

cities of residence 0.238 0.294 0.263

city of birth 0.083 0.077 0.080

city of death 0.478 0.314 0.379

countries of residence 0.149 0.204 0.172

employeeOf 0.435 0.118 0.186

origin 0.020 0.016 0.018

parents 0.023 0.103 0.038

schools attended 0.063 0.034 0.044

siblings 0.025 0.231 0.044

spouse 0.138 0.271 0.183

state of death 0.188 0.120 0.146

states of residence 0.109 0.207 0.413

city of headquarters 0.125 0.125 0.125

country of headquarters 0.160 0.082 0.108

founded by 0.025 0.100 0.040

member of 0.007 0.250 0.013

parents 0.036 0.286 0.063

shareholders 0.037 0.412 0.068

members 0.010 0.045 0.017

state of headquarters 0.350 0.318 0.333

subsidiaries 0.053 0.235 0.086

top employees 0.398 0.279 0.328

Overall 0.094 0.183 0.125

Table 3: Entity-based Slots: Performance on dif-

ferent slots. We first list person slots, followed by

organization slots. Our approach obtains high re-

call.

Slot Prec Rec F1

alternate names 0.150 0.097 0.118

title 0.259 0.199 0.225

charges 0.130 0.058 0.080

date of birth 0.400 0.060 0.105

date of death 0.290 0.100 0.149

age 0.786 0.224 0.349

cause of death 0.417 0.182 0.253

religion 0.200 0.250 0.222

alternate names 0.234 0.202 0.217

date founded 0.556 0.313 0.400

Overall 0.272 0.150 0.193

Table 4: String-based Slots: Performance on at-

tribute slots of people and organizations. We em-

ploy rule based extraction for these slots.

5.1 Trigger Based Attribute Relations

Many of our attribute relation extractors use a list

of trigger words as signals. When an input sen-

tence containing an entity mention contains a trig-

ger word, the corresponding extractor attempts to

extract an attribute relation instance involving the

mention and the trigger word. This attempt in-

volves considering features of the trigger/mention

pair like: the number of words separating the

two, the word sequence occurring between the

mention and trigger, the order of the mention

and trigger, etc. The trigger words for slots

per:cause of death, per:religion, and per:charges

are extracted from Freebase (similar to Roth et

al. (2012)), while trigger words for other slots,

usually consisting of small lists (less than 10) of

words, are manually collected. Examples of trig-

ger words for the per:title relation include: “sec-

retary,” “technician,” “congressman,” “rep.,” etc.

We use the following rules for the extractors:

Title Extractor: Historically, titles are an ex-

tremely prominent relation in the TAC Slot Fill-

ing track. We designed extra rules for extracting

titles. These rules are based on the dependency

parse of the sentence containing the target men-

tion. Specifically, if the parent or a sibling of the

mention in the dependency tree is labeled as an

“appositive,” we attempt to extract a title relation

between the token and the mention.

Date Extractor: We identify dates in each docu-

ment in preprocessing using the Natty date parser

(Stelmach, 2013). Extractors for date-related

slots, such as age, date of birth, date founded,

etc., require both the presence of a trigger word

and a date in the input sentence. Some date-related

relation extractors may also extract relations of

multiple types. For example, using the publish-

ing date of a document in addition to an assertion

of the age of a recently deceased person, the ex-

tractor of age would infer slots of date of death.

Alternate Names Extractor: Using the extracted

knowledge base, we are able to directly extract

per:alternate names and org:alternate names

from the output of cross-document coreference.

Our results on 2013 are listed in Table

4. We observe that rule based extractors can

achieve high precision, while sometimes suf-

fer from lower recall. Further, we do not ex-

tract some relations that historically have been

infrequent including political religious affiliation,

number of employees members and org:website.



6 Relation Resolution

In part due to our slot filling (relation extraction)

strategy and in part due to some relation extraction

not being performed jointly (e.g. attribute rela-

tions), the set of extracted fillers for a mention/slot

pair can be invalid with respect to the slot. For

example, our relation extraction system could ex-

tract inconsistent per:date of birth values for the

same entity. Additionally, our system may extract

the same relation multiple times. To remedy these

problem, we employ a suite of simple resolvers

that handle these issues on a case by case basis.

For single-valued slots (i.e. per:age), we use

a resolver that simply outputs the filler with the

highest confidence. For multiple-valued slots (i.e.

per:alternate names), we threshold the number of

(unique) fillers output by only picking the top k–

ranked either by confidence or by the number of

appearances (i.e. the filler “50” was extracted for

entity e 1 and relations per:age 20 times). By

thresholding, we hoped to increase precision with-

out much decrease to recall.

7 Conclusion and Future Work

We presented Universal Schema, our overall

framework for TACKBP slot filling and cold start.

It differs from existing systems since it considers

all entities, relations, surface patterns, and annota-

tions jointly in a holistic manner. We effectively

construct a database about the entities in all of

the input documents (training and test), and then

querying this database to provide our submission.

A number of avenues exist for future work.

We feel our prediction suffered due to the use

of a basic cross-document system, and a within-

document coreference system does not utilize in-

formation from the cross-document coreference

system; we look forward to incorporating sophis-

ticated cross-document coreference (Singh et al.,

2011) and KB-supervised within-document coref-

erence system (Zheng et al., 2013). Future work

will also explore expansion of the features used

in the universal schema model, including lexicons,

more Freebase relations, and entity types (Yao et

al., 2013).
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