
Compact Query Term Selection
Using Topically Related Text

K. Tamsin Maxwell
University of Edinburgh
School of Informatics

Edinburgh EH8 9AB, UK
t.maxwell@ed.ac.uk

W. Bruce Croft
University of Massachusetts
Dept. of Computer Science
Amherst, MA 01003, USA
croft@cs.umass.edu

ABSTRACT

Many recent and highly effective retrieval models for long
queries use query reformulation methods that jointly op-
timize term weights and term selection. These methods
learn using word context and global context but typically
fail to capture query context. In this paper, we present a
novel term ranking algorithm, PhRank, that extends work
on Markov chain frameworks for query expansion to select
compact and focused terms from within a query itself. This
focuses queries so that one to five terms in an unweighted
model achieve better retrieval effectiveness than weighted
term selection models that use up to 30 terms. PhRank
terms are also typically compact and contain 1-2 words com-
pared to competing models that use query subsets up to 7
words long. PhRank captures query context with an affin-
ity graph constructed using word co-occurrence in pseudo-
relevant documents. A random walk of the graph is used for
term ranking in combination with discrimination weights.
Empirical evaluation using newswire and web collections
demonstrates that performance of reformulated queries is
significantly improved for long queries and at least as good
for short, keyword queries compared to highly competitive
information retrieval (IR) models.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Query For-
mulation

Keywords

Random Walk; Verbose Queries; Query Reformulation

1. INTRODUCTION
Query reformulation is a rich area of information retrieval

(IR) research, including techniques for query expansion, de-
pendency analysis, query segmentation and term selection.
For short queries, IR effectiveness is improved by smooth-
ing and query expansion using techniques such as pseudo
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relevance feedback [14, 23, 34]. Conversely, long or verbose
queries contain words that are peripheral or shared across
many topics so expansion is prone to query drift. Reformula-
tion instead focuses on term weighting [18, 5], term selection
[3, 2] and query reduction [15]. The selection of informative
terms, defined as one or many-word units, becomes critical
as the number of potentially noisy terms increases.

Techniques for term selection and term weighting auto-
matically emphasize the ‘essence’ of a query. Several suc-
cessful techniques jointly optimize weights and term selec-
tion using both global statistics and local syntactic features
[3, 33]. However, these features can fail to detect or differ-
entiate informative terms, where an informative term repre-
sents the essential aspects of query meaning given a collec-
tion of documents. Global statistics are strong indicators of
term importance [4] but do not reflect local query context.
There is also evidence that they do not lead to significant
improvement in query effectiveness [20]. Syntactic features
precisely identify word relations but do not identify all the
informative relations [22]. The ubiquity of global statistics
and syntactic features in current methods for term selection
suggests a continuing need for improved understanding of
alternatives ways to estimate term informativeness [20].

In this paper, we present PhRank (phrase rank), an al-
gorithm that uses pseudo relevance feedback for in-query
term selection rather than expansion to terms not in a query.
Compact and focused terms are selected from a list of can-
didates by ranking terms using a Markov chain framework
and picking the top-ranked candidates. Candidate terms are
all combinations of 1-3 words in a query that are not stop-
words. Term scores are computed using the average word
score for words in a term, combined with global discrimi-
nation weights. Word scores are computed using a random
walk of a word co-occurrence graph constructed from pseudo
relevant documents, combined with word salience weights
for the query and global contexts. This approach selects
terms that achieve significant gains in both recall and pre-
cision compared to the most effective techniques for query
reformulation that do not use term weighting, expansion, or
stratified dependencies [4]. This is achieved by focusing on
a limited number of word relationships with a core concept.

PhRank has three advantages compared to previous work.
First, to our knowledge PhRank is the first method to use
pseudo relevance feedback for in-query term selection. Feed-
back was applied initially to estimate weights for indepen-
dent query words without selection [8] and is predominantly
used for query expansion. Previous approaches to in-query
term selection use highly localized word context, in the form
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volcanic

volcanic boundaries

volcanic territories

volcanic activity

volcanic occurred

volcanic day boundaries

day boundaries territories

volcanic activity occurred day boundaries

present day boundaries

volcanic boundaries territories

volcanic activity occurred

activity occurred day boundaries

volcanic activity occurred boundaries

volcanic present day boundaries

volcanic occurred boundaries

+ 20 bigrams (if weights collapsed)

locations volcanic

volcanic activity

activity which

which occurred

occurred within

within present

present day

day boundaries

boundaries us

us territories

present day boundaries

volcanic activity

PhRank Sequential Dependence Key Concept Subset Distribution

Query: Locations of volcanic activity which occurred within the present day boundaries of the U.S. and its territories.

Table 1: Terms selected by four highly effective query reformulation models for TREC GOV2 topic #756.

of syntactic relations and co-occurrence, and global context
in the retrieval collection. They do not consider query con-
text, such as a general query topic identified from pseudo
relevant documents. The intuition behind a random walk of
a query context graph is that it reinforces words that capture
query ‘essence’ more strongly than words that are periph-
eral to query meaning. For this reason, informative terms
are more readily apparent if query context is considered.

Second, PhRank achieves significant performance gains
with a small number of compact terms while retaining the
flexibility to select more and longer terms if required. Other
approaches use a robust, but less effective, distribution over
many imprecise but approximately relevant terms. Alterna-
tively, they take a relatively inflexible, high-risk approach
that prefers a few exact terms and is prone to mistakes. For
example, Table 1 shows the terms selected for TREC topic
#756 by three top performing IR models. The sequential
dependence (SD) model is straightforward and robust [24].
The key concept (KC) model [3] aims at a highly succinct
representation but is hampered by a requirement that terms
are predefined syntactic units (noun phrase length). The
subset distribution (SDist) model [33] optimizes over many
term and weight variables and is highly effective but is bi-
ased towards longer terms of 3-6 words. PhRank demon-
strates that for a majority of queries, a few precise terms, in
addition to a standard query likelihood representation, are
more effective than term distributions. They also result in
queries that have up to 90% fewer terms, and these terms
are typically only 1-2 words long.

Finally, an affinity graph captures aspects of both syn-
tactic and non-syntactic word associations in an integrated
manner. A co-occurrence affinity graph shares the same
structure as a global dependency graph in which edges are
defined by linguistic relations. Specifically, the most con-
nected vertices are high frequency functional words and less
frequent content-bearing words tend towards the edges of the
graph [10, 11]. By consequence, the semantic significance of
a word is correlated with the degree of the corresponding
vertex. We infer that the shared structure of dependency
and affinity graphs captures aspects of both syntactic and
non-syntactic word associations. Moreover, an affinity graph
can be used to estimate the semantic significance of words.

To summarize, unlike existing models of term selection,
PhRank integrates three characteristics that we believe are
important to accurately identify the most informative terms:
query context, compactness, and integration of syntactic
and semantic knowledge. We show that consolidating these

characteristics delivers up to 14% performance improvement
compared to highly competitive methods for TREC descrip-
tion topics and is comparable to the state-of-the-art for
TREC keyword (title) queries.

The rest of this paper is organized as follows. In Section 2
we review related work and its connection to PhRank. Sec-
tion 3 defines the problem of term selection and its key char-
acteristics. In Section 4 we formally describe the PhRank
algorithm. Section 5 presents the evaluation framework. In
Section 6 we discuss the results of empirical experiments,
and Section 7 concludes the paper.

2. RELATED WORK
Markov chain frameworks and spreading activation net-

works for a network of words are well-studied in IR with
origins in associative word networks [7]. They include re-
search on webpage authority [26], e.g. PageRank, as well as
query expansion [17, 6, 23, 14]. However, they are novel for
unexpanded term selection.

The Markov chain framework uses the stationary distri-
bution of a random walk over an affinity graph G to esti-
mate the importance of vertices in the graph. Vertices can
represent words, in which case edges represent word asso-
ciations. If the random walk is ergodic, affinity scores at
vertices converge to a stationary distribution that can be
used to establish a ranking, e.g. over words.

A random walk describes a succession of random or semi-
random steps between vertices vi and vj in G. Let ℓij be the
transition probability (or edge weight) between vi and vj .
The path of the walk is determined by a square probability
matrix H = (hij) with size n, where n is the number of
unique vertices in G. The probability hij = ℓij if vi and
vj are connected, and hij = 0 otherwise. Affinity scores are
computed recursively. Let πt

j be the affinity score associated

with vj at time t. Then πt+1

j is the sum of scores for each
vi connected to vj , weighted by the possibility of choosing
vj as the next step on the path from vi:

πt+1

j =
∑

i

πihij (1)

It is usual to introduce some minimal likelihood that a
path from vi at time t will randomly step to some vj at time
t + 1 that may be unconnected to vi. Otherwise, clusters
of vertices interfere with the propagation of weight through
the graph. This likelihood is often defined to be the uniform
probability vector u = 1/n, although any other vector can
be chosen [14]. A corresponding factor reflects the likeli-
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hood that a path will follow the structure of edges in G. A
damping factor α controls the balance between them:

πt+1 = απtH + (1− α)u (2)

The Markov chain framework has has been used in a prin-
cipled way to smooth and expand queries in a language mod-
eling framework [34], but application in query reformulation
has been limited to selection of individual words that do not
appear in the original query. By contrast, PhRank ranks
terms containing one or more words that do appear in the
original query. Moreover, while expansion techniques can
exacerbate problems with unrelated terms, PhRank reduces
the problem of query drift through improved term selection.

Markov chain processes have also been applied in text
summarization for keyphrase extraction. This is a task sim-
ilar to term detection for automated indexing. TextRank
[25], SingleRank [32] and ExpandRank [32] use a random
walk to identify salient sequences of nouns and adjectives.
They improve over earlier unsupervised methods for this
task but achieve only 30-40% task accuracy and may be
outperformed by a tf.idf metric [13]. ExpandRank supple-
ments text with pseudo relevant documents but does not im-
prove performance compared to SingleRank [13]. PhRank is
similar to these algorithms but is more flexible and better
suited to IR. It uses multiple sources of co-occurrence evi-
dence and the discriminative ability of terms in a collection.
It also produces an unbiased ranking over terms of mixed
lengths, does not rely on syntactic word categories such as
nouns, and permits terms to contain words with long dis-
tance dependencies.

Other related work focuses on techniques for identification
of dependent terms [28], key concepts [3], or sub-queries
[16, 33]. This includes techniques for the removal of stop
structure [15]; reduction of narrative queries to word se-
quences associated with part of speech blocks [19]; selection
of candidate sub-queries using noun phrases [3]; query term
ranking using dependency tree relations [27]; and optimized
ranking over possible subqueries [33]. There is also a sig-
nificant body of work on learning individual term weights
[18, 5]. Much of this work incorporates syntactic and statis-
tical features in machine learning.

3. PRINCIPLES FOR TERM SELECTION
We hypothesize that the following principles define word

and term informativeness. These principles motivate the
PhRank algorithm detailed in the next Section.

An informative word:

1. Is informative relative to a query: An informa-
tive word should accurately represent the meaning of a
query. However, queries do not provide much context
with which to determine meaning. Pseudo relevance
used in PhRank is an established means of enhancing
a query representation [29].

2. Is related to other informative words: The Asso-
ciation Hypothesis [31] states that, “if one index term
is good at discriminating relevant from non-relevant
documents, then any closely associated index term is
also likely to be good at this”. PhRank uses a Markov
chain framework in which the value assigned to a word
i is determined by the value of other words connected
to i, and the number of connections to i.

An informative term:

3. Contains informative words: Consider a base case
in which a term has only one word. It is obvious that
this term must also display the properties of an infor-
mative word. We deduce that all terms must contain
informative words. PhRank considers the informative-
ness of individual words when ranking terms.

4. Is discriminative in the retrieval collection: A
term that occurs many times within a small number of
documents gives a pronounced relevance signal. PhRank
weights terms with a normalized tf.idf inspired weight.

4. THE PHRANK ALGORITHM
PhRank captures query context with an affinity graph

constructed from stopped, stemmed pseudo-relevant doc-
uments. Vertices in the graph represent unique stemmed
words (or simply, stems). Edges connect stems that are ad-
jacent in the processed pseudo relevant set. Graph transition
probabilities (edge weights) are computed using a weighted
linear combination of stem co-occurrence, the certainty that
the document in which they co-occur is relevant, and the
salience of sequential bigram factors in the pseudo relevant
set. The edge weights thus represent the tendency for two
stemmed words wi and wj �=i to appear in close proximity in
documents that that reflect a query topic.

Stems in the affinity graph are scored using a random walk
algorithm. Following convergence, stem scores are weighted
by a tf.idf style weight that further captures salience in the
pseudo relevant set. This aims to compensate for potential
undesirable properties of the random walk. Finally, term
scores are computed using the average score for stemmed
words in a term, weighted by term salience in the retrieval
collection. The m highest scoring terms are employed to
reformulate Q. Pseudo code for the algorithm is shown in
Figure 1. The rest of this section describes the algorithm
in more detail, including three heuristic weights (factors r,
s and z). A number of choices for these factors could have
been made and specific choices are analyzed in Section 6.1.

1) Graph construction (principle 1):
Let a query Q = {w1, ...wn} and C be a document col-

lection. The top k documents retrieved from C using Q are
assumed to describe a similar topic to Q. We define C to
be the retrieval collection plus English Wikipedia. We use
Wikipedia since it improves IR results for query expansion
using a random walk [6], but also explore the effectiveness
of using the retrieval collection alone. The top k documents
in C, together with Q itself encoded as a short document
d0, comprise neighboring documents in the neighborhood
set N = {d0, ....dk}.

Documents in N are stopped using a minimal list of 18
words [21] and stemmed using the Krovetz stemmer. This
improves co-occurrence counts for content-bearing stems and
reduces the size of an affinity graph G constructed from the
processed documents. Stoplisting with a longer list hurt IR
effectiveness. Edges in G connect stemmed words i and j at
vertices vi and vj if i and j are adjacent in N . Documents
in N with only one word (e.g. some queries) are discarded
to ensure that all vertices have at least one connecting edge.

2) Edge weights (principle 1):
Transition probabilities (edge weights) ℓij are based on a

weighted linear combination of the number of times i and
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k = 5
resourceList = [ C, wikipedia ]

for q in queryList:

   N = set()
   for rsc in resourceList:
      N.add( retrieve_top_k( q, rsc ) ) 
   N = retrieve_top_k( q, N )
   N.add( q )

   # one word type per row and column
   G = arrayStruct() 
   for ( doc, docRel ) in N:
      doc.stopStem()
      G.grow( buildGraph( doc, docRel ) )

   G.idfWeightEdge()                # bigram wt r
   G.normalize()
   G.iterate()
   G.weightVertex()                      # word wt s

   T = q.terms
   for term in q:
      term.wt = G.score( term )
      term.wt *= term.globalWt( C ) # term wt z
   T.sortByWeight()

def buildGraph( doc, docRel ):
   docG = index( doc )
   docG.linearWt( uw2, uw10 )
   docG.weight( docRel )

   return docG

def score( term ):
   S = 0

   for w in term.wordSplit():
      S += self.affinityScore( term )

   return S /= term.length()

def globalWt( C ):
   l = self.length()
   wt = C.tfidf( self ) * l^l 

   return wt

      

   

Figure 1: Pseudocode for the PhRank algorithm.

j co-occur in windows W of size 2 and 10. This is moti-
vated by the idea that different degrees of proximity provide
rich evidence for word relatedness in IR [25, 32, 24]. Edge
weights are defined by:

ℓij = r ∗
∑

dk∈N

p(dk|Q)(λcijW2
+ (1− λ)cijW10

)

where p(dk|Q) is the probability of the document in which
the stems i and j co-occur given Q, and cijW2

and cijW10
are

the counts of stem co-occurrence in windows of size 2 and
10 in N . λ is set to 0.6. We set the relevance of d0 to Q to
be high but reasonable (-4 for Indri log likelihood scores).
The exact setting has very little effect on term ranking.

Factor r is a tf.idf style weight that confirms the impor-
tance of a connection between i and j inN . G includes many
stemmed words, so unweighted affinity scores can be influ-
enced by co-occurrences with highly frequent, but possibly
uninformative, stems such as ‘make’. Factor r minimizes
this effect. Since the tf component is already accounted for
by λcijW2

+(1−λ)cijW10
, we reduce r to the idf component:

rij = log2

∑
ij∈N

cijW2

1 + cijW2

3) Random Walk (principle 2):
A random walk of G follows the standard Markov chain

framework presented in Section 2. Edge weights are normal-
ized to sum to one and πj is the affinity score of the stem
associated with vj . πj indicates the importance of a stem in
the query context. Iteration of the walk ceases when the dif-
ference in score at any vertex does not exceed 0.0001. This
translates to around 15 iterations but may be optimized for
efficiency. The damping factor α = 0.85 is equivalent to a
walk along five connected edges in G before the algorithm
randomly skips to a possibly unrelated vertex. The aver-
age sentence length in English is around 11-15 words so this
equates to skipping at or near the boundary of a sentence
around one half of the time.

4) Vertex weights (principle 3):
Following the random walk, stemmed words in G are fur-

ther weighted to capture both the exhaustiveness with which
they represent a query, and their global saliency in the col-
lection [30]. Exhaustivity indicates whether a word w1 is a
sufficient representation of the query. If w1 appears many
times in N then it is less likely that a term x containing w1

will benefit from additional words w2...wn. For example, the
term geysers quite exhaustively represents the TREC query
#840, ‘Give the definition, locations, or characteristics of
geysers’. A term containing additional words, e.g. defini-
tion geysers, is not more informative. However, common
stems, such as ‘make’, tend to have high affinity scores be-
cause they co-occur with many words.

Factor s balances exhaustivity with global saliency to iden-
tify stems that are poor discriminators been relevant and
non-relevant documents. Specifically, swn

= wnfavg ∗ idfwn
,

where wnfavg is the frequency of a word wn in N , averaged
over k + 1 documents (the average frequency) and normal-
ized by the maximum average frequency of any term in N .
As usual, idfwn

is the inverse document frequency of wn in

the collection, so idfwn
= log2

|C|
1+dfwn

where |C| is the vo-

cabulary of stemmed words in the collection C, and dfwn
is

the number of documents in C containing wn.
An advantage of factor s is that it enables PhRank to be

independent of an IR model. A model may treat the com-
ponent words of terms as independent or dependent. Factor
s helps to ensure that the selected terms are informative
irrespective of this representation.

5) Term ranking (principles 3, 4):
To avoid a bias towards longer terms, a term x is scored

by averaging the affinity scores for its component words
{w1, [...wn]}. Term rank is determined by the average score
multiplied by a factor zx that represents the degree to which
the term is discriminative in a collection:

zx = fxe
∗ idfxe

∗ lx

Let xe be a proximity expression such that the component
words of x appear in an unordered window of size W = 4 per
word. Thus, a term with two words appears in an 8-word
window, and a term with three words appears in a 12-word
window. The frequency of xe in C is fxe

and idfxe
is defined

analogously to idfwn
above. lx is an exponential weighting

factor proposed for the normalization of ngram frequencies
during query segmentation [12]. This factor favors longer
ngrams that tend to occur less frequently in text. Multipli-
cation of ngram counts by lx enables comparison of counts
for terms of varying length. Let |x| be the number of words

in x, then lx = |x||x|.

In summary, the PhRank algorithm describes how infor-
mative a term x is for Q compared to other terms. This is
computed using the function:

f(x,Q)
rank
= zx ∗

∑

wn∈x

πwn

n
(3)
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4.1 Diversity filter
PhRank often assigns a high rank to multi-word terms

that contain only one highly informative word. This is due
to use of an average word affinity score, and is desirable be-
cause informative terms can contain uninformative words.
For example, given a query about ‘the destruction of Pan
Am Flight 103 over Lockerbie, Scotland ’ (TREC #409), the
term ‘pan flight 103 ’ is informative even if the polysemous
word ‘pan’ is uninformative by itself. However, this can re-
sult in low diversity of top ranked terms used in query refor-
mulation. To increase diversity, we apply a simple, heuristic
filtering technique with top-down constraints.

Given a ranked list, all terms with a score of zero are
discarded. The lowest ranked term, xn, is checked against
the list of terms with a better rank xm<n. Let A be the set
of component words in xn and B be the set of component
words in any single term xm<n. If ∃A : A ⊂ B∨A ⊃ B then
we discard xn iff every component word of xn is contained in
at least one xm�=n that is in the retained list of ranked words
at the time B is evaluated. For example, if xn =‘birth rate’
and we find some xm<n =‘birth rate china’ then we discard
xn on the assumption that the longer term better represents
the information need. If xn =‘declining birth rate’ and we
find some xm<n =‘birth rate’ and some xm<n =‘declining
birth’ then we discard xn on the assumption that the shorter
terms better represent the information need and the longer
term is redundant. Note that the top-ranked term is always
retained. This process is adequate to increase diversity in
the ranked list and ensures that no vital information is lost,
but clearly presents an opportunity for further improvement.

5. EVALUATION FRAMEWORK
This section describes comparative models and query re-

formulations used to assess the degree to which PhRank
queries are robust, precise and succinct, and represent word
dependency. The main point of comparison is a robust and
highly effective IR model (SD) that uses term selection and
is employed as a baseline in related work [3, 28, 33]. We also
compare against the model with the highest mean average
precision of which we are aware that is relevant to a discus-
sion of term selection with query expansion (sDist). Finally,
since compact queries are a feature of PhRank, we compare
against a succinct yet competitive model that selects only
two terms (KC). We note that superior IR effectiveness is
possible with term weighting, but we focus on results using
unweighted terms to more clearly demonstrate the effect of
term selection alone. We also report results for query like-
lihood (QL) for reference even though this model uses no
term selection. This is because the other models reported
include a query likelihood component. We do not compare
against models that use pseudo relevance feedback for ex-
pansion. Pseudo relevance feedback without expansion is a
novel feature of our work that contributes to PhRank per-
formance.

5.1 Robustness
Evaluation across three TREC collections using both de-

scription topics and title queries requires a strong, robust
baseline. We use a sequential dependence (SD) variant of
the Markov random field (MRF) model [24]. SD uses a lin-
ear combination of three cliques of terms, where each clique

is prioritized by a weight λc. The first clique contains in-
dividual words (query likelihood QL), λ1 = 0.85. The sec-
ond clique contains query bigrams that match document bi-
grams in 2-word ordered windows (‘#1 ’), λ2 = 0.1. The
third clique uses the same query bigrams as clique 2 with
an 8-word unordered window (‘#uw8 ’), λ3 = 0.05. For ex-
ample, the query ‘new york city ’ in Indri1 query language is:

#weight(

λ1 #combine(new york city)

λ2 #combine(#1(new york) #1(york city))

λ3 #combine(#uw8(new york) #uw8(york city)))

Because it is very simple to generate SD queries, this
model is regularly used as a baseline. Highly effective weighted
variants have also been developed [4, 33, 28]. We com-
pare SD with a PhRank model (PR-.F) that uses the same
query format, except the second and third cliques contain
PhRank terms instead of query bigrams. In addition, be-
cause PhRank terms may be 1-3 words long, we adjust the
unordered window operator in the manner proposed for the
full dependence variant of the MRF model [24]. Namely,
the window size is 4 multiplied by the number of words in a
term. Note that for a term with only one word i, the oper-
ators #1(i) and #uw8(i) equate to a search for the word i
in a document. So, if two terms ‘york ’ and ‘new york city ’
are selected by PhRank, the PR-.F model has the form:

#weight(

λ1 #combine(new york city)

λ2 #combine( york #1(new york city))

λ3 #combine( york #uw12(new york city)))

PR-.F uses five terms for description topics and feature
analysis experiments, and three terms for title queries (or
less, if the required number of terms is not available after
rank filtering).

5.2 Precision
Highly competitive performance compared to SD can be

achieved by jointly optimizing possible subqueries and sub-
query weights using syntactic and statistical features. Among
the models of which we are aware, the subset distribution
model (sDist) [33] achieves the highest mean average preci-
sion on long queries using term selection with no higher order
dependencies [4]. However, it is not entirely fair to compare
sDist with PR-.F since sDist uses heavily optimized weights
for ten subqueries. A subquery in sDist is a linear combina-
tion of a standard SD query and one selected term treated
as a bag-of-words. This compares with the flat λ weights
used in SD and PR-.F. Despite this, sDist is the most effec-
tive model we can use for stringent comparison that ensures
real progress has been made. We therefore include sDist
in our evaluation even though queries for Robust04 are not
available from the authors.

5.3 Succinctness
Queries formulated with PhRank have few terms and a

maximum of three words per term. To evaluate highly suc-
cinct queries we compare against Key Concepts (KC) [3].
KC is another succinct weighted linear feature model that
combines two cliques. The first clique (λ1 = 0.8) contains
a bag-of-words query representation of the original query,

1
http://www.lemurproject.org/
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and the second clique (λ2 = 0.2) combines a weighted bag-
of-words representation for each of two selected terms. The
top terms are selected from the set of query noun phrases
using a decision tree with frequency-based features [3]. The
model reduces to a weighted representation of the original
query with word independence. If ‘city ’ and ‘new york ’ are
the top two terms, it takes the following form, where δ is
the decision tree confidence score associated with a term:

#weight(

λ1 #combine(new york city)

λ2 #weight( δ #combine(new york) δ city ))

To compare against KC, we present a model (PR-zF2)
that takes the same form but does not benefit from term
weights δ. We use the two top terms selected by PhRank.

5.4 Word dependence
Assumptions of word dependence are an important is-

sue in IR. To clarify the dependence assumptions made by
PhRank we refer to four models of phrase belief presented
by [9] (Figure 2, a-d). These models show how belief in a
document dc ∈ C flows to belief in a query Q in an inference
network, and thus how words and terms can be dependent.
In PhRank, we do not perform inference, but by analogy
these models aid interpretation of PhRank features.

Of the four models in Figure 2, the more general depen-
dence assumption (d) is used by PhRank to score words, and
term ranks are computed using an independence assumption
(b). Even if component words of terms are not connected in
G, weight is propagated through the graph such that word
dependencies affect evidence for a term. PhRank factors z,
s and r reflect Figure 2 models a, b and c respectively.

We speculate that optimal term selection occurs when 1)
a high rank is assigned to terms that are important under all
four interpretations of phrase belief according to evidence in
N , 2) the rank of terms that have less evidence under one or
more interpretation decreases gracefully, and 3) the ranking
meets the principles of term selection proposed in Section 3.

6. EXPERIMENTS
We examine the performance of PhRank in three ways.

First, we compare versions of the algorithm in which we
omit specific features. Second, we compare performance of
queries reformulated using PhRank top ranked terms against
highly effective models for both TREC description topics
and title queries. Third, we compare on a query by query
basis the robustness and performance error for PhRank ver-
sus a distributed approach to term selection (SD).

We evaluate on three TREC collections using version 4.12
of Indri with Dirichlet smoothing, µ = 2500. The Robust04,
WT10G and GOV2 newswire and open web text collections
have queries that vary substantially in length and known dif-
ficulty. Together they provide a diverse platform for exper-
iments (Table 2). Topic 672 is excluded from the Robust04
evaluation as the collection contains no relevant documents.
All collections and queries are stopped and stemmed using
the INQUERY stoplist and Krovetz stemmer. Queries are
further stopped to exclude 18 TREC stopwords such as ‘de-
scribe’ [1]. Candidate terms are all units of 1-3 words in
the power set P(q) of content-bearing words in Q. IR mod-
els are defined in Section 5. Pseudo relevant documents
are retrieved using a sequential dependence model. Mod-

Name # Docs Topic Numbers
ROBUST04 528,155 301-450, 601-700 (-672)
WT10G 1,692,096 451-550
GOV2 25,205,179 701-850

Table 2: TREC collections and topics

ROBUST04 WT10G GOV2
MAP R-Pr MAP R-Pr MAP R-Pr

Description topics

rTsTzT 26.65 30.05 0.00 0.00 28.83 34.55
zF 27.32 30.32 23.68 26.71 28.64 34.13
sF 26.03 29.61 21.00 25.10 27.93 33.67
rF 26.67 30.02 22.44 25.70 28.93 34.65
Title queries

rTsTzT 24.87 29.04 21.78 25.73 31.49 37.26
zF 26.14 30.13 20.85 24.72 30.73 36.26
sF 25.90 30.03 20.72 24.30 31.30 36.91
rF 26.32 30.25 21.81 25.70 31.59 37.42

Table 3: Feature analysis results. Description topics
perform best with omission of the global term weight
z (zF). Title queries perform best with the omission
of bigram salience weight r (rF).

els ‘.F’ exclude the feature represented by ‘.’ and models
‘.T’ include the feature. Thus, model rTsTzT includes all
features.

6.1 Feature analysis
In this section we explore the impact of PhRank feature

removal on IR effectiveness assessed using model PR-.F. Re-
sults in Table 3 show that PhRank is highly effective in se-
lecting informative terms for a query. However, not all the
features proposed consistently improve term ranking for IR.
Description topics are most effective when factor z is omit-
ted, and title queries are most effective when r is omitted.

1) Factor r: words dependent on term
Factor r imperfectly captures belief in component words

dependent on belief in a term (Figure 2c). It uses global bi-
gram statistics to scale edge weights in G. During a random
walk, this affects the affinity scores for individual stemmed
words. However, bigram statistics are only an approximate
measure of term unity. More problematically, r relies on
words in a term being co-occurrent in N . Highly informative
terms are likely to have their component words connected
in G, but this is not guaranteed. For terms with more than
two words, edge weights in G also must be factored. Perhaps
due to these limitations, r had minimal impact on IR effec-
tiveness for title queries and could be omitted to improve
algorithm efficiency.

However, we note that r is useful for description topics.
We speculate that this is because the query words for de-
scription topics may be peripheral to the core information
need. Spurious adjacent word dependencies in Q tend to ap-
pear in the pseudo relevant set because bigrams feature in
the IR model employed for initial retrieval. Thus, if word co-
occurrence in Q reflects query meaning, as typically occurs
with title queries, the edges and weights used to initialise G
are likely to be adequate. If word co-occurrence is spurious,
the initialisation may be suboptimal. Factor r ameliorates
misleading initial edge weights for description topics.
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Figure 2: Four models of phrase belief proposed by [9] (a-d). Word dependence in PhRank can be understood
as a hybrid with features of all these models (e) for term x ={wi, wj} and documents dk ∈ N .

2) Factor s: word independence
Factor s contributes to belief in a term dependent on be-

lief in individual words (Figure 2b). It weights each vertex
in an affinity graph by its salience in the query context N
balanced by its salience in the document collection. Omis-
sion of s substantially hurt IR effectiveness. Among all the
features tested it had the most impact on overall perfor-
mance, perhaps because independent belief in words is the
most important factor in IR effectiveness [24]. In addition,
work with random walk algorithms for query expansion has
found that words co-occurring with high frequency are of
low value if they are not semantically close to the query [6].
We suggest that salience in N as captured by s represents se-
mantic closeness to the query, and salience in the collection
helps to identify high frequency co-occurrent words.

3) Factor z: term as elemental unit
Factor z represents belief in a term independent of belief

in its component words (Figure 2a). It resembles a standard
tf.idf weight and reflects the principle that a term should
be discriminative in the retrieval collection. Given the es-
tablished effectiveness of tf.idf weighting, it is surprising
that omission of z improves IR effectiveness for description
topics. However, it is based on observations of a term in
an unordered proximity window in the retrieval collection.
The way such observations are made implies a dependence
assumption that may not provide an accurate estimate of
term salience. In addition, it has recently been suggested
that global statistics rarely improve retrieval performance
and that local, document level evidence is sufficient [20].

We also note that both r and z account for the discrimina-
tion ability of multi-word units in the collection: r applies to
bigrams and z applies to words in unordered windows. This
encoding is partially redundant, so description queries may
not require z because they use r, and title queries may re-
quire z because they do not use r. We remove z for our final
runs for description queries, and retain it for title queries.

4) Factor k: pseudo relevant documents
Results in Table 4 show that the most improvement in IR

effectiveness is achieved with 2 to 5 pseudo relevant docu-
ments. Higher k decreases effectiveness due to the introduc-
tion of non-relevant information. However, PhRank is quite
robust to variation in k due to the weighting of co-occurrence
relations by document relevance. Even with construction

ROBUST04 WT10G GOV2
MAP R-Pr MAP R-Pr MAP R-Pr

¬PRF 26.44 29.59 21.88 25.36 27.85 33.28
k2 26.86 30.05 22.76 25.42 28.81 34.38
k5 27.32 30.32 23.68 26.71 28.64 34.13
k10 27.29 30.05 22.33 25.02 28.64 34.16
k50 27.09 30.11 23.04 26.21 28.82 34.27
k100 26.80 29.82 22.78 26.11 28.34 33.91

Table 4: IR effectiveness for description topics using
k pseudo relevant documents. Best IR effectiveness
is achieved using the top few documents only.

Figure 3: IR effectiveness with feature analysis and
variable threshold. In many cases PhRank achieves
performance gains with two terms, and is robust to
variance in the number of terms selected.

of the affinity graph from the original query only (¬PRF),
PhRank performs better than sDist and comparably with
SD. This suggests that most important information is re-
tained by the term selection process.

6.2 Retrieval performance
We present our best results for runs using description top-

ics and title queries on three TREC collections.

6.2.1 Robustness

For description topics, the results in Table 5 show highly
significant or significant improvement in mean average preci-
sion (MAP) and R-precision compared to the SD baseline for
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(a) TREC description topics

ROBUST04 WT10G GOV2
MAP R-Pr MAP R-Pr MAP R-Pr

Robust and precise

QL 25.25 28.69 19.55 22.77 25.77 31.26
SD 26.57 30.02 20.63 24.31 28.00 33.30
sDist − − 21.14 24.93 27.64 33.50
PR-zF 27.32 30.32 23.68‡ 26.71‡ 28.64† 34.13‡
PR¬W 27.19† 30.12 22.90† 26.57 28.18 33.77
Succinct

KC 25.62 28.89 20.15 22.58 26.88 32.73
PR-zF2 25.91 28.92 22.02† 25.69‡ 27.04 32.75
PR¬W2 25.76 28.33 21.43 25.40† 26.05 31.75

(b) TREC title queries

ROBUST04 WT10G GOV2
MAP R-Pr MAP R-Pr MAP R-Pr

QL 24.37 28.52 19.48 23.08 28.55 34.41
SD 26.16 30.25 20.97 23.75 31.25 36.88
PR-rF 26.32 30.25 21.81‡ 25.70‡ 31.59 37.42
PR¬W 26.44 30.40 21.76† 25.57‡ 31.50 37.14

Table 5: Retrieval results for description topics and
title queries. PhRank significantly outperforms a
highly effective baseline for description topics and is
strongly competitive for title queries. † shows sig-
nificant (p < .05) and ‡ highly significant (p < .01)
results compared to SD and KC respectively as de-
termined by a sign test.

GOV2 and WT10G. Substantial improvements in precision
on Robust04 are just short of significance. For title queries,
improvement is highly significant for WT10G and compara-
ble to the baseline for other collections. Increased precision
occurs for top ranked documents (top 5 and 10) as well as
being a general trend in the results. Exclusion of Wikipedia
has a small negative effect as shown by PR¬W and PR¬W2
corresponding to PR-.F and PR-zF2 respectively.

To assess the quality of the ranked list of terms without
a measure of ground truth for term informativeness, we ex-
plore the impact of varying the number of terms included
in query reformulations. The results in Figure 3 show that
the quality of top terms output by PhRank are stable as
more terms are selected. Further, a large part of the gain in
precision is attributed to the top two terms.

To investigate performance further, for each collection we
manually reviewed the ranked term lists for queries that per-
form significantly better or worse than SD (>100% change in
MAP), and 10 queries with comparable performance. Across
all queries observed, there is a strong tendency for PhRank
to single out one word, or a pair of words, as the main
concept of the query, and rank all terms that contain the
main concept highly. Remaining terms are ranked accord-
ing to the contributions of their additional words. This high
risk, high reward strategy negatively affects the robustness
of PhRank on a query by query basis as shown in Figure 4
for description topics. Title queries exhibit similar behavior.

For example, one of the best performing queries for GOV2
is #756 as shown in Table 1. For this query, identification
of ‘volcano’ as the main concept greatly helped IR. On the
other hand, the same strategy for query #780, one of the
worst performing queries for GOV2 (see Table 6), selected

Figure 4: MAP difference compared to SD base-
line per query for description topics. PhRank does
slightly better on harder queries. The strategy of
focus around one concept usually helps, but can sig-
nificantly hurt some queries.

‘earth’ as the main concept that should be included in all
top terms. This resulted in terms that were representative
of the query, but not well distributed.

Nevertheless, Figure 4 shows consistent improvement for
queries that are known to be harder (Robust04 HARD track)
or easier (high baseline MAP). It is more likely that PhRank
selects an appropriate main concept for easy queries because
the pseudo relevant documents are of high quality. Difficult
queries are less clearly defined and often benefit from the
strong directional focus provided by PhRank terms.

In comparison, models like SD and sDist, take a more ro-
bust approach to term selection with a distribution of pos-
sibly relevant terms. This presents a very different term
selection strategy, so one potential avenue for improvement
is interpolation of PhRank term selection with bigrams in
SD. However, the robustness of a distributed term selection
approach can come with a tradeoff in overall effectiveness.
Initial interpolation experiments with a weighted linear com-
bination of SD and PhRank terms did not appear to yield
any benefit over PhRank terms alone.

Alternatively, the properties of Gmay be turned to advan-
tage. It has been observed that a Markov field framework
selects more general and robust query expansion terms than
competing methods [6]. A combination of query expansion
and term selection using a Markov field framework may bal-
ance complementary high reward and robust query reformu-
lation strategies and result in significant overall gains.

6.2.2 Precision

Results in Table 5 show significant improvement in MAP
and R-precision for PhRank compared to sDist for both
GOV2 and WT10G. PhRank terms are significantly more
precise on average than the highest precision models for un-
weighted term selection. Unfortunately, the focus on one
aspect of query meaning has unpredictable effects and some
queries are significantly hurt by a high precision strategy.

There are two potential causes for negative results. First,
PhRank may be picking a suboptimal concept. This does
occur, particularly in the presence of polysemous or highly
co-occurrent words in the query, or irrelevant documents in
N . This is demonstrated with the high rank for ‘earth’ in
query #780 (Table 6). In the case of highly co-occurrent
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Q: How much of planet Earth is arable at present? Area must
have plenty of water, sun and soil to support plant life.

PhRank terms SD terms

earth planet earth water sun
earth arable earth arable sun soil
planet earth arable present soil support
earth life present area support plant
earth water area water plant life

Table 6: TREC query #780: poor performance for
PhRank compared to SD.

Term Length

1 2 3 4 5 6 7
KC 37% 40% 15% 6% 1% <1% <1%
PhRank 22% 54% 24%

Table 7: Percentage of PhRank and KC terms with
various lengths.

words, these have a higher in-degree in G so they tend to
accumulate weight during a random walk. A reduction in
the number of iterations may help address this problem.

Irrelevant documents in G also hurt performance. The ad-
equacy of an affinity graph G constructed using N is highly
reliant on the quality of the initial query, the precision of the
document similarity metric, and the adequacy of the collec-
tion being searched. If non-relevant documents occur in N
there will be reduced connectivity in G, and this has an un-
desirable impact on the balance of word affinity scores. One
solution to this problem may be to merge ranked lists com-
puted by PhRank using different resources. The mistakes
made by different instances of PhRank for the same query
are likely to be less consistent than accurate assessments of
term informativeness.

Second, more than one focus can occur, particularly in
long queries. For example, there are two focal concepts of
query #336: ‘A relevant document would discuss the fre-
quency of vicious black bear attacks worldwide and the pos-
sible causes for this savage behavior ’. The two core concepts
are ‘black bear ’ and ‘savage behavior ’ but PhRank largely
misses the importance of black bears. Instead, its top ranked
terms for this query are {savage, savage behavior, bear sav-
age, vicious savage, attacks savage}. This has a negative
effect on IR effectiveness.

6.2.3 Succinctness

Results show that the performance of the top two PhRank
terms in the same query structure as KC but with no term
weighting performs comparably to KC with term weighting.
The length of the terms is similar in both models, with
around 75% of terms having a length of 1-2 words. This
suggests that improved performance of unweighted PR-zF2
queries is more likely to be due to differences in the strategy
for term selection than differences in term length. Note that
KC shares the distributed approach to term selection with
SD and sDist. KC selects two distinct concepts, whereas the
top two terms selected by PhRank typically overlap.

More generally, it is observed that the succinct terms se-
lected by PhRank are also novel. Table 8 shows that al-
though PhRank and KC have the same number of 1-2 word
terms overall, they display less than half of their poten-
tial overlap (we account for fewer terms in KC in this fig-
ure). Moreover, around 50% of PhRank terms contain two
words, but only around half of them are also selected by SD.

PhRank SD sDist KC
(1-3 words) (2 words) (3-6 words) (1-7 words)
ROBUST04 23% - 12%
WT10G 28% 11% 18%
GOV2 27% 15% 16%

Table 8: Percentage of PhRank terms selected by
other models. Low figures show that PhRank is de-
tecting novel terms with long-range dependencies.

Terms that are three words long dominate sDist (69% of all
terms) yet less than half of the terms with three words in
PhRank are also found in sDist queries. One likely expla-
nation for these findings is that PhRank is not limited by
syntactic or adjacency relations that are used in the other
models. It detects distant word dependencies because repeat
co-occurrences of word combinations reflect the associations
in which they take part.

We hypothesize that distant associations may be present
in queries because users condense information by relying on
the ability of a search engine to infer links between words.
The frequency of such textual economy was assessed in a
sample of 100 queries randomly selected from Robust04 and
GOV2. We assume that title queries capture a succinct in-
formation need and have informative associations between
query words. By aligning description and title vocabulary,
we discovered that 22% of description topics contain at least
one informative word association that cannot be detected us-
ing any form of syntax or word adjacency, and a further 11%
of topics contain at least one association that can only be
detected using dependency relations.

7. CONCLUSION
We have presented PhRank, a novel term ranking algo-

rithm that extends work on Markov chain frameworks for
query expansion to select focused and succinct terms from
within a query. PhRank captures query context with an
affinity graph constructed using word co-occurrence in pseudo-
relevant documents. A random walk of the graph is used for
term ranking in combination with discrimination weights.

We showed that PhRank focuses on a limited number of
words associated with a core query concept. Overall, this is
more effective for both description topics and title queries
than a distributed approach to term selection, and can gen-
erate queries with up to 90% fewer terms. However, this
term selection strategy is risky and less robust than com-
peting methods. For all collections, around 26% of queries
have more than 5% decrease in MAP compared to SD (sig-
nificant change is around 3-6%).

The two main issues affecting robustness are the handling
queries with multiple concepts, and variation in the quality
of pseudo relevance feedback. The first issue may be ad-
dressed by a diversity constraint on top ranked terms that
adjusts the number of selected terms permitted to include
the highest scoring query word. Improved sensitivity of the
ranking algorithm may also improve results. For example,
the present implementation does not consider the degree of
connection between two words in the affinity graph when
scoring terms. A third approach might apply a non-linear
interpolation of SD and PhRank that backs off to distributed
terms where required. Adaptive methods for the selection
of k can address challenges with the depth of coverage in a
collection or occasions when evidence for multiple concepts
is widely dispersed.
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Finally, the high precision strategy of term selection might
be combined with the more conservative and robust expan-
sion terms generated with a Markov chain approach to query
expansion. On this point, we note that although weighted
variants of an affinity graph have been proposed before, our
concrete suggestion for a vertex weight s based on word
salience in pseudo-relevant documents improves the informa-
tiveness of affinity scores and may benefit other techniques
that use a Markov chain framework.

More generally, the work in this paper may be applicable
to lexical feature selection methods for other areas of IR, in-
cluding text-based image and multimedia retrieval or match-
ing of search advertisements. Efficiency considerations sur-
rounding the time to construct an affinity graph may be
ameliorated by off-line indexing to precompute a language
model for each document in a collection.
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