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ABSTRACT

EXPLORING PRIVACY AND PERSONALIZATION IN
INFORMATION RETRIEVAL APPLICATIONS

SEPTEMBER 2013

HENRY A. FEILD

B.Sc., LOYOLA COLLEGE IN MARYLAND

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor James Allan

A growing number of information retrieval applications rely on search behavior

aggregated over many users. If aggregated data such as search query reformulations

is not handled properly, it can allow users to be identified and their privacy compro-

mised. Besides leveraging aggregate data, it is also common for applications to make

use of user-specific behavior in order to provide a personalized experience for users.

Unlike aggregate data, privacy is not an issue in individual personalization since users

are the only consumers of their own data.

The goal of this work is to explore the effects of personalization and privacy

preservation methods on three information retrieval applications, namely search task

identification, task-aware query recommendation, and searcher frustration detection.

We pursue this goal by first introducing a novel framework called CrowdLogging

for logging and aggregating data privately over a distributed set of users. We then
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describe several privacy mechanisms for sanitizing global data, including one novel

mechanism based on differential privacy. We present a template for describing how

local user data and global aggregate data are collected, processed, and used within

an application, and apply this template to our three applications.

We find that sanitizing feature vectors aggregated across users has a low impact

on performance for classification applications (search task identification and searcher

frustration detection). However, sanitizing free-text query reformulations is extremely

detrimental to performance for the query recommendation application we consider.

Personalization is useful to some degree in all the applications we explore when in-

tegrated with global information, achieving gains for search task identification, task-

aware query recommendation, and searcher frustration detection.

Finally we introduce an open source system called CrowdLogger that implements

the CrowdLogging framework and also serves as a platform for conducting in-situ

user studies of search behavior, prototyping and evaluating information retrieval ap-

plications, and collecting labeled data.
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CHAPTER 1

INTRODUCTION

This thesis investigates how privacy and personalization affect three information

retrieval (IR) applications: search task identification, task-aware query recommenda-

tion, and searcher frustration detection. In pursuing this goal, we outline a framework

for collecting and mining data privately, several analyses of the effects of privacy, and

a general procedure for combining global data aggregated from many users with lo-

cal data pertaining to a single individual to provide personalization. We end with a

description of an open source system called CrowdLogger that implements the Crowd-

Logging framework and serves as a platform for conducting in-situ user studies.

1.1 Motivation

Most IR applications that web searchers use on a day-to-day basis are not highly

personalized. For example, if a user enters the search “romas” into a commercial

search engine, most results that are returned are related to restaurants. This is also

true of the suggested query reformulations, as illustrated in Figure 1.1. The one bit of

personalization that is widely attempted is the incorporation of location information;

with an Amherst, Massachusetts IP address, most commercial search engines show a

map at the top of the search page with locations of “Roma’s Pizza” near Amherst,

MA. If the majority of users who enter the query “romas” are looking for “Roma’s

Pizza”, this is an effective use of personalization. However, consider the scenario

where, just prior to this query, the user submitted the following queries:

1. tomato varieties
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The reliance on global data raises an import issue that is a growing concern

on the web: privacy. Collecting data without considering user privacy can have

devastating consequences. For example, identity theft, public humiliation, and loss

of user trust. Take, for example, the query suggestion algorithm discussed above. If

we blindly collect all query reformulations from contributing users, then some very

sensitive query suggestions may be presented to another user. Suppose userX submits

the query stolen credit card followed by another query consisting of his credit card

number—222333444888—perhaps in an effort to see if his credit card number has

appeared somewhere on the web. This query reformulation is collected and stored

with the global data. Now another user, Y , comes along and enters stolen credit card.

Unless some care is taken, it is reasonable to expect that 222333444888 may come

up as a suggestion, especially if stolen credit card is not a popular query. Since this is

clearly a credit card number, Y has information that could be used to take advantage

of X and possibly even identify X.1 This example demonstrates that preserving user

privacy must be a primary consideration in collecting and using global data.

The goal of this work is to explore two important research questions: first, how

can useful global data be collected but sanitized to maintain user privacy, and second,

how can this cleaned-up global data and rich local user data be combined to provide

personalization. We look specifically at three IR applications: search task identifica-

tion, task-aware query recommendation, and searcher frustration detection. For each,

we analyze the effects of certain types of personalization and privacy-preservation

mechanisms on their performance.

To address these questions, we divide this work as follows. Chapter 3 details

CrowdLogging, a framework for logging, mining, and aggregating search activity over

a distributed network of users in a privacy-preserving manner. We also explore some

1Yes, it is true that a credit card number alone would not be enough information to use the card,
but it illustrates the point that sensitive information can be revealed.
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of the privacy mechanisms that can be used with CrowdLogging to sanitize search

logs. In Chapter 4, we describe a general framework for combining local user data

with global aggregate data to produce useful privacy preserving, personalized IR

applications. In Chapters 5, 6, and 7, we introduce personalized models for each of

the IR applications and analyze the effects of both privacy and personalization on

performance. In Chapter 8, we describe a web browser extension called CrowdLogger,

which implements the CrowdLogging framework and provides many functionalities for

researchers to release prototypes of IR applications or conduct in-situ user studies.

Finally, we wrap up with conclusions and some final thoughts in Chapter 9.

1.2 Contributions

The following is a summary the contributions of this thesis.

1. CrowdLogging – We describe a new distributed framework for logging and

mining data on users’ computers and a mechanism to upload and aggregate

user data in a sanitized form in Chapter 3.

2. DPu – In Chapter 3.4, we introduce a novel extension to previous work, creating

a differentially private mechanism, DPu, that considers the number of users that

contribute a search artifact rather than the number of instances of that artifact.

We use DPu as a differentially private parallel for another privacy mechanism

we formalize, called FTu. We demonstrate that DPu provides coverage similar

to the privacy mechanism from which it was derived, DPa.

3. Empirical examples of privacy leakage – In Chapter 3.4, we describe three

attacks that demonstrate the vulnerability of two privacy policies that we for-

malize, FTa and FTu. One attack allows an attacker to attribute released

information to “power users”, another allows an attacker to infer information

that is not released, and a third allows an attacker with knowledge that a piece
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of data from a given user was included during data collection to infer additional

data from that user. We demonstrate the practicality of the second attack using

query sequences extracted from the 2006 AOL query logs, showing that a small

number of infrequent—and therefore unreleased—query triples can be inferred

using released query and query pair counts.

4. Artifact coverage comparison – One class of privacy mechanisms analyzed

in this thesis, frequency thresholding, releases considerably more information

than differentially private mechanisms using parameter settings typical in the

literature. As differentially private mechanisms have many desirable theoretical

properties, we consider the settings required to achieve similar coverage to that

produced with frequency thresholding, specifically for releasing query artifacts

from the AOL search log. We find that the settings required to do so are

generally unreasonable, and we conclude that differentially private mechanisms

should not be used to obtain the same level of coverage as frequency thresholding

using the AOL search log.

5. Personalized search task identification – In Chapter 5, we demonstrate the

variability in individuals’ perceptions of what constitutes a search task, finding a

Fleiss’ Kappa as low a 0.53 among six annotators’ labels across ten user histories.

This is the first such analysis in the search task identification literature that

we know of. We gather annotations for over 503 user histories extracted from

the 2006 AOL search log, labeled by ten annotators—38 times as many user

histories as used by the current state of the art research. With this data, we

introduce several models for providing personalization, but find they perform

similarly to using a random forest classifier trained on global data, all achieving

between 94% and 95% macro accuracy across users. Our experiments show

the random forest classifier significantly out-performs the current state of the

5



art model. We further demonstrate that sanitization has an overall mild effect

on performance, and can even improve performance under certain conditions,

namely when the FTu mechanism is used with k = 100.

6. Task-aware query recommendation – We introduce in Chapter 6 a novel

task-aware query recommendation model, which combines query recommenda-

tions for each query within a task, giving more weight to queries based on either

temporal distance or same-task likelihood. It relies on personalized search task

identification, as described above. We find that leveraging on-task search con-

text provides a large boost in MRR for many evaluation queries—more than

25% on average. Privacy has a significant impact on recommendation perfor-

mance, rendering the quality so low as to be impractical in a real system in

most cases we consider.

7. Personalized frustration detection – In Chapter 7 we explore the effects

of personalization on frustration detection and show that personalization can

provide substantial performance improvements–as much as 9% in F0.5. We also

demonstrate that with a simulated user base of 100,000 users, performance of

global models is not affected by sanitization.

8. CrowdLogger – Using the CrowdLogging framework as a foundation, we im-

plement a browser extension for Firefox and Google Chrome called CrowdLog-

ger (Chapter 8), as a platform with which to perform in-situ studies of user

search behavior, evaluate IR applications, and provide research prototypes to

interested parties. In addition to implementing the key portions of CrowdLog-

ging, CrowdLogger allows researcher-defined JavaScript/HTML modules to be

remotely loaded. CrowdLogger exposes an API for: accessing a user’s real-time

or past browsing behavior; uploading data to a server privately, anonymously,

or in the clear (as approved by the user); interacting with the user via HTML
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and JavaScript; accessing a remote server for computational purposes; and sav-

ing data on the user’s computer. We describe two studies and one prototype

that have been implemented with CrowdLogger.
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CHAPTER 2

BACKGROUND, DEFINITIONS, AND RELATED WORK

This dissertation touches a number of areas, including privacy, personalization,

and several IR applications. We describe these below and how our work fits in. First,

we present some terminology that will be used throughout this work.

2.1 Terms and definitions

Moving forward, it will be helpful to understand the terms we make frequent

use of. This section tries to put those terms into context; Appendix A provides a

summary glossary for convenience.

Search logs, or query logs as they are sometimes called, are databases containing

information about user search activity. A typical log might contain a set of entries

consisting of an identifier, a time stamp, an event descriptor, and pertinent infor-

mation about the event. Common identifiers are IP addresses, cookie identifiers, or

account numbers. Example event descriptions include query or click. Pertinent in-

formation about the event might include the query text or a clicked URL. When we

assume that all identical identifiers correspond to a single individual, we refer to a

collection of search log entries sharing the same identifier as a user search log or user

log for short. An example user log is shown in Figure 2.1.

Search logs can be used to build models of user behavior, which can then be

used to influence search algorithms. For example, learning-to-rank algorithms ex-

tract or mine 〈query, search result click〉 pairs from search logs to learn a ranking

function (Joachims, 2002). Many query suggestion techniques, such as the one used
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ID Time Event Type Event Info.
1019 11/15/11 09:02:03 query running shoes
1019 11/15/11 09:02:10 click www.nike.com
1019 11/15/11 09:03:15 query asics

Figure 2.1. An example user log where two queries have been entered roughly a
minute apart and one URL has been clicked for the first query.

by Boldi et al. (2008), are based on query reformulations pairs mined from search

logs, e.g., running shoes → asics in Figure 2.1. The pieces of data being mined—e.g.,

query-click pairs and query reformulations—are called search log artifacts, or artifacts

for short. In this work, we refer to a set of artifacts mined from one or more user

search logs as a crowd log and a model built from a crowd log as a global model.

As explained in Chapter 1, when crowd logs are created without concern for

privacy, sensitive information may be exposed. When privacy is taken into account

and a privacy policy is instated to reduce the chance of revealing sensitive information

in a crowd log, we consider the resulting crowd log and subsequent global models

sanitized. An example privacy policy is to include artifacts in a crowd log only if they

were mined from at least k different user logs. An artifact present in a crowd log is

said to be sufficiently supported by the privacy policy.

We can process user logs to build user-specific models, which we call local models.

We do not sanitize local models under the assumption that users interacting with their

own sensitive information do not constitute breaches of privacy. (We do not consider

the case where multiple individuals access the same account, though this may be a

common situation with, e.g., shared computers in homes, libraries, or Internet cafés.)

All of the IR applications we consider use a notion of search tasks. We note that

our use of search task in this thesis differs from others in the fields of information

retrieval and information seeking, which consider a task to consist of several facets

such as its goal, source, and the process by which it is carried out using a variety of

digital and physical media. Li (2009) provides an overview of many of these other
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definitions. For our purposes, a search task is a set of one or more searches entered

by a user pertaining to the same information need. A search consists of a query

submission followed by zero or more non-query interactions, such as clicks and page

visits. Tasks are different from search sessions, which consist of a sequence of one

or more searches within either a specified time period or when a period of inactivity

is encountered. Sessions may consist of multiple tasks, and tasks may span multiple

sessions. We define search task identification to be the problem of grouping a set of

user searches into search tasks.

In the field of IR, personalization is the act of incorporating information about

a user into the processing of an IR application. For example, boosting the rank of

search results that are more similar to web sites a user has visited in the past. An-

other common practice is the use of a user’s location, often inferred by IP address

or GPS coordinates. We concentrate on local-only personalization that can be per-

formed in isolation on an individual’s computer. We consider two different types of

personalization: task-aware and supervised learning from user-provided annotations.

Note that, in general, personalization can also involve a group of users; we do not

consider group-level personalization in this thesis.

One of the IR applications we consider is detecting searcher frustration. We define

searcher frustration as the self-reported level of frustration a user experiences while

engaged in a search.

You can find a glossary of these terms in Appendix A.

2.2 Privacy in Information Retrieval

There is an increasing interest in developing methods for preserving search user

privacy while still gleaning information to improve IR applications. At one extreme,

no privacy is maintained and search log collectors acquire unfettered access to users’

search behavior. This is good for the collector and potentially users as well, who
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will benefit from more finely tunned IR algorithms. However, users lose all control

over how their information will be used and shared. At the other extreme, privacy is

preserved, but no useful data is passed on to the collector, reducing the amount of

data collectors have to make informed algorithm enhancements.

In this section, we will first take a look at the current state of commercial Web

search, since it touches most of our daily lives. Then we discuss related work pertain-

ing to several classes of sanitization mechanisms and corresponding vulnerabilities.

For the first part of the related work, we use an informal definition of privacy, namely

that a sanitization mechanism preserves privacy if, given the output of the mecha-

nism, an analyst cannot make a reliable guess as to who a query belongs to. A little

later on, we will introduce a more formal definition used in much of the most recent

research on the topic.

Some of largest US based search engine companies (Google, Yahoo, Microsoft,

AOL, and Ask.com) have privacy policies that do little to anonymize search data,

keeping IP address and browser cookie identifiers associated with searches for as long

as 18 months (Schwartz & Cooper, 2007). For users that do not want their queries

tracked, there are some server-side options. For example, some less popular search

engines state in their privacy policies that they do not log user interactions, such

as Duck Duck Go.1 Another approach is to use a decentralized search engine, as

is done with the peer-to-peer service YaCy.2 On the client-side, the TrackMeNot

project (Howe & Nissenbaum, 2009) is useful for web searchers that want to ensure

their data is not logged, or at least not in a meaningful way, by any search engine.

The project, offered as a Firefox web browser extension, obfuscates user search queries

by sending many other unrelated searches to the target search engine. While the

user’s query can be logged by the search engine, it will be lost in the noise of the

1http://duckduckgo.com/

2http://yacy.net
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other searches, thereby protecting the user’s intent to some degree. In the current

commercial landscape, the consumer’s choice is to either allow search engines to collect

all pertinent searching behavior over some period of time and reap the benefits of

personalization and high quality results, or not allow search engines access to any

useful information, sacrificing both personalization and quality of service.

Xiong and Agichtein (2007) enumerated two key privacy concerns for publishing

search logs: how queries are related and how sensitive information within a query

(e.g., a social security number) is handled. generalizing their categorization slightly,

we break the related working into two overarching sanitization classes: 1) techniques

that primarily focus on how log entries are related, i.e., how entry identifiers are

anonymized; and 2) techniques that also consider the contents of the data contained

within each entry. For additional overviews of search log privacy techniques, consult

Xiong and Agichtein (2007) and Cooper (2008).

In an unsanitized search log, entries are primarily related by their identifier, where

each user has a unique identifier. In the event that identifiers contain identifiable in-

formation such as a user name, IP address, or cookie identifier, a simple sanitization

approach is to anonymize that information. Anonymizing user identifiers involves

mapping each to a unique string that does not contain private information. AOL

publicly released a three month search log in 2006 in which users were given anon-

imized identifiers (some search data was also removed). However, at least one user

was identified by a New York Times reporter soon after the release (Barbaro et al.,

2006). The reason users could be picked out did not have to do with the content of the

identifier, but rather the fact that multiple searches and clicks were linked together

using the identifier. It was the text of the queries themselves that provided more

and more evidence about who the underlying user was, finally resulting in a positive

identification.

12



Microsoft released a search log to researchers the same year, but only provided

anonymized identifiers for user search sessions, preventing queries from the same user

but different sessions to be explicitly linked (Microsoft, 2006). By mapping users to

multiple pseudo users, it is more difficult to make the same links that the AOL data

allowed. First, queries issued on two different days are not directly connected (pro-

vided the user was inactive for part of the intervening time period). Second, sessions

generally consist of a small number of queries and are therefore less likely to cover a

diverse set of topics. When these two points are taken together, it becomes more dif-

ficult to gather sufficient evidence to identify the individuals behind the queries. Not

impossible, however: Jones et al. (2007) demonstrated that even when breaking users’

data into day-long chunks, their gender, age, and zip code can be established with

“reasonable accuracy” using classifiers, contributing towards identifying individuals

and their search histories.

Another sanitization technique works in the opposite manner: it maps multiple

user identifiers to a single pseudo identifier. In 2007, Google released a statement

asserting they would, after 18 months, anonymize the IP address associated with

each search event by removing the last octet of the address (Fleischer, 2007). By

bundling multiple users together, it is more difficult to identify individuals due to

the noise of all the other users’ data contained in the bundle. However, Jones et al.

(2008) published several attacks on identifier-based bundling. On a sample of logs,

they were able to identify with 71% precision which queries belong to the same user.

By leveraging users’ tendencies to search for their own names,3 the presence of users

that own the majority of actions within a bundle, and the ability to infer strings of

related searches within a bundle, an attacker can make educated guesses about who

a query belongs to.

3Roughly 30% of users searched for themselves over a 70 day period.
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To overcome the vulnerabilities of identifier-only sanitization, recent works have

considered additional log information, such as query terms. One technique relies on

hashing individual query terms or whole queries (Cooper, 2008). This allows data

miners to analyze query statistics without knowing the contents. However, Kumar et

al. (2007) showed that anonimization by means of hashing query terms can be partially

breached by mapping the hashes to terms or queries in another, unanonimized query

log—for example, the AOL query log.

Adar (2007) presented two methods for sanitizing a search log in the interest of

preserving privacy. First, only queries that are issued by at least t users are kept.

This is similar to Sweeney (2002)’s k-anonymity work for databases, which assigns

a subset of database columns to be a quasi-identifier and the remaining columns to

be sensitive attributes. A row in the database is only released if the quasi-identifier

is shared by at least k − 1 other rows. Under Adar’s model, a query serves as both

the quasi-identifier and the sensitive attribute. Adar’s second technique anonymizes

the identity of users who enter a series of queries that may reveal who they are when

taken together, by clustering syntactically related queries from a user’s session and

releasing each cluster under its own identifier. This is similar to the identifier-based

method of mapping a single user identifier to many pseudo identifiers, though the

clustering may reduce the chances of linking data from multiple pseudo identifiers.

Hong et al. (2009) defined kδ-anonymity, where for every user whose data is listed

in the sanitized search log, there are k − 1 other users that are δ-similar to the user

in terms of their data. Their method involves grouping similar users and adding or

suppressing data to make user groups appear more similar. One downside to this

approach is that some data is permanently discarded and artificial data is added.

It is unclear how different types of applications are affected by this anonymization

process.
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A substantial disadvantage with both kδ-anonymity and t-anonymity discussed

above is their lack of theoretical backing. While they make intuitive sense, they do

not provide any formal guarantees of privacy. It is difficult to estimate, for a given

dataset, what the chances are that a user will be identified. Dwork (2006) intro-

duced a provably private approach called differential privacy, targeted to databases

in general. Differential privacy applies to randomized algorithms. Such an algorithm

is ǫ-differentially private if for all pairs of input data sets that differ by one item,

the outputs, e.g., a histogram of queries, only differ within an exponential factor

of ǫ. Assuming a user is an item, what this means is that, given the output of an

ǫ-differentially private mechanisms, an analyst should not be able to tell with any

significant confidence if a given user’s data was or was not present in the input data

set, since the outputs would only differ by an exponential factor of ǫ.

Kodeswaran and Viegas (2009) introduced a differentially private framework that

allows researchers to access attributes of a search log, such as a count of the number

of users that enter searches at a certain hour of the day. However, Götz et al. (2011)

showed that differential privacy cannot be applied directly to obtain useful collections

of search log artifacts, such as queries or query reformulations. Several relaxations

can, though, and both Korolova et al. (2009) and Götz et al. (2011) described relaxed

differentially private mechanisms for doing so.

Korolova et al. introduced a relaxed differentially private algorithm to release a

query click graph from a search log. Their work differs from previous work in this

field in two important ways: (1) the output of their sanitization is a query click graph

rather than a search log, and (2) they prove theoretical bounds on the effectiveness

of their privacy-protecting scheme.

Götz et al. developed an algorithm called ZEALOUS to release histograms of arbi-

trary artifacts of a search log, e.g., queries, query-URL pairs, or query reformulations.

They demonstrated that under one configuration of input parameters, the algorithm
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is similar to Korolova et al., but allows users to contribute d distinct artifacts where

Korolova et al. allow d non-distinct artifacts. Götz et al. showed that under a differ-

ent configuration of parameters, ZEALOUS provides a more conservative relaxation

of differential privacy and thus yields stronger privacy guarantees.

We develop a framework that keeps users’ data on their own computers and re-

motely mines and then uploads data privately to a centralized location. We also

explore two new privacy mechanisms for this framework that stem from previous

work. One is similar to t-anonymity, but with two key differences: 1) search log

artifacts in general are considered, rather than explicitly queries (though those can

be artifacts), and 2) t-anonymous artifacts are not linked to each other, preventing

explicit linking. We consider two variations of this mechanism, one where t corre-

sponds to the number of users that share an artifact within a search log (called user

frequency thresholding) and another where t corresponds to the number of instances

of an artifact in the log (called artifact frequency thresholding).

As the thresholding methods do not provide any guarantees about privacy loss,

we also consider a variant of the Korolova et al. algorithm, that has potentially higher

utility. Because the utility of data sanitized using differentially private methods is

affected by the size of the search log, we further investigate how to best process

growing search logs. For example, whether search logs should be sanitized each day

or in week-long segments.

Finally, we explore the effects of our and existing algorithms on three specific IR

applications with and without personalization.

2.3 Selected Information Retrieval Applications

In this section, we discuss related work surrounding three specific IR applications:

search task identification, task-aware query recommendation, and searcher frustration
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Query No. Task ID Query
1 1 florida resorts
2 1 daytona beach hotels
3 2 garden hoses
4 1 flights to florida

Figure 2.2. An example of a search session consisting of four queries that constitute
two distinct search tasks.

detection. We cover work that focuses on personalization and privacy for each when

applicable.

2.3.1 Search Task Identification

The goal of search task identification is to segment a sequence of searches into a set

of tasks consisting of related searches. This problem consists of two steps: classifying

pairs of searches as belonging to the same task and then clustering searches into tasks

using the classification information. For example, consider the simple search session

of four queries shown in Figure 2.2. Queries 1, 2, and 4 are all related to a trip to

Florida while Query 3 is its own task. To identify these tasks, an algorithm first

classifies each pair of searches, i.e., (“florida resorts”, “daytona hotels”), (“florida

resorts”, “daytona beach hotels”), etc., as belonging to the same task or not. Once

the predictions are made, the searches are clustered into coherent tasks, such as Task

1 and Task 2 shown in the example.

Jones and Klinkner (2008) introduced hierarchical search task identification. They

trained logistic regression models to classify if pairs of queries belonged to the same

task using two different levels of tasks: atomic tasks called goals and meta tasks

called missions. Among the most influential features were lexical features, such as

Levenshtein distance and the Jaccard Coefficient, as well as search log-based features,

such as the probability of one of the queries in the pair being reformulated as the

other in the logs. The authors did not consider the clustering step. Building on this

work, Boldi et al. (2008) created two classifiers for identifying tasks within a session:
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a logistic regression model similar to Jones and Klinkner’s (2008) for use with query

pairs that only occurred once in a training search log and a rule-based classifier for

the other instances. They did not specify any details of the rule-based classifier.

They cast the problem of clustering as an Asymmetric Traveling Salesman problem:

their algorithm reorders searches in a session by finding the Hamaltonian path that

minimizes the weight between consecutive queries in the new ordering (where the

weight is defined as −log(classification score)). Task breaks are then identified in

the reordered sequence of searches where the classification score is below a threshold.

Lucchese et al. (2011) built an ad-hoc classifier that integrates both the syntactic and

semantic distance between two searches’ query text. Among a number of different

clustering algorithms they examined, they found the most effective was applying the

weighted connected components algorithm over a fully connected graph in which the

nodes are queries and the edges are the same-task classification scores. The graph is

pruned of any edges below a threshold and each connected component in the pruned

graph is considered a task. This method is equivalent to single-link clustering.

We build on the logistic regression classifiers used by Jones and Klinkner (2008)

and Boldi et al. (2008) in addition to the semantic features and task clustering tech-

nique used by Lucchese et al. (2011). There are three key differences between our

work and previous work. First, we do not assume a cross-user definition of a search

task; rather, each user may have a slightly different notion of what constitutes a

search task. Therefore, we explore augmenting globally learned same-task models

with personalized, locally-trained models. Second, we consider the effects of privacy

on globally trained same-task models. Third, we consider several datasets, one of

which consists of full web search histories from 503 users hand-labeled by 10 annota-

tors. We know of no work has thus far explored personalized search task identification,

nor the performance impact of sanitized training data.
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Figure 2.3. An example query flow graph (left) and query-click graph (right). The
query flow graph consists of nodes that represent queries and direct edges that repre-
sent that the source query has been reformulated as target query in at least one search
session. Weights are typically normalized per node across all outgoing edges (e.g., see
the edges originating at the query “nike”). The query-click graph is bipartite; the
solid-circle nodes on the left represent queries while the dotted-circle nodes on the
right represent clicked web sites. Edges can only go from left to right and indicate
that the source query was followed by a click on a link to the target website. As
in a query flow graph, the edge weights are typically normalized per node over the
outgoing edges (e.g., see the edges originating from the query “asics”).

2.3.2 Task-aware Query Recommendation

We also explore task-aware query recommendation, in which previous searches

submitted by a user as part of the same task as the current target query are used when

generating recommendations. Task-aware recommendation is an instance of context-

aware recommendation, which more generally leverages a user’s search history when

generating query recommendations.

Huang et al. (2003) introduced a search log-based query recommendation algo-

rithm that extracts suggestions from search sessions in a query log that appear similar

to the user’s current session, thereby incorporating the surrounding search context.

They found it outperformed methods that extract suggestions from retrieved docu-

ments in many aspects.

Filali et al. (2010) presented a probabilistic model for generating query rewrites

based on an arbitrarily long user search history. Their model interpolates the same-
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task similarity of a rewrite candidate to the reference query with the average simi-

larity of that candidate to all on-task queries from a user’s history, weighted by each

query’s similarity to the reference query. They found that giving some weight to the

history, but most weight to the reference query, did best on a set of manually and

automatically labeled data.

Mei et al. (2008) presented a personalized query recommendation system that

relies on query-click graphs—bipartite graphs where verticies on one side are queries,

verticies on the other side are search results, and edges between indicate a search

result was clicked for the corresponding query (see the right side of Figure 2.3 for

an example). Queries are suggested by performing random walks starting from the

initial query. Personalization is performed by updating the graph with the user’s

query-click history.

Zhang and Nasraoui (2006) constructed a query-to-query graph where directed

edges represent reformulations—not necessarily consecutive—that occurred within a

search session. A given query reformulation from a search session contributes weight

to the corresponding edge in the graph based on the distance of the two queries

in the session (in terms of the number of other queries submitted in between) as

well as the content similarity. Boldi et al. (2008; 2009; 2009) constructed query

flow graphs, where nodes are queries and directed edges are created between pairs

of queries that are observed as reformulations in a set of training logs (see the left

side of Figure 2.3 for an example). A list of suggestions is generated by performing

a random walk on the graph, starting at the query of interest. Search context is

integrated by giving non-zero weights to the elements of the random walk initialization

vector corresponding to previous queries entered by the user. They compare against

a method that uses a query-click graph without contextual information and find

that query flow graphs work better. Szpektor et al. (2011) adapted the query flow

graph by integrating query templates, which consist of semantic place holders within
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queries. This approach is helpful in generating recommendations for queries not

previously seen by the system, but match a known template. While not directly

related to privacy, this technique may be helpful in counteracting the degradation

effects of privacy preserving mechanisms. Bonchi et al. (2012) introduced the term-

query graph, another adaptation of query flow graphs to improve coverage of unseen

queries. Query flow graphs in their original form can only provide recommendations

for queries that are contained within the graph since the random walk must start

from somewhere. In a term-query graph, an extra layer is added: each distinct term

gets a node with an outgoing edge pointed at each query in the query flow graph

that contains that term. This layer is not used in the random walk, but rather serves

as a kind of inverted index into the query flow graph. The term-query graph can

therefore provide recommendations for any query that contains at least one term

that exists in the term-query graph. To generate a query recommendation for a given

target query, a random walk is performed for each term in the query, where the

initialization vector consists of each node in the query flow graph in which the term

occurs. The geometric mean of the results for each random walk is then taken to get

the final recommendation list. This work did not consider personalization.

Cao et al. (2008) introduced a context-aware recommendation system that con-

verts a series of user queries into concept sequences and builds a suffix tree of these

from a large query log. To produce recommendations, a concept sequence is looked

up in the suffix tree and the common next queries are given as suggestions. Cao

et al. (2009) explored an efficient way to train a very large variable length Hidden

Markov Model (vlHMM), which considers sequences of queries and clicks in order

to produce query and URL recommendations as well as document re-ranking. The

authors trained the vlHMM on a large commercial search log. He et al. (2009) in-

troduced the mixture variable memory Markov model, which models sequences of
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user queries. They found that leveraging variable length sequences out performed

pair-wise recommendation algorithms.

Liao et al. (2012) explored the effect of task-trails on three applications, including

query recommendation. They compare two session-based, two task-based, and two

single-query recommendation models and found they retrieve complementary sets of

suggestions, though the task-based models provided the higher quality suggestions.

To identify tasks, they used an SVM model using features similar to Jones and Jones

and Klinkner (2008), and the weighted connected components clustering method de-

scribed by Lucchese et al. (2011).

Götz et al. (2011) explored the effect of privacy mechanisms on query recommen-

dation. They use the technique introduced by Jones et al. (2006), which is non-

personalized, and evaluated the effect of sanitization by measuring ranking metrics

(e.g., precision, recall, etc.) between suggestion lists generated using the sanitized

data and the recommendations using the unsanitized data set as ground truth. This

offers a notion of relative utility, but not of absolute utility.

Our work relies on the state-of-the-art query-term graph described by Bonchi et

al. (2012) and we introduce a model that allows us to incorporate task context in a

more controllable way than previous work, allowing us to more carefully understand

the effects of task context.. In addition, we consider the effects of privacy on the

term-query graph on absolute performance of query recommendation.

2.3.3 Searcher Frustration Detection

Recall that searcher frustration is defined as the self-reported level of frustration

a user experiences while engaged in a search. Knowing that a searcher is frustrated

provides useful feedback about an IR application and could potentially be used in

adaptive interfaces or algorithms (Feild, Velipasaoglu, et al., 2010).
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In a related area, Xie and Cool (2009) explored help-seeking situations that arise

in searching digital libraries. They identified fifteen types of help-seeking situations

that their 120 novice participants encountered. The authors created a model of the

factors that contribute to these help-seeking situations from the user, task, system,

and interaction aspects. In a study examining how children search the Internet, Druin

et al. (2009) found that all of the twelve participants experienced frustration while

searching. The authors pointed out that children make up one of the largest groups

of Internet users, making frustration a major concern. In a similar study, Bilal and

Kirby (2002) compared the searching behavior of graduate students and children on

Yahooligans! They found that over 50% of graduate students and 43% of children

were frustrated and confused during their searches. In addition, they found that while

graduate students quickly recovered from breakdowns—where users were unable to

find results for a keyword search—children did not. Kuhlthau (1991) found that

frustration is an emotion commonly experienced during the exploration phase of a

search process. She states that encountering inconsistent information from various

sources can cause frustration and lead to search abandonment.

While frustration prediction has not been directly studied in the field of IR,

searcher satisfaction has. Searcher satisfaction in search can have different mean-

ings. We define searcher satisfaction as the fulfillment of a user’s information need.

While satisfaction and frustration are closely related, they are distinct: searchers

can ultimately satisfy their information need but still be quite frustrated in the pro-

cess (Ceaparu et al., 2004). In previous work, satisfaction has been examined at the

task or session level. These satisfaction models only cover searcher satisfaction after

a task has been completed, not while a task is in progress. As such, satisfaction

models are useful for retrospective analysis and improvement, but not as a real-time

predictor. In contrast, with a frustration model that is defined throughout a search,

these real-time solutions are available.
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In one web search study, Fox et al. (2005) found there exists an association be-

tween query log features and searcher satisfaction, with the most predictive features

being click-through, the time spent on the search result page, and the manner in

which a user ended a search. They also analyzed browsing patterns and found some

more indicative of satisfaction than others, such as entering a query, clicking on one

result, and then ending the task. Clicking four or more results was more indicative

of dissatisfaction. Huffman and Hochster (2007) found a relatively strong correlation

with session satisfaction using a linear model encompassing the relevance of the first

three results returned for the first query in a search task, whether the information

need was navigational, and the number of events in the session. In a similar study

of search task success, Hassan et al. (2010) used a Markov model of search action

sequences to predict success at the end of a task. The model outperformed a method

using the discounted cumulative gain of the first query’s result set, suggesting that a

model of the interactions derivable from a query log is better than general relevance

in modeling satisfaction.

Frustration and satisfaction modeling are instances of the more general concept

of user behavior modeling. The features and approaches used to model different

user behaviors are often interchangeable, and there are several different approaches

to behavioral modeling in the literature. Huffman and Hochster (2007) predicted

session satisfaction using a regression model incorporating the relevance of the top

three results returned for the first query, the type of information need, and the number

of actions in the session. Hassan et al. (2010) used a Markov model to predict task

success and found that sequences of actions, as well as the time between the actions,

are good predictors. Downey et al. (2007) created a Bayesian dependency network

to predict the next user browsing action given the previous n actions, parameterized

by a long list of user, session, query, result click, non-search action, and temporal

features. They found that using an action history with more than just the immediately
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preceding action hurt performance. White and Dumais (2009) explored predicting

when users would switch between search engines. Their goal was “not to optimize the

model but rather to determine the predictive value of the query/session/user feature

classes for the switch prediction challenge” (p. 94). They used a logistic regression

model that encompassed query, session, and user level features. They found that

using all three feature classes outperformed all other combinations of feature classes

and did much better than the baseline for most recall levels.

Our work differs from previous work in three ways. First, we consider the predic-

tion of searcher frustration, something that no previous work explored that we know

of. Second, we consider a combination of globally learned and locally learned models,

tailoring prediction to individual user’s habits. Third, we consider the effects of pri-

vacy on both the task identification portion as well as the globally trained frustration

detection models.

2.4 Analyses of Privacy and Personalization

Several works have looked at the interaction of privacy and personalization. Many

of these works assume that a user’s privacy concern is uploading personal informa-

tion to a server so that it can be used to personalize the returned content. Un-

der this assumption, Krause and Horvitz (2010) explored the privacy-utility trade

off for personalized web search and found that little personal information is needed

to achieve significant utility. Xu et al. (2007) examined user profiles—a hierarchi-

cal set of user interests on the web such as: sports→{soccer, football, baseball}—

automatically extracted from their the pages they visit. Their framework provides

two parameters that users can tune to limit the amount of information that is shared

with the server. Zhu et al. (2010) explored anonymizing user profiles for personal-

ized search by bundling users into groups and creating a profile of the group to use

for personalization. Similarly, Zhou and Xu (2013) considered providing peer-group
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personalization—personalization tailored to a group of similar individuals rather than

to a single individual—as a means to protect individual’s privacy. As in the other

cases, personalization was performed on the server-side, and the privacy aspect was

about protecting the information shared with the personalization algorithm.

The key differences between these works and ours is that we assume that the

privacy concern is with creating global models, not personalization. One reason for

this assumption is that we only consider personalization for individuals, not group-

level personalization. We further assume that personalization is performed client-side

or, when a server is required for computational reasons, the server is trusted to not

retain the private information.

2.5 Search logs

We use the 2006 AOL search log for most of the analyses in this thesis. The

log contains search activity for over 617,000 AOL users collected between March and

May 2006. The dataset was publicly released in August, 2006 and then retracted

soon thereafter. However, the data was already copied to several mirror sites by that

point. There has been debate over the ethics of using the AOL data for research,

given it was retracted (Bar-Ilan, 2007).

The AOL search log is one of three large search logs we have access to. The other

two logs are: a one month sample of MSN search sessions from 2006 and several years

of data from a medical best-practices search engine. The primary reason we chose to

use the AOL search log over other the other two is that it is the richest, most general

purpose of the logs. The MSN search log is inappropriate for our analyses because

search sessions are not linked. That is, hundreds of search sessions may belong to the

same user, but we have no way to establish that information. The privacy mechanisms

we study in this thesis rely on having knowledge of all of a user’s search activity, and

thus the MSN log does not allow us to properly analyze them.
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The medical best-practices search engine has a few characteristics that make it an

inappropriate data set for our analyses. First, many of the “users” of the search engine

are medical institutions, such as hospitals, and the search activity is shared among

many individuals. For example, some institutions provide terminals with access to

the search engine that anyone can use. Since activity cannot be associated with an

individual, our ability to analyze personalization is inhibited. Another reason we

elected not to use the medical best-practices search engine logs at this juncture is

that it is a niche search engine, and it is unclear whether our findings would be tied

specifically to that niche and thus limiting their impact. We believe that analyzing

general web search behavior, as is captured by the AOL search logs, allows our findings

to be have greater impact.

The AOL search log is the only large-scale data set we have access to that allows us

to analyze the effects of both privacy and personalization. We believe we are justified

in using this controversial data set since our focus is on better understanding how

search behavior can be captured in a privacy preserving manner, and not to identify

or otherwise do harm to specific individuals in the data set.
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CHAPTER 3

CROWDLOGGING

In this chapter, we describe a novel framework for privately and anonymously

aggregating data across a distributed network of users, called CrowdLogging (Feild

et al., 2011). We begin by motivating the need for such a framework and describe the

framework’s internals. We look at several examples of the data aggregated using the

framework before introducing five privacy mechanisms that we will use throughout

the remainder of this work. We explore several strengths and weaknesses of these

privacy mechanisms.

3.1 Motivation

A common approach to collect, store, and mine a search log is to use a centralized

server model : raw search interaction data from a user base is aggregated into a search

log and stored in a central location. This is depicted in Figure 3.1. Search services

Figure 3.1. The centralized server model, wherein raw user data is uploaded to a
centralized location where it can be minded by analysts.
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can provide both personalized and non-personalized tools to users, but it requires

that users submit their data to the centralized server. The data that users provide

may contain sensitive activity and identifying information, raising serious privacy

concerns. In addition, users have little control over what data is stored and used on

the centralized server. Users must trust the data collectors to maintain their privacy.

What we would prefer is an approach to data collection, storage, and mining that

protects user privacy, allows for personalization, and can aggregate data across users.

Users should largely have control over their data, both in terms of what is mined

and how it is collected. And they should not need to place unwaivering trust in the

collectors. In addition, researchers that want to aggregate search behavior across users

and distribute this information to the greater research community may be required

by their institutional review boards to give due diligence in protecting user privacy.

Likewise, large search companies that would like to distribute data about their users

would also like to do so without violating their users’ privacy.

3.2 Framework

CrowdLogging is a framework for privately aggregating search log data over a

distributed group of users. It consists of four components: software installed on

users’ computers (client software), a bank of anonymizing nodes (anonymizers), a

central server, and a privacy policy. Figure 3.2 shows a schematic of the framework.

The client software is responsible for logging a user’s search activity to a search

log stored on the client machine in its raw form. Though exactly what is logged is left

up to the implementor, search logs likely contain web searches, visits to web pages,

and clicks on web page links among other search events, along with timestamps.

The client software is also responsible for mining data, such as queries, from the log

whenever the server requests. We refer to these as mining applications, each of which

is a function applied to the user log:
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Figure 3.2. The CrowdLogging model. Raw data resides on users’ computers.
Analysts must request mining applications to be run on the raw data, the results of
which are then encrypted, uploaded anonymously, and then aggregated and decrypted
on a centralized server.

M : UserLog→ A,

where M is the application, UserLog is a user’s search log, and A is a set of search

artifacts. Recall that a search artifact is any piece of information extracted from a

search log, such as a query, query reformulation, or query-URL pair. When a mining

application is run, the client must encrypt each artifact a ∈ A using a method that

prevents a from being decrypted unless certain criteria are met, subject to the privacy

policy in place—we describe this process in greater detail next. Once the artifacts

are encrypted, they are uploaded to the server via a bank of anonymizers.

The anonymizers are a set of servers that shuffle data between other anonymizers

before finally submitting the data to the centralized server. The purpose of this step is

to anonymize the source of an artifact: the anonymizers strip IP information and any

other data that reveals where an artifact comes from, rendering the artifacts them-

selves anonymous. Once data arrives at the centralized server, it can be aggregated

and decrypted. The final output is a crowd log.

The encryption, aggregation, and decryption stages must adhere to a privacy pol-

icy. Recall that a privacy policy describes how search artifacts must be treated with
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respect to user privacy in order to form a crowd log. A simple privacy policy is to only

include search artifacts in a crowd log that are mined from at least k user logs. To

support frequency-based privacy policies (covering all the policies discussed in Chap-

ter 3.4) in CrowdLogging, we rely on a secret sharing scheme for encryption called

Shamir’s Secret Sharing (Shamir, 1979). Under this scheme, a piece of information

is encrypted and a partial key is provided. If enough partial keys are collected, the

information can be decrypted. In CrowdLogging, an artifact is encrypted client-side

along with a partial key specific to the contributing user. Under the k-users privacy

policy, the encryption is performed such that k partial keys are required for decryp-

tion. Once the encrypted artifacts arrive at the server, they are grouped along with

their partial keys. If at least k partial keys are collected, the artifacts are decrypted.

The others are discarded. Note that if the server is compromised, the unencrypted

artifacts could be decrypted using a brute force attack.

Under CrowdLogging, we allow encrypted artifacts to consist of two fields: a

primary and a secondary field. The primary field is the one on which artifacts are

grouped when being decrypted. The optional secondary field is data that can be

revealed if the primary field is decrypted, but does not need to be shared among other

encrypted artifacts. For example, if a mining application extracts search queries as

the artifacts, then the primary field might be the search terms in all lower case (this

is a type of normalization) whereas the secondary field may keep the original casing:

〈bars in boston, bars in Boston〉.

Under the privacy policy mentioned above, the normalized query bars in boston would

have to be extracted from at least k user logs, while each of them may have used a

different casing. By allowing a secondary field in encrypted artifacts, we hope to allow

analysts to recover small details about artifacts that may be useful, but would not be

uncovered if only the primary field were available. How the secondary field is used
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should be specified in the privacy policy. In this thesis, we do not use the secondary

field as it is difficult to quantify the degree to which it compromises privacy.

3.3 Artifact representation

When we extract data via a mining task with a particular IR application in mind,

we must decide the form of the artifacts. For example, if we want to extract data

for a query recommendation algorithm, it is likely that the artifact will be a query

pair. However, the question is raised: how should the query pair be formatted? One

method is to extract the original text of adjacent queries from a user’s log to use as

the artifact. Another approach is to convert the query text in each pair to lower case.

Yet another approach is to additionally collapse adjacent whitespace in the query

text. For example, the query ASICS SHOES (note the extra space in the middle)

could be represented as is, as ASICS SHOES, or as asics shoes. Each of these is a

different artifact representation.

Artifact representation plays a crucial role in CrowdLogging because it determines

in part the ubiquity of the artifact, which effects how likely the artifact is to survive

sanitization under a given privacy policy. More general representations will be at least

as common as less general representations. In this section, we explore several artifact

representation schemes and their effects on the simple privacy policy we described

earlier, where an artifact must be extracted from at least k user logs to be added to

a crowd log.

3.3.1 Exploring artifact representations

We explore artifact representations by considering several simple transformations

on queries, query-click pairs, and query pairs from a subset of the AOL search log,

spanning the month of March 2006. Without a target application, there are two

primary measures of interest: the artifact impression coverage and distinct artifact
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coverage. Artifact impression coverage is the faction of the total number of artifact

impressions that are shared by at least k users: |C|
|L|

, where C is a crowd log and L

is the set of artifacts from which the crowd log was generated. An impression is a

single instance of an extracted artifact. Distinct artifact coverage is the fraction of the

distinct artifacts shared by at least k users: |Distinct(C)|
|Distinct(L)|

, where Distinct(y) represents

the set of distinct artifacts contained within the given data set y.

The goal of this analysis is to gain an understanding of the effect of artifact rep-

resentation on both types of coverage. While the ultimate success metric is utility of

the application that uses a crowd log, given two representations that are functionally

equivalent, the representation that conflates more artifacts together leads to higher

coverage, which means more artifacts will be made available in the crowd log. More

data means more informed models, and thus increasing coverage is a reasonable goal.

However, there are some cases—e.g., representing query pairs as feature vectors or

trimming URLs to only the website domain—where over-eager artifact generalization

will lead to greater coverage, but the quality of the artifacts will be so degraded with

respect to a specific application as to make them useless. We explore the effects of

sanitization on utility for specific applications in Chapters 5, 6, and 7.

For representing a query artifact, consider the following classes:

Original: The text as presented in the log.

Lightly cleaned: The strings “www.”, “.com”, “.edu”, “.net”, and “.org” along

with punctuation are removed from the query text.

Heavily cleaned: First, the text is lightly cleaned. Then each white-space delimited

term is removed if it belongs to a short list of blacklisted terms or stemmed1

otherwise, after which all terms are reordered alphabetically.

1Stemming is the process of reducing a word to its root (or stem).

33



The queries in the AOL search log have already been converted to contain all

lowercase and no redundant whitespace, so we do not consider those representations.

The effect of the representations above for queries (both individually and in query-

click pairs) on the number of distinct users that share those representations are shown

in the plots in Figure 3.3.2 The plots are cropped to show the effects up to k = 100

users. Both light and heavy cleaning make queries and query-click pairs more com-

mon, though the significance is less clear. For some applications, such as query intent

classification,3 it may be important to maintain substrings like “www” and “.com”

as they suggest a user has a navigational intent. However, other applications may

not require this information, in which case the improvement in impression coverage

is worth the loss of data. The differences are also more pronounced for larger values

of k, which suggests that these relatively simple representations are most useful in

situations where k is large, as dictated by the privacy policy imposed on the sys-

tem. The distinct coverage (the lower two plots) is less affected by the alternative

representations.

For query reformulation pairs, which we will refer to as query pairs, we have added

additional features:

Undirected: Query pairs are directed by nature: a pair (a, b) signifies that the query

b was the first query to follow query a. This representation reorders the queries

alphabetically. E.g., the pairs (a, b) and (b, a) resolve to the same pair (a, b).

Feature vector: Features are extracted from a pair of queries and then binned. We

consider three features: the time between the queries (three bins), the Jaccard

coefficient between the query text (three bins), and the number of character

2The ‘distinct’ plots report the fraction of the distinct artifacts of each respective representation,
not the fraction of distinct original-form artifacts.

3For example, predicting if the user is looking for a homepage, like www.facebook.com, rather
than for information.
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Figure 3.3. The impression coverage (top) and distinct coverage (bottom) of various
representations for queries (left) and query-click pairs (right) as a function of the
number of users (k) that share each artifact. Note that the axes are in log space.
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trigrams that overlap between the query text (four bins). We describe the

binning methods in detail in Chapter 5. The feature vector representation is

useful when there is no need for text. For example, in search task identification

as described in Chapter 5.

Figure 3.4 shows the portion of query pairs that are shared by different numbers

of users. The graphs on the left are cropped to show the effects for k = 1 to 100 users.

The full graphs are shown on the right and give a clearer picture of the feature vector

representation. The representation to notice right away is the feature vector; its

representation space is sufficiently low—consisting of 3×3×4 = 36 possibly values—

that k = 1, 222 when the first artifact becomes unsupported. However, no text is

recovered by using a feature vector representation. Of the other representations,

we see that re-ordering the queries to be alphabetical increases impression coverage,

but not as much as lightly cleaning the text. A combination of heavy cleaning and

alphabetizing the pair results in a substantive improvement, especially for larger

values of k. Similar to the query and query-click pair artifacts, the differences are less

pronounced for distinct coverage (lower plots) than for impression coverage (upper

plots).

3.4 Privacy

As we saw in Chapter 1, it is important to consider privacy when aggregating user

data for use in IR applications. The CrowdLogging framework allows virtually any

privacy policy to be integrated into the process. For example, a policy might mandate

that only artifacts that occur in the logs of 100 different users can be published in

the final crowd log. In this section, we first describe several mechanisms that are

used in the information retrieval community to preserve user privacy and can be

used as privacy policies in CrowdLogging. We demonstrate the potential utility of

these mechanism by analyzing the coverage—the proportion of distinct artifacts or
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Figure 3.4. The impression coverage (top) and distinct coverage (bottom) of various
representations for query reformulation pairs as a function of the number of users (k)
that share each artifact.
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artifact impressions released in the crowd log—for several artifact types. We also

explore several issues surrounding these mechanisms. The contributions we introduce

in this section are: 1) a novel privacy mechanism referred to as DPu, 2) an analysis

of attacks on a class of privacy policies called frequency thresholding (FTu and FTa),

3) an examination of the parameters settings required under differential privacy in

order to obtain approximately the same coverage under frequency thresholding for

releasing query artifacts from the AOL data set, and 4) an analysis of the privacy

trade-offs involved with processing a long-running search log.

3.4.1 Privacy Mechanisms

In this work, we consider two classes of privacy policies: artifact frequency thresh-

olding and differential privacy. For consistency with the literature, we refer to the

individual functions as mechanisms, though any privacy mechanisms can be thought

of as a CrowdLogging privacy policy. We have two goals with the privacy mechanisms

we examine: 1) prevent sensitive information from being released and 2) prevent an

individual from being identified. For the first goal, all mechanisms provide some

kind of thresholding, assuming that artifacts that occur frequently or across multi-

ple users will suppress sensitive information. For the second goal, all mechanisms

release artifacts independently, meaning that there is no explicit link between two

artifact impressions indicating whether they were extracted from the same user log.

Our assumption is that if it is impossible to link two or more artifact impressions

together, and only sufficiently supported artifacts are released, then an attacker will

not be able to combine enough information to identify who contributed an artifact.

For example, this would most likely have prevented the method used by the New

York Times reporter that identified a user in the 2006 AOL data set (Barbaro et al.,

2006). We describe both classes of privacy mechanisms below followed by an analysis

of the potential utility both classes allow on the AOL query log.
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3.4.1.1 Frequency thresholding

Frequency thresholding mechanisms are simple, straightforward, and arguably,

quite natural. We define two such mechanisms: artifact frequency thresholding (FTa)

and user frequency thresholding (FTu).

With the FTa mechanism, an artifact is sufficiently supported if it occurs k or

more times in a given search log. We call each occurrence an artifact impression.

For example, if a user enters the same query many times, then each counts as one

query artifact impression. A major weakness of this mechanism is that it will release

sensitive artifacts if a user has entered them a sufficient number of times.

A mechanism that does not violate privacy as easily as FTa is FTu, in which an

artifact is sufficiently supported if it occurs in k or more distinct user logs. This

is very similar to the t-anonymity method described by Adar (2007), except that it

applies to an arbitrary artifact. Its primary advantage over FTa is that whether a

sensitive artifact occurs only once or many times in a particular user log, it only

increments the user count by one. Thus, a single user in isolation cannot cause an

artifact to be released. However, we will see in the next section that this mechanism

has several issues of its own.

There is no analytical notion of privacy quantification under frequency threshold-

ing. As such, we allow an unlimited number of crowd logs to be generated from a given

search log. For example, one crowd log for queries, another for query-reformulation

pairs, and another query-click pairs. As we explore a little later, allowing multiple

artifact types to be extracted from the same search log, combined with the lack of

random perturbation of counts, makes it possible for attackers to link some artifacts

to the same user and even infer unsupported artifacts.
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3.4.1.2 Differential privacy

Unlike the frequency thresholding techniques described above, differentially pri-

vate mechanisms provide theoretical bounds on the amount of privacy leaked, and

thus can be considered provably private, provided a number of assumptions hold. In

this section, we introduce differential privacy and briefly describe several relaxations

introduced in the information retrieval literature to publish data from search logs

privately. We describe the algorithms of Korolova et al. (2009) and Götz et al. (2011)

in addition to our variation of the Korolova et al. algorithm (Feild et al., 2011). Each

offers a different view of the data and incurs different privacy and utility costs.

Differential privacy, introduced by Dwork (2006, 2008), is a term applied to a

randomized privacy mechanism A, meaning A will produce nearly identical output

given two very similar inputs. We can quantify the difference in outputs by a param-

eter ǫ and when doing so, we refer to the mechanism as being ǫ-differentially private.

For example, if we consider the input to be a data set of query instances extracted

from users and A to be an algorithm that picks which artifacts to publish, the output

of A given a set of queries should be nearly identical to the output given the same

set of queries, but with any single individual’s query instances removed. This means

that an analyst should not be able to tell from the output of A whether or not any

particular user’s queries were included or excluded from the input search log. The

formal definition is as follows:

Definition 3.4.1 (ǫ-Differential Privacy (Dwork, 2008)). A randomized mechanism

A is ǫ-differentially private if for all data sets D and D′ that differ in one individual’s

data, and all S ⊆ Range(A):

Pr[A(D) ∈ S] ≤ exp(ǫ) · Pr[A(D′) ∈ S]
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Note that when the privacy parameter ǫ is decreased, the difference in the outputs is

exponentially decreased: the smaller ǫ, the less privacy is leaked, but the less accurate

the output. When ǫ = 0, no privacy is leaked, but the output becomes useless.

One consequence of this definition is that if an attacker were to know the contents

of all but one user log, they should not be able to infer with any certainty what the

held out user log’s contents are. However, in order to make this claim, we need to make

a few assumptions about search logs as pointed out by Kifer and Machanavajjhala

(2011). First, we assume that each individual user’s search behavior is independent

of all other users. Second, we assume that we are the only holders of the input data

set and therefore no one else has released information—sanitized or not—from that

data set. Finally, we assume that any information released from earlier search logs

that contain search behavior from one or more of the users contained within our data

set is not correlated. This last assumption is necessary because information derived

from correlated data sets can provide an attacker with enough information to infer

information from the sanitized crowd log of the current data set.

Differential privacy was created with databases in mind and Götz et al. (2011)

demonstrated the impracticality of achieving reasonable accuracy from the output of

an ǫ-differentially private mechanism on a search log. They analyzed inaccuracy—the

probability of not publishing very frequent items as well as the probability of pub-

lishing very infrequent items from the input search log—and showed that publishing

nothing is more accurate than publishing data under ǫ-differential privacy.

Two relaxations of differential privacy have been proposed for sanitizing search

logs: indistinguishability (DPa (Korolova et al., 2009), DPu (Feild et al., 2011)) and

the less relaxed probabilistic differential privacy (ZEALOUS (Götz et al., 2011)).

We provide a high level sketch of these here and describe the technical details in

Appendix B. Throughout this work, we will refer to this family of mechanisms as

“differentially private mechanisms” for ease, even though they are relaxations.
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The DPa mechanism (Korolova et al., 2009) is a form of (ǫ, δ)-indistinguishability.

This introduces a slack variable δ to allow a limited amount of additional privacy to be

leaked. DPa produces a noisy histogram of artifacts. The algorithm allows each user

to contribute d artifacts to a collection. Noise sampled from a Laplacian distribution

with variance b is added to the impression count of every collected artifact and checked

against a threshold k; if the noisy count surpasses the threshold, the artifact is added

to the crowd log with a new count: its original count plus newly sampled noise. By

setting the ǫ, δ, and d parameters, the noise parameter b and k can be maximized.

DPa is the differentially private parallel of FTa.

Our mechanism, DPu (Feild et al., 2011), is based on DPa, but varies in one

substantial way: rather than requiring that artifacts in the crowd log occur at least k

times, we require that they have been contributed by at least k users. This distinction

has ramifications for how k is computed, allowing k to be higher for the same d relative

to DPa. DPu is the differentially private parallel of FTu.

The final mechanism we explore is ZEALOUS (Götz et al., 2011), which also

produces a noisy histogram, but using a process that is (ǫ, δ)-probabalistically dif-

ferentially private, a more conservative relaxation of differential privacy than indis-

tinquishability. ZEALOUS begins by collecting d distinct artifacts per user. Of the

collected artifacts, those that occur less than k′ times are discarded. Noise is added

to those that remain and if the noisy count exceeds a second threshold k, the corre-

sponding artifact is added to the published histogram. The required parameters are:

ǫ, δ, d, and U , where U is the number of users in the input data set.

There are many constraints imposed by differential privacy and its relaxations that

can cause issues for search log analysts. First, in order to bound privacy guarantees,

only a limited number of artifacts may be extracted from each user. This potentially

ignores a large percentage of the original search log.
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Second, the privacy that is leaked each time an algorithm is run on the same

search log is additive—if we extract a set of queries Q and query pairs QP from the

same log, then produce CLQ = DPu(Q) and CLQP = DPu(QP ) with the parameters

ǫ, δ, and d, then CLQ∪CLQP are (2ǫ, 2δ)-indistinguishable. That is, we have doubled

the amount of privacy that is leaked than if we had only extracted one set of artifacts.

Third, the number of artifacts that are released under differential privacy is sub-

stantially less than for a non-provably private mechanism, such as frequency thresh-

olding. This property of privacy preserving mechanisms is perhaps the most difficult

barrier in providing reasonable utility for applications, as we will see next.

Despite these issues, differential privacy based mechanisms provide a means of

quantifying the amount of privacy leaked during the creation of a crowd log.

3.4.1.3 Coverage of privacy mechanisms

One way to assess the utility of a privacy mechanism is to consider the resulting

crowd log’s coverage of distinct artifacts and artifact impressions from the search log.

While we will evaluate performance for three individual IR applications later in this

thesis, here we consider the coverage for several artifact types.

In Figure 3.5, we show the coverage for queries, query reformulations, and query-

click pairs across different levels of k. The first thing to notices is that the distinct

coverage is extremely low even at very low values of k. This is because the majority of

query, query pair, and query-click pair artifacts are unique, or at least rare. Depending

on the application, low distinct artifact coverage may or may not matter. In cases

where artifacts corresponding to trends are desired, rare artifacts are not necessary to

achieve high performance. We consider the effects of artifact coverage on performance

for three applications in Chapters 5–7.

The two frequency thresholding mechanisms always produce higher coverage on

this dataset for k < 200. We can also see that while FTa and FTu are very similar,
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Figure 3.5. The impression coverage (left) and coverage of distinct artifacts (right)
across five privacy mechanisms for query artifacts (top), query reformulation pairs
(middle), and query-click pairs (bottom), extracted from three months of AOL logs.
The y-axis is shown in log scale. For DPa, DPu, and ZEALOUS, ǫ = ln(10) and
δ = 1/657427.
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FTa generally performs better (releases more data). DPa and DPu also perform

quite similarly to each other. ZEALOUS consistently provides the lowest coverage.

Both frequency thresholding techniques behave similarly on impression versus distinct

artifact coverage: as k increases, coverage falls, quickly at first before tapering off.

The differentially private mechanisms are a bit different; coverage actually increases

with k when considering artifact coverage. This is due to the varying d associated

with any level of k. By holding constant ǫ and δ, we must increase d in order to

achieve higher values of k, allowing more head artifacts with their high impression

counts to be collected. The differentially private mechanisms show the opposite trend

with respect to distinct artifact coverage. While d increases with k, the increase in k

prevents less common artifacts from being released, hampering the distinct coverage.

3.4.2 Exploring privacy mechanisms

Having introduced several privacy mechanisms, we now discuss some of the ques-

tions we have regarding them. We explore three aspects. First, we consider some of

the attacks to which frequency thresholding mechanisms are vulnerable. Second, we

approximate the privacy leaked when producing crowd logs with frequency thresh-

olding. We do this by tuning the ǫ and d parameters of the differential privacy

mechanisms until they produce very similar results to those produced by FTa and

FTu. Finally, we consider the trade-offs involved with segmenting a search log, ex-

tracting a crowd log from each segment, and combining the results. We are motivated

by the potential of using a greater number of each user’s artifacts, but as we will see,

smaller segments require stronger privacy restrictions, which results in fewer artifacts

being supported.

3.4.2.1 Compromised privacy under frequency thresholding

Frequency thresholding allows more artifacts to be released than differentially pri-

vate mechanisms because it neither requires noise to be added nor limits the number
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Artifact Instances
⊲ bob 5,000
⊲ netflix 6,000

humane society 10
⊲ westminster, md 5,000

Table 3.1. An extreme example of where a power user can be distinguished from
other users, allowing that user’s artifacts (marked by ⊲) to be linked.

of artifacts any single user can contribute. However, this same advantage results in

the inability to theoretically quantify the privacy compromised by frequency thresh-

olding and leads to several instances of blatant privacy violations. In this section,

we look at several examples of how privacy might be compromised under frequency

thresholding. For these examples, let Count(x, y) be the number of instances of the

artifact x in the data set y.

Example 1 Suppose we have U users contributing search data. Of these users,

we have one user, Bob, who is a power user—he has performed vastly more searches

than any other user. Now suppose we extract all users’ queries Q and we publish

a histogram CLQ of artifacts and their counts: CLQ = FTu(Q), i.e., each artifact

a ∈ CLQ is supported by at least k distinct users. Of the artifacts in CLQ, some

subset B intersects with the artifacts mined from Bob’s search log. Because Bob

has so many more searches than any other user, we find that the artifacts in B

have significantly higher impression frequencies than the published artifacts not in

B. Although we cannot say for sure, a careful analyst could reasonably suspect that

there exists a user from which those B artifacts were mined, as depicted in Table 3.1.

This allows artifacts to be linked, which could then reveal the user’s identity. FTa,

too, falls victim to this attack. The provably private mechanisms discussed before are

not susceptible to this attack, mainly because each user can only contribute a fixed

number of artifacts.
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Example 2 A second kind of attack leverages the ability to extract an unlimited

number of crowd logs from a single search log. Let a, b, and c be three distinct queries.

We extract queries (Q), adjacent query pairs (QP ), and adjacent query triples (QT )

and publish their respective sanitized logs with k = 5: CLQ = FTu(Q), CLQP =

FTu(QP ), and CLQT = FTu(QT ), which is empty. Table 3.2 shows that, because

the queries a, b, and c and the query pairs (a, b) and (b, c) are sufficiently supported

and we know exactly what their frequencies are, we can infer that at least one user

has the insufficiently supported query triple (a, b, c). This has two repercussions:

first, it means that crowd logs generated by FTu can be used to generate data that

is inconsistent with what FTu would itself allow to be released, and second, if the

queries a and c are identifying when taken together, this breach compromises the

identity of the affected users. FTa can be similarly attacked.

To demonstrate an instance of this kind of breach on the AOL query logs, we

use the following algorithm. Any time we see a query qi that occurs in CLQ with

k = 5, we will examine the query pairs in CLQP and verify two conditions: (1) if there

exists a query qi−1 that immediately precedes qi such that Count((qi−1, qi), CLQP ) >

Count(qi, CLQ)/2 and (2) if there exists a query qi+1 that immediately follows qi

such that Count((qi, qi+1), CLQP ) > Count(qi, Q)/2. If both conditions hold and we

assume that the statistics reported in CLQ and CLQP are accurate, then we can infer

with 100% accuracy that the query triple (qi−1, qi, qi+1) exists in at least one user log.

A breach occurs when at least one of these triples lacks sufficient support for k = 5,

which is what was used to generate CLQ and CLQP .

On the AOL query log, we can infer 40 query triples this way. Of those 40 triples,

33 are sufficiently supported at k = 5, that is, they occur in CLQT with k = 5.

That means that 7 query triples were entered by fewer than 5 distinct users, but

inferable. This is a relatively small fraction of all unsupported triples—there are a

47



Artifact Instances
Queries
a 5
b 7
c 5
Query pairs
a, b 5
b, c 5
Query triples

⊲ a, b, c 3

Table 3.2. An example where running multiple experiments on the same data can
reveal information, e.g., the query triple demarcated by ⊲ is not sufficiently supported
at k = 5. We can infer that the triple (a, b, c) was contributed by at least one
individual. The user count of each artifact is not shown, but assume all query and
query pair artifacts are sufficiently supported at k = 5.

total of 19,402,216 unsupported triples at k = 5—but nonetheless, it demonstrates

the vulnerability of frequency thresholding.

Example 3 A third example of a breach of frequency thresholding is as follows.

Assume Bob is analyzing a set of logs sanitized with FTu and knows (1) that his friend

Alice’s user log is part of a given search log and (2) that Alice entered a query qi at

some point in the recent past.4 Assume that qi appears in CLQ with Count(qi, CLQ) =

n. Now suppose that all possible pairs involving qi appear in the accompanying

sanitized query pair log, CLQP , i.e., Count((·, qi), CLQP ) +Count((qi, ·), CLQP ) = n.

Furthermore, assume that the query qi is only ever preceded by one query, qi−1.

Then every user that submitted the query qi also submitted the preceding query qi−1.

Therefore, Bob now knows that Alice submitted qi−1.

These examples demonstrate that frequency thresholding is vulnerable to revealing

information that is inconsistent with its policy as well as information that can be

4This is not an unfair assumption. For instance, office workers can easily see coworkers’ com-
puter screens in many office settings. In addition, people sometimes post search queries on social
networking sites and forums.
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combined with auxiliary information to establish a connection between individuals

and artifacts. These are edge cases and might be rare, but we stress that when privacy

matters, so do the edge cases. It would seem that adding noise to the released counts

and limiting the amount of data a single user can contribute would go a long way

towards addressing these vulnerabilities. However, the concern then becomes how

much noise to add and how much data can each user contribute. This is exactly the

niche that differential privacy and its relaxations attempt fill.

3.4.2.2 Obtaining similar coverage across mechanisms

As we saw earlier in this chapter, frequency thresholding mechanisms substantially

out-perform their differentially private counterparts in terms of coverage on the AOL

data set. Ideally, we would be able to achieve the relatively high coverage rates that

we observed for frequency thresholding and at the same time have the theoretical

understanding that braces differentially private mechanisms such as DPa and DPu.

With this ideal situation in mind, two questions of practical interest are: 1) what

DPa and DPu parameter settings would be necessary to achieve a similar coverage to

FTa and FTu, respectively?
5 and 2) are those settings reasonable? In this section, we

address these questions specifically for query artifacts released using the AOL search

log. Although the specific conclusions we draw do not necessarily generalize to other

data sets or artifact classes, the process we use and the analysis we conduct can be

applied to other data sets and artifact classes.

DPa and DPu have several parameters: the number of artifacts to sample per user

d, the threshold k, the noise parameter b, the privacy parameter ǫ, and the privacy

slack value δ. As we describe in Appendix B, the typical way to use DPa and DPu

is to set k, ǫ, and δ, calculate the optimal d, and then compute b (which is based on

5We pair these mechanisms for the sole reason that they share similar thresholding strategies,
namely DPa and FTa threshold on artifact frequency and DPu and FTu threshold on user frequency.
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ǫ and d). In approximating the coverage produced using frequency thresholding, we

assume that a major factor is the number of artifacts sampled per user. If we only

sample a small portion of artifacts per user under differential privacy, then we likely

will not be able to achieve nearly the same coverage as under frequency thresholding.

Given this assumption, we will hold d constant and instead optimize ǫ for a given

value of k in this section.6

The first detail we consider is how to choose d. While frequency thresholding

considers all artifacts per user, we need to bound d when using the DPa and DPu

mechanisms. If we set d = 100 then 92% of users contribute 100% of their query

artifacts in the AOL data set. If we wanted 95% or more of users to contribute 100%

of their query artifacts, we would need to increase d substantially; instead, we use

d = 100 and claim that it covers a sufficient majority of users. We should note that

in a realistic setting, we would not know what value of d would result in the majority

of users contributing all of their artifacts without incurring a privacy cost (even then,

it would be a noisy count).

For these experiments, we set d = 100, and hold δ constant at 1/U = 1/657427

(i.e., one over the number of users in the data set). We can then vary k and compute

the optimal ǫ, and then calculate b = d/ǫ. To see how ǫ fluctuates relative to k, we

have plotted the two in Figure 3.6 for the DPa, DPu, and ZEALOUS mechanisms.

ZEALOUS is shown as a comparison point, though we will not use it for our exper-

iments in this section. We can see that for lower values of k (meaning more data is

released), ǫ is quite high—high enough to be practically meaningless. However, as k

increases, ǫ decreases quickly.

In Table 3.3, we show the optimal value of ǫ under DPa and DPu for a given

threshold, k. Our hypothesis is that using this table, we should be able to establish

6In actuality, ǫ cannot be analytically solved for under DPa; rather we must sweep a range of ǫ
values to find the one that produces the desired value of k, or one that is close.
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DPu DPa

k ǫ k ǫ
1 – – –
2 1730.81 – –
4 576.94 – –
8 247.26 – –
16 115.39 – –
32 55.83 – –
64 27.47 101 1730.82
128 13.63 128 61.82
256 6.79 256 11.10
512 3.39 512 4.21
1024 1.69 1026 1.87

Table 3.3. The optimal ǫ for a given value of k. We use d = 100, U = 657427 (the
number of users in the AOL data set), and δ = 1/U . Note that under DPa, ǫ cannot
be determined analytically given a specific k. Rather, we sweep across values of ǫ
with a step size of 0.01 and use the ǫ that yields the closest value of k to the target
(i.e., the value of k listed for DPu).
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the ǫ necessary to achieve a query artifact coverage similar to FTa and FTu at a

given value of k on the AOL data set. To put this hypothesis to the test, we compare

the distinct query artifact coverage obtained under FTa and FTu to DPa and DPu,

respectively. The results are shown in Figure 3.7. We can see that the coverage

between the FT and DP mechanisms is close for query artifacts. This signifies that

our method of setting parameters for DPa and DPu to approximate coverage under

frequency thresholding is effective, at least for extracting query artifacts from the AOL

data set. However, as we noted earlier, the privacy parameter ǫ optimized for lower

values of k under bothDPa andDPu is impractically high. Achieving coverage similar

to that produced under frequency thresholding using differential privacy mechanisms

requires unreasonable settings.

Note that the values of ǫ shown in Figure 3.6 and Table 3.3 are dependent on two

parameters: first, the number of artifacts contributed per user, d—we picked a value
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that we knew covered a large portion of users. For different artifacts, this number

will need to change if an implementor wants to encapsulate the majority of users.

While we assumed an oracle value, in a live system, the implementor will either have

to extract the number of artifacts each user has, which will incur a privacy cost, or

an estimate will have to be made, in which case the resulting coverage may not be

as close to frequency thresholding as our experiments demonstrated. Second, we set

U to the number of users in the data set; for a new data set, U should be adjusted

based on that data set’s size.

By considering the parameter settings required to make the coverage of DPa and

DPu approximate that of frequency threshold, we are not drawing any connection

between the underlying mechanisms. It is important to note that the differential pri-

vacy parameters do not apply to the frequency thresholding mechanisms themselves—

they cannot, since frequency thresholding mechanisms do not satisfy the differential

privacy definitions. It would be incorrect to use, e.g., FTa, and then state that its

corresponding privacy loss at k is a particular value ǫ. Rather, the differential privacy

parameters can only be used to quantify privacy loss when used with the correspond-

ing differentially private mechanism.

As a final note, we emphasize that our results in this section pertain only to query

artifacts extracted from the AOL data set and do not necessarily generalize to other

artifacts or other data sets.

3.4.2.3 Sanitizing search logs more effectively

A live logging system must cope with continually growing user data and how to

use it effectively as soon as possible. For frequency thresholding, there is no issue—it

can be run over data an unlimited number of times, meaning the old and new data

can be concatenated and processed under FTu or FTa. This is not the case for the

differentially private mechanisms without leaking additional privacy—if we generate
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n crowd logs, each with parameters (ǫ, δ), the total privacy leaked is captured by

(n · ǫ, n · δ). In this section, we begin to analyze how differentially private mechanisms

can be more effectively applied to growing search logs.

Our goal is to maintain the privacy parameters ǫ and δ. The variables we can

set are the number of artifacts to sample from each user d, and the set of artifacts

from which the d artifacts are sampled. We can vary the latter without affecting the

privacy parameters because differentially private algorithms are only dependent on

the number of artifacts per user and the total number of users. Consequently, an

input data set D with 300 artifacts is treated exactly the same as a data set D′ with

3 million artifacts. In both cases, we sample d artifacts per user. Provided d remains

the same, |D| − d < |D′| − d; that is, fewer artifacts are ignored from D than from

D′. At the same time, however, samples taken from D′ may provide better coverage

due to the possibility of increased artifact diversity.

One way to control the size of the logs is to constrain the time frame—for example,

sanitizing a day’s, week’s, or month’s worth of user logs. Korolova et al. (2009)

explored this by directly comparing the coverage of query artifacts for different time

spans, finding that distinct artifact coverage is not substantially affected by time

span, while artifact impression coverage is dependent on both the timespan and d,

with higher levels of d and longer time spans providing better coverage. However, a

more useful analysis is to compare the utility of one sanitized log (e.g., a month long

log) versus combining n sanitized subsets of that log (e.g., 31 day-long logs).

A complicating factor is that each time span is, under conservative assumptions,

correlated with every other time span. This assumes that a user’s search activity

one day is dependent on their search behavior another day. Because this data is

correlated, the privacy costs must be summed across the time spans. Suppose we

want to maintain ǫ = ln(10) and δ = 1/657427 as the cost for our crowd log and a

month is the longest time span we consider. The crowd log generated from the entire
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month would stay at ǫ = ln(10), δ = 1/657427; each of two half-month time spans

would use ǫ = ln(10)/2, δ = 1/(2 × 657427); and each of 31 day-long logs would use

ǫ = ln(10)/31, δ = 1/(31 × 657427). Since ǫ, δ, and d interact to establish k, it may

be that we can only sample so few artifacts per shorter time frame, or k becomes too

large, that nothing is gained.

The trade off, then, is sampling a larger portion of each user’s artifacts versus

higher values of k, limiting the output, especially of tail artifacts. To understand

these trade offs empirically, we conducted an experiment over the March 2006 seg-

ment of the AOL search log. Figures 3.8 and 3.9 show the coverage across query,

query pair, and query-click pair artifacts extracted with the DPa, DPu, and ZEAL-

OUS privacy mechanisms and various d settings. the trends make it clear that using

longer spanning logs provide greater coverage. However, day-long logs do provide an

advantage, if very slight, when extracting query artifacts when d = 1. For less com-

mon artifacts like query-pairs, longer spanning logs are essential to reveal anything,

especially when using ZEALOUS—the month-long log is the only log that provided

non-zero coverage.

The take away from this analysis is that longer time spans provide greater cover-

age than aggregating crowd logs produced from smaller segments of the log. If the

assumption that log segments with overlapping users are correlated can be challenged,

then the privacy costs would not need to be summed. Then, perhaps, aggregating

multiple crowd logs would be a better solution.

3.5 Summary

In this chapter, we introduced CrowdLogging, a framework for logging, mining,

and aggregating data in a privacy-aware manner. We demonstrated the impact that

artifact representation has on coverage. We also introduced five privacy mechanisms

that can crowd logs within the CrowdLogging framework, including a formalization
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Figure 3.8. The impressions coverage of queries (top), query pairs (middle) and
query-click pairs (bottom) achieved by combining 31 1-day sanitized logs (Days), two
half-month sanitized logs (Half-month), and a single month sanitized log (Month) for
March, 2006 in the AOL search log. For each privacy mechanism DPa (left), DPu

(middle), and ZEALOUS (right) we used ǫ = ln(10) and δ = 1/657427. This is
plotted on a log-log scale.
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Figure 3.9. The distinct artifact coverage of queries (top), query pairs (middle) and
query-click pairs (bottom) achieved by combining 31 1-day sanitized logs (Days), two
half-month sanitized logs (Half-month), and a single month sanitized log (Month) for
March, 2006 in the AOL search log. For each privacy mechanism DPa (left), DPu

(middle), and ZEALOUS (right) we used ǫ = ln(10) and δ = 1/657427. This is
plotted on a log-log scale.
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of two näıve frequency thresholding mechanisms, FTu and FTa as well as a novel

(ǫ, δ)-indistinguishable mechanism, DPu. We evaluated their potential effectiveness

using distinct artifact coverage and artifact impression coverage for three artifact

types: queries, query pairs, and query-click pairs. We described several ways in which

crowd logs released using frequency thresholding can be attacked to link artifacts,

identify user participation, and infer insufficiently supported artifact. We empirically

measured the frequency with which some insufficiently supported artifacts can be

inferred from AOL crowd logs. We explored parameter settings for DPa and DPu

to achieve approximately the same query artifact coverage produced using frequency

thresholding on the AOL search log. We found that ǫ must be set impractically

high, especially for lower values of k, causing us to conclude that it is not possible

to produce coverage similar to frequency thresholding using reasonable parameter

settings. Finally, we explored segmenting search logs into smaller sets in order to

obtain higher coverage. However, we found that processing larger logs produces better

coverage at the same privacy loss.

The impact of these analyses is of a practical nature. A query log analyst interested

in privacy must make many decisions when deciding what mechanism to use, how to

process data, and what the consequences of those choices are. Our analyses provide

insights on these fronts with respect to a large search log.
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CHAPTER 4

INTEGRATING LOCAL AND GLOBAL INFORMATION

In this and the following chapters, we explore integrating local user data with

globally aggregated data for use in IR applications, introducing a general template for

implementing IR applications that leverage both kinds of data. We look specifically at

three applications: search task identification, context aware query recommendation,

and context aware website suggestion.

We first motivate why IR applications should make use of rich local user search

data in addition to sanitized global data aggregated across many users. We then

present a general local-global data integration template, to which all IR applications

described in the following chapters will adhere. Finally, we end with a brief outline

of the evaluation strategy we use for the IR applications presented in the coming

chapters. In Chapter 8 we will describe CrowdLogger, an open source system we

have constructed to support these types of studies.

4.1 Local and global data

There are several reasons to use local user data in combination with globally

aggregated data in a search application. First, let us define global data as the data

included in a crowd log and local data as the data contained within a user log.

We have two motivations for using local data. First, it is extremely rich in detail

and information compared with sanitized global data. If an application requires

information that is not present in the global data due to sanitization, then local

data may provide that information. Second, local data pertains specifically to the
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individual associated with the data. Thus, a user profile can be built from that

data, providing models of a user’s interests and habits. That is, it provides a way

of personalizing an IR application. This information is not conveyed in globally

aggregated data.

Global data also has its benefits. First, it provides a notion of popularity and gen-

eral trends—a background model—that cannot be captured by a single individual’s

data. For example, when recommending queries to a user given they have just entered

query q, it may be desirable to offer not only follow up queries the user has entered

in the past for q, but also the popular reformulations of q across all users. Second,

global data becomes most important when local data is sparse. For example, if a user

has no search history, then the recommendations from the global model become the

only recommendations.

4.2 Integrating local and global information

In this section, we present a common set of steps that implementers can specify

when integrating local and global data into IR applications. This template allows us to

describe how an applications collects, aggregates, and uses local data. The template,

shown in Figure 4.1, is appropriate when using either sanitized or un-sanitized global

data.

In following this template for an IR application, an implementer must describe how

to perform these steps. For our purposes, much of the work in Step 1 is taken care of

by the CrowdLogging framework described in Chapter 3, for example, extracting and

aggregating artifacts, as well as sanitizing the data as a preprocessing step. Assuming

we use CrowdLogging, we need only to specify what artifacts will be extracted in Step

1-a and how to preprocess the sanitized data in Step 1-b, if applicable. Examples of

preprocessing include building a global model, such as a query flow graph, a trained

machine learning model, or a maximum likelihood lookup table.
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Local-global integration template
1. Collect and aggregate global data

(a) Extract artifacts from user logs
(b) Perform any necessary preprocessing of aggregated data

2. Perform any preprocessing of the local data
3. Process IR application input using local and global data

(a) Gather required global data

i. Client sends a request to the server
ii. Server processes the client request
iii. Server sends the response to the client

(b) Integrate local and global data given application input

(c) Return output

Figure 4.1. The list of procedures that must be defined for an IR application.

Similar to the global preprocessing, the local data preprocessing in Step 2 is only

performed if applicable. Examples of preprocessing on local data include building

language models of previously searched topics, identifying search tasks, or trained

classifiers, to name a few.

The final step is more complex—it details how the IR application integrates local

and global data to produce output. Given an input, IR applications must consider

several elements, namely: how local data is accessed and used, how global data is

accessed and used, and where computation occurs.

First consider these elements in the context of a non-privacy preserving, centralized

local-global integration model, shown in Figure 4.2a. Under this model, a user submits

a request consisting of the user’s identification (xi in the figure) and the application’s

input to the server. The IR application performs its computation on the server,

accessing both the user’s private information as well as the global information. The

output of the application is then sent back to the client where it is displayed to the

user. Note that his model does not preserve privacy—the server has access to all
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(a)

(b)

(c)

(d)

Figure 4.2. Figure (a) shows a centralized integration model, where all data is
stored and processed on the centralized server. The client machine sends requests
and displays the output from the server, e.g., through a web interface. Figure (b)
shows a global only model where sanitized global data is stored on a server, but no
local data is stored. Figure (c) shows a local only model, where local data is stored
on a user’s computer, but no global data is stored. Figure (d) shows the partially
distributed integration model, where global data is sanitized and stored on a server
and local data resides on the user’s machine. Both the client and the server can
perform computations for a given IR application.
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users’ data. However, it does provide an upper bound with which to compare privacy

preserving models.

One model that is privacy preserving stores only sanitized global data on the

server, as shown in Figure 4.2b. However, this model is not personalized because it

does not make use of any local data. A different model that is both privacy preserving

and personalized stores local data on the client side is shown in Figure 4.2c. This is

private because only the user has access to the local data. While personalization is

provided, no global data is used in this model, preventing the implementation of IR

applications that require global data such as common query reformulations.

The model we propose is one where processing is spread across both the client and

the server. We call this the partially distributed local-global integration model, shown

in Figure 4.2d. It is considered partially distributed rather than fully distributed

because some computation still occurs on the centralized server. The client machine

hosts the user’s personal data and the server hosts the sanitized global data. This

protects user privacy and gives users the ability to tightly control their data.

Due to the potential size of the global data in a web setting, we assume it cannot

be copied in full to a user’s computer. Any computation that occurs on the user’s

machine has all of the local data at it disposal, however, this must be weighed against

the limited computational resources available. Any computations that occur on the

server have full access to the global data, but not the user’s local information. Under

this model, we assert that the three steps given an input, shown in Step 3 of Figure 4.1,

must be specified for an application. Step 3-a-i. allows the implementer to specify

what data is included in the request to the server. At the implementers discretion,

and the consent of the user, local information can be sent with this request so that

the server can process it.

To understand each step better, consider a few examples. In Step 3-a, we may

have an IR application that requires a classifier trained on global data. Provided the
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classifier is trained on the server as a preprocessing step (i.e., it is not dependent on

the client request), then the server’s only responsibility is to pass the classifier to the

client. In another example, consider the server building a graph of the global data—

such as a query flow graph, where nodes are queries and directed edges represent that

one query has been rewritten as another—in a preprocessing step. This graph is too

large to download as a whole to the client machine, so instead the client can request

a portion of the graph, e.g., all nodes and edges within three hops of the query q.

Alternatively, the server could perform part of the application’s processing rather

than only fetch data. Using the graph example, the client could send the server a

query and its context and have the server generate a list of query recommendations

using the graph of global data.

This last example introduces an interesting tension: how much local information

should be given to the server. If too much local information is provided, the partially

distributed integration model reduces to the centralized integration model. Providing

the associated search context along with a query may be too much information and

violates privacy to some degree; there is no answer to this as it is a policy decision.

In this work, we will consider applications that send single queries without additional

local information.

To conclude this section, we present a list of questions in Figure 4.3 to which we

provide answers for each IR application we discuss in the coming chapters. These

questions map directly to the local-global data integration template shown in Fig-

ure 4.1.

4.3 Evaluating IR applications

In the following chapters, we will describe several IR applications that rely on

global or local data. Our analyses will consider the affects of sanitizing the global

data and incorporating personalization using local data.
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IR application implementation questionnaire
⊲ Preprocessing
1. What artifacts will be extracted?
2. What preprocessing will take place on the global data?
3. What preprocessing will take place on the local data?
⊲ On input
4. What is the input?
5. What request will the client send to the server?
6. What processing will the server perform for the client request?
7. What response will the server send to the client?
8. How will the server data be integrated with the local data?
9. What is the output of the application?

Figure 4.3. The list of question that must be answered for each IR application.

The configurations will include global data produced under each of the privacy

preservation mechanisms: FTa, FTu, DPu, DPa, and ZEALOUS. We will explore

performance for various parameter settings. In addition, we consider the special

cases where only global or local data is considered.

We will use several datasets: the 2006 AOL search log, the TREC 2010-11 Session

Track data, and data we collected during a user study in 2009.
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CHAPTER 5

SEARCH TASK IDENTIFICATION

In this chapter, we describe the problem of search task identification (STI), our

approach to adding personalization, and an analysis of the effect of personalization

and sanitization on STI performance.

Recall from Chapter 2, STI is the process of grouping a set of user searches

into search tasks. With varying assumptions, this general process has also been

referred to as chain finding (Boldi et al., 2008; Radlinski & Joachims, 2005), query

segmentation (Boldi et al., 2008), and task segmentation (Jones & Klinkner, 2008).

Identifying tasks is useful for many applications, such as establishing a focused context

for use with context-aware tools, profiling long term interests, and aiding users in

exploring their search histories.

One approach to STI that has been used in previous work breaks the problem

into two parts: (1) classifying pairs of searches as belonging to the same task or

not (Jones & Klinkner, 2008) and (2) clustering searches into tasks using the classi-

fication scores (Boldi et al., 2008; Lucchese et al., 2011). What defines two searches

as sharing a common task is subjective and typically left up to the human assessors

providing the same-task labels (Boldi et al., 2008; Jones & Klinkner, 2008; Lucchese

et al., 2011; Radlinski & Joachims, 2005). Jones and Klinkner (2008) specify two

levels of tasks: search goals and search missions. A search goal consists of one or

more queries issued towards a common, atomic information need. A search mission

is a set of related goals. Beyond these levels, however, no objective definitions are

given.
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Because of the subjectivity involved, we do not provide a strict definition of what

it means for two searches to be a part of the same task.1 Instead, we allow each user

of the system to make that decision. For example, one user may decide that a series

of searchers to find final scores from a set of sporting events held the previous night

should be grouped by the same task, while another may further divide them into

specific sports. Neither of these is wrong, just different, and reflect each individual’s

perspective.

With this to-each-his-own definition of what a search task is, it is natural to ask

two questions: how different are user’s definitions and how can personalization be

incorporated into STI. In addition, we would like to know how sanitization affects

the performance of STI models, including those that integrate global and local infor-

mation. Formally, we have the following questions:

RQ1. How different are users’ perceptions of what a search task is?

RQ2. How does personalization affect the quality of STI?

RQ3. What impact does sanitizing global data have on the quality of STI?

To address these questions, we consider a large set of labeled AOL data. We consider

the inter-annotator agreement between same-task labels for a subset of the labeled

data—an analysis that no other work has reported to our knowledge. We consider

a number of existing models for STI and consider the ways they can be used in a

personalized setting. We then explore sanitization by using the FTa, FTu, DPa,

DPu, and ZEALOUS privacy mechanisms to produce global models.

Our key contributions are: (1) results using a collection of labeled data consisting

of the entire three-month histories of 503 AOL users; (2) an analysis of agreement

among the seven annotators over labels provided for ten AOL users, demonstrating

that annotators (and therefore users) have different internal views of what constitutes

1This is very similar to the definition of relevance in information retrieval.

67



a search task; (3) random forest classification models consisting of novel features that

significantly out-perform the current state of the art; (4) several local and local-global

integrated models that statistically significantly out-perform global-only models; and

(5) an analysis of the effects of sanitization, in which we observe that the best per-

forming model trained using a single same-task annotation from each of 352 users can

obtain similar performance to using all annotations.

Figure 5.1 outlines the implementation we will follow for personalized STI through-

out this chapter. In Section 5.1 we describe how global data will be mined, collected

and processed. We then describe how local data is used and combined with global

data in Sections 5.2 and 5.3. We present our experimental setup and the data we

use in Section 5.4. We present our findings in Section 5.5 before wrapping up with a

discussion of limitations in Section 5.6 and a summary in Section 5.7.

5.1 Global data

As mentioned, we consider STI to consist of two subproblems: same-task classi-

fication and task clustering. In this section, we describe how global data is mined

and aggregated to form global same-task classification models, including the effect of

multiple artifact representations, and how clustering is performed when no data is

provided by the user.

5.1.1 Same-task classification

Three recent approaches to classifying two searches as belonging to the same

task are the following. (1) Jones and Klinkner (2008) trained a logistic regression

model between all pairs of searches in a session. (2) Boldi et al. (2008) created two

classifiers: a logistic regression model for use with query pairs that only occurred once

in the training data (this covers roughly 50% of their training data) and a rule-based

classifier for the other instances. In the case of the logistic classifiers used by these
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Personalized search task identification
⊲ Preprocessing
1. What artifacts will be extracted?
⋄ Feature vectors between pairs of queries labeled as belonging to the
same-task or not (see Section 5.1 for details).

2. What preprocessing will take place on the global data?
⋄ A random forest model will be trained on the sanitized feature vectors.

3. What preprocessing will take place on the local data?
⋄ A user-specific random forest model will be trained for each user with
labeled data.

⊲ On input
4. What is the input?
⋄ A set of searches.

5. What request will the client send to the server?
⋄ N/A (the global model will be downloaded from the server as a pre-
processing step)

6. What processing will the server perform for the client request?
⋄ N/A

7. What response will the server send to the client?
⋄ N/A

8. How will the server data be integrated with the local data?
⋄ Same-task classification. Same-task labels will be predicted for
all unlabeled query pairs using both the local (if available) and global
classifiers.
⋄ Task clustering. Queries will be grouped by means of single-link clus-
tering using thresholded same-task classification scores as edge weights;
if local data is available, predicted edges that violate the set of must-
link and cannot-link constraints are ignored, prevent clusters from being
merged that contain queries we know should be kept separate (see Sec-
tion 5.2 for details).

9. What is the output of the tool?
⋄ The input searches, grouped by search task.

Figure 5.1. Implementation specifications for personalized search task identification.
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Random
Feature Description Lucchese Forest

time-diff Time difference in seconds. ✓

jaccard The Jaccard Coefficient. ✓ ✓

levenshtein One minus the Levenshtein string
edit distance.

✓ ✓

overlap Jaccard coefficient of character tri-
grams.

✓

semantic-wikipedia Cosine similarity of Wikipeida
pages, weighted by tf-idf for each
query.

✓ ✓

semantic-category Like semantic-wikipedia, but each
page is mapped to its category
(scores for duplicate categories are
summed).

✓

semantic-wiktionary Like semantic-wikipedia, but over
Wiktionary.

✓ ✓

Table 5.1. Features between two queries used in the models.

two groups, the important features are generally the time between two queries and

various syntactic features between the query text, such as the Jaccard coefficient.

Boldi et al. did not specify any details of the rule-based classifier, so we have no way

to replicate their two-classifier approach. (3) The state of the art classification model

was introduced by Lucchese et al. (2011). They built an unsupervised classifier2 that

integrates both the syntactic and semantic distance between two searches’ query text.

They directly compared their method to Boldi et al., finding their model performed

better.

We consider two models: the one introduced by Lucchese et al. (we will refer to

this as the Lucchese model) and a random forest model using the features used by

the Lucchese model and two additional ones: time-diff and semantic-category. All

the features used are listed in Table 5.1, as well as which models use them. We added

time-diff since previous work has shown time to be useful (Boldi et al., 2008; Jones &

2It does, however, contain a parameter that can be tuned.
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Klinkner, 2008), though both Jones and Klinkner and Lucchese et al. demonstrated

that temporal features alone are not sufficient. We introduce the semantic-category

to be a generalization of the semantic-wikipedia feature used by Lucchese et al.. The

intuition is that some semantically similar terms may not occur in the same docu-

ment together, but rather in separate documents within the same general category.

Taken together, these features touch on the temporal (time-diff), lexical (jaccard,

levenshtein, and overlap), and semantic (semantic-wikipedia, semantic-category, and

semantic-wiktionary) similarity spaces between searches.

We chose a fully supervised machine learning classifier as our second model (as

opposed to the ad-hoc Lucchese model) since it empirically learns the relationships

between features. The choice of a random forest classifier was based on preliminary

experiments with several off-the-shelf classifiers, including: decision trees, support

vector machines, and logistic regression classifiers. Random forest models performed

consistently well and they have a interesting property that made them stick out:

rather than learning one set of weights for features, they instead create several sub-

classifiers (decision trees), each considering a random sample of features in isolation

and learning a set of weights for them, as well as a meta-classifier that combines

the predictions from each of the sub-classifiers. Ho (1995) demonstrated that a set

of decision trees trained using random subsets of features are able to generalize in

complimentary ways, and that their combined performance is greater then any one

by itself.

In order to train global versions of the Lucchese and random forest models, we

rely on feature vector artifacts aggregated into a crowd log. But first, we must obtain

annotations from the users contributing the artifacts. We ask users to group some

subset of their searches into search tasks. Once grouped, we extract the features for

each pair of queries in the annotated set, applying the label same-task or different-task

based on whether the user grouped the two into the same search task. We know from
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Bin1:
Time difference (seconds: [0,∞])

bin1(x) =





0.00 x < 30seconds,

0.25 x < 1minute,

0.50 x < 1hour,

1.00 x ≥ 1hour.

Lexical and semantic features ([0, 1])

bin1(x) =





0.00 x < 0.025,

0.25 0.025 ≤ x ≤ 0.250,

0.50 0.250 < x < 0.750,

0.75 0.750 ≤ x ≤ 0.975,

1.00 x > 0.975.

Figure 5.2. The first of two binning methods we explored (bin1).

Section 3.3 that artifact representation has a significant impact on supportability.

With up to seven unconstrained features, every feature vector has the potential to be

unique.

Rather than use continuous feature values, we discretize them into a small num-

ber of bins. We considered two methods for binning. The first (bin1) maps each

of the features with ranges [0,1] (all features but time-diff) to one of the values

{0.0,0.25,0.5,0.75,1.0}, and time-diff into {0.0,0.25,0.5,1.0}. The mapping is shown

in Figure 5.2. The second (bin2) binarizes the values: values for all features are either

1 or 0. The mapping is shown in Figure 5.3. Using a large sample of labeled data

(see Section 5.4.2 for details about the full dataset), we found, not surprisingly, that

bin2 releases more distinct artifacts and artifact impression than the other methods

for a given value of k. Figure 5.4 shows the coverage of using the original feature

vectors (truncated to three decimal places) and those produced using the two binning

methods over the training data used in the experiments we describe in Section 5.4. It
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Bin2:
Time difference (seconds: [0,∞])

bin2(x) =

{
0 x < 1minute,

1 x ≥ 1minute.

Lexical and semantic features ([0, 1])

bin2(x) =

{
0 x < 0.5,

1 x ≥ 0.5.

Figure 5.3. The second of two binning methods we explored (bin2). This is the
method we used for our final experiments.

is clear that the original, unconstrained feature vectors are not suitable for privacy-

aware data aggregation. Based on the increased coverage possible when using bin2,

and the performance gains we found when applying privacy mechanisms to bin2 fea-

ture vectors on a development data set, we only consider bin2 for the remainder of

this chapter.

5.1.2 Task clustering

Any clustering technique can be used to group searches into tasks based on the

same-task classification scores. We use the weighted connected components (WCC)

method described by Lucchese et al., who found this method outperforms several

other techniques, including the query chaining approach used by Boldi et al. The

WCC algorithm creates a fully connected graph where each search in a given session

is represented as a node and the edges are the same-task classification scores between

searches. The graph is then pruned of any edges with a weight below a threshold η

and each connected component in the pruned graph is considered a task.

An example of this process is shown for a sample search history in Figure 5.6 (the

ground truth is displayed in Figure 5.5).
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Figure 5.4. The impression coverage of the original feature vectors (up to three
decimal places) and feature vectors binned with the bin1 and bin2 methods as the
impression threshold increases (FTa). Both axes are shown in log scale.

Figure 5.5. An example search history with two search tasks.
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Figure 5.6. An example search history with automatically generated clusters using
weighted connected components clustering and predictions from a globally trained
model.

5.2 Local data

Provided a user has manually grouped a subset of their searches into search tasks,

we can use that data to train local models. We consider locally trained equivalents

of the two global models: Lucchese and a random forest classifier. Unlike with global

models, where we need to consider sanitization, local models do not need to be binned,

though doing so is perfectly acceptable. We found that the unbinned features work

better than binned for local data, so we will only consider that case.

When local data is available, we use a more advanced form of clustering. User

annotations provide a set of constraints: the label for every pair of annotated queries

is either must-link or cannot-link. We being clustering by first inserting the labeled

edges. We then classify all missing edges, sort them in non-ascending order by weight,

and remove all edges with an edge weight less then a threshold η. For the remaining

edges, we insert them one at a time; any time an edge e causes two clusters to merge,

we first check to ensure that no cannot-link edges span the two clusters. If such an

edge exists, then e is removed, the two clusters are not merged, and we move on to

the next edge.
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Figure 5.7. An example search history with automatically generated clusters using
a set of must-link and cannot-link edges provided by the user’s annotations (derived
from the user clustering at the top) and predictions for the remaining edges (on the
bottom).
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An example of the constrained clustering used when local data is available is shown

in Figure 5.7. Note how the cannot-link edge between amherst parks and movies in

amherst overrides the prediction that the two should be clustered together.

5.3 Integrating local and global data

We consider several variations of local and global data integration. The simplest

uses the global classification scores for same-task prediction, but use local data in the

clustering phase, as described in Section 5.2. We refer to this method of integration

as global score, local clustering (GScoreLCluster).

We also consider several ways of combining the predictions from global and lo-

cal classifiers: minimum, maximum, product, and mean. In experiments on a de-

velopment set, we found the mean integration to perform consistently well, usually

out-performing the global- or local-only models, while the other score integration

techniques typically did not. For the remainder of this chapter, we will only consider

the mean, which we refer to as local-global score mean (LGMean).

5.4 Experimental setup

In this section, we describe several experiments to answer the three research ques-

tions we posed at the beginning of this chapter. Afterwards, we discuss the data set

used for the experiments.

5.4.1 Experiments

Experiment 1. The first of our research questions is aimed at quantifying the

differences and users’ perceptions of search tasks. To test this, we turn to inter-

annotator agreement—a measurement of how closely a set of annotators’ responses

align with each other. Specifically, we ask a set of A annotators to group searches into

search tasks for U separate search histories. We decompose each grouping into labeled
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query pairs: same-task or different-task. Agreement is measured on the labeled query

pairs. If two annotators form all the same groups, with the exception of one query,

this may result in many differences among their labeled pairs, and lower their agree-

ment. If agreement is high, then we can say that users share a similar perception of

search tasks. If we find some degree of disagreement, then we can assume that users’

perceptions differ with respect to search tasks. We measure agreement using Fleiss’

Kappa (Fleiss, 1971), which is a statistical measure of agreement between more than

two annotators supplying categorical values.

Experiment 2. Our second research questions asks how personalization affects

the quality of STI. To evaluate this, we use the following setup. First, we reserve a

large set of data for training the global Lucchese and random forest classifiers. We

then use several sets of user histories for local training and testing. No data from users

in this second set is contained in the first set. For each user history in the second

set, we split the data into three sections: local training, testing, and other. The

testing partition is fixed as the last 30% of the user’s history. We will vary the local

training partition, using labels between n randomly selected queries from the non-test

partitions. Whatever is not used for local training or testing is considered part of the

other partition (this segment must still be labeled in order for clustering to work). For

each value of n, we conduct R randomizations. We consider three local models using

Lucchese and random forests: local only, GScoreLCluster, and LGMean. As baselines,

we use the global only classifiers and a dumb classifier that always predicts that two

queries are from different search tasks. We evaluate success using macro query pair

label accuracy over users. This is a reasonable measure because it gives equal weight to

each user and does not favor either the same-task or different-task labels—clustering

two cannot-link searches separately is just as important as clustering two must-link

searches together. If personalization is helpful, then we should find that the local-only

or integrated models out-perform their global counterparts.
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Experiment 3. Our third and final experiment asks how sanitizing global data

affects the performances of global models trained on that data. To answer this, we

use the same global set used in Experiment 2 and apply the FTa, FTu, DPa, DPu,

and ZEALOUS privacy mechanisms on that data. For the frequency thresholding

mechanisms, we use k = {2, 5, 10, 20, 50, 100} and for the differentially private mech-

anisms, we use d = {1, 2, 4, 8, 16, 32}. We re-run the global and integrated models

used in Experiment 2 and evaluate in the same manner. The key areas of interest are

how the global and integrated models perform relative to 1) using no sanitization, 2)

using other sanitization methods, and 3) the local-only models, which are invariant

to global sanitization.

5.4.2 Data

Previous research in STI has relied on search task annotations of subsets of user

search histories extracted from search logs. The annotations are provided by third

parties, e.g., other researchers. Both Jones and Klinkner and Boldi et al. used propri-

etary data available only to Yahoo! researchers, while Lucchese et al. labeled data for

the first week of thirteen “power users” in the 2006 AOL search log (comprising 307

sessions, 1,424 queries, and 554 tasks). These previous works considered relatively

small slices of user histories—testing on a few days up to a week of data. While

Lucchese et al. made their data available, we decided that a larger sample of users

spanning a longer time frame would provide more sound results.

To that end, we formed two sets of data using the 2006 AOL search log: one for

measuring inter-annotator agreement and another for training and testing STI ap-

proaches. First, let us describe the AOL data set. It spans queries and the domains of

clicked results for 657,426 users over March 1–May 31, 2006. A total of 36,389,567 en-

tries are contained in the data set, of which 22,125,550 are queries, 21,011,340 are new

queries (adjacent duplicates ignored), 10,154,742 are distinct queries, 7,887,022 are
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All March April May
Queries 22,125,550 8,575,191 7,377,635 6,172,724
Avg. queries/user 33.65 16.49 15.15 15.24
Med. queries/user 12.00 7.00 6.00 6.00
Max queries/user 212200.00 1793.00 212200.00 8218.00
1st Quartile 4.00 3.00 2.00 2.00
3rd Quartile 34.00 18.00 15.00 16.00
IQR 30.00 15.00 13.00 14.00
Upper fence 79.00 40.50 34.50 37.00
Sessions 10,998,729 4,291,816 3,005,875 3,701,038
Avg. sessions/user 16.73 8.26 7.38 7.64
Med. sessions/user 7.00 4.00 4.00 4.00
Max sessions/user 888.00 320.00 384.00 335.00
1st Quartile 3.00 2.00 1.00 2.00
3rd Quartile 19.00 10.00 8.00 9.00

Table 5.2. Queries-per-user and sessions-per-user statistics across the three months
of the 2006 AOL search log. This considers all query instances; i.e., duplicate queries
from the same user are not ignored.

next-page actions, and 19,442,629 are result clicks (so called click-throughs). Query

and session statistics are shown in Table 5.2. Note that we use 26 minutes as the

session timeout, per the findings of Lucchese et al. (2011).

For evaluating STI algorithms, we used the following sampling technique. We

first decided to consider only users with between 12–79 queries. This corresponds

to the median and upper fence (Q3 + 1.5·IQR, where Q3 is the third quartile and

IQR is the inter-quartile range. This segment of users provides us with sample that

submitted enough queries to be interesting, but who are not outliers, as are the users

labeled by Lucchese et al. We then sampled 1,000 users and asked ten annotator

(some overlapping with the group that provided annotations for the inter-annotator

agreement set) to form search tasks for each of the users. We collected annotations

for a total of 503 users, each labeled by one annotator. Statistics of the data set

are described in Table 5.3. We further broke the set into folds by annotator (see

Table 5.4), motivated by the possibility that each annotator has his or her own unique
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Annotators 10
Users 503
Sessions 8,740
Queries 15,779
Tasks 6,448
Interleaved tasks 3,134
Avg. queries/task 2.4
Av. duration/task (minutes) 8
Labeled pairs 310,287
same-task 40,940 (13%)
different-task 269,347 (84%)

Table 5.3. Statistics of the data set used to to evaluate STI algorithms.

Annotated Train/development
Annotator users or Test
1 50 train/dev
2 50 train/dev
3 50 train/dev
4 3 train/dev
5 100 train/dev
6 50 train/dev
7 50 train/dev
8 33 test
9 97 test
10 21 test

Table 5.4. Statistics the annotator folds and training/testing sets.

perception of a search task. We randomly selected three annotators and restricted

their data to the final evaluation set. Data from the other seven annotators was

designated for training and development. Thus, we cannot learn latent relationships

specific to the annotators in the test set using the training set. Statistics about the

training/development and test sets are listed in Table 5.5.

For measuring inter-annotator agreement, we used a different sampling technique.

We considered only users roughly in the middle 50% relative to session counts. That

is, users with between 4–19 sessions. We chose a lower bound of four rather than

three (the first quartile), because we felt that three was too few. Our motivation
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Train/dev Test
Annotators 7 3
AOL users 352 151
Queries 21,697 8,858
Tasks 9,122 3,774
Labeled pairs 224,057 86,506
same-task 28,747 (13%) 12,252 (14%)
different-task 195,309 (87%) 74,254 (86%)

Table 5.5. Statistics of the train and test sets.

Annotators 6
AOL users 10
Sessions 92
Queries 131
Avg. Tasks/annotator 80
Labeled pairs 939

Table 5.6. Statistics of the data set used to measure inter-annotator agreement.

for using sessions counts rather than query counts was based in the belief that more

sessions would correspond to a greater number of tasks, thus providing an interesting

data set for measuring inter-annotator agreement. From this dataset, we randomly

sampled ten users’ data. We asked a group of six graduate students and professors

to annotate the data from the ten AOL users by grouping searches into tasks with

shared topics or search goals. Summary statistics are shown in Table 5.6.

5.5 Results and analysis

Experiment 1. Considering the set of pair-wise annotations provided for queries

from ten AOL users, we found a Fliess inter-annotator agreement of κ = 0.78. We

consider this high agreement. However, most of this agreement comes from the major-

ity of queries being placed in different search tasks, which is rather uninteresting—one

would expect the majority of queries to be placed in different search tasks regardless

of an individual’s perception of a search task.
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When we ignore instances where everyone agrees that two queries are from differ-

ent tasks, the agreement drops to κ = 0.53. Said differently, for all the annotations

where at least one annotator provided a same-task label (there were 196 such labels

out of a total of 939), agreement is moderate. At least one disagreement was found

for 118 of the labels. One pair of searches for which annotators disagreed was “zip

codes” and “driving directions”, issued sequentially by the corresponding AOL user.

Two of the six annotators placed this pair of searches in the same task.

Experiment 2. For personalized models—those using only local data or an

integration of global and local data—we found that personalization is helpful. A

plot of performance is shown at the top of Figure 5.8 and a table with the numbers

is shown at the top of Table 5.7 when all local training data is used (70% of a

user’s data). Every model was run with 50 randomly sampled local data subsets; the

mean is plotted with 95% confidence intervals shown in dotted lines (these are tight

bounds in most cases, and are therefore covered by the line representing the mean).

The global and integrated random forest models (LGAvgRF, GScoreLClustRF and

GlobalRF) performed best. The two integrated models performed significantly (p <

0.001; two-sided t-test) though not substantially better than the GlobalRF model.

The differences are in the thousandths place: 0.945 vs. 0.942 vs. 0.940. The Lucchese

models were not far behind. The local-only random forest model (LocalRF) was

the poorest performing model outside of the DiffTask baseline. As a general trend,

smaller local training set sizes (with fewer than 10 or 15 searches) do not seem to

generate enough data for the local-only or LGAvg models to outperform their global

or GScoreLClust counterparts. Our conclusions are that personalization helps, but

it is not required to achieve high performance. If a user has labeled no or a small

number of queries, then GScoreLClustRF is the best choice; if more local data is

available for training, then LGAvgRF is appropriate.
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Figure 5.8. The performance when global data is not sanitized (top) and for the
extreme settings of k for the two frequency thresholding privacy mechanisms we
considered. The random forest models are denoted by RF, while the Lucchese models
are denoted by Luc.
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Experiment 3. In the third experiment, we considered sanitizing global data.

The effects of sanitization on the performance of global and integrated models is

shown in part in Figures 5.8 (for the frequency thresholding mechanisms) and 5.9 (for

the differential privacy mechanisms). We only show plots of the extreme parameters

we explored, i.e., k = {2, 100} for frequency thresholding and d = {1, 32} for the

differential privacy mechanisms. We report the macro accuracy when all local training

data (70% of a user’s data) is available for the integrated model in Table 5.7. Using

FTa for sanitization does not affect performance. FTu with k = 2 resembles FTa,

but when k is increased to above 20, we find that the performance of the GlobalRF

and GScoreLClustRF goes up to the highest of any models under any conditions. A

possible explanation for this is that FTu at k = 100 is revealing the most general

(across users) and frequent feature vectors, preventing the classifiers from over fitting

the training data.

For the differentially private mechanisms, we used U = 500, δ = 1/500, and

ǫ = lg(10). In addition, since they all require sampling artifacts from users, we re-

sampled global data in parallel with the random sampling for local training data.

We generally saw drops in the performance of global and integrated models. The

various mechanisms behave very differently, however. For example, DPa is relatively

stable between the extremes of d = 1 and d = 32. DPu shows similar performance to

DPa at d = 1, though with greater variance (the confidence intervals are wider than

under other conditions). When d is increased to 32, however, performance plummets:

models trained with global data are not much better than the DiffTask baseline. The

reason for this difference in performance is evident from the feature vector impression

and distinct coverage, shown in Figure 5.10. While impression coverage is high for

FTu at d = 32 distinct coverage is almost zero, preventing useful learning.

The ZEALOUS mechanism exhibits the opposite behavior—it shows very poor

performance for d = 1, but very reasonable performance at d = 32. While the
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distinct coverage under ZEALOUS does decrease with higher levels of d, it seems that

at d = 32, it manages to release the distinct vectors that help classifiers discriminate

between the same- and different-task classes.

Based on these results, we recommend the FTu mechanism with k = 100 for

implementers and users comfortable with frequency thresholding. For differential

privacy, DPa and DPu should both be used with lower values of d, whereas ZEALOUS

should use higher levels of d (though higher levels may be detrimental as distinct

coverage will continue to fall).

5.6 Limitations

One drawback of this study is in its reliance on third-party annotators. While

this is common in the STI literature, it would be useful to conduct a user study into

how users group their own searches into tasks.

Another limitation is that we only consider the case when users in the training

set annotate all of their tasks, not just a handful. An interesting analysis would be

the effect of users only contributing annotations for a handful of queries.

Finally, we examined personalized STI techniques that used annotations for a

random sample of local user queries. A fuller personalized experience may achievable

through the use of, e.g., active learning, where users are asked to annotate query pairs

for which an algorithm has low confidence in its prediction.

5.7 Summary

In this chapter, we explored search task identification (STI). We measured the

degree to which a set of annotators agree on a search task clustering, finding that

users perceive tasks differently—we found an agreement of κ = 0.53 when at least

one of six annotators labeled a pair of searches as belonging to the same task. This

is the first such experiment that we know of in the STI literature.
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Figure 5.9. The performance when for the extreme settings of d for the three
differential privacy mechanisms we considered. The random forest models are denoted
by RF, while the Lucchese models are denoted by Luc.
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All
Data

LGAvgRF 0.945
GScoreLClustRF 0.942
GlobalRF 0.940
LocalLuc 0.933
LGAvgLuc 0.926
GScoreLClustLuc 0.927
GlobalLuc 0.925
LocalRF 0.920
DiffTask 0.872

FTa

k2 k5 k10 k20 k50 k100
LGAvgRF 0.945 0.945 0.945 0.945 0.945 0.945
GScoreLClustRF 0.942 0.942 0.942 0.942 0.942 0.942
GlobalRF 0.940 0.941 0.941 0.940 0.940 0.940
LGAvgLuc 0.926 0.926 0.926 0.926 0.926 0.926
GScoreLClustLuc 0.927 0.927 0.927 0.927 0.927 0.927
GlobalLuc 0.925 0.925 0.925 0.925 0.925 0.925

FTu

k2 k5 k10 k20 k50 k100
LGAvgRF 0.945 0.945 0.945 0.945 0.945 0.945
GScoreLClustRF 0.942 0.942 0.942 0.947 0.947 0.947
GlobalRF 0.941 0.941 0.941 0.945 0.945 0.945
LGAvgLuc 0.926 0.926 0.926 0.926 0.926 0.926
GScoreLClustLuc 0.927 0.927 0.927 0.927 0.927 0.927
GlobalLuc 0.925 0.925 0.925 0.925 0.925 0.925

DPa

d1 d2 d4 d8 d16 d32
LGAvgRF 0.939 0.938 0.938 0.939 0.938 0.939
GScoreLClustRF 0.931 0.929 0.931 0.927 0.925 0.927
GlobalRF 0.928 0.926 0.928 0.925 0.923 0.925
LGAvgLuc 0.920 0.919 0.917 0.915 0.915 0.915
GScoreLClustLuc 0.919 0.918 0.916 0.914 0.914 0.914
GlobalLuc 0.917 0.917 0.915 0.912 0.912 0.912

DPu

d1 d2 d4 d8 d16 d32
LGAvgRF 0.937 0.938 0.939 0.939 0.939 0.929
GScoreLClustRF 0.930 0.931 0.932 0.927 0.924 0.877
GlobalRF 0.927 0.928 0.929 0.925 0.922 0.877
LGAvgLuc 0.920 0.919 0.918 0.916 0.915 0.881
GScoreLClustLuc 0.919 0.918 0.917 0.914 0.914 0.875
GlobalLuc 0.917 0.917 0.915 0.913 0.912 0.875

ZEALOUS
d1 d2 d4 d8 d16 d32

LGAvgRF 0.855 0.881 0.908 0.914 0.923 0.923
GScoreLClustRF 0.439 0.460 0.464 0.464 0.940 0.932
GlobalRF 0.129 0.129 0.129 0.129 0.936 0.929
LGAvgLuc 0.917 0.926 0.926 0.926 0.926 0.915
GScoreLClustLuc 0.915 0.927 0.927 0.927 0.927 0.914
GlobalLuc 0.914 0.925 0.925 0.925 0.925 0.912

Table 5.7. Macro accuracy over users. The random forest models are denoted by
RF, while the Lucchese models are denoted by Luc.
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Figure 5.10. Impression (left) and distinct (right) coverage of feature vectors from
the training/development set consisting of all seven features described in Table 5.1,
discretized with bin2, along with the same-task label. The coverage using only the
subset of features required by the Lucchese classifier is very similar.

We presented six personalized models, three based on the current state-of-the-art

STI system by Lucchese et al. (2011), and three using a random forest classifier. We

found the random forest models to perform best with respect to macro accuracy, and

that personalization using both local and global information produces statistically

significant gains when users annotate ten or more queries. However, a global random

forest model does very well on its own. We also measured the effects of sanitization

on STI performance, finding that the effects are minimal, though both ZEALOUS

and DPu exhibited poor performance with certain values of d. In fact, with FTu at

k = 100, we actually saw improvements in performance.
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CHAPTER 6

TASK-AWARE QUERY RECOMMENDATION

Query recommendation is a common tool used by search engines to assist users in

reformulating queries. When a search task requires multiple searches, the sequence of

queries form a context around which new queries can be recommended. This context

constitutes local data and utilizing it for recommendation provides a personalized

experience. Figure 6.1 illustrates a series of queries issued by a user consisting of two

search tasks: 1) finding information about the history of black powder firearms and

2) preparing for the GMAT standardized test. Given this sequence, our goal is to

generate a list of query suggestions with respect to the most recently submitted query,

or reference query, which is “black powder inventor” in this example. Notice, however,

that the user has interleaved the two tasks such that no two adjacent queries are part

of the same task. If we use the entire context to generate recommendations, two of

the queries will be off-task with respect to the reference query and three (including

the reference query) will be on-task. This chapter explores the effects that on- and

off-task contexts have on query recommendation. We also consider the effects that

sanitization of query reformulations has on recommendation quality. While previous

work has considered task-aware query recommendation over logged user data, we are

not aware of any work that has systematically explored the effects of on-task, off-task,

and mixed contexts or sanitization on recommendation performance.

Though the example in Figure 6.1 may seem an extreme case, consider that

Lucchese et al. (2011) found 74% of web queries were part of multi-tasking search

sessions in a three-month sample of AOL search logs; Jones and Klinkner (2008) ob-
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Figure 6.1. A search context with interleaved tasks.

served that 17% of tasks were interleaved in a 3-day sample of Yahoo! web searches;

and Liao et al. (2012) found 30% of sessions contained multiple tasks and 5% of ses-

sions contained interleaved tasks in a sample of half a billion sessions extracted from

Bing search logs. In addition, in a labeled sample of 503 AOL user search histories

spanning three months, we found 57% of search tasks consisted of two or more queries

(see Figure 6.2), but there was only a 45% chance that any two adjacent queries were

part of the same task (see Figure 6.3). Figure 6.3 shows the likelihood of seeing n

tasks in any sequence of x queries, e.g., 10-query sequences typically consist of 3–7

search tasks. This means that a context consisting of the most recent n queries is

very likely to consist of sub-contexts for several disjoint tasks, none of which may be

a part of the same task as the reference query.

The goal of this chapter is to better understand the effects of on-task, off-task,

and mixed contexts as well as privacy on query recommendation quality. We also

present and analyze several methods for handling mixed contexts. We address five

questions concerning query recommendation:1

RQ1. How does on-task context affect query recommendation performance?

RQ2. How does off-task context affect query recommendation performance?

1Experiments and analysis for the first four questions were presented in a SIGIR 2013 paper (Feild
& Allan, 2013).
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Figure 6.2. Distribution of tasks lengths observed in a labeled sample of the AOL
query log.

RQ3. How does mixed context (on- and off-task queries) affect query rec-

ommendation performance?

RQ4. How do the following three methods affect query recommendation

performance in a mixed context? (a.) using only the reference query,

(b.) using the most recent m queries, or (c.) using the most recent

m queries with same-task classification scores to weight the influence

of each query.

RQ5. How does the sanitization method used to produce the crowd log of

query reformulations effect recommendation performance?

To answer these questions, we perform a number of experiments using simulated

search sequences derived from the TREC Session Track (Kanoulas et al., 2010, 2011).

For recommendation, we rely on random walks over a query flow graph formed from a

subset of the 2006 AOL query log. We measure query recommendation performance

by the quality of the results returned for a recommendation, focusing primarily on

92



2 3 4 5 6 7 8 9 10

10 tasks

9 tasks

8 tasks

7 tasks

6 tasks

5 tasks

4 tasks

3 tasks

2 tasks

1 task

Sequence length

L
ik

e
lih

o
o

d
 o

f 
s
e

e
in

g
 n

 t
a

s
k
s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 6.3. The distribution of seeing n tasks in a sequence of x queries as observed
in a labeled sample of the AOL query log.

mean reciprocal rank (MRR). Our results show that on-task context is usually helpful,

while off-task and mixed contexts are extremely harmful. However, automatic search

task identification (Chapter 5) is a reliable way of detecting and discarding off-task

queries.

There are four primary contributions that stem from this chapter: (1) an analysis

of task-aware query recommendation demonstrating the usefulness of on-task query

context, (2) an analysis of the impact of automatic search task identification on task-

aware recommendation, in which we show the state of the art works very well, (3)

an analysis of the effect of sanitized global data on recommendation performance,

and (4) a generalized model of combining recommendations across a search context,

regardless of the recommendation algorithm.

Figure 6.4 outlines the implementation that we will follow throughout this chapter.

We describe how global data is aggregated, preprocessed, and used to provide query

recommendations in Section 6.1. In Section 6.2, we outline how local data will be
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Task-aware query recommendation
⊲ Preprocessing
1. What artifacts will be extracted?
⋄ Ordered pairs of queries that co-occur in the same session (see Sec-
tion 6.1 for details).

2. What preprocessing will take place on the global data?
⋄ A Term-Query Graph will be created (see Section 6.1 for details).

3. What preprocessing will take place on the local data?
⋄ A search context will be generated consisting of the reference query
and other queries from the user’s search history that are classified as
belonging to the same task as the reference query (see Section 6.2 for
details).

⊲ On input
4. What is the input?
⋄ A search context consisting of a reference query and zero or more
on-task queries.

5. What request will the client send to the server?
⋄ A request will be made for each query in the context individually.

6. What processing will the server perform for the client request?
⋄ The server will generate a list of query recommendations with scores
for a given query.

7. What response will the server send to the client?
⋄ The list of scored query recommendations.

8. How will the server data be integrated with the local data?
⋄ The recommendations generated for each query in the search context
will be merged together (see Section 6.3 for details).

9. What is the output of the application?
⋄ A list of query recommendations for the reference query.

Figure 6.4. Implementation specifications for task-aware query recommendation.
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utilized to form search contexts relative to a reference query. We describe several

client-side integration models in Section 6.3. Finally, in Sections 6.4 and 6.5, we

outline our experiments and analyze the results.

6.1 Global data

The query recommendation algorithm we use is based largely on the query flow

graph (QFG) work of Boldi et al. (2008) and the term-query graph (TQGraph) work

of Bonchi et al. (2012). We use a query flow graph G in which the vertices V are

queries from a query log L and the edges E represent reformulation probabilities. For

any vertex v ∈ V , the weights of all outgoing edges must sum to 1. A reformulation

is defined as an ordered pair of queries (qi, qj) such that the pair occurs in a user

search session in that order, though not necessarily adjacent. A session is defined to

be the maximal sequence of queries and result clicks such that no more than t seconds

separate any two adjacent events. The outgoing edges of v are normalized across all

sessions and users in L.

While we do not require reformulations to be adjacent, Boldi et al. did. By

considering all reformulations—adjacent and otherwise—within a session, we expand

the coverage of G beyond using only adjacent query reformulations. We assume that

for reformulations in which qi and qj are from different tasks, qj will be an infrequent

follower of qi, and therefore statistically insignificant among qi’s outgoing edges. Boldi

et al. used a thresholded and normalized chaining probability for the edge weights,

but we do not due to the sparseness of our data (the AOL query logs).

To generate recommendations, we rely on a slight adaptation of the query flow

graph, called the term-query graph (Bonchi et al., 2012). This adds a layer to the

QFG that consists of all terms that occur in queries in the QFG, each of which points

to the queries in which it occurs. Given a query q, we find recommendations by first

producing random walk scores over all queries in Q for each term t ∈ q.

95



To compute the random walk with restart for a given term t, we must first create

a vector v of length |V | (i.e., with one element per node in Q). Each element corre-

sponding to a query that contains t is set to 1 and all others are set to 0. This is our

initialization vector. Next, we must select the probability, c, of restarting our random

walk to one of the queries in our initialization vector. Given the adjacency matrix of

G, A, and a vector u that is initially set to v, we then compute the following until

convergence:

ui+1 = (1− c)Aui + cv. (6.1)

After convergence, the values in u are the random walk scores of each corresponding

query q′ for t. We denote this as the term-level recommendation score r̂term(q
′|t).

One issue with using the random walk score for a query is that it favors frequent

queries. To address this, Boldi et al. use the geometric mean rterm of the random

walk score r̂term and its normalized score rterm. Given an initial query q, the scores

for an arbitrary query q′ can be computed by:

rterm(q
′|q) =

r̂term(q
′|q)

r̂uniform(q′)
, (6.2)

rterm(q
′|q) =

√
r̂term(q′|q) · rterm(q′|q)

=
r̂term(q

′|q)√
r̂uniform(q′)

, (6.3)

where r̂uniform(q
′) is the random walk score produced for q′ when the initialization

vector v is uniform.

The final query recommendation vector is computed using a component-wise prod-

uct of the random walk vectors for each term in the query. Specifically, for each query

q′ ∈ V , we compute the query-level recommendation score rquery(q
′|q) as follows:

rquery(q
′|q) =

∏

t∈q

rterm(q
′|t). (6.4)
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In the implementation we outlined in Figure 6.4, the TQGraph sits on the server.

The client anonymously requests recommendations for individual queries. The server

then generates the recommendations for a query and sends the scored recommenda-

tions back to the client.

6.2 Local data

As stated in the implementation we outlined in Figure 6.4, local processing involves

generating a search context C of queries prior to a given reference query, where

|C| = m and C[m] is the reference query. While there are many ways to construct a

search context, for the purpose of task-aware query recommendation, we will consider

task contexts, where all queries in C are part of the same task as the reference query

C[m].

To decide what queries to include in a task context, we first define a function

sametask(i,m,C) that outputs a prediction in the range [0,1] as to how likely the

queries C[i] and C[m] are to be part of the same search task given the context C. For

all queries C[i], sametask(i,m,C) > τ , where τ is a threshold. We use the Lucchese

search task identification heuristic described in Chapter 5 (Lucchese et al., 2011).2 In

deciding if two queries qi and qj are part of the same task, we calculate two similarity

measures: a lexical and a semantic score, defined as follows.

The lexical scoring function slexical is the average of the Jaccard coefficient be-

tween term trigrams extracted from the two queries and one minus the Levenshtein

edit distance of the two queries. The score is in the range [0,1]. Two queries that

are lexically very similar—ones where a single term has been added, removed, or re-

ordered, or queries that have been spell corrected—should have an slexical score close

to one.

2Our experiments were performed prior to our analysis of search task identification described in
Chapter 5, which is why we use the Lucchese classifier and not a random forest model.
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The semantic scoring function ssemantic is made of up two components. The first,

swikipedia(qi, qj), creates the vectors vi and vj consisting of the tf·idf scores of every

Wikipedia document relative to qi and qj, respectively. The function then returns the

cosine similarity between these two vectors. The second component, swiktionary(qi, qj)

is similarly computed, but over Wiktionary entries. We then set ssemantic(qi, qj) =

max
(
swikipedia(qi, qj), swiktionary(qi, qj)

)
. As with the lexical score, the range of the

semantic score is [0,1].

The combined similarity score, s, is defined as follows:

s(qi, qj) = α · slexical(qi, qj) + (1− α) · ssemantic(qi, qj).

We can define a same-task scoring function to use s directly, as follows:

sametask1(i, j, C) = s(C[i], C[j]). (6.5)

Alternatively, we can run one extra step: single-link clustering over the context C

using s as the similarity measure. Clustering allows us to boost the similarity score

between two queries that are only indirectly related. Similar to Liao et al. (2012),

our choice of clustering follows the results of Lucchese et al. (2011), who describe a

weighted connected components algorithm that is equivalent to single-link clustering

with a cutoff of η. After clustering, we use the notation KC [q] to represent the cluster

or task associated with query q in context C; if two queries q, q′ ∈ C are part of the

same task, then KC [q] = KC [q
′], otherwise KC [q] 6= KC [q

′]. A scoring function that

uses task clustering is the following:

sametask2(i, j, C) = max
k ∈ [1,|C|] :

k 6=i∧

KC [C[k]] =KC [C[j]]

s(C[i], C[k]). (6.6)

98



Figure 6.5. Examples of on-task/off-task segmentations using sametask1 and
sametask2 scoring. The reference query, q5, sits in the bolded center node. Note
that the edge (q1, q5) goes from 0.2 using sametask1 to 0.6 under sametask2 due to
q1’s strong similarity to q3, which has a similarity score of 0.6 with q5.

Note that sametask2 will return the highest similarity between C[i] and any member

of C[j]’s tasks, excluding C[i]. Figure 6.5 illustrates a case in which sametask2

improves over sametask1; note, however, that sametask2 can also be harmful when

an off-task query is found to be similar to an on-task query.

6.3 Integrating local and global data

In this section, we introduce formal definitions of general and task-based contexts.

We explore several method of integrating local context information with recommen-

dations produced from a global model.

6.3.1 Generalized context model

The recommendation models described earlier, and recommendation algorithms

in general, that generate suggestions with respect to a single query can be easily

extended to handle additional contextual information. The basic idea is simple: when

generating recommendations for a query, consider the search context consisting of

the m most recently submitted queries from the user, weighting the influence of each

according to some measure of importance. Many functions can be used to measure
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the importance of a context query. The two we consider in this paper are how far

back in a user’s search history a query occurs and whether the query appears to be

related to a user’s current task. Others may include whether a context query was

quickly abandoned or spell corrected, how many results the user visited, the time of

day they were visited, and other behavioral aspects. In this section, we introduce a

generalized model that makes it easier for us to talk about the various importance

functions we are interested in and how they can be used with additional functions in

future work.

Assume that we have a search context C that contains all the information about

a user’s search behavior related to a sequence of m queries, with the mth query, C[m],

being the most recently submitted query. Also assume that we have a set of n impor-

tance functions, θ1,θ2, . . . ,θn and corresponding weights λ1, λ2, . . . , λn that tell us

how much weight to give to each of the importance functions. We will represent corre-

sponding functions and weights as tuples in a set F = {〈λ1,θ1〉 〈λ2,θ2〉 . . . , 〈λn,θn〉}.

We compute the context-aware recommendation score for a query suggestion q′ as fol-

lows:

rcontext(q
′|C, F ) =

m∑

i=1


rquery(q

′|C[i])
∑

〈λ,θ〉∈F

λ · θ(i,m,C)


 . (6.7)

Each importance function θ, takes three parameters: i,m,C, where i is the position

of the query within context C for which importance is being measured and m is the

position of the reference query. In this work, the reference query is always the last

query of C, but the model does not require that assumption. The rcontext recommen-

dation scoring function scores q′ with respect to each query in the context (C[i]) and

adds that score to the overall score with some weight that is computed as the linear

combination of the importance function values for that query.
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6.3.2 Decaying context model

One of the importance functions we consider in this paper is a decaying function,

where queries earlier in a user’s context are considered less important than more

recent queries. As such, queries submitted more recently have a greater influence

on recommendation scores. This has the intuitive interpretation that users are less

interested in older queries, otherwise they would not have moved on to new queries.

Boldi et al. (2008) discussed a decay weighting method for entries in the random

walk initialization vector (v in Eq. 6.1). They proposed that each query in a search

context receive a weight proportional to βd, where d is the distance in query count

from the current query. For example, the second most recent query would get a weight

of β1, because it’s one query away from the most recent query.

While the Boldi et al. method is specific to recommendations using random walks,

we can transfer their exponential decay function to our model as follows:

decay(i, j, C) = βj−i (6.8)

rdecay(q
′|C) = rcontext(q

′|C, {〈1.0,decay〉}). (6.9)

6.3.3 Task context model

While decaying the influence of queries earlier in a search context is a natural

importance function, we are also interested in functions that incorporate the degree

to which a query is on the same task as the reference query. It is reasonable to assume

(an assumption we test) that queries from a search context that are part of the same

task should be more helpful in the recommendation process than queries that are not.

As we have stated earlier, Lucchese et al. observed that 74% of web queries are

part of multi-task search sessions (Lucchese et al., 2011) while Jones and Klinkner

found that 17% of tasks are interleaved in web search (Jones & Klinkner, 2008).Using

a labeled sample of the AOL query log, we observed an exponential decrease in the
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likelihood that the previous m queries are part of the same task as m increases (see

Figure 6.3). This suggests that using the m most recent queries as the the search

context for generating recommendations will likely introduce off-topic information,

causing recommendations that seem out of place. Therefore, it may be beneficial to

identify which queries from that context share the same task as the reference query.

Formally, given a search context C with m queries, we define a task context T to

be the maximal subset of queries in C that share a task common to C[m]:

T ⊆ C | ∀ i ∈ [1,m], C[i] ∈ T ⇐⇒ sametask(i,m,C) > τ, (6.10)

where sametask(i,m,C) follows one of the definitions given in Section 6.2.

Once we have T , the natural question to pose is how do we use it? One method

would be to treat T just as C and use it with the rdecay function, i.e., rdecay(q
′|T ).

However, it may be that the off-task context is still useful, just not as useful as

T . To support both of these points of view, we can use the following hard task

recommendation scoring functions:

taskdecay(i, j, C) = βtaskdist(i,j,C), (6.11)

hardtask(i, j, C) =





taskdecay if sametask > τ,

0 otherwise,

(6.12)

rhardtask(q
′|C) = rcontext(q

′|C, {〈λ,hardtask〉, 〈1− λ,decay〉}), (6.13)

where λ can be used to give more or less weight to the task context and taskdist is

the number of on-task queries between C[i] and C[j]. If we set λ = 1, we only use the

task context, whereas with λ = 0, we ignore the task context altogether. If we use

λ = 0.5, we use some of the task information, but still allow the greater context to

have a presence. Note that we have left off the parameters to decay and sametask

in Eq. 6.13 for readability.
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This approach may work well if one is comfortable with setting a hard threshold τ

on the output of the sametask function. If, however, we want to provide a mechanism

by which we use the output of sametask as a confidence, we can use the following

soft task recommendation scoring functions:

softtask(i, j, C) = sametask · decay, (6.14)

rsofttask(q
′|C) = rcontext(q

′|C, {〈λ, softtask〉, 〈1− λ,decay〉}). (6.15)

Here, λ smooths between using and not using the same-task scores to dampen the

decay weights. We have left off the parameters to sametask and decay in Eqs. 6.14

and 6.15.

Two additional models we consider are both variations of what we call firm task

recommendation, as they combine aspects of both the hard and soft task models. The

first, called firmtask1, behaves similarly to the soft task model, except that we give

a the weight of zero to any queries with a same task score at or below the threshold

τ . The second, called firmtask2, is identical to the hard task model, except that the

task classification score is used in addition to the taskdecay weight. Mathematically,

the firm task recommendation models are described by:

firmtask1(i, j, C) =





sametask× decay if sametask > τ,

0 otherwise,

(6.16)

rfirmtask1(q
′|C) = rcontext(q

′|C, {〈λ,firmtask1〉, 〈1− λ,decay〉}), (6.17)

firmtask2(i, j, C) =





sametask × taskdecay if sametask > τ,

0 otherwise,

(6.18)

rfirmtask2(q
′|C) = rcontext(q

′|C, {〈λ,firmtask2〉, 〈1− λ,decay〉}). (6.19)
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sametask = [.8, .2, .1, .9, 1.0]
a. rdecay ≈ [.4, .5, .6, .8, 1.0]
b. rsofttask ≈ [.3, .1, .1, .7, 1.0]
c. rfirmtask1 = [.3, .0, .0, .7, 1.0]
d. rfirmtask2 = [.5, .0, .0, .7, 1.0]
e. rhardtask ≈ [.6, .0, .0, .8, 1.0]

Figure 6.6. An example of the degree to which each query in a context contributes
(right column) given its predicted same-task score (top row) for: (a.) decay only, (b.)
soft task, (c.) firm task-1, (d.) firm task-2, and (e.) hard task recommendation. We
set β = 0.8 for all, and λ = 1, τ = 0.2 for b.–e.

Note that unlike the hard task model, the decay component of the firmtask1 model

is affected by every query, not just those above the threshold.

For example, suppose we have a context C with five queries, q1, . . . , q5. Relative

to the reference query, q5, suppose applying sametask to each query produces the

same-task scores [0.4, 0.2, 0.1, 0.95, 1.0]. If we set τ = 0.2, then T = [q1, q4, q5].

Using β = 0.8, notice in Figure 6.6 how the importance weight of each query in the

context changes between using only the decay function (a.) and setting λ = 1 for the

task-aware recommendations (b.–e.). Note that when λ = 0, the hard, firm, and soft

task recommendation scores are equivalent (they all reduce to using the decay-only

scoring function).

There are two primary differences between using hard- and soft task recommenda-

tion. First, hard task recommendation does not penalize on-task queries that occur

prior to a sequence of off-task queries, e.g. in Figure 6.6, we see that q1 is on-task

and hardtask treats it as the first query in a sequence of three: βn−1 = 0.82. Con-

versely, the soft task recommendation model treats q1 as the first in a sequence of

five: βm−1 = 0.84.

Second, soft task recommendation can only down-weight a query’s importance

weight, unlike hard task recommendation, which can significantly increase the weight

of an on-task query further back in the context (e.g., the far left value for rhardtask
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in Figure 6.6). At the same time, however, soft task recommendation only allows

a query to be given a zero weight if its same-task score is zero. The two firm task

models balance these aspects in different ways.

6.4 Experimental setup

In this section, we describe the data, settings, and methodology used for the

experiments.

6.4.1 Constructing a query flow graph

We extracted query reformulations from the 2006 AOL query log, which includes

more than 10 million unique queries making up 21 million query instances submitted

by 657,426 users between March–April 2006. Considering all ordered pairs from a 30-

query sliding window across sessions with a maximum timeout of 26 minutes, we ex-

tracted 33,218,915 distinct query reformulations to construct a query flow graph (com-

pared to 18,271,486 if we used only adjacent pairs), ignoring all dash (“-”) queries,

which correspond to queries that AOL scrubbed or randomly replaced. The inlink

and outlink counts of the nodes in the graph both have a median of 2 and a mean

of about 5. If we were to use only adjacent reformulations from the logs, the median

would be 1 and the mean just under 2.

6.4.2 Task data

We used the 2010 and 2011 TREC Session Track (Kanoulas et al., 2010, 2011)

data to generate task contexts. The 2010 track data contains 136 judged sessions,

each with two queries (totaling 272 queries), covering three reformulation types: drift,

specialization, and generalization relative to the first search. We ignore the reformu-

lation type. The 2011 track data consists of 76 variable length sessions, 280 queries

(average of 3.7 queries per session), and 62 judged topics. Several topics have multiple

corresponding sessions. In total, we use all 212 judged sessions from both years. The
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relevance judgments in both cases are over the ClueWeb09 collection. Our goal is

to provide recommendations to retrieve documents relevant to the last query in each

session, thus we mark the last query as the reference query.

Each session constitutes a single task, and henceforth we refer to the sessions as

tasks. Since the TREC data consists of single tasks, we need some way of simulating

the case that multiple tasks are interleaved. We describe our approach for this next.

6.4.3 Experiments

To answer our four research questions, we use the following set of experiments.

Throughout all of these experiments, the baseline is to use only the reference query

for generating query recommendations.

Experiment 1. For RQ1, which seeks to understand the effect of including

relevant context on recommendation performance, we use each task T from the TREC

Session Track and recommend suggestions using the most recent m queries for m =

[1, |T |]. If incorporating context is helpful, then we should see an improvement as m

increases. Note that m = 1 is the case in which only the reference query is used.

Experiment 2. To address RQ2, which asks how off-task context affects rec-

ommendation performance, we modify the experiment described above to consider

a context of m = [1, |T |] queries such that queries 2 through |T | are off-task. To

capture the randomness of off-task queries, we evaluate over R random samples of

off-task contexts (each query is independently sampled from other tasks, excluding

those with the same TREC Session Track topic) for each task T and each value of

m > 1. If off-task context is harmful, we should see a worsening trend in performance

as m increases.

Experiment 3. To address RQ3, which asks how query recommendation per-

formance is affected by a context that is a mix of on- and off-task queries, we rely

on a simulation of mixed contexts. As we saw in Figure 6.3, the probability that a
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sequence of m queries share the same task decreases exponentially as m increases,

and so the mixed context assumed in RQ3 is realistic if not typical. We simulate

mixed contexts by taking each task T of length n and considering a context window

of length m = [1, n + R], where R is the number of off-task queries to add into the

context. The last query in the context qm always corresponds to the last query qn in

T . Queries q1, . . . , qm−1 consist of a mix of the queries from T and other tasks from

the TREC Session Track. The queries from T will always appear in the same order,

but not necessarily adjacent.

To incorporate noise, we initially set C = []. We select R off-task queries as

follows: first, we randomly select an off-topic task, O, from the TREC Session Track

and take the first R queries from that task. If |O| < R, we randomly selected an

addition off-topic task and concatenate its first R − |O| queries to O. We continue

the process until |O| = |R|. We now randomly interleave T and O, the only rule

being that Tn—the reference query—must be the last query in C. For a given value

of R, we can perform many randomizations and graph the effect of using the most

recent n+R queries to perform query recommendation.

Experiment 4. The fourth research question, RQ4, asks how mixed contexts

should be used in the query recommendation process. We have limited ourselves to

consider three possibilities: (a.) using only the reference query (i.e., our baseline

throughout these experiments), (b.) using the most recent n + R queries (i.e., the

results from Experiment 3), or (c.) incorporating same-task classification scores.

Experiment 4 concentrates on (c.) and analyzes the effect of incorporating same-

task classification scores during the search context integration process. This is where

we will compare the task-aware recommendation models described in the previous

section.

Experiment 5. The final research question, RQ5, questions the impact of privacy

on recommendation performance. Given each of the sanitized crowd logs, we re-run
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Experiments 1–4, allowing us to understand the effect on query recommendation

performance.

6.4.4 Technical details

For the query recommendation using the TQGraph, we used a restart probability

of c = 0.1, as was found to be optimal by Bonchi et al. (2012).3 To increase the

speed of our recommendation, we only stored the 100,000 top scoring random walk

results for each term. Bonchi et al. found this to have no or very limited effects on

performance when used with c = 0.1.

For task classification, we used the parameters found optimal by Lucchese et al.

(2011): η = 0.2 (used during task clustering) and α = 0.5 (used to weight the semantic

and lexical features). We also set τ = η since τ is used in much the same way in the

task-aware recommendation models.

To evaluate recommendations, we retrieved documents from ClueWeb09 using the

default query likelihood model implemented in Indri 5.3 (Metzler & Croft, 2004).4 We

removed spam by using the Fusion spam score dataset (Cormack et al., 2011) at a

75th percentile, meaning we only kept the least spammy 25% of documents.5

To address Experiment 5, we consider several values of d, d ∈ {1, 2, 4, 8, 16, 32},

for the differential privacy mechanisms DPa, DPu, and ZEALOUS. We set ǫ = 10,

which is very high, but necessary in order to generate non-empty crowd logs (and

even then, we encountered a few empty crowd logs). We set δ = 1/657427. We took

10 samples for each value of d and average performance across those samples. We

considered several values of k for the frequency thresholding mechanisms FTa and

3Note that they refer to the restart value α, where c = 1− α.

4http://www.lemurproject.org/indri/

5http://plg.uwaterloo.ca/~gvcormac/clueweb09spam/
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FTu: k ∈ {2, 5, 10, 50}. All crowd logs were generated over the full three months of

the AOL query log.

6.5 Results and analysis

In this section, we cover the results of each of the experiments described in Sec-

tion 6.4.3. We then discuss the meaning of our findings as well as their broader

implications.

6.5.1 Experimental results

In all experiments, we measured recommendation performance using the mean

reciprocal rank (MRR) of ClueWeb09 document retrieved for the top scored recom-

mendation averaged over the 212 TREC Session Track tasks. There are several ways

one can calculate relevance over the document sets retrieved for recommendations,

such as count any document retrieved in the top ten for any of the context queries

as non-relevant (rather harsh), indifferently (resulting in duplicate documents), or by

removing all such documents from the result lists of recommendations. We elected to

go with the last as it is a reasonable behavior to expect from a context-aware system.

We removed documents retrieved for any query in the context, not just those that are

on-task. This is a very conservative evaluation and is reflected in the performance

metrics.

Experiment 1. With this experiment, our aim was to quantify the effect of on-

task query context on recommendation quality. Focusing on the top line with circles

in Figure 6.7, the MRR of the top scored recommendation averaged over the 212

tasks performs better than using only the reference query (middle line with squares).

To generate these scores, we used the rdecay model with β = 0.8, as set by Boldi et

al. (2008) in their decay function. For each value of m, if a particular task T has

fewer than m queries, the value at |T | is used. The MRR scores are low because for a
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Figure 6.7. The effect of adding on-task (blue circles) and off-task (red triangles)
queries versus only the reference query on recommendation MRR (black squares).
MRR is calculated on the top scoring recommendation.

large number of tasks, none of the methods provide any useful recommendations. We

performed evaluations where such tasks were ignored and found that the MRR does

indeed increase and the relationship between the methods plotted stays the same. To

ensure comparability with future work, we report on all tasks.

While performance is better on average in Figure 6.7, the top bar chart in Fig-

ure 6.8 breaks the performance down by the TREC search tasks and we can see that

there are many tasks for which on-task context is very helpful, as well as several where

it hurts. Note that some of the tasks are not displayed for readability.

Experiment 2. The goal of the second experiment was to ascertain the effect of

off-task context on query recommendation. We generated 50 random off-task contexts

for each task and report the micro-average across all trials. The bottom line with

triangles in Figure 6.7 shows that adding off-task queries under the rdecay model

with β = 0.8 rapidly decreases recommendation performance for low values of m

before more or less leveling off around m = 5 (it still decreases, but much slower).

110



M
R

R
 d

if
fe

re
n

c
e

−
1

.0
0

.0
1

.0

Effect of on−task context per task
M

R
R

 d
if
fe

re
n

c
e

−
1

.0
0

.0
1

.0

Effect of off−task context per task
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of the top scoring recommendation. The y-axis shows the difference between the
MRR of using context and using only the reference query. A higher value means
context improved MRR. Note that 145 tasks were removed as neither on- nor off-task
context had an effect. The tasks are not aligned between the two plots and cannot
be compared at the task level.

Its performance is well below that of the baseline of using only the reference query,

making it clear that off task context is extremely detrimental.

Turning to the bottom plot in Figure 6.8, we see that off-task context has an

almost entirely negative effect (there is an ever so slight increase in performance for

the task represented by the far left bar). Interestingly, for the severely compromised

tasks on the far right, the effect is not as negative as when on-task context hurts. We

have not conducted a full analysis to understand this phenomena, but one possible

cause is the averaging over 50 trials that takes place for the off-task contexts. We

leave investigations into this issue for future work.

Experiment 3. With Experiment 3, we wanted to understand the effect of

mixed contexts—consisting of both on- and off-task queries—on query recommenda-

tion performance. As explained earlier, the experiment explores the performance of

tasks when R noisy queries are added to the entire set of on-task queries. The bottom

line with triangles in Figure 6.9 shows just this, using rdecay with β = 0.8. The far left
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point, where R = 0, lines up with the far right point of the on-task line in Figure 6.7.

We randomly generated 50 noisy contexts per task for each value of R. The solid line

shows the micro-averaged MRR over all tasks’ samples. The dotted lines on either

side show the minimum and maximum values for the micro-average MRR on a set of

1,000 sub-samples (with replacement) of the original 50. As you can see, the bounds

indicate relatively low variance of the micro-average across the 212 tasks. There are

still certain tasks for which performance is very high or very low (that is, the bounds

on the micro-average do not inform us of the variance among tasks).

An important observation from this experiment is that performance dips below

that of the baseline when even a single off-task query is mixed in. This is quite

startling when you consider that the chances of three queries (at R = 1, all contexts

are of at least length three) in a row belonging to a single task are below 30% (see

Figure 6.3) and that roughly 40% of tasks in the wild are of length three or more (see

Figure 6.2). These results clearly show that blindly incorporating mixed context is a

poor method of incorporating context.

Experiment 4. In the fourth experiment, we hoped to determine the effects of

using recommendation models that consider the reference query only, the entire con-

text, or the entire context, but in a task-aware manner. The first two were addressed

in the previous experiments, where we learned that using the reference query is more

effective than blindly using the entire context. Figure 6.9 shows the results of using

the models we introduced in Section 6.3.3. We used the same randomizations as in

Experiment 3 and likewise generated the minimum and maximum bounds around

each model’s performance line. For these experiments, sametask1 scores were used

to produce same-task scores. We also performed the experiment using sametask2

and found it was comparable. We used λ = 1 for all task-aware models; setting it to

anything less resulted in an extreme degradation of performance.

112



● ● ● ● ● ● ● ● ● ● ●

0 2 4 6 8 10

0
.0

2
0

.0
4

0
.0

6
0

.0
8

0
.1

0

Noisy queries added (R)

M
R

R
●

Firm−task1 (λ=1, β=0.8)

Firm−task2 (λ=1, β=0.8)

Hard−task (λ=1, β=0.8)
Reference query only

Soft−task (λ=1, β=0.8)

Decay (β=0.8)

Figure 6.9. The effect of adding off-task queries to a task context on MRR when
same task classification is used and is not used versus only using the reference query
(black squares). The sametask1 scoring method is used for all task-aware recom-
mendation models. MRR is calculated on the top scoring recommendation.

There are several interesting observations. First, the firm-task models performed

best, though it is likely that the performance of the rfirmtask1 model (the top line

with x’s) would decrease with larger amounts of noise because the decay function

depends on the length of the context, not the number of queries predicted to be

on-task. Thus, for on-task queries occurring early in very large contexts, the decay

weight will effectively be 0. You may notice that this model also increases for a

bit starting at R = 2. This is likely due to the decay function used: since every

query in the context, and not just the on-task queries, counts toward the distances

between an on-task query and the reference query under rfirmtask1, on-task queries are

actually down-weighted to a greater degree than in the rfirmtask2 and rhardtask models.

The graph indicates that this change in weighting is helpful. This also suggests that

setting β differently may improve the performance of the other models.
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The rfirmtask2 model (diamonds) comes in at a close second and narrowly outper-

forms rhardtask (circles). All three models outperform the baselines—using only the

reference query (squares) and rdecay over the entire context (triangles).

The rsofttask model, however, performs rather poorly. While it can offer some

improvement over using just the reference query for a small amount of noise, once

the noise level reaches four off-task queries, it is not longer viable. It does, however,

outperform the decay model applied in a task-unaware manner.

Another interesting point is that the performance of the task-aware models is

actually better at R = 0 than if the known tasks are used. The likely explanation

is that the same-task scores prevent on-task queries that are quite different from

the reference query from affecting the final recommendation. These kinds of queries

may introduce more noise since their only recommendation overlap with the reference

query may be generic queries, such as “google”. This is not always the case, however.

For example, one task consists of the queries [“alan greenspan”, “longest serving

Federal Reserve Chairman”]. The first query is detected to be off-task, however, it

is needed to generate decent recommendations since the reference query generates

generic Federal Reserve-related queries and not ones focused on Alan Greenspan.

Overall, though, the same-task classification with a threshold τ = 0.2 worked well.

The same-task classification precision relative to the positive class was on average

80%. The precision relative to the negative class varied across each noise level, but was

on average 99%. The average accuracy was 93%. The decent same-task classification

is why the three models at the top of Figure 6.9 are so flat.

Experiment 5. For Experiment 5, we looked at the effect of sanitization on

query recommendation performance. We re-ran each of the earlier experiments, but

using a TQGraph made from sanitized crowd logs. For Experiments 1 and 2, we

found the same relationship held in most cases, on-task context producing a boost

in performance over using only the reference query, and off-task context hampering
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performance. The exceptions were when all values of MRR were zero, which was

the case for all of the ZEALOUS sanitizations, for DPa and DPu with d ≥ 8, and

for FTu at k = 50. For the other values of d for DPa and DPu, the average per-

formance never peaked greater than 0.0005, making the findings practically useless.

Sanitization under frequency thresholding proved to be more useful. With DPa at

k = 2, performance dropped to under MRR= 0.06 and under MRR= 0.05 for DPu.

However, by k = 5—the value of k for which we have approval from the University

of Massachusetts Institutional Review Board to use when releasing data—maximum

performance of on-task context drops to MRR= 0.01. As with the differential privacy

mechanisms, this is not practically useful performance. Figure 6.10 show the degre-

dation in performance under the frequency thresholding mechanisms as k increases.

One very interesting observation is that performance actually increases under DPa

going from k = 5 to k = 10. One speculative explanation for this is that k = 10

causes less frequent, noisy queries to be eliminated from the TQGraph. Perhaps the

same is not seen under FTu because noise is more likely to affect FTa in the sense

that a single user entering a query many times can cause it to appear in a TQGraph

sanitized under FTa.

For Experiments 3 and 4, we found a similar tend: the relationships are similar

to those found when an unsanitized TQGraph is used, but the MRR is so low as

to be practically useless. We did find that at higher values of d, the importance of

context improved over using just the reference query. For example, Figure 6.11 shows

that using context information triples the performance; however, effectively it doesn’t

matter because MRR does not exceed 0.0013. Under FTa and FTu, performance is

slightly more practical, as we saw before. Figure 6.12 shows performance under these

models for k = {2, 5, 10}. Again, we see the same jump in performance under FTa

going from k = 5 to k = 10.
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Figure 6.10. Query recommendation MRR when using on- and off-task context and
using only the reference query. On the left, the TQGraph was sanitized using FTa,
and on the right with FTu.
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Figure 6.11. Query recommendation MRR in a mixed-context situation when the
TQGraph is sanitized using DPu with d = 4.

6.5.2 Discussion

The results of our experiments demonstrate not only the usefulness of on-task

context, but also the extreme impact of off-task and mixed contexts. The results

from Experiment 4 suggest that the appropriate model is one that balances a hard

threshold to remove any influence from context queries predicted to be off-task, and to

weight the importance of the remaining queries by both their distance to the reference

query and by the confidence of the same-task classification. Based on the results, we

recommend the rfirmtask2 model, since its performance will be consistent regardless of

how far back in a user’s history we go, unlike rfirmtask1.

We did not see any substantial effects from using task clustering, as Liao et al.

(2012) used. However, other task identification schemes may perform differently; after

all, as we saw in Experiment 4, our task identification method actually caused slight

improvements over using the true tasks.

To get a feel for the quality of the recommendations produced generally with the

AOL query logs and specifically by different models, consider the randomly generated

mixed context in Figure 6.13 (also Figure 6.1). The top five recommendations from

three methods for this context are shown in Figure 6.14. Notice that using only the
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Figure 6.12. Query recommendation MRR when using mixed-context and using
only the reference query. On the left, the TQGraph was sanitized using FTa, and on
the right with FTu.
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No. Query context sametask1

5. satellite internet providers 1.00
4. hughes internet 0.44
3. ocd beckham 0.02
2. reviews xc90 0.04
1. buy volvo semi trucks 0.04

Figure 6.13. An example of a randomly generated mixed context along with the
same-task scores. The top query (No. 5) is the reference query. The bolded queries
are on-task.

Reference
Rank query RR Decay RR Hard task (λ = 1) RR

1. alabama satellite 0.08 2006 volvo xc90 hughes internet.com 1.00
internet providers reviews

2. sattelite internet 0.25 volvo xc90 hughes satelite 1.00
reviews internet

3. satellite internet 1.00 hughes internet.com 1.00 alabama satellite 0.08
providers internet providers

4. satelite internet 0.02 hughes satelite 1.00 satellite high 0.17
for 30.00 internet speed internet

5. satellite internet 0.06 alabama satellite 0.08 sattelite internet 0.25
providers northern internet providers
california

Figure 6.14. The top five suggestions generated from three of the models for the
randomly generated context shown in Figure 6.13. Reciprocal rank (RR) values of 0
are left blank.

reference query produces suggestions with non-zero MRR, though the suggestion with

the highest MRR is acutally the same as the reference query. Meanwhile, blindly using

the context produces suggestions at the top that are swamped by the off-task queries,

even though they occur much earlier in the context, and therefore are significantly

down-weighted. A couple high-MRR queries are suggested, but not until the third

rank. This is in stark contrast to using the hard task model, which recommends

queries similar in nature to the reference query, but with higher MRR, and ranks the

suggestions with the highest MRR at the top.

Many of the tasks for which task-aware recommendation performed well involved

specialization reformulations. Some examples include: heart rate→slow fast heart
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rate, bobcat tractor→bobcat tractor attachment, disneyland hotel→disneyland hotel

reviews, and elliptical trainer→elliptical trainer benefits. One possible reason for this

is that incorporating recommendations for a context query that is a subset of the

reference query focuses the final recommendations on the most important concepts.

None of the experiments used notions of temporal sessions or complete user his-

tories. We did this mainly because the mixed contexts were generated and not from

actual user logs where context windows could be tied to temporal boundaries, e.g.,

two-day windows. We believe that by focusing on factors such as on- and off-task

queries, we struck at the core questions in this space. We leave testing whether the

results from these experiments apply equally to real user data as future work, but

we believe they will, especially given the results of related studies, such as those

conducted by Liao et al. (2012) and Filali et al. (2010).

Finally, it appears that sanitization using differentially private mechanisms is not

practical for this application with these numbers of users. Using FTa and FTu with

low values of k can provide performance that is more on par with that of using an

unsanitized data set, however, performance is still low. It seems that more users

would improve the results. An alternative artifact representation, one that makes

more artifacts publishable and is still useful (e.g., contains query text) may also help.

For example, query templating, where specific nouns are replaced with temples, e.g.,

bars in boston would be templated as bars in 〈city〉.

6.6 Summary

We investigated several research questions concerning the effects of personalization

and sanitization on query recommendation. We introduced a model for integrating

query recommendations across on-task searches and found that on-task context is

more helpful than using the reference query or blindly using context that contains
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noisy queries for several test sessions. We also used an off-the-shelf same-task classifier

which helped us effectively detect and use on-task searches automatically.

We found that the relative improvements of on-task context are still present when

the global data is sanitized under most models, but that the absolute performance

is quite low. With the exception of k = 2 for FTa and FTu, sanitization appears

to render global data useless. A larger user base and perhaps a different artifact

representation may lead to more fruitful results.
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CHAPTER 7

SEARCHER FRUSTRATION DETECTION

In this chapter, we investigate detecting searcher frustration. In Chapter 1 we

defined searcher frustration as the self-reported level of frustration a user experiences

while engaged in a search. There are many reasons why one would like to have a model

able to detect how frustrated a user is. For example, a retrospective frustration clas-

sification is useful as a system effectiveness measure. In a real-time setting, automatic

detection could be used to trigger system interventions to help frustrated searchers,

hopefully preventing users from leaving for another search engine or abandoning the

search altogether. Depending on the level of frustration, we may wish to change the

underlying retrieval algorithm or user interface. For example, one source of difficulty

that could cause frustration in retrieval is a user’s inability to sift through the results

presented for a query (Lawrie, 2003; Xie & Cool, 2009; Kong & Allan, 2013). If the

system can detect that the user is frustrated, it could offer an alternative interface,

such as on that shows a conceptual breakdown of the results: rather than listing

all results, group them based on the key concepts that best represent them (Lawrie,

2003) or attempt to diversify by other attributes (Aktolga & Allan, 2013). Using a

well worn example, if a user enters ‘java’, they can see the results based on ‘islands’,

‘programming languages’, ‘coffee’, etc. Adaptive systems based on user models have

been used elsewhere in IR. For example, White et al. (2006) used implicit relevance

feedback to detect changes in users’ information needs and alter the retrieval strategy

based on the degree of change.
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Our goal is to detect whether a user is frustrated at the end of each search. Recall

that we define a search as a query and all of the search behavior occurring afterwards

until either the next query or the end of the session is encountered. At the end of a

search, we ask, “Is the user frustrated at this point of the search task?” To detect

frustration, we derive features from the search just completed as well as other searches

conducted in the task so far. We refer to these feature sets as search and task features,

respectively. We compute additional features from a user’s other tasks, which we call

user features.

In this chapter, we consider frustration detection a binary task. However, multi-

class detection may be useful, such as the intensity or type of frustration, e.g., de-

tecting each of the fifteen types of frustration outlined by Xie and Cool (2009). We

leave multi-class detection for future work.

In our previous work (Feild, Allan, & Jones, 2010), we found the most effective

model for detecting searcher frustration was one based on the features that White

and Dumais (2009) found were useful for predicting when users would switch search

engines. The features in the model are: the most recent query’s length in characters,

the average token length of the most recent query, the duration of the task in seconds,

the number of user actions in the task, and the average number of URLs visited per

task for the current user.

In this chapter, we extend our previous work to consider the effects of personal-

ization and privacy on detection quality. We pose the following questions regarding

searcher frustration:

RQ1. How does personalization affect the quality of detection?

RQ2. What impact does sanitizing global data have on the quality of de-

tection?

To address these questions, we use the best performing model from our previous work

and extend it to include personalization. We also consider the baselines of always or
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never considering the user frustrated. We then explore sanitization by using the

FTa, FTu, DPa, DPu, and ZEALOUS privacy mechanisms to produce global models

of searcher frustration. We use a data set collected during a user study with 30

participants (also used in our previous work).

Our key contributions are (1) an analysis of personalized searcher frustration de-

tection and (2) an analysis of the effect of sanitized global data on searcher frustration

detection.

Figure 7.1 outlines the implementation we will follow for personalized frustration

detection throughout this chapter. In Section 7.1 we describe how global data will

be mined, collected and processed. We then describe how local data is used and

combined with global data in Sections 7.2 and 7.3. We present our experimental setup

and describe the data we use in Section 7.4. We present our findings in Section 7.5

before wrapping up with a discussion of limitations in Section 7.6 and a summary in

Section 7.7.

7.1 Global data

To extract global data, we must first ask users to explicitly inform us when they are

frustrated. When we detect that a user is ending a search (i.e., they have moved on to

a new search), we ask them if they were frustrated with the search. This annotation

is then coupled with a feature vector for the search. As mentioned previously, the

feature vector includes the most recent query’s length in characters, the average token

length of the most recent query, the duration of the task in seconds, the number of

user actions in the task, and the average number of URLs visited per task for the

current user. The last feature can be calculated at the time of the annotation or

computed just prior to uploading the data, giving a better estimate of the user’s

behavior.
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Personalized frustration detection
⊲ Preprocessing
1. What artifacts will be extracted?
⋄ Feature vectors generated from a user’s search history, each correspond-
ing to a search conducted by the user; features are binary and each vector
is annotated as frustrated or not-frustrated by the user (see Section 7.1
for details).

2. What preprocessing will take place on the global data?
⋄ A logistic regression model will be trained (see Section 7.1 for details).

3. What preprocessing will take place on the local data?
⋄ A logistic regression model will be trained on the raw feature vectors
for any instances that have been annotated by the user (see Section 7.2
for details).

⊲ On input
4. What is the input?
⋄ A feature vector for an un-annotated search.

5. What request will the client send to the server?
⋄ A request for the globally-trained logistic regression model (no data is
sent).

6. What processing will the server perform for the client request?
⋄ None.

7. What response will the server send to the client?
⋄ The trained logistic regression model.

8. How will the server data be integrated with the local data?
⋄ The score produced from the local logistic regression classifier will be
multiplied with the score produced from the global logistic regression
classifier (see Section 7.3 for details).

9. What is the output of the application?
⋄ A boolean: frustrated or not-frustrated.

Figure 7.1. Implementation specifications for personalized frustration detection.
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Because all of these features are continuous, it would be very difficult to create

a sanitized data set. To overcome this issue, we binarize the features. One way to

do this is to find the mean of a feature across either a user or a group of users and

use that as the threshold. User-based means are more private since no data has to

be aggregated across users, and moreover, as we will show, it actually out-performs

using a group-level mean.

To train a detection model, we rely on logistic regression. This is appropriate since

we have a binary classification problem: frustrated/not-frustrated. Other methods

would likely work as well, such as decision trees or random forests.

7.2 Local data

We treat local data very similarly to global data. First, it is collected in the same

way, i.e., we ask users to explicitly provide frustration labels to search instances.

However, we do not binarize the feature values. In experiments on a development set,

we found that raw features provide more useful detection than binarized ones.

Just as in the global model, we train a logistic regression model. This is easily

implemented via JavaScript and so can be included in a platform such as CrowdLogger

to be trained client-side.

7.3 Integrating local and global data

There are many ways to combine local and global data for classification models,

as we saw in Chapter 5. For a particular test instance and a global and local score, we

consider four integration methods: maximum, minimum, mean, and product. Using a

development set, we found the product to give the best results when smaller amounts

of local data were used, while performing similarly to other models when higher levels

of local data were used. For that reason, we concentrate on the product. The variant

of logistic regression we use outputs scores in the range [0,1], and so the product of
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any two scores also falls within that range. We use a threshold of 0.5, which means

that for an instance to be classified as frustrated, at least one the local or global scores

must be high (e.g., both equal to
√
0.5 = 0.71 or one score equal to 1 and the other

0.5).

7.4 Experimental setup

In this section, we outline our experiments, the data we use, and our method of

evaluation.

7.4.1 Experiments

To answer our two research questions, we consider three experiments.

Experiment 1. Our first research question asks how personalization affects frus-

tration detection. To answer this, we look at the performance of using a local model

built from n user instances and then testing on several other instances from that user.

We vary n from 1 to the maximum possible number. For our experiments, we will

randomly sample n labeled user instances and perform r trials per value of n. The

models to compare against are: always assume the user is frustrated, never assume

the user is frustrated, and a global model. If personalization helps, we expect the

local model to out-perform the others.

Experiment 2. Our second experiment extends the first and evaluates the effect

of integrating local and global data. We look at several methods of combining the two

sources of data, varying n just as in Experiment 1. As we mentioned in Section 7.3,

our analysis focuses on the product of the local and global scores for a given instance,

but we also considered taking the maximum, minimum, and mean of the two scores. If

integrating local and global information is beneficial, we expect the integrated model

to outperform the models examined in Experiment 1.
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Experiment 3. Our final experiment explores the effect of sanitization on frus-

tration detection. We consider all privacy mechanisms: FTa, FTu, DPa, DPu, and

ZEALOUS. We then show the performance of the sanitized global and integrated

models applying the same procedures used in Experiments 1 and 2. One issue we

must address has to do with our data size: there are too few users for the sanitization

methods to work well. To overcome this, we created a synthetic pool of data using the

following procedure, varying i from 1 to N : 1) randomly select a user; 2) randomly

sample with replacement m = [1, 50] instances from that user to create a new pseudo

user ui; 3) add ui to the set of pseudo users U . The instances added in step 2 are

raw, meaning that the average required for binarization is computed over the pseudo

user, not the original user. If sanitization is harmful, the performance of the global

and integrated models should drop compared to the unsanitized global models used

in the previous experiments.

7.4.2 Data

In Fall 2009, we conducted a user study with thirty participants from the Uni-

versity of Massachusetts Amherst. The mean age of participants was 26. Most

participants were computer science or engineering graduates, others were from En-

glish, kinesiology, physics, chemical engineering, and operation management. Two

participants were undergraduates. Twenty-seven users reported a ‘5’ (the highest)

on a five-point search experience scale; one reported a ‘4’ and two a ‘3’. There were

seven females and twenty-three males.

Each participant was asked to complete seven1 tasks from a pool of twelve (several

with multiple versions) and to spend no more than seven minutes on each, though

this was not strictly enforced. The order of the tasks was determined by four 12× 12

1The first two participants completed eight tasks, but it took longer than expected, so seven
tasks were used from then on.
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1. What is the average temperature in [Dallas, SD/Albany, GA/Springfield,
IL] for winter? Summer?

2. Name three bridges that collapsed in the USA since 2007.
3. In what year did the USA experience its worst drought? What was the

average precipitation in the country that year?
4. How many pixels must be dead on a MacBook before Apple will replace

the laptop? Assume the laptop is still under warranty.
5. Is the band [Snow Patrol/Greenday/State Radio/Goo Goo Dolls/Counting

Crows] coming to Amherst, MA within the next year? If not, when and
where will they be playing closest?

6. What was the best selling television (brand & model) of 2008?
7. Find the hours of the PetsMart nearest [Wichita, KS/Thorndale, TX/-

Nitro, WV].
8. How much did the Dow Jones Industrial Average increase/decrease at the

end of yesterday?
9. Find three coffee shops with WI-FI in [Staunton, VA/Canton, OH/-

Metairie, LA].
10. Where is the nearest Chipotle restaurant with respect to [Manchester, MD-

/Brownsville, OR/Morey, CO]?
11. What’s the helpline phone number for Verizon Wireless in MA?
12. Name four places to get a car inspection for a normal passenger car in

[Hanover, PA/Collinwood, TN/Salem, NC].

Table 7.1. The information seeking tasks given to users in the user study. Variations
are included in brackets.

Latin squares, which removed ordering effects from the study. Users were given tasks

one at a time, so they were unaware of the tasks later in the order. Most of the tasks

were designed to be difficult to solve with a search engine since the answer was not

easily found on a single page. The complete list of tasks is shown in Table 7.1.

The study relied on a modified version of the Lemur Query Log Toolbar2 for Fire-

fox.3 To begin a task, participants had to click a ‘Start Task’ button. This prompted

them with the task and a brief questionnaire about how well they understood the

task and the degree to which they felt they knew the answer. They were asked to

use any of four search engines: Bing, Google, Yahoo!, or Ask.com and were allowed

2http://www.lemurproject.org/querylogtoolbar/

3http://www.mozilla.com/en-US/firefox/firefox.html
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to switch at any time. Links to these appeared on the toolbar and were randomly

reordered at the start of each task. Users were allowed to use tabs within Firefox.

For every query entered, users were prompted to describe their expectations for

the query. Each time they navigated away from a non-search page, they were asked

the degree to which the page satisfied the task on a five point scale, with an option to

evaluate later. At the end of a search (determined by the user entering a new query

or clicking ‘End Task’), users were asked what the search actually provided relative

to their expectations, how well the search satisfied their task (on a five point scale),

how frustrated they were with the task so far (on a five point scale), and, if they

indicated at least slight frustration (2–5 on the five-point scale), we asked them to

describe their frustration.

When users finished the task by clicking ‘End Task’, they were asked to evaluate,

on a five point scale, how successful the session was, what their most useful query

was, how they would suggest a search engine be changed to better address the task,

and what other resources they would have sought to respond to the task.

A total of 211 tasks were completed (one participant completed one fewer task

because of computer problems), feedback was provided for 463 queries, and 711 pages

were visited. On the frustration feedback scale, ‘1’ is not frustrated at all and ‘5’ is

extremely frustrated. In Table 7.2 we see that users collectively reported some level

of frustration for about half of their queries. The most common reasons given for

being frustrated were: (1) off-topic results, (2) more effort than expected, (3) results

that were too general, (4) un-corroborated answers, and (5) seemingly non-existent

answers.

For our experiments, we selected 20 users for training and development and the

remaining 10 users for final testing—these are the same training and test sets used

in our previous work. We split each user’s data into two parts: testing and local

training. The local training partition consists of search instances for the first four
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Query Frustration None Extreme
Feedback value: 1 2 3 4 5

Frequency: 235 128 68 25 7
Percentage: 51% 28% 15% 5% 1%

Table 7.2. Distribution of user-reported frustration for searches.

tasks the user performed. The testing partition contains the other three tasks. One

of the factors we vary is the number of instances used from the local training partition.

To binarize the frustration levels, we map the frustration level of 1 to not-frustrated

and all other levels to frustrated.

Before building the final models, we conducted an exploratory analysis on the

training and development set using a leave-one-user-out approach, training global

models over 19 users and testing on the remaining user. This allowed us to settle on

parameters for the models we ultimately tested. When a user is part of the global

training set, data from both the local training and testing partitions are used. The

final models were trained over the entire training set and evaluated on the 10-user

test set.

The statistics for the exploratory and final evaluation phases of our experiments

are shown in 7.3. In the final evaluation, the maximum number of instances within

any of the ten local training sets is twelve.

7.4.3 Evaluation

In this section, we describe the metrics that we use to evaluate frustration models.

Our ultimate goal is to use frustration models to decide when to intervene to help

the user during the search process. Since many interaction methods with which we

would like to intervene are not typically used because of their undesirable, frustration-

causing attributes (i.e., interaction and latency), we are interested in minimizing our

false-positives (non-frustrated searchers that our models say are frustrated), poten-

tially at the cost of recall. For that reason, our predominant evaluation metric is a
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Exploratory phase on development set
Training users 19
Training instances 287–313

(labeled frustrated) 151–165 (49–53%)
Total local training instances 184

(labeled frustrated) 108 (59%)
Evaluation users 20
Evaluation instances 139

(labeled frustrated) 57 (41%)

Final evaluation
Global training users 20
Global training instances 324

(labeled frustrated) 165 (51%)
Total Local training instances 77

(labeled frustrated) 33 (43%)
Evaluation users 10
Evaluation instances 62

(labeled frustrated) 29 (47%)

Table 7.3. Statistics about the data used in the exploratory phase over the 20
training/development users (top) and for the final training and evaluation (bottom).

macro (across users) F-score with β = 0.5, which gives increased weight to precision

over recall. Specifically, we calculate F0.5 using the average over the precision and

recall values calculated for each user, rather than using the average F0.5 calculated

per user. Using a macro rather than a micro approach avoids one frustrated searcher

with many search instances in the test data skewing the results. Un-weighted macro-

averaging treats all users equally. A desirable model is one that performs well across

all users, not just on one specific user.

Formally, precision, recall, and F0.5 are defined as follows. First, assume that we

have four counters that keep track of the number of instances we: correctly classify as

frustrated (true positives, TP ); incorrectly classify as frustrated (false positives, FP );

correctly classify as not-frustrated (true negatives, TN); and incorrectly classify as

not-frustrated (false negatives, TN). Then,
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Precision =TP/(TP + FP ), (7.1)

Recall =TP/(TP + FN), (7.2)

Fβ =
(1 + β2)× Precision× Recall

(β2 × Precision) + Recall
. (7.3)

In the cases where a user has no instances of frustration, we set recall to 1.0; if a

model classifies all of a user’s instances as not-frustrated, we set precision to 1.0.

These defaults avoid edge cases in which undefined values are possible, and do so in

a practical manner.

Our evaluation is off-line. When calculating features such as the average number

of URLs visited per task for a given user, we average over all tasks, including those

in the test partition. If this were an on-line evaluation, then user features could be

calculated up until the searching being tested. We chose the off-line option due to the

limited data—only seven or eight tasks per user. Given more user data (unlabeled,

even), we believe that the two evaluations would be nearly equivalent.

7.5 Results and analysis

For Experiments 1 and 2, we first turn to Figure 7.2. In this figure, we show

the performance of various models as a function of the number of local training

instances on the training and development set of 20 users. For the local and integrated

(local×global) models, 10 samples are shown for each level of training instances used.

We can see that as more instances are used for local training, performance becomes

less variable, though part of this is that there are only so many instances contributed

by each user. While the local model by itself is not very stable, especially at lower

levels of local training data, it on average out-performs the global model. Integrating

local and global scores appears to provide greater, though not statistically significant,

improvements over using either local (for small levels of local training data) or global

data by itself.
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Figure 7.2. The performance of various models as a function of the number of local
training instances used on the training set of 20 users. On the left, we use a globally
calculated mean to binarize the global feature vectors; on the left, we rely on user-
level means. The local and integrated model lines are an average over 10 samples per
x value, with dashed lines representing the 95% confidence intervals for the mean.

Figure 7.2 demonstrates the effect that using means of global-level features for

binarization has on the performance of the global only model. We had originally

assumed that global-level means (left graph) would increase performance. However,

it turns out that user-level means (right graph) perform substantially better. This is

useful to know as collecting a global mean is more challenging when privacy is taken

into account

In Figure 7.3, we show the performance of the various models on the test set

of 10 users. Performance is quite different from that seen with the training and

development set. For instance, the macro F0.5 substantially jumped for all models.

Also, the advantage of local data over global is missing for lower levels of local training

data and is much less pronounced for higher values. We see an upward trend rather

than a downward trend for the local and integrated models. Finally, the integrated

model always out-performs the local model, not just when there is less local training
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Figure 7.3. The performance of various models as a function of the number of local
training instances used on the test set of 10 users. The global model was trained on
the 20 training users and feature binarization relied on user-level means. The local
and integrated model performance lines are an average over 100 samples per x value,
and the dotted lines indicate the 95% confidence interval of the mean.

data as was the case in Figure 7.2. It seems that, even with small amounts of local

training data—four or more training instances—it is advantageous to integrate local

and global score to achieve the highest performance. When all the local training

data is used, the integrated model achieved a macro F score of 0.86—an almost

9% relative improvement over the local-only model (F= 0.79) and a 12% relative

improvement over the global-only model (F= 0.77). The differences between the

mean performance of models is statistically significant (t-test, p < 0.001). However, a

Fisher’s Randomization test only showed significant differences in macro F0.5 between

each model and the baselines (always frustrated and never frustrated) when all local

training data was used (the performance reported at the far right of the plot). This

may be due to in part to the small scale of the test set.

For Experiment 3, we constructed a large pseudo user collection following the pro-

cedure outlined in Section 7.4. This resulted in 100,000 pseudo users and 2,499,416

feature vectors, 51% of which have the frustrated label. All 64 distinct feature
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vectors—2 values raised to the (5 features + 1 label) = 26 = 64—are present in

the pseudo user set. Interestingly, this resulted in the same performance as in the

leave-one-user-out evaluation, validating our technique.

For the differentially privacy mechanisms, we use N = 100, 000, ǫ = ln(10), and

δ = 1/100, 000. We considered several values of d (d = {1, 2, 4, 8, 16, 32, 64}) and took

10 samples at each level. For the frequency thresholding models, we looked at several

values of k (k = {2, 5, 10, 50}). We found no effect from the privacy mechanisms on

performance. The artifact space is small and even at the high threshold required for

d = 64 under ZEALOUS, 57 of the 64 distinct artifacts were released. While the

impression coverage changed, the coverage of distinct artifacts remained high for all

levels of d and k. This result suggests that frustration can be modeled privately for

large user bases.

7.6 Limitations

The data used in this chapter is both small and biased. Among the biases is the

overlap in tasks given to users—tasks in the training set overlap with tasks in the

test set. However, the coarseness of the feature values used in the global models may

mitigate this to some extent. Nonetheless, an in-the-wild experiment would provide

valuable insights into the generalizability of the results found here.

The small sample size makes it difficult to know how representative the results are.

Large differences appeared between the cross-validation experiments on the training

and development set and the final experiments on the test set. A larger study is

needed to better understand the impact of these models in a real system.

We analyzed one global model here based on the best performing classifier from

previous work. There are many other models, such as ones that rely on additional

features of the type we used, which would increase the feature space. Other models

rely on sequences of actions, such as “SCVC”, meaning the user issued a search, click
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on a result, viewed the page, and then clicked on a link. Further work is needed to

understand the effects that sanitization has on these and similar models.

7.7 Summary

We considered two research questions: 1) how does personalization affect frustra-

tion detection and 2) how does sanitization affect frustration detection. We considered

local data and global data by themselves as well as several integrated models. Using

data from a user study we conducted for previous work, we demonstrated that local

data can add substantial and statistically significant benefits. We also found that,

using a simulated training set of 100,000 pseudo users, privacy mechanisms have no

effect on the performance, even for large thresholds. For a practitioner interested in

deploying a privacy-preserving frustration detection system, our results suggest that

they gather labels from many users and use the integrated model to detect frustra-

tion for users that have provided labels, and the global only model for users without

annotations.
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CHAPTER 8

CROWDLOGGER

In this chapter, we describe CrowdLogger, an open source browser extension for

Firefox and Google Chrome.1 To evaluate the applications we described earlier in

this thesis, we used a combination of the AOL search logs, TREC data, and data

collected during a laboratory study. A complimentary evaluation, which we leave for

future work, is to collect data from users in-situ and have them use the applications

we described. In order to launch such studies, we require a platform on which to

conduct them. To this end, we have implemented Crowdlogger, which serves as

a generalized platform for mining and collecting user data (privately or not) both

passively and interactively, prototyping IR applications, evaluating IR applications,

and conducting user studies.

CrowdLogger works as follows. Consenting participants download the browser

extension, which then provides them with a list of available Apps and Studies, collec-

tively known as CrowdLogger Remote Modules, or CLRMs. CLRMs are JavaScript

and HTML code modules that provide a service, such as an IR application prototype

(in the case of Apps), or collect data for research (in the case of Studies). They

have access to an application programming interface (API) provided by CrowdLog-

ger. This API, described in Section 8.1, allows CLRMs to access user data, store new

data, interact with users, and upload data. Figures 8.1, 8.2 and 8.3 show screen shots

of the extension in action.

1Source code: https://code.google.com/p/crowdlogger/; Web site: http://crowdlogger

.cs.umass.edu/
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Other tools exist for performing some of the functionalities encapsulated in Crowd-

Logger. For instance, the Lemur Query Log Toolbar2 was developed and released with

the goal of collecting a sizable search log for use within the IR research community.

Implemented as a Firefox and Internet Explorer extension, it logged many user inter-

actions, including web search queries, viewed page text, copied and pasted text and

scrolls. This data was uploaded once a week to a centralized location. The primary

purpose of the Lemur Toolbar was to collect data and it did not allow interactions with

users as CrowdLogger does. Also, the only notion of privacy in the Lemur Toolbar

was that each week’s worth of data was stored under a unique, anonymized user iden-

tifier. Another piece of software similar in spirit to CrowdLogger is the HCI Browser

introduced by Capra (2011). The HCI Browser was made to be used for interactive,

task-based IR studies. While it does log user behavior similar to that logged by the

Lemur Toolbar, it was not made to be a passive logger, as CrowdLogger allows. Both

of these loggers are open source and can be modified by researchers for other ends,

but doing so requires understanding the internals, reworking them, and then releasing

the software to a new batch of participants. CrowdLogger allows extensions to be

programmed as CLRMs, which can be installed, uninstalled, and updated on the fly

and share a common user base. At the same time, since the software is open source,

researchers can modify the underlying system to suit their particular needs (though

they will lose access to the CrowdLogger user base), just as with the Lemur Toolbar

and the HCI Browser.

The remainder of this chapter begins in Section 8.1 with an overview of the API

exposed by CrowdLogger that allows researchers to leverage the CrowdLogging frame-

work, implement IR application prototypes, perform user studies, and evaluate sys-

2http://www.lemurproject.org/querylogtoolbar/

141



tems. We describe some example CLRMs that we have implemented for CrowdLogger

in Section 8.2. Finally, we end with a summary in Section 8.3.

8.1 CrowdLogger API

In this section, we outline the API exposed to developers in CrowdLogger. The

API is meant to abstract many common functionalities as well as provide an easy

way to provide privacy. There are several major API categories:

• User behavior (historic and real-time)

• Aggregate user data

• User interface

• Local storage

• Privacy

• Server-side access

We discuss each of these below.

User behavior. This API provides access to the locally stored user log, which

includes the following user interactions: web searches on Google, Bing, and Yahoo!

and the displayed results; page loads, focuses, and blurs (when the page loses focus);

clicks on search page results; clicks on links; browser tab additions, removal, and

selections; and logging status (when logging is turned on and off). In addition to

having access to the user’s interaction history, the API also provides a function that

CLRMs can use to register for a real-time stream of user interactions. One example

of using this feature is to prompt users with a questionnaire when they enter a new

search.

Aggregate user data. This API gives CLRMs access to crowd logs, if they

exist, or create new ones otherwise. The motivation is that if an IR application
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implemented as a CLRM requires global data, it can use this API function to access

it if that data already exists on the CrowdLogger server or gather it otherwise. The

API is agnostic to privacy policies, and therefore developers can use this function to

access/create sanitized or unsanitized crowd logs.

User interface. One difficulty of implementing logging software is dealing with

cross platform issues. As a Firefox and Google Chrome browser extension, CrowdLog-

ger works across non-mobile Windows, Macintosh, and Linux/Unix system. However,

programming for both Firefox and Chrome can be troublesome as CLRMs run on both

browsers (there is no notion of a Firefox or Chrome only CLRM). To prevent devel-

opers from having to include many switches in their CLRMs to deal with Firefox or

Chrome idioms, the user interface API provides wrapper functions to open windows,

get favicons, and interact with CrowdLogger’s messaging service.

Local storage. While CrowdLogger takes care of logging many important user

interactions, CLRMs will likely still need to log information to a user’s machine.

This can be achieved with the local storage API. For example, a CLRM for gathering

page quality annotations from users may want to save that information locally. Local

storage is also necessary for maintaining state between browser restarts.

Privacy. This API provides a number of components used in CrowdLogging,

including basic encryption, encryption with Shamir’s Secret Sharing, and anonymized

data uploading.

Server-side access. This API provides functions for communicating with a

server to send data, receive data, or both. This does not access the CrowdLog-

ger server, but rather allows communication between the CLRM and any arbitrary

server that a developer needs access to. One reason for requiring server access is to

upload user data. Another is to perform a server-side computation on some user data.

Developers may also need access to crowd logs not stored on the CrowdLogger server.
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Query freq. Query reform. Query-click
k Impressions Users Impressions Users Impressions Users
1 4905 4905 6194 6194 2816 2816
2 1803 46 1783 12 830 9
3 490 13 118 1 288 1
4 402 6 89 1 209 0
5 156 1 36 0 126 0

Table 8.1. Number of distinct queries, query pairs, and query-click pairs with at
least k impressions or k users. Data was collected with CrowdLogger over two weeks
in January 2011.

CLRMs are required to list the APIs they want access to so that users can be

informed during the installation. For example, if a CLRM need server-side access,

users should be aware as their data could be uploaded.

8.2 Examples

We have implemented two studies and one prototype using CrowdLogger. The

first, which preceded the CrowdLogger API and CLRMs, evaluated the coverage of

extracting queries, query pairs, and query-click pairs using different privacy policies

in the CrowdLogging framework. We ran the study for two weeks in January 2011

with 16 anonymous users. Not much significant data was collected—only a single

query was shared by at least five of the users—but the system implementation was a

success. Table 8.1 shows the number of distinct queries, query pairs, and query-click

pairs consisting of at least 1–5 instances or shared by at least 1–5 users. More details

of the study can be found in our previous work (Feild et al., 2011).

We also implemented a prototype of a system called the Search Task Assis-

tant (Feild & Allan, 2012), the left window in Figure 8.4. This system automatically

groups a user’s search history—queries and page visits—into search tasks. It is not

quite as advanced as the search task identification techniques we describe later (there

is no personalization yet), but it does allow users to re-group tasks, search their task
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CHAPTER 9

CONCLUSIONS

The two themes of this thesis are privacy and personalization. Personalization

at the user level allows information retrieval system implementors the opportunity

to tailor system behavior to each individual user, providing a unique, and hopefully

superior, experience. In this thesis, we considered privacy an orthogonal issue, but

one that is of increasing interest. Users want to protect their privacy while still

receiving the benefits of a service, like web search. Researchers want to share data

sets of user behavior with the research community at large, but must provide a policy

for protecting user privacy in order to satisfy the demands of users, lawyers (in the

case of industry researchers), and institutional review boards (in the case of academic

researchers).

It is within this context that we considered ways for collecting data privately and

the effects of personalization and privacy on three information retrieval applications.

In this chapter, we summarize the contributions of this thesis and give an overview

of future work.

9.1 Summary of contributions

We introduced a novel framework call CrowdLogging for collecting and mining

search behavior from a distributed group of users in a privacy-preserving manner.

This framework is useful for (1) researchers that must provide some mechanism to

protect users for approval by their institutional review boards and to gain the trust

of users, as well as for (2) large web search companies that want to release data to
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the research community. The framework logs user behavior on each user’s computer,

where the user has full control over it. Data is mined at the consent of users and sent

encrypted to a centralized server. The framework depends on secret sharing, which

allows the server to decrypt data only if it receives a sufficient number of distinct keys

for a given piece of data. For example, CrowdLogging can be used to decrypt the set

of queries that have been submitted by at least five users, without exposing queries

entered by fewer than five users, resulting in sanitized data.

We considered several privacy mechanisms for sanitizing data that work within

the CrowdLogging framework, formalizing two näıve mechanisms (FTa and FTu) and

introducing a novel (ǫ, δ)-indistinguishable mechanism (DPu). We described several

weaknesses of each of the mechanisms, including an empirical experiment on the

AOL query log data demonstrating the ability to infer unsupported artifacts using

FTa and FTu. We explored the parameter settings necessary under the DPa and DPu

mechanisms in order to achieve comparable query artifact coverage to that of FTa

and FTu using the AOL search log. We found that the parameters settings, namely

of ǫ, required to reach approximately the same coverage as frequency thresholding are

unreasonable—ǫ values of 10 or more for values of k < 200. Our findings pertain to

query artifacts released using the AOL search log and do not necessarily generalize

to other data sets, though the process we use can be applied to other data sets and

artifact classes.

We introduced a template for describing how local user data and global data

aggregated from many users are collected, processed, and combined for use within

an application. Leveraging local data, either by itself or in combination with global

data, allows us to provide a personalized experience for each user. We looked at how

personalization could be applied to three IR applications and analyzed the effect of

both personalization and sanitization on performance.
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The first application we explored was search task identification. We demonstrated

the variability in individuals’ perceptions of what constitutes a search task, finding a

Fleiss’ Kappa as low a 0.53 among six annotators’ labels across ten user histories. This

is the first such analysis in the search task identification literature that we know of. We

gathered annotations for over 500 user histories extracted from the 2006 AOL search

log, labeled by ten annotators—38 times as many user histories as used by the current

state of the art research. With this data, we introduced several models for providing

personalization, but found they perform similarly to using a non-personalized random

forest classifier, all achieving between 94% and 95% macro accuracy across users. Our

experiments showed the random forest classifier significantly out-performs the current

state of the art model. We further demonstrated that sanitization has an overall mild

effect on performance and can even improve performance under certain conditions,

namely when the FTu mechanism is used with k = 100.

The second application we considered was task-aware query recommendation, for

which we introduced a novel model that combines query recommendations for each

query within a task, giving more weight to queries based on either temporal dis-

tance or same-task likelihood. It relies on personalized search task identification, as

described above. We found that leveraging on-task search context provides a large

boost in MRR for many evaluation queries—more than 25% on average. However,

our CrowdLogging approach to privacy has a substantial impact on recommendation

performance, rendering the quality so low as to be useless in a real system in most

cases we consider.

The third and last application we considered was searcher frustration detection—

detecting when users become frustrated as they search for information. We explored

the effects of personalization on frustration detection and showed that it can provide

substantial performance improvements—as much as 9% in F0.5. We also demonstrate
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that with a simulated user base of 100,000 users performance of global models is not

affected by sanitization.

Overall, we found mixed results for sanitization. When used for classification

problems that rely on feature vectors as artifacts, sanitization has less of an impact

(and can even boost performance in the case of STI). However, when artifacts cover

a large space, such as query pair text used for query recommendation, sanitization

has a substantial, negative impact on performance—at least when aggregating across

617,000 users. One possible way to reduce this effect is to modify the artifact repre-

sentation, which we demonstrated can at the very least improve artifact coverage in

crowd logs. Another is to aggregate over many more users, something that is difficult

to achieve without access to a large-scale commercial product. If sanitization is still

an issue even after modifying the representation and increasing the user base, it may

be prudent to use an algorithm that does not depend on global data.

Finally, we described an open source system that implements the CrowdLogging

framework. Available as a browser extension for Firefox and Google Chrome, it also

serves as a platform with which to perform in-situ studies of user search behavior, eval-

uate IR applications, and provide research prototypes to interested parties. Crowd-

Logger allows researcher-defined JavaScript/HTML modules to be remotely loaded

and exposes an API for: accessing a user’s real-time or past browsing behavior; up-

loading data to a server privately, anonymously or in the clear (as approved by the

user); interacting with the user via HTML and JavaScript; accessing a remote server

for computational purposes; and saving data on a user’s computer. We described two

studies and one prototype that have been implemented with CrowdLogger.

9.2 Future work

There are many interesting avenues of future work stemming from this thesis. For

example, using CrowdLogger to perform user studies for each of the IR applications
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we considered here. Such user studies would be valuable for several reasons. First,

global data would be up-to-date, as opposed to the dated queries present in the AOL

search log. Second, in situ studies allow us to measure the performance of our systems

in their intended environment rather than simulations. Third, in user studies, users

are the annotators of their own data, so we do not have to worry about third-party

annotators guessing a user’s intentions.

One of the limitations of some of the experiments we conducted is that the AOL

search log is outdated and potentially biased (AOL was past its peak as a popular

search engine by 2006). Experiments with more recent search logs would provide

additional data points and allow us to draw more general conclusions from our results.

One avenue for accomplishing this is to partner with major web search companies,

such as Microsoft Bing or Google. Another is to conduct large scale user studies, e.g.,

with CrowdLogger.

In our analysis of task-aware query recommendation, we discovered that search

task context can be both helpful and harmful; extending this work, it would be inter-

esting to devise a method for automatically detecting when search task context will

be helpful. Another direction is to consider the effects of using other recommendation

algorithms besides term-query graphs—including methods that do not rely on search

logs—and whether search context helps there, as well.

We found that privacy was prohibitively expensive in terms of utility for task-

aware query recommendation. One hypothesis is that forming a term-query graph

from a much larger log—millions or billions of users’ worth of data—would allow for

more reasonable performance when sanitized. The most likely path to accomplishing

this would be to use a log from a large web search company.

When quantifying the effect of privacy on searcher frustration detection perfor-

mance, we used a large simulated training set. An interesting question is whether

the simulated training set is realistic. Future work should address this by obtaining
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frustration labels from a larger set of users. Other future work includes developing

a multi-class detector that can classify the cause of a user’s frustration within the

search process. Doing so may allow adaptive system to intervene in helpful ways.

In considering privacy, we explored the coverage of privacy mechanisms over differ-

ent artifact types. However, we did not perform an analysis of the content differences

between the data released under various privacy mechanisms. It is possible that

two mechanisms provide nearly identical coverage, but have substantial differences

in terms of the artifact revealed. Extending this line of thought, it is also unclear

what the relationship is between coverage and performance. That is, two data re-

leases have large differences in content, but similar coverages, will their performance

be drastically different, or very similar? We leave these explorations for future work.

When quantifying privacy, we relied on k for frequency thresholding and the the-

oretical bounds guaranteed under differential privacy, ǫ and δ. Future work should

consider other means for discussing, qualifying, and quantifying privacy loss—what

does it mean to a user that ǫ = ln(10)? What exactly are the risks associated with

participating in a data collection with a given level of ǫ or k? Without lay descrip-

tions, it is difficult to explain the risks to users, lawyers, and institutional review

boards.

We only considered batch mining operations: given a search log spanning some

amount of time, here is how it can be mined with respect to a privacy policy. However,

one of our long-term goals is to mine data from a live stream of user interactions over

a prolonged period of time. Future research questions surrounding this include how

to sample from users and how to handle older data. The latter question is interesting

because data that is relatively old—e.g., older than year—may be less sensitive or

less correlated with a user’s current search activity. These may have implications for

the differentially private mechanisms we considered, the result of which may reduce

the privacy loss associated with released data under those mechanisms.
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Another question we leave for future work is how much data does one need for an

application in order for privacy to not have a significant negative impact on effective-

ness. From our experiments, we know that this number will vary across applications

and artifact types—the effects of sanitization over feature vectors extracted from 352

users were mild for search task identification, while sanitizing query reformulations

from 617,000 users provided virtually no utility for task-aware query recommenda-

tion. In addition, there are many kinds of artifacts that one can extract from user

data and many applications that can use them; we have only scratched the surface

in this thesis, and a good vein of future work is to establish how different classes of

artifacts are affected by sanitization in different situations and how best to represent

artifacts to maximize performance in a wider variety of applications. Taken together,

a useful contribution would be a taxonomy of applications and artifact types with

which an implementor could estimate the minimum number of users required in order

to provide some level of performance.

There are many ways that personalization can be applied to a given information

retrieval application. In this thesis, we only looked at certain ones. Future work

should consider other methods of leveraging a user’s local information to improve

for the three applications we considered. For example, we could consider group-level

personalization (the privacy implications of this would need to be explored).

We have several long-term goals for CrowdLogger, one of which is to encourage

wide adoption of the platform. One of our intentions when designing CrowdLogger

was that it be used by a large number of users for prolonged durations, allowing

researchers to recruit participants from the existing user base. For this to happen, we

need to demonstrate the utility of CrowdLogger. One way to demonstrate usefulness

is to conduct a variety of user studies and remote evaluations of information retrieval

system using CrowdLogger. Another is to ensure it is easy for participants to use
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and easy for researchers to develop Study and App modules. Future work includes

further developing CrowdLogger to meet these requirements.
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APPENDIX A

GLOSSARY

Artifact: See search log artifact.

Crowd log: A histogram of artifacts extracted from one or more user logs.

Global model: A model built using data from a crowd log.

Information retrieval application (IR application): A component of an IR sys-

tem. Examples include: ranking, re-ranking, relevance feedback, and query

auto-completion. We specifically consider three additional applications: query

recommendation, search task identification, and frustration detection. In the

literature, this concept is often described as an information retrieval task. How-

ever, as a major piece of this dissertation concerns search tasks, we use the

phrase information retrieval application to avoid confusion between the two.

Local model: A model built using data from a user log.

Personalization: The act of incorporating information about a user into the pro-

cessing of an IR application.

Privacy policy: A protocol governing how artifacts must be treated with respect

to user privacy to form a crowd log. If a privacy policy does not specify any

actions to reduce privacy loss, we call it an empty privacy policy.

Sanitized global model: A global model built from a crowd log constructed with

a non-empty privacy policy.
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Search: A query and all of the search behavior occurring afterwards until either the

next query or the end of the session is encountered (Feild, Allan, & Jones, 2010).

Search log: A set of entries, each describing a search event. Entries often include an

identifier, a time stamp, an event descriptor, and additional information about

the event.

Search log artifact (Artifact): A piece of information mined from a search log.

An artifact can involve the composition of multiple entries within a log. Exam-

ples of artifacts include: individual queries, query-click pairs, query reformula-

tions, and feature vectors.

Search session (Session): All search behavior—queries, URL clicks, page views,

etc.—immediately following the end of the previous search session or the be-

ginning of the log if no previous search session exists until there is a period of

inactivity. We use a period of 26 minutes, as measured empirically by Lucchese

et al. on a sample of the AOL search log (Lucchese et al., 2011).

Search task: A search task consists of one or more searches that share a common

information need. In previous research, the terms query chains (Boldi et al.,

2008; Radlinski & Joachims, 2005) and goals (Jones & Klinkner, 2008) are

also used to describe tasks. Our definition is different from that used in the

information seeking literature, which considers a task to consist of several facets,

including its goal, source, and the process by which it is carried out (Li, 2009).

Searcher frustration: The level of agitation experienced by a user due to the mis-

match of search expectations and outcomes.

Sufficiently supported: An artifact is sufficiently supported by a privacy policy if

it exists in the sanitized crowd log.
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User search log (User log): A search log in which all events share the same iden-

tifier. This assumes that identifiers correspond to individual users.
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APPENDIX B

DETAILS OF DIFFERENTIAL PRIVACY

In this appendix, we provide the technical details for the three privacy mechanisms

based on differential privacy: DPu, DPa, and ZEALOUS. In order provide a provably

private mechanism, we can consider relaxations of differential privacy, such as (ǫ, δ)-

indistinguishability, introduced by Dwork et al. (Dwork, Kenthapadi, et al., 2006).

This is defined as follows:

Definition B.0.1 ((ǫ, δ)-indistinguishability (Dwork, Kenthapadi, et al., 2006)). A

randomized algorithm A is (ǫ, δ)-indistinguishable if for all data sets D and D′ that

differ in at most one individual’s data, and all S ⊆ Range(A):

Pr[A(D) ∈ S] ≤ exp(ǫ) · Pr[A(D′) ∈ S] + δ.

With this relaxation, we have introduced a slack variable, δ, which allows more

privacy to be leaked. Generally, it is recommended that 0 < δ < 1
U
, where U is the

number of users contributing to the input data sets (Korolova et al., 2009).

Korolova et al. (Korolova et al., 2009) , Götz et al. (Götz et al., 2011), and

we (Feild et al., 2011) established (ǫ, δ)-indistinguishable algorithms for releasing

search log data, which we describe next. First, we introduce some vocabulary that

will be used by the various algorithms. Let U be the number of users contributing

to an input set, Count(a,A) be a function that counts the number of instances of a

that occur in set A, Countu(a,A) be a function that counts the number of distinct
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Algorithm 1: Release private query click graph (Korolova et al., 2009)

Input : A search log D; the maximum number of queries and clicks each user
may contribute: d, dc, respectively; Laplacian noise parameters:
b, bq, bc (these stand for: noise for thresholding on k, noise for releasing
queries, and noise for releasing clicks); the query threshold, k.

Output: A query-click graph.

1 Set Q and C to be the first d queries and dc clicks from each user in D,
respectively

2 Q′ ← {q : Count(q,Q) + Lap(b) > k}
3 For each q ∈ Q′, output 〈q,Count(q,Q) + Lap(bq)〉
4 For each URL u in the top ten results for q ∈ Q′, output
〈q, u,Count(u, C) + Lap(bc)〉

users that contributed a in set A, and Lap(b) be a function that randomly samples a

number from the Laplacian distribution with µ = 0 and variance b.

The goal of the algorithm introduced by Korolova et al. is to release a sanitized

query-click graph from a search log. The process is described in Algorithm 1.

We tailor this slightly to deal with arbitrary artifacts, allow any set of d artifacts

to be used rather than the first d, and we remove the steps related to building a query

click graph, yielding the artifact thresholding differential privacy algorithm (DPa),

shown in Algorithm 2. Assuming the experimenter sets the privacy parameters ǫ and

δ, Korolova et al. suggest setting:

k = d

(
1− ln

(
2δ
d

)

ǫ

)
, (B.1)

b =
d

ǫ
. (B.2)

This setting of k minimizes the noise added in step 3 of the algorithm and assumes

that exp
(
1
b

)
≥ 1 + 1

2 exp( k−1
b )−1

.

Götz et al. describe the ZEALOUS algorithm, which is described in Algorithm 3.

Two important distinctions between the ZEALOUS and DPa algorithms are that

where DPa allows each user to contribute d total artifacts and defines k in terms of
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Algorithm 2: Artifact thresholding differential privacy (DPa)

Input : A set of artifacts, D; the maximum number of artifacts each user may
contribute d; Laplacian noise parameters b, br (these stand for: noise
for thresholding on k and noise for releasing); the artifact threshold k.

Output: A histogram of artifacts with noisy impression frequencies.

1 Set A to be d artifacts submitted in D by each user
2 A′ ← {a : Count(a,A) + Lap(b) > k}
3 For each a ∈ A′, output 〈a,Count(a,A) + Lap(br)〉

the number of instances of an artifact, ZEALOUS restricts each user’s contribution

to d distinct artifacts and defines k in terms of the number of distinct users that

contributed each artifact. ZEALOUS can achieve (ǫ, δ)-indistinguishability with the

following settings:

b =
2d

ǫ
, (B.3)

k = d

(
1− log

(
2δ
d

)

ǫ

)
, (B.4)

k′ = 1, (B.5)

where k, k′, d, and b are defined as in Algorithm 3. Note that these settings are

very similar to those proposed by Korolova et al. However, the noise parameter b is

given twice the weight. This is because of how Götz et al. define the sensitivity of

ZEALOUS. Let us take a moment to understand what sensitivity is and how it can

be used. Dwork et al. (Dwork, McSherry, et al., 2006) define sensitivity as follows:

Definition B.0.2 (Sensitivity (Dwork, McSherry, et al., 2006)). The L1 sensitivity

of a function f : Dn → R
m is the smallest number S(f) such that for all search logs

D,D′ ∈ Dn that differ in a single individual’s d artifacts,

||f(D)− f(D′)||1 ≤ S(f).
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Algorithm 3: ZEALOUS (Götz et al., 2011)

Input : A set of search artifacts, D; the maximum number of distinct
artifacts each user may contribute d; Laplacian noise parameter b; the
user thresholds k, k′.

Output: A histogram of artifacts with noisy user frequencies.

1 Set A to be some set of d distinct artifacts submitted in D per user
2 A′ ← {a : Countu(a,A) > k′}
3 For each a ∈ A′, output 〈a, u〉 : u = Countu(a,A

′) + Lap(b) ∧ u > k

In the case of the algorithms listed above, f is a function that builds a histogram

of artifacts and their counts. The confusion arises around how we define search logs

that differ. If we think of D has having a particular user’s data and D′ as not, then

the sensitivity of building a histogram is d, since a user’s data can only effect at

most d elements of the histogram. If, however, we consider D and D′ to differ by

the contents of the single user—rather than use one subset of d artifacts from the

user, we use a different set of d artifacts—then the sensitivity of creating a histogram

is 2d, since in the edge case there is no overlap between the two sets of d artifacts.

According to Dwork et al. (Dwork, McSherry, et al., 2006), the noise parameter b

should be set as follows:

b =
S(f)

ǫ
. (B.6)

Thus, if we consider the latter variation of sensitivity, then we can update Equa-

tion B.2 to match Götz:

b =
2d

ǫ
. (B.7)

We introduced an algorithm called user thresholding differential privacy (DPu) (Feild

et al., 2011), a modification of the DPa algorithm that maintains that each user can

contribute d total artifacts, but where the threshold k is based on the number of users

that contributed an artifact, as shown in Algorithm 4.
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Algorithm 4: User-thresholding differential privacy (DPu)

Input : A set of search artifacts, D; the maximum number of artifacts each
user may contribute d; Laplacian noise parameters b, br (these stand
for: noise for thresholding on k and noise for releasing); the user
threshold k.

Output: A histogram of artifacts with noisy impression frequencies.

1 Set A to be d artifacts submitted in D by each user
2 A′ ← {a : Countu(a,A) + Lap(b) > k}
3 For each a ∈ A′, output 〈a,Count(a,A) + Lap(br)〉

To prove that this technique is (ǫ, δ)-indistinguishable, we need only slightly alter a

portion of the proof presented by Korolova et al. Specifically, we can update Equation

9 (Korolova et al., 2009), which in its original form1 is as follows:

1

2

ny∑

i=1

exp

(
Count(yi, D

′)− k

b

)
≤ d

2
exp

(
d− k

b

)
, (B.8)

where D′ is a dataset with a single user added, versus D, which is the same dataset

but with that user removed and y1, . . . , yny
is the set of queries which are unique to

D′. Count(yi, D
′) can return at most d, since a user can only contribute at most d

artifacts. However, under the user frequency model, Countu(x,D) is used in place

of Count(x,D). Thus, Countu(yi, D
′) is at most 1, since yi is unique to the one user

whose data is in D′ but not D. This yields the following, tighter bound:

1

2

ny∑

i=1

exp

(
Countu(yi, D

′)− k

b

)
≤ d

2
exp

(
1− k

b

)
. (B.9)

This has ramifications for δ, giving us the following optimal user frequency threshold:

k = 1− d ln(2δ
d
)

ǫ
. (B.10)

1We have changed the notation slightly to be consistent with the notation used in this thesis.
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DPu has the same privacy guarantees as DPa, but because of the change in the

definition k, if we set k constant, d under the DPu model is always the same or

greater than d under the DPa model. In short, DPu allows for more artifacts to

be contributed per user than with the DPa algorithm. However, at the same time,

the threshold criteria are tougher for DPu—an artifact must be issued by k distinct

users, not issued k times by potentially fewer than k users, as is allowed with the

DPa algorithm.

Because of their differences, each of these (ǫ, δ)-indistinguishable algorithms have

different utility with respect to the number of artifacts they release given a common

input search log D.

Going beyond (ǫ, δ)-indistinguishability, Götz et al. prove that with the right

parameter configuration, the ZEALOUS algorithm is also (ǫ, δ)-probabilistically dif-

ferentially private (Götz et al., 2011). This is a more conservative relaxation of dif-

ferential privacy, yielding stronger privacy guarantees than (ǫ, δ)-indistinguishability,

defined as follows:

Definition B.0.3 ((ǫ, δ)-probabilistic differential privacy (Götz et al., 2011; Machanava-

jjhala et al., 2008)). A randomized algorithm A is (ǫ, δ)-probabilistically differentially

private if for all data sets D we can divide the output space Ω into two sets Ω1,Ω2

such that

Pr[A(D) ∈ Ω2] ≤ δ,

and for all data sets D′ that differ from D by at most one individual’s data and all

S ⊆ Ω1:

exp(−ǫ) · Pr[A(D′) = S] ≤ Pr[A(D) = S] ≤ exp(ǫ) · Pr[A(D′) = S].
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As Götz et al. explain, this definition says that A satisties ǫ-differential privacy

with high probability. All of the outputs that breach ǫ-differential privacy are included

in Ω2, and the probability of an output being placed there is controlled by δ.

In ZEALOUS, (ǫ, δ)-probabilistically differential privacy can be attained using the

following parameter configuration (Götz et al., 2011):

b ≥ 2d

ǫ
, and

k − k′ ≥ max

(
−b ln

(
2− 2 exp

(−1
b

))
,−b ln

(
2δ

U · d/k′

))
.

In order to minimize the second threshold, k, the authors show that k′ should be set

as:

k′ =

⌈
2d

ǫ

⌉
.
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