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ABSTRACT

Event detection is a recent and challenging task. The aim is
to retrieve the relevant videos given an event description. A
set of training examples associated with the events are gen-
erally provided as well, since retrieving relevant videos from
textual queries solely is not feasible. Early attempts of event
detection are based on low-level features. High level features
such as concepts for event detection have been introduced as
an alternative to low-level features since high-level features
provide semantically richer information. In this work, we
focus on object-based concepts and exploit their dependen-
cies using a Markov Random Field (MRF) based model for
event detection. This enables us to model likelihood of con-
cepts, either pairwise or individually, present in the videos.
Here, we propose a method incorporating the strengths of
concepts and MRF based model for event detection task.
We evaluate our models on an Multimedia Event Detec-
tion (MED) dataset from NIST’s 2011 TRECVID Multime-
dia, which consists of approximately 45,000 unconstrained
videos. This type of work is beneficial from several respects.
First, we focus on the task of concept-based event detection
using a very large number of unconstrained Youtube videos.
Second, we introduce the application of MRF’s for the event
detection purpose, which can further be enhanced incorpo-
rating other features or temporal information. At last but
not means least, we exploit the occurrence and co-occurrence
of object based concepts for event detection that enables us
to reveal interactions of such concepts in the video level.
Experimental results show that revealing these interactions
provide promising event detection results.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval
models; I.2.10 [Computing Methodologies]: Artificial In-
telligence—Vision and Scene Understanding
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1. INTRODUCTION
In recent years there has been considerable interest in

finding ways to search large amount of data generated in
the form of videos. A recent report indicates that there
were more than 50 billion views by U.S. Internet audience
on December 2013 [3]. Searching video clips online becomes
crucial since 50 billion views should be preceded with a huge
number of searches.

The specific problem tackled in this paper is event detec-
tion in complex videos where we are given a query with a
set of example videos and our task is to rank the videos in
terms of relevance to the given query. A query could include
text, audio and other modalities but in this paper we focus
on the visual aspects. This procedure produces a ranked list
of videos where the videos relevant to the queried event are
located higher in the list than the non-relevant ones.

Event detection is challenging since the large number of
videos and frames mean that data processing is often an
issue. Further, many videos on sites such as YouTube are
unconstrained in how they are recorded (often by amateurs)
and suffer from a number of issues including low-resolution,
high degrees of motion blur, and camera motion. Even
though event detection and action recognition suffer from
the same issues, event detection is different from action
recognition where a fair amount of work has been done [17,
21]. The main difference is that, events can be composed of
one or more actions. For example, events such as “Birthday
Party” may not necessarily involve any actions while other
events such as “Parkour” may involve multiple atomic ac-
tions. Further, videos may vary widely in length and the
event may form only a small part of the video. Therefore,
event detection can be considered more difficult than action
recognition.

The best results on event detection have involved run-
ning classifiers on low level features [20, 16]. One approach
to using concepts for video retrieval (e.g the LSSCOM ef-
fort [15]) involves detecting specific concepts in videos and
running text queries against those concept outputs. There
are two limitations to most of the concept based approaches.
First, events are not simple enough to be revealed using only



the occurrences of the concepts. Second, most of these con-
cept detector creations are based on the given dataset. In
other words, concept detectors are trained on the event de-
tection datasets. Here as an alternative to training concept
detectors on the event detection sets, we learn our object-
based concept detectors on the images. Then we make use
of such detectors to measure the likelihood of the concepts
in the videos. The first issue is addressed by exploiting co-
occurrences of the concepts in addition to their occurrences.
We make use of an MRF based model to exploit dependen-
cies of the object-based concepts. Here, we focus on two
different dependency settings; full independence and spatial
dependence. We aim to use occurrences and co-occurrences
of the object-based concepts to obtain a higher level of rep-
resentation for the unconstrained videos for event detection.
Exploiting such occurrences enables us to reveal the inter-
actions of object-based concepts in the videos.
For example, the occurrence of tire and car concepts play

an important role for discriminating the events involved with
a vehicle such as “driving a car”’ and “visiting a tire shop”;
however, the co-occurrence of these concepts is more dis-
criminative for the events such as “changing a tire”. The
co-occurrence of car and tire concepts may imply changing
a car tire; however, individual occurrences of these concepts
may imply different semantics than changing a tire.
In Figure 1 we summarize our method. We start with

getting responses of object-based concept detectors for video
frames. Then we feed those responses to our MRF based
model. After exploiting dependencies of the concepts, we
rank videos using the outputs of our models. We create our
object-based concepts using a number of static images from
the ImageNet [6].

Video Frames

Concept Detectors

MRF Model

Ranked List

V2

V1

V3

Figure 1: Illustration of the proposed approach.

We empirically show on the 2011 TRECVID multimedia
event detection (MED) task that exploiting concept depen-
dencies using an MRF based retrieval model performs as
good as the best low level features and outperforms them for
many events. Even though our aim is detection rather than
recognition, we compare our models with an event recog-
nition study where state-of-the-art object detectors such as
ObjectBank/DetectionBank are used and show that our mod-
els outperform state-of-the-art detectors.
The rest of the paper is organized as follows; we first pro-

vide a summary of the previous work on event detection.
It is followed by the problem formulation that consists of
a retrieval model and concept detection. We then provide
information about the experimental settings. Afterwards ex-
perimental results and discussion are presented. We finally

conclude the paper.

2. RELATED WORK
In this section, we briefly summarize the related work in

the event detection literature. Ballan et al. [2] present a
method to introduce temporal information for video event
detection with a BoW (bag-of-words) approach. Zhou et
al. [24] study video event detection by encoding a video
with a set of bag of SIFT feature vectors and describe the
distribution with a Gaussian Mixture Model (GMM). Jiang
et al. [8] provide a summary of experiments for TRECVID
MED 2010. They employ low-level features such as SIFT
and spatial-temporal interest points (STIP) to capture time-
space volumes. They also compute a histogram of oriented
gradients (HOG) and a histogram of optical flow (HOF)
in 3D video patches. The audio is represented using mel-
frequency cepstrum (MFC). In addition to low-level features,
they also study the creation of concept detectors. According
to their results, the fusion of STIP, SIFT and MFC provides
better results than using individual descriptors. Besides,
they report that STIP is slightly better than SIFT in terms
of average precision (AP). Tamrakar et al. [20] also show
that by fusing a large number of low level detectors they can
get state of the art performance for event detection on the
NIST MED’11 task. They also introduce trajectory based
features called DTF-HOG and DTF-MBH with the former
being the best performing feature in their set. Natarajan
et al. [16] do event detection with low level features as well
as other modalities but demonstrate that low level features
alone give good performance.

Snoek et al. [19] focus on indexing a number of semantic
concepts. Ma et al. [12] address two basic problems in event
detection; detecting more generic and complicated events
which is the major goal of TRECVID MED task, and detec-
tion using fewer examples. Lan et al. [23] introduce double
fusion –combination of early and late fusion– as a competi-
tor to early and late fusion. Althoff et al. [1], Izidinia and
Shah [7], and Habibian et al. [5] focus on event recognition
rather then event detection (i.e., the main focus is recog-
nition but not ranking) Yang and Shah [22] discover data-
driven concepts from multi-modality signals (audio, scene
and motion) to describe high level semantics of videos. The
ObjectBank representation [10] creates a histogram of ob-
jects by running multiple object detectors - these are not a
per image classifier but actually try to return the location of
the object. This was originally used to classify an image into
scenes. They apply their technique to events in static im-
ages. A variation of ObjectBank called DetectionBank [1]
has been applied to event recognition. ObjectBank based
techniques are computationally expensive since each object
detector must be run over every frame in the video. Besides,
DetectionBank is applied for the task of event recognition
where the information from other events are used as in the
case of action recognition. We also note the ActionBank [18]
work for the related task of action recognition where videos
are used to train a set of temporal action detectors and then
the distribution over these actions is used to recognize them.
Again this is very computationally expensive and time con-
suming. Liu et al. [11] and Mazloom et al. [13] also focus on
concepts for event detection. Most of the work above either
focus on event recognition, not event detection like the pro-
posed approach. Event recognition is a different task, where
a number of events are involved in the same model, than



event detection in which we create binary ranking models
per event. In other words, event recognition aims to recog-
nize events of a video, whereas event detection aims to rank
videos with respect to their relevance to an event query.
From the perspective of studies that focus on event detec-
tion, they do not exploit dependencies of the concepts for
event detection as we do.

3. PROPOSED APPROACH
In our work we focus on a number of object-based concepts

and use these concepts for given a test event. We exploit the
dependencies of such concepts for a better retrieval. In the
next section, we explain the MRF based retrieval model that
is used to model the dependencies of concepts.

3.1 Retrieval Model
Here, we describe a Markov random field (MRF) approach

to model concept dependencies. An MRF is commonly used
in the machine learning domain and is an undirected graph-
ical model. It models the joint distributions. A Markov
random field is constructed using a graph G. The nodes rep-
resent the random variables and edges define the dependen-
cies [14]. In our work, we assume G consists of concepts
C = {c1, c2, ..., cn} and a video node V. The joint distribu-
tion over the random variables in G is defined as follows;

PΛ(C, V ) =
1

ZΛ

∏

l∈L(G)

ψ(l; Λ) (1)

where L is the set of cliques in G and ψ is a non-negative
potential function over a clique parameterized by Λ. ZΛ =
∑

C,V

∏

l∈L(G) ψ(l; Λ) is a normalizer and is very costly to

compute [14, 4]. Removing the normalizer does not change
the final ranking of the videos.
Metzler and Croft [14] used an MRF based model to ex-

ploit term dependencies, and Feng and Manmatha [4] used
a similar approach for single image retrieval. We modify the
approach used in these studies and the posterior for ranking
can therefore be computed as follows:

PΛ(V |C) =
PΛ(C, V )

PΛ(C)

rank
= logPΛ(C, V )− logPΛ(C) (2)

rank
=

∑

l∈L(G)

logψ(l; Λ)

Potential functions are usually parametrized as follows;

ψ(l; Λ) = e
λlf(l) (3)

where f(l) is a real-valued feature function over clique
values and λl is the weight for that particular feature. Then
Equation 2 becomes;

PΛ(V |C)
rank
=

∑

l∈L(G)

λlf(l) (4)

We would like to focus on two different dependency set-
tings in our model; 1) fully independent concepts fI , and
2) spatially dependent concepts fSd

. Expanded with two
different dependency settings, Equation 4 becomes:

PΛ(V |C) =
∑

l∈I

λIfI(l) +
∑

l∈Sd

λSd
fSd

(l) (5)

where I is defined to be the cliques containing a concept
and a video V , Sd is the set of cliques consisting of a video
node V and two concepts occurring spatially together. Even
though we formulate our dependency models together here,
we also provide results of the models individually. Below we
explain the potential functions that we use in our work.

3.1.1 Potential Functions (ψ)

Full Independence Model (ψI)
The potential function for the fully independent model

can be defined over 2-cliques where there is an edge between
a concept ci and the video V . This potential function mea-
sures how likely a concept ci is in the video. We define our
first potential function in the following way;

ψI(l) = λIfI(l) (6)

where the feature function is defined over 2-cliques of con-
cepts ci where i = 1, ..., n and a video V . A video V consists
of a number of video frames V = {v1, v2, ...vt}. Therefore,
the function becomes (when we substitute V with a number
of video frames {v1, v2, ...vt});

ψI(l) = λIfI(l)

= λIωl

log
∑

t
δ(ci, vt)

maxi{log
∑

t
δ(ci, vt)}

(7)

where δ(ci, vt) is the response of the concept ci obtained
from object detectors at video frame vt. We explain the
concept detection and responses in the next section in de-
tail. Here ωl is defined to be a co-efficient associated with
a concept ci in a clique l. When we substitute the function
into Equation 5, it becomes;

=
∑

l∈I

λIfI(l) +
∑

l∈Sd

λSd
fSd

(l)

=
∑

l∈I

λIωl

log
∑

t
δ(ci, vt)

maxi{log
∑

t
δ(ci, vt)}

+
∑

l∈Sd

λSd
fSd

(l)
(8)

In Figure 2, we illustrate a fully independent model for an
example in which there are two video frames V = {v0, v1}
and three concepts c1, c2, c3. The cliques for the given ex-
ample are (v0, c1), (v0, c2), (v0, c3), (v1, c1), (v1, c2), and
(v1, c3).

V

v0 v1

c1 c2 c3

Figure 2: Illustration of fully independent model
over a video V = {v0, v1} and concepts c1, c2, c3.



Spatial Dependence Model (ψSd
)

In addition to fully independent model, we also exploit
the spatial dependencies between concept pairs. Here, we
consider pairs of concepts where they are spatially depen-
dent. A spatial dependence is defined if two concepts occur
together at the same video frame vt. In this model, the de-
pendencies are formed between a video frame and a pair of
concepts. The spatial dependence model is illustrated for an
example where a video V consists of two video frames v0, v1
and there are three concepts c1, c2, c3 in Figure 3. In the
example, the cliques are (v0, c1, c2), (v0, c1, c3), (v0, c2, c3),
(v1, c1, c2), (v1, c1, c3), and (v1, c2, c3). In Figure 3, there are
edges between concepts; whereas, these edges are removed
in fully independent model (see Figure 2).

V

v0 v1

c1 c2 c3

Figure 3: Illustration of spatial dependence model
over video frames V = {v0, v1}, and concepts c1, c2, c3.

For the spatial dependence model we define the potential
function considering the video frames in the following way;

ψSd
(l) = λSd

fSd
(l)

= λSd
ωl

log
∑

t
δ(ci, cj , vt)

maxi{log
∑

t
δ(ci, cj , vt)}

(9)

where δ(ci, cj , vt) is the response of concepts ci and cj at
video frame vt. Similar to the fully independent model, here
ωl is defined to be a co-efficient associated with a concept ci
and cj in a clique l. When we substitute the functions into
Equation 5, it becomes;

=
∑

l∈I

λIfI(l) +
∑

l∈Sd

λSd
fSd

(l)

=
∑

l∈I

λIfI(l) +
∑

l∈Sd

λSd
ωl

log
∑

t
δ(ci, cj , vt)

maxi{log
∑

t
δ(ci, cj , vt)}

(10)

3.2 Concept Detection
In this work, we create our concept detectors on top of the

images derived from ImageNet rather than creating them
using the training videos. In this way, for different sets of
training and test videos we do not have to re-create our con-
cept models; therefore, they are independent of the training
and test videos.
We focus on 1,000 object-based concepts and 100 images

from ImageNet [6] for each concept. We extract dense SIFT

(DSIFT) features at multiple scales (100%, 50%, and 25%)
with a step size of 10 pixels and the width and height of
the images are bounded by 300 pixels). We quantize the
raw DSIFT descriptors using a vocabulary of size 1,000 and
obtain the bag-of-word (BoW) representation for each im-
age. Having quantized raw descriptors and obtained BoW
representations, we follow a simple but effective method to
create concept detectors. We use a multi-class SVM and the
BoW representation for each image to create a multi-concept
model. In order to get the concept responses, we first split
videos into frames by sampling 3 frames/second. We create
a BoW representation for each frame using DSIFT descrip-
tors. We then test each video frame against the model of
the concept detectors. Since we have 1,000 concepts for each
frame we have 1,000 concept outputs (Φi output of concept
ci). The outputs measure how much a specific concept is
likely to be in a video frame. The larger the output of a
concept, the higher the chance that the concept is in that
video frame. We make use of these outputs to compute δ
functions. Note that concept detectors are independent of
event detection. and we do not use any information from
the videos of event detection datasets.

Given that our aim is to use occurrences and co-occurrences
of the object-based concepts to obtain a higher level repre-
sentation of videos, while using the knowledge from image
level to a higher (i.e. video) level we only choose the concepts
that may be more representative than the others. We select
the k-highest responses among the others instead of using all
the concepts. We try to move to a higher (video) level while
carrying as much knowledge as possible from the lower (im-
age) level, considering the computation cost. Limiting the
number of concepts to be considered in the MRF framework
improves the scalability and reduces the data requirements.
At the same time, it provides a sparser representation and
discards the concepts where the probability of occurrences
are too low to be representative. Keeping these motivations
in mind, we define δ(ci, vt) as follows;

δ(ci, vt) =

{

1, if Φi ≥ Φ′

0, otherwise

where Φi is the output of the concept ci at video frame vt
and Φ′ is the kth maximum response among the concept re-
sponses for video frame vt. Similarly the function δ(ci, cj , vt)
is defined to be as follows;

δ(ci, cj , vt) =

{

1, if Φi ≥ Φ′ and Φj ≥ Φ′

0, otherwise

The δ function enables us to focus on the concepts which
have a relatively higher chance to be in a video frame. In
our work, we focus on k concepts for a video frame, where
those concepts have the k maximum responses among all of
the concepts. We search for the best k value on a validation
set and explain this process in Experimental Setup section.

4. EXPERIMENTAL SETUP
In order to test the performance of our models, we focus

on NIST’s TRECVID MED 2011 evaluation set which uses
ten events. We have chosen this dataset since most of the
previous work in event detection focused on many differ-
ent settings, and this dataset was the largest publicly avail-
able dataset published so far. We use three collections; the



event kit (EC) and a transparent development kit (DevT)
for training and the DevO set for testing. These events
are; (E006) Birthday party, (E007) Changing a vehicle tire,
(E008) Flash mob gathering, (E009) Getting a vehicle un-
stuck, (E10) Grooming an animal, (E011) Making a sand-
wich, (E012) Parade, (E013) Parkour, (E014) Repairing an
appliance, (E015) Working on a sewing project. The EC
collection has 2,062 videos each of which is relevant to an
event. The DevT collection has near misses for all events.
For an event a near miss is a video where the event is not
performed in the required way. For example, for the event
“Landing a fish”, a fishing video where no fish is landed is not
counted as relevant (these judgments are NIST’s not ours).
The total number of videos is a little bit above 10,000 in
DevT. The DevO test set has 32,061 videos. Videos may
vary in length from 6 seconds to 3 hours.
In order to evaluate the experiments we calculate missed

detection (MD) & false alarm (FA) rates - specifically MD
at FA=5%. Even though NIST moved to MAP scores, we
provide our numbers in MD scores because only MD num-
bers are available in this large dataset. By this way, we can
directly compare our results with Tamrakar et al. [20]. False
Alarm is the ratio of the number of non-positive clips when i
clips are retrieved to the total number of non-positive video
clips in the dataset. Missed detection is the ratio of missed
positive clips when i clips are retrieved to the total number
of positive video clips in the dataset for that query. A lower
missed detection score means a better retrieval.
We train the parameter k on a validation set obtained

by combining EC and DevT and then splitting it so that
70% is used for training and 30% for validation (we need
to do this since DevT does not have any positives for the
relevant events). Using a grid training procedure we obtain
k = 20 as the optimal value. We follow the same procedure
for searching the best values for the parameters λI and λSd

.
When we search for the best co-efficients for the cliques we
would like to maximize the number of video pairs -one rele-
vant and one non relevant- so that relevant video is ranked
higher than non-relevant video. Joachims [9] showed that
this ranking problem can be formulated by introducing non-
negative slack variables to the optimization problem. We
follow the same approach to search for the best co-efficients
for the models. For each event we create a model that ex-
ploits the dependencies of the concepts. Then the videos in
the test bed are ranked using such models.
In our experiments we focus on two different spatial lay-

outs. For a fully independent setting we make use of a spa-
tial pyramid representation which is shown to be effective
in computer vision. We create a pyramid with three levels
(0,1,2). In Figure 4, we illustrate the spatial pyramid layout.
Level 0 is the original image (one region), in level 1 each im-
age is divided into 4 regions and in level 2 into 16 regions.
For a video frame when we use a fully independent setting
we have 21 regions in total since we consider level 0, level
1, and level 2 together. For the spatial-dependence case,
we focus only on level 0 and level 1 together for practical
reasons.

5. RESULTS AND DISCUSSION
Event recognition comparison: Although our aim in

this work is event detection, we first compare our concepts
with a recent attempt using state-of-the-art object detectors
for event recognition [1]. In order to compare our concepts
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Figure 4: Illustration of the spatial pyramid layout.

with the study [1], we simulate their experimental settings
since they have a different setting. They focus on a very
small dataset consisting of approximately 2,000 videos and
recognition is performed rather than detection. In the task
of event detection, the aim is to rank the videos according to
the relevance to a given test event; whereas, in event recog-
nition it is formulated as recognizing the event of a given test
video. Event recognition is a variant of action recognition.
We create a multi-class SVM using our fully-independent
model only. We re-formulate our clique dependencies into
vector space i.e. treating each clique as a feature value. We
obtain a recognition accuracy of 64.54% with our concepts;
whereas, they obtain recognition accuracies of 58% with Ob-
jectBank features, and 56% with DetectionBank features in-
dividually.

Event detection results: Table 1 shows the results on
the MED11 dataset using low level features as reported by
[20] as well as our results. Most columns are self-explanatory.
The DTF-HoG and DTF-MBH are trajectory based fea-
tures. Note that on eight of the ten events DTF-HoG is
the best and on the remaining two, DTF-MBH is the best
among the low-level features. The last columns show the
results of our models. Although our models do not consider
temporal information, they outperform the best low-level
features in many cases. These results were amongst the top
ones in the MED11 competition and are, therefore, a rea-
sonable baseline. The results with low-level features were
produced using SVM with an intersection kernel[20].

When we compare the fully independence and spatial de-
pendence model, in more than half of the cases fully in-
dependence model outperforms spatial dependence model.
For some of the cases spatial dependence model is better
than fully independent model in terms of retrieval perfor-
mance. This might be explained with the fact that for the
events “E006”, “E008”, “E011”, and “E012” co-occurrences
are slightly more important than the occurrences of the
individual concepts. It might be claimed that the events
“birthday party”, “flash mob gathering”, “making a sand-
wich”, and “parade” involves more interaction of concepts
than the other events. When we consider our final model
that employs both dependency settings together, we observe
that exploiting such dependencies together improve the re-
trieval performance for all cases.

Our models provide the best MD rates for the events;
“changing a vehicle tire,” “flash mob gathering,” “making
a sandwich,” “repairing an appliance,” and “working on a



Table 1: Results from [20] for different features
as well as of our models. The columns FI (fully-
independent model; ψI), SD (spatial-dependence
model; ψSd

), and FI + SD (when we consider fully-
independent and spatial-dependence model together
in the MRF model) show the results of our models.
Results report MD at 5% FA.

Event GIST SIFT c- mo- STIP DTF DTF FI SD FI+SD

SIFT SIFT HoG MBH

E006 76.2 66.9 55.2 77.3 59.3 39.0 47.1 51.7 51.2 48.8

E007 76.1 67.3 51.3 91.2 64.6 37.2 45.1 35.4 41.1 32.7

E008 32.6 22.2 18.5 79.3 20.0 14.1 14.1 12.6 10.2 9.5

E009 71.1 49.4 44.6 78.3 43.4 26.5 38.6 31.3 32.9 30.4

E010 85.2 81.5 69.1 95.1 67.9 50.6 61.7 58.0 60.8 51.9

E011 72.3 78.8 53.3 89.8 65.0 55.5 61.3 49.6 47.7 43.0

E012 61.5 37.4 39.6 59.9 46.0 26.7 18.2 40.6 37.6 32.3

E013 67.7 55.9 45.1 90.2 22.6 19.6 12.8 30.4 34.7 29.7

E014 63.6 43.2 37.5 75.0 34.1 28.4 36.4 26.1 32.9 23.2

E015 80.5 68.3 58.5 80.5 52.4 43.9 43.9 45.1 48.7 42.1

sewing project”. When we analyze the ranked list for the
event “birthday party”, false alarms are mostly near misses.
In other words, they are videos about gatherings but they
are not necessarily birthday parties. For the case of “getting
a vehicle unstuck” false alarms are the videos involving cars
and people in the car. However since the event of getting a
vehicle unstuck is not fully performed they are counted as
near-misses and not-relevant to that particular event. For
the event of“grooming an animal”false alarms involve videos
of animals such as a yellow python, a cat, a black and a white
kitten, and a black dog. These animals are also involved
with some sort of an interaction with people such as play-
ing; however, not grooming. Our models cannot outperform
the best trajectory features for some events such as “birth-
day party” (E006), and “parade” (E012). Given that our
models focus on object based concepts, features exploiting
temporal information work better in such events since they
model the actions rather than the object dependencies. We
plan to add temporal dependencies in our retrieval model;
however, we have left this part for future work.
[20] fused all the low-level features; GIST, SIFT, cSIFT,

mo-SIFT, STIP, DTF-HOG, and DTF-MBH that they have
in their work and obtained very promising results. We also
fused our results with DTF-HOG and DTF-MBH because
they model the motion rather than the objects. In Table 2,
we provide the fusion of low-level features provided in [20] as
well as fusion of our models with HOG andMBH features. In
almost all of the cases, fusion with our models outperforms
the fusion of [20]. Only for events seven and eleven their
fusion provides better scores. This is because MBH does not
perform well for these events and hence the fusion results are
worse. Perhaps this can be solved using a linear combination
of features; however, we do not have their training sets so
that we cannot create a validation set for tuning co-efficients.
Instead we first standardize the scores of each individual
feature set so that they have zero mean and unit variance.
Then we take the arithmetic mean of the standardized scores
and do the ranking using these scores.
For the events “birthday party,” “flash mob gathering,”

“getting a vehicle unstuck,” “grooming animal,” “parade,”
“repairing an appliance,” and “working on a sewing project”,
our models improve the results of low level features. For the
event “parkour” the results are the same, and for the events

Table 2: Fused results from [20] (fused) and fu-
sion results of our models (FI+SD) with DTF-HOG
and DTF-MBH ((FI+SD)+HOG+MBH). Results
report MD at 5% FA.

Event Fused (FI+SD)+HOG+MBH

E006 29.7 28.1
E007 22.1 23.4
E008 7.4 6.3
E009 27.7 21.5
E010 40.7 37.9
E011 35.8 36.7
E012 13.9 8.6
E013 8.8 8.8
E014 22.7 19.5
E015 35.4 31.6

Avg. 24.4 22.2

“changing a vehicle tire,” and “making a sandwich” fusion of
low-level features is slightly better than fusion with our mod-
els. The results show that incorporating object-based con-
cepts in addition to action concepts helps. Besides, higher-
level object-based features are better than low-level object
based features. In other words, our object-based concepts
performs far better than the low-level object-based features
such as SIFT, c-SIFT, and mo-SIFT.We suggest that action-
based features should be combined with high-level object
based features.

We see that fusion of HOG and MBH with our models
improves the mean average scores. They[20] obtain an aver-
age of 24.4% MD rate at FA=5%; whereas, fusion with our
models provide an average MD rate of 22.2% for the same
FA. The lower MD rate, the more successful the model is.

In Figure 5 we provide sample video frames of the first
five video retrievals for each event. In the figure there are
five sample video frames on each row for an event. Relevance
judgments for those videos are also provided. R means a rel-
evant retrieval, and N means a video is not relevant to that
event. Those might be near misses but the standard rele-
vance judgment does not provide further information about
such videos. The first five video retrievals are obtained using
the fusion of HOG and MBH with our models. Note that
even though some sample video frames seem to be relevant
to an event, in the relevance judgment they might not be
counted as relevant since somehow they might not satisfy
the criteria of an event. For example, the second and fifth
retrievals for the event E006 seems to be examples of “birth-
day party”; however they are counted as not-relevant. We
use the relevance judgment provided for evaluation of MED
task so we did not judge the videos. When we look at the
not-relevant retrievals in the figure we can see that they are
mostly near-misses. Therefore, the next challenge is to dif-
ferentiate relevant videos from near misses. One solution to
dealing with this problem, after the initial ranking, can be
creating another model to differentiate relevant videos from
the near misses. Perhaps a tighter discriminative function
should be employed since these videos are very close to each
other in the feature space.



E006
Birthday party
R, N, R, R, N

E007
Changing a vehicle tire
R, R, R, R, R

E008
Flash mob gathering
R, R, R, R, R

E009
Getting a vehicle unstuck
N, R, R, R, N

E010
Grooming an animal
N, R, R, R, N

E011
Making a sandwich
R, R, R, R, N

E012
Parade
R, R, R, R, R

E013
Parkour
R, N, R, R, R

E014
Repairing an appliance
R, R, R, R, R

E015
Working on a sewing project
R, R, R, R, R

Figure 5: Sample video frames of the first five video retrievals for each event. Relevance judgment for each
sample is respectively provided after the name of an event. R: Relevant, N: Not-relevant.



6. CONCLUSION
In this work, we model the dependencies of concepts for

unconstrained videos in the context of multimedia informa-
tion retrieval and particularly for event detection. We pro-
pose a method that builds MRF based models on top of
concept detector outputs.
To this end, a number of concepts are created using the

images. Then, we exploit the knowledge of the concepts in
the video level to obtain a higher level of representation. We
show that exploiting dependencies of a set of object-based
concepts trained on static images can produce state-of-the-
art results on event detection. We evaluate our models on
a very large dataset consisting of approximately 45,000 un-
constrained videos.
Even though the results of our model is promising, fur-

ther improvements can be made to the model by incorpo-
rating other features for detecting concepts. The current
model does not use any temporal information. Given that
DTF-HoG and DTF-MBH are the best low-level temporal
features, they can improve the performance of the model
highly if incorporated within our models.
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