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Learning to speed up MAP decoding with column generation

Abstract

In this paper, we show how the connections
between max-product message passing for
max-product and linear programming relax-
ations allow for a more efficient exact al-
gorithm for the MAP problem. Our pro-
posed algorithm uses column generation to
pass messages only on a small subset of the
possible assignments to each variable, while
guaranteeing to find the exact solution. This
algorithm is three times faster than Viterbi
decoding for part-of-speech tagging on WSJ
data and equivalently fast as beam search
with a beam of size two while being exact.

The empirical performance of column gener-
ation depends on how quickly we can rule out
entire sets of assignments to the edges of the
chain, which is done by bounding the contri-
bution of the pairwise factors to the score of
the solution. This provides an opportunity
at the intersection of inference and learning:
at training time, we can regularize the model
in a way that makes inference faster without
changing its structure.

1. Introduction

Many basic tasks in natural language processing—
part-of-speech tagging, named entity recognition,
noun-phrase chunking, and others—are often ap-
proached with linear-chain conditional random fields
(Lafferty et al., 2001). Maximum a posteriori (MAP)
decoding in these graphical models is known to be
O(nk2), where k is the number of labels for each to-
ken and n is the lenght of the sequence, which can
be expensive especially when processing large amounts
of data. Even though training is known to fail to
converge when using approximate inference (Kulesza
et al., 2007) and approximate search at test time can
decrease accuracy, most actual implementations use
beam search or other approximations instead of exact

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

inference for performance reasons.

While there are known costs to these approximate ap-
proaches in general, most of the time exact solutions
are actually recovered with approximate search, at a
much smaller computational cost than standard exact
inference. This is true because in most linear-chain
models many tagging decisions can be safely made
based on local information, and transition scores are
only necessary to disambiguate between states that ap-
pear equally reasonable in the absence of contextual in-
formation. It is desirable to directly exploit this prop-
erty by performing efficient local decoding and then
expanding the transition factors only when necessary,
while still returning exact results.

In this paper we show how an approach based on de-
layed column generation for the LP relaxation of the
MAP decoding problem in linear chains leads to ex-
actly this behavior, where most decisions are made
locally and yet the inference process is provably exact.
Moreover, as the performance of this search algorithm
depends precisely on making local decisions, regulariz-
ing the model to minimize the magnitude of the tran-
sition scores leads to even faster inference, effectively
learning to search faster.

2. Delayed column generation in linear

programs

Column generation is a method for exactly solving lin-
ear programs with a large number of variables. It
works by restricting the problem to a subset of its
variables1 (implicitly setting the others to zero) and
alternating between solving this restricted linear pro-

gram and selecting which variables should be added
to it, based on whether they could potentially improve
the objective. If no variables can improve the objec-
tive, one has a primal-dual pair which is optimal for
the original, unrestricted, linear program.

The keys to column generation, then, are the method
by which variables are added to the linear program and
the test that no additional variable could potentially
improve the objective. This criterion, based on the

1Here we refer to variables in the linear program, which
are not the same as variables in the model.
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Learning to speed up MAP decoding with column generation

notion of reduced cost, is the same criterion used for
pivoting in the simplex algorithm (Bertsimas & Tsit-
siklis, 1997; Lubbecke & Desrosiers, 2004). The differ-
ence between the algorithms is that simplex relies on
the primal variables being enumerated explicitly, while
column generation leaves them implicitly defined and
“generates” them only as needed. This does not guar-
antee that column generation will scale better than
simplex, however, since in the worst case all variables
will be added to the restricted primal problem.

Consider the general LP:

max. cTx s.t. Ax ≤ b, x ≥ 0 (1)

With corresponding Lagrangian:

L(x, λ) = cTx+ λt (Ax− b) =
∑

i

(

ci −AT
i λ

)

xi (2)

For a given assignment to the dual variables λ, a vari-
able xi is a candidate for being added to the restricted
problem if its reduced cost ri = ci − AT

i λ, the scalar
multiplying it in the Lagrangian, is positive. Another
way to justify this decision rule is by considering the
constraints in the LP dual:

min. bTλ s.t. ATλ ≥ c λ ≥ 0 (3)

Here, the reduced cost of a primal variable equals the
degree to which its dual constraint is violated, and thus
column generation in the primal is equivalent to cut-
ting planes in the dual (Lubbecke & Desrosiers, 2004).
Note that if there is no variable of positive reduced
cost then the current dual variables from the restricted
problem are feasible in the unrestricted problem, and
thus we have a primal-dual optimal pair, and can ter-
minate column generation.

3. Linear programming for MAP

inference in chains

For any Markov random field whose graph is a tree the
MAP inference problem can be formulated as a linear
programming problem, where one maximizes the sum
of the scores assigned by the model’s factors to all
variables and adjacent pairs of variables, subject to
the assignment being contained in the marginal poly-
tope, which for tree graphs is equivalent to marginals
over nodes summing to one and marginals over edges
being consistent with the node marginals. Perform-
ing message-passing for max-product belief propaga-
tion on this graph can be shown to be equivalent to
computing a set of optimal dual variables for this lin-
ear program. We exploit this connection to design an

efficient algorithm for MAP inference based on column
generation.

We focus on inference in models that are chain-
structured, a special case of trees. A chain model over
variables V1, . . . , Vn can be expressed in terms of local
factors θi(xi), where xi refers to a setting of variable
i, and pairwise transition factors τi(xi, xi+1). Follow-
ing Wainwright & Jordan (2008), we write the MAP
inference problem as the following LP:

max.
∑

i,xi
µi(xi)θi(xi)

+
∑

i

∑

xi,xi+1
µi(xi, xi+1)τi(xi, xi+1)

s.t.
∑

xi
µi(xi) = 1

∑

xi
µi(xi, xi+1) = µi+1(xi+1)

∑

xi+1
µi(xi, xi+1) = µi(xi)

(4)

We refer to the first family of constraints as “normal-
ization” constraints and the other two as “marginal-
ization” constraints.

We can invoke the first marginalization constraint
to combine the local and pairwise scores and re-
place the coefficient of µi(xi, xi+1) in the objective
with (τi(xi, xi+1) + θi+1(xi+1)). Next, by relaxing the
marginalization constraints (but keeping normaliza-
tion as a hard constraint) and grouping all the terms
according to the primal variables they multiply, we
have the Lagrangian L(µ, α, β), equal to

∑

1

µ1(x1)ν1(x1) (5)

+
∑

i,xi,xi+1

µi(xi, xi+1) (νi(xi, xi+1)− νi+1(xi+1))

This expression is a function of the max-marginals

νi(xi) = αi(xi) + βi(xi) + θi(xi) (6)

νi(xi, xi+1) = αi(xi) + θi(xi) + τi(xi, xi+1) (7)

+θi+1(xi+1) + βi+1(xi+1).

Here, αi(xi) and βi(xi) are dual variables correspond-
ing to the marginalization constraints when variable i
is set to xi. Wainwright & Jordan (2008) show that
the fixed point of the max-product message passing
rules provides an assignment to the dual variables α
and β that, together with decoding based on the max-
marginals form a primal-dual optimal pair for this LP.
The update equations for these messages are as fol-
lows:

αi+1(xi+1) = max
xi

αi(xi) + θi(xi) + τ(xi, xi+1) (8)

βi−1(xi−1) = max
xi

τ(xi−1, xi) + θi(xi) + βi(xi). (9)

Note that in the Lagrangian of equation (5) we made
an arbitrary decision to single out the first node in
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Learning to speed up MAP decoding with column generation

the chain. An equivalent decision can be made by
choosing the last node, which will be important in the
next section.

4. A column-generation algorithm for

fast chain decoding

In this section we derive a column-generation algo-
rithm for efficient MAP inference in chains by exploit-
ing the connection between the max-product messages
and the LP view of the inference problem.

In many applications of MAP inference in chains, such
as in text sequence tagging, the graphical model vari-
ables have large domain sizes. Let D be the number of
values that xi can take on and n be the length of the
chain. The LP in Equation (4) would have O(nD2)
variables. Most of the time, however, we can be confi-
dent that many of these variables will not be used in
the final solution, due to the strength of local factors
θi(xi) relatively to the pairwise factors τi(xi, xi+1).
We leverage this property by lazily adding variables
to the LP using column generation.

4.1. Deriving the algorithm

We seek to solve the LP for MAP inference in chains
with a column generation strategy. Such a strategy re-
quires efficient components for choosing the initial set
of variables in the restricted LP, solving the restricted
LP, and finding variables of positive reduced cost.

To initialize the LP, we first define for each node in
the graphical model a restricted domain consisting of
only xi = argmax θi(xi). Note that any initialization
strategy is equally valid, and one could, for example,
also add the high-scoring transitions, or add the k best
xi instead of the single best. Next, we include in the
initial restricted LP all the µi(xi) and µi(xi, xi+1) in-
dicator variables corresponding to these size-one do-
mains.

To solve the restricted LP, we use max-product mes-
sage passing, but adapt the recursive definition of
αi(xi) and βi(xi) in equations (8) and (9) to only
search over the restricted domain of a variable’s neigh-
bors in the chain. This can be derived by looking at
the Lagrangian of the LP with all µi(xi) variables but
only a subset of the µi(xi, xi+1) variables, but we omit
this derivation due to space constraints.

For the column generation approach to work we need
to compute the reduced costs of each pairwise marginal
variable µi(xi, xi+1) in terms of θ, τ , α, and β. By
using the Lagrangian from equation (5) we get the

following reduced cost for these pairwise marginals

R′

i(xi, xi+1) = νi(xi, xi+1)− νi+1(xi+1). (10)

= τ(xi, xi+1) + θi(xi) (11)

+αi(xi)− αi+1(xi+1).

When we solved the restricted LP, we didn’t allow xi /∈
Di to take on nonzero values. However, we still needed
to enforce marginalization constraints that involve it.
Therefore, αi(xi), the dual variable for this constraint,
is defined as in equation 8, even for xi /∈ Di.

Equation (10) has a simple interpretation. αi+1(xi+1)
is defined as a max over the current restricted domain
Di. For xi /∈ Di, the first three terms of R′

i represent
the value of αi+1(xi+1), had this maximization used
xi. Therefore, R′

i(xi, xi+1) represents the gain in for-
ward message αi+1(xi+1) attainable if xi is added to
restricted domain Di.

Because this reduced cost only involves α variables, it
only considers one direction in the chain when judging
the desirability of a pair of variables. As described in
section 3, our Lagrangian has an inherent asymmetry
where V1 was chosen as the root of the chain. If we had
chosen Vn as the root, our reduced cost would only use
β information. Both of these Lagrangians come from
the same original LP, and have the same optimum.
Therefore, we can average them in order to obtain a
Lagrangian for which the reduced cost contains global
information from both directions. Doing so leads us
to the expression for the reduced cost we’ll use in the
remainder of this paper,

2Ri(xi, xi+1) = 2τ(xi, xi+1) + θi(xi) + θi+1(xi+1)

+ (αi(xi)− αi+1(xi+1))

+ (βi+1(xi+1)− βi(xi)) (12)

At every iteration of our column generation procedure,
we find for each position i in the chain the setting of xi

and xi+1 that maximizes the reduced cost Ri(xi, xi+1).
If that reduced cost is positive, that setting of the vari-
ables is added to our domain. If no setting with a
positive reduced cost was found we can prove that we
have an optimal solution. Algorithm 1 shows the pseu-
docode for this approach.

4.2. Finding a state with positive reduced cost

While the general column generation algorithm as pre-
sented in Algorithm 1 can be quite efficient (and it is
in practice faster than max-product message passing
but slower than viterbi decoding) it is possible to im-
prove that by an order of magnitude by pruning the
search space when looking for settings of variables with
positive reduced cost.
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Learning to speed up MAP decoding with column generation

Algorithm 1 Column Generation Chain MAP

for i = 1→ n do Di = {argmax θi(xi)}
end for
while domains haven’t converged do

(α, β)← GetMessages(D, θ)
for i = 1→ n do

(xi, xi+1, rc)← argmaxRi(xi, xi+1)
if rc > 0 then

Di ← Di ∪ xi

Di+1 ← Di+1 ∪ xi+1

end if
end for

end while

Algorithm 2 Efficient search for a setting with posi-
tive reduced cost

Uτ (·, xi+1)← maxxi
τ(xi, xi+1)

Uτ (xi, ·)← maxxi+1
τ(xi, xi+1)

Ui ← maxxi
Ni(xi)

C ′

i ← {xi+1|N
′

i(xi+1) + Ui + 2Uτ (·, xi+1) > 0}
U ′

i ← maxxi+i∈C′

i
N ′

i(xi+1)
Ci ← {xi|Ni(xi) + U ′

i + 2Uτ (xi, ·) > 0}
(x∗

i , x
∗

i+1)← argmaxxi∈Ci,xi+1∈C′

i

R(xi, xi+1)

Note that the terms in the reduced cost Equation (12)
can be divided into three groups: those that depend
only on xi, Ni(xi) = θi(xi)+αi(xi)−βi(xi), those that
depend only on xi+1 (henceforth N ′

i(xi+1)) and the
transition scores τi(xi, xi+1). Henceforth we assume
the transition scores are the same across locations in
the chain, though it is trivial to generalize to the case
where they vary, and it is possible to obtain tighter
bounds while doing that.

Given the decomposition above of the reduced cost we
can develop an efficient searching strategy based on
independent bounds as in Algorithm 2.

This strategy effectively reduces the common-case
complexity of the search for settings with positive re-
duced cost from O(k2) to O(k). Note that this strategy
can be inefficient if the bounds Uτ (xi, ·) and Uτ (·, xi+1)
on the rows and columns of the transition matrix are
loose, which suggests that, during learning, we should
try to keep the transition scores as small as possible.

This is the source of our connection between inference
and learning: by learning to keep the transition scores
small we can effectively learn to search faster. There-
fore, we can obtain an accuracy-speed tradeoff of our
decoding algorithm by applying different regulariza-
tion strategies to the transition scores when training.

Table 1. Results of the timing experiments for the joint
POS and NER task. The numbers displayed are averages
of 20 trials for each run.

Algorithm sentences/s % exact
Viterbi 13.0 100

Column generation 160.6 100
Beam-1 252.8 66.6
Beam-5 228.0 99.5
Beam-15 171.1 99.7
Beam-20 151.7 99.9

5. Related Work

Column generation is a cutting plane algorithm ap-
plied to the dual problem. Cutting planes have been
successfully applied to problems such as training struc-
tured SVMs and improving approximate MAP infer-
ence in loopy graphical models (Tsochantaridis et al.,
2006; Sontag & Jaakkola, 2007). While column gener-
ation has enabled solutions to key operations research
problems, such as those by Gilmore & Gomory (1961)
and Desrochers & Soumis (1989), it is not widely
known in machine learning.

Most related work in methods for decoding chains has
focussed on methods for improving the accuracy of ap-
proximate methods, such as beam search. For exam-
ple, Pal et al. (2006) selected an adaptive beam width
at every variable by ensuring that the marginal distri-
bution captured by the beam was sufficiently close to
the true marginal distribution of the chain variable.

In NLP some prior work has also strived for exact fast
Viterbi decoding of linear chains. Kaji et al. (2010)
presents an efficient decoding strategy by dividing the
set of values for each node in the chain into two groups,
and computing the messages explicitly for values in one
group while upper-bounding the messages for values in
the other group. Their approach managed to success-
fully speed up inference for POS tagging, joint POS
tagging and chunking, and CCG supertagging, achiev-
ing slightly higher relative speedups in POS tagging
than our approach.

6. Experiments

We perform two sets of experiments. The first explores
the tradeoff between computation time and exactness,
comparing our column-generation approach to beam
search and exact Viterbi inference. The second ex-
plores the relationship between regularizing the tran-
sition weights and inference efficiency, allowing one to
trade accuracy against time in another dimension, by
learning a model in which it is easier to search.
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Table 2. Results for the timing experiments for the POS
tagging task.

Algorithm sentences/s % exact
Viterbi 856 100

Column generation 2484 100
Beam-1 2533 97.3
Beam-2 2417 99.8
Beam-3 2321 99.9
Beam-4 2239 100

6.1. Exploring the exactness versus time
tradeoff

In this section we compare the speed of our algorithm
on a standard part-of-speech tagging task onWSJ data
and on a joint part-of-speech tagging and named-entity
recognition task on CoNLL 2003 data.

Table 1 shows the results for joint POS and NER. The
model is a factorial conditional random field with one
linear chain for NER and another for POS tagging and
factors connecting both these chains to each other and
to observed data. All inference was performed on the
cluster graph for this model, in which each variable can
take one out of 360 possible values (45 POS tags times
8 NER labels). Column generation is about 8 times
faster than viterbi. It performed equivalently to beam
search with a beam of size 20, which only returned the
exact score for 99% of the sentences, while the column
generation approach is exact. Note that even a beam
of size 50 is not enough for inference to be exact in
this task.

Table 2 shows the results for the POS tagging exper-
iment. The model was trained with 50 iterations of
perceptron on the training set of the Penn Treebank.
Note that the column generation algorithm processed
slightly more sentences per second than beam search
with a beam of size two, while it took a beam of size
four to obtain exact MAP scores on all sentences.

6.2. Exploring the regularization strength
versus time tradeoff

In this section we perform a simple perceptron train-
ing experiment to ilustrate the effect of regularizing
the transition weights on inference time. We use a
standard part-of-speech tagging conditional random
field on Wall Street Journal data (Marcus et al., 1993)
trained with a variant of the structured perceptron al-
gorithm (Collins, 2002) with ℓ2 or ℓ1 regularization on
the transition weights. Note that while the perceptron
is insensitive to uniform regularization of all the weight
vectors, regularizing different subsets of the weights

Figure 1. Results highlighting the tradeoff between regu-
larization strength and inference time

differently affects the loss function, so this could po-
tentially lead to a trade-off between inference time
and test-set accuracy, though this was not observed
in these experiments; in fact stronger regularization
sometimes led to better performance.

The design is as follows. The first 5000 sentences in
the training chapters of the Penn Treebank used for
training. We perform 5 iterations of the perceptron
algorithm, recording the time spent doing inference.
The first two runs are discarded, as our experiments
run on the Hotspot JVM and the first runs are slower
due to the JIT compiler. Figure 1 shows the effect of
ℓ2 regularization on inference time.

7. Conclusions and future work

We present an efficient algorithm for MAP decoding in
linear chains that uses the LP relaxation of the infer-
ence problem to adaptively prune the state-space nec-
essary for exact inference. We also show how adapt-
ing the learning procedure can lead to further speed
benefits of about 5% for this approach. It is easy to
generalize this approach to trees, and in that case in-
stead of averaging two Lagrangians it is more natural
to average one Lagragian per leaf, which leads to a
reduced cost equation where the messages from each
“side” of an edge are weighted by how many leaves can
be reached from there. This algorithm can also be ap-
plied as a subroutine in tree-reweighted max-product
belief propagation or in tree block coordinate descent
message-passing for MAP inference, leading to speed
improvements without any change in the guarantees.

One limitation of this approach is that while Viterbi
decoding and beam search can be easily adapted to
produce the k best solutions rather than the single best
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solution the algorithm presented here only returns the
single best-scoring solution. This is due to the funda-
mental importance in our algorithm of the LP relax-
ation and its connection to message-passing. While
there are known ways of extending LP relaxations
for MAP inference to produce k-best lists (Fromer
& Globerson, 2009) these are not known to lead to
efficient message-passing algorithms, and general LP
solvers are an order of magnitude slower for these prob-
lems than message-passing.

Another limitation is that this algorithm currently
supports only local and transition factors. While it
is trivial to generalize it to higher-order chains (with
factors over trigrams, four-grams, etc) we only obtain a
reduction in complexity fromO(kd) toO(kd−1), which,
while significant, is still not practical for most pur-
poses. However, perhaps by exploiting solutions to
the bigram chain decoding model as initialization to
higher-order models it might be possible to break this
barrier, and effectively learn analogues to structured
prediction cascades Weiss & Taskar (2010) where the
final model is a single model on which exact decod-
ing is performed, but the learning process is set up in
a way that this decoding is fast without approximate
pruning.
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