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Abstract

Conditional random fields and other graphi-

cal models have achieved state of the art re-

sults in a variety of tasks such as coreference,

relation extraction, data integration, and pars-

ing. Increasingly, practitioners are using mod-

els with more complex structure—higher tree-

width, larger fan-out, more features, and more

data—rendering even approximate inference

methods such as MCMC inefficient. In this

paper we propose an alternative MCMC sam-

pling scheme in which transition probabilities

are approximated by sampling from the set

of relevant factors. We demonstrate that our

method converges more quickly than a tradi-

tional MCMC sampler for both marginal and

MAP inference. In an author coreference task

with over 5 million mentions, we achieve a 13
times speedup over regular MCMC inference.

1 Introduction

Conditional random fields and other graphical mod-

els are at the forefront of many natural language

processing (NLP) and information extraction (IE)

tasks because they provide a framework for discrim-

inative modeling while succinctly representing de-

pendencies among many related output variables.

Previously, most applications of graphical models

were limited to structures where exact inference is

possible, for example linear-chain CRFs (Lafferty

et al., 2001). More recently, there has been a de-

sire to include more factors, longer range depen-

dencies, and more sophisticated features; these in-

clude skip-chain CRFs for named entity recogni-

tion (Sutton and McCallum, 2004), probabilistic

DBs (Wick et al., 2010), higher-order models for

dependency parsing (Carreras, 2007), entity-wise

models for coreference (Culotta et al., 2007; Wick

et al., 2009), and global models of relations (Hoff-

mann et al., 2011). The increasing sophistication of

these individual NLP components compounded with

the community’s desire to model these tasks jointly

across cross-document considerations has resulted

in graphical models for which inference is compu-

tationally intractable. Even popular approximate in-

ference techniques such as loopy belief propagation

and Markov chain Monte Carlo (MCMC) may be

prohibitively slow.

MCMC algorithms such as Metropolis-Hastings

are usually efficient for graphical models because

the only factors needed to score a proposal are those

touching the changed variables. However, MCMC

is slowed in situations where a) the model exhibits

variables that have a high-degree (neighbor many

factors), b) proposals modify a substantial subset of

the variables to satisfy domain constraints (such as

transitivity in coreference), or c) evaluating a single

factor is expensive, for example when features are

based on string-similarity. For example, the seem-

ingly innocuous proposal changing the entity type of

a single entity requires examining all its mentions,

i.e. scoring a linear number of factors (in the num-

ber of mentions of that entity). Similarly, evaluating

coreference of a mention to an entity also requires

scoring factors to all the mentions of the entity. Of-

ten, however, the factors are somewhat redundant,

for example, not all mentions of the “USA” entity

need to be examined to confidently conclude that it

is a COUNTRY, or that it is coreferent with “United



States of America”.

In this paper we propose an approximate MCMC

framework that facilitates efficient inference in high-

degree graphical models. In particular, we approx-

imate the acceptance ratio in the Metropolis Hast-

ings algorithm by replacing the exact model score

with a stochastic approximation that samples from

the set of relevant factors. We explore two sampling

strategies, a fixed proportion approach that samples

the factors uniformly, and a dynamic alternative that

samples factors until the method is confident about

its estimate of the model score.

We evaluate our method empirically on both syn-

thetic and real-world data. On synthetic classi-

fication data, our approximate MCMC procedure

obtains the true marginals faster than a traditional

MCMC sampler. On real-world tasks, our method

achieves 7 times speedup on citation matching, and

13 times speedup on large-scale author disambigua-

tion.

2 Background

2.1 Graphical Models

Factor graphs (Kschischang et al., 2001) succinctly

represent the joint distribution over random vari-

ables by a product of factors that make the depen-

dencies between the random variables explicit. A

factor graph is a bipartite graph between the vari-

ables and factors, where each (log) factor f ∈ F is

a function that maps an assignment of its neighbor-

ing variables to a real number. For example, in a

linear-chain model of part-of-speech tagging, transi-

tion factors score compatibilities between consecu-

tive labels, while emission factors score compatibil-

ities between a label and its observed token.

The probability distribution expressed by the fac-

tor graph is given as a normalized product of the fac-

tors, which we rewrite as an exponentiated sum:

p(y) =
expψ(y)

Z
(1)

ψ(y) =
∑

f∈F

f(yf ) (2)

Z =
∑

y∈Y

expψ(y) (3)

Intuitively, the model favors assignments to the ran-

dom variables that yield higher factor scores and will

assign higher probabilities to such configurations.

The two common inference problems for graphi-

cal models in NLP are maximum a posterior (MAP)

and marginal inference. For models without latent

variables, the MAP estimate is the setting to the

variables that has the highest probability under the

model:

yMAP = argmax
y

p(y) (4)

Marginal inference is the problem of finding

marginal distributions over subsets of the variables,

used primarily in maximum likelihood gradients and

for max marginal inference.

2.2 Markov chain Monte Carlo (MCMC)

Often, computing marginal estimates of a model is

computationally intractable due to the normalization

constant Z, while maximum a posteriori (MAP) is

prohibitive due to the search space of possible con-

figurations. Markov chain Monte Carlo (MCMC) is

important tool for performing sample- and search-

based inference in these models. A particularly suc-

cessful MCMC method for graphical model infer-

ence is Metropolis-Hastings (MH). Since sampling

from the true model p(y) is intractable, MH instead

uses a simpler distribution q(y′|y) that conditions

on a current state y and proposes a new state y
′ by

modifying a few variables. This new assignment is

then accepted with probability α:

α = min

(

1,
p(y′)

p(y)

q(y|y′)

q(y′|y)

)

(5)

Computing this acceptance probability is often

highly efficient because the partition function can-

cels, as do all the factors in the model that do not

neighbor the modified variables. MH can be used

for both MAP and marginal inference.

2.2.1 Marginal Inference

To compute marginals with MH, the variables are

initialized to an arbitrary assignment (i.e., randomly

or with some heuristic), and sampling is run until the

samples {yi|i = 0, · · · , n} become independent of

the initial assignment. The ergodic theorem provides

the MCMC analog to the law-of-large-numbers, jus-

tifying the use of the generated samples to compute

the desired statistics (such as feature expectations or

variable marginals).



2.2.2 MAP Inference

Since MCMC can efficiently explore the high

density regions for a given distribution, the distri-

bution p can be modified such that the high-density

region of the new distribution represents the MAP

configuration of p. This is achieved by adding a tem-

perature term τ to the distribution p, resulting in the

following MH acceptance probability:

α = min

(

1,

(

p(y′)

p(y)

)
1

τ

)

(6)

Note that as τ → 0, MH will sample closer to the

MAP configuration. If a cooling schedule is imple-

mented for τ then the MH sampler for MAP infer-

ence can be seen as an instance of simulated anneal-

ing (Bertsimas and Tsitsiklis, 1993).

3 Monte Carlo MCMC

In this section we introduce our approach for ap-

proximating the acceptance ratio of Metropolis-

Hastings that samples the factors, and describe two

sampling strategies.

3.1 Stochastic Proposal Evaluation

Although one of the benefits of MCMC lies in its

ability to leverage the locality of the proposal, for

some information extraction tasks this can become a

crucial bottleneck. In particular, evaluation of each

sample requires computing the score of all the fac-

tors that are involved in the change, i.e. all fac-

tors that neighbor any variable in the set that has

changed. This evaluation becomes a bottleneck for

tasks in which a large number of variables is in-

volved in each proposal, or in which the model con-

tains a number of high-degree variables, resulting in

a large number of factors, or in which computing

the factor score involves an expensive computation,

such as string similarity between mention text.

Instead of evaluating the log-score ψ of the model

exactly, this paper proposes a Monte-Carlo estima-

tion of the log-score. In particular, if the set of fac-

tors for a given proposal y → y
′ is F(y,y′), we use

a sampled subset of the factors S ⊆ F(y,y′) as an

approximation of the model score. In the following

we use F as an abbreviation for F(y,y′). Formally,

ψ(y) =
∑

f∈F

f(yf ) = |F| · EF [f(yf )]

ψS(y) = |F| · ES [f(yf )] (7)

We use the sample log-score (ψS) in the acceptance

probability α to evaluate the samples. Since we are

using a stochastic approximation to the model score,

in general we need to take more MCMC samples

before we converge, however, since evaluating each

sample will be much faster (O(|S|) as opposed to

O(|F|)), we expect overall sampling to be faster.

In the next sections we describe several alternative

strategies for sampling the set of factors S. The pri-

mary restriction on the set of samples S is that their

mean should be an unbiased estimator of EF[f ]. Fur-

ther, time taken to obtain the set of samples should

be negligible when compared to scoring all the fac-

tors in F. Note that there is an implicit minimum of

1 to the number of the sampled factors.

3.2 Uniform Sampling

The most direct approach for subsampling the set

of F is to perform uniform sampling. In particular,

given a proportion parameter 0 < p ≤ 1, we select a

random subset Sp ⊆ F such that |Sp| = p · |F|. Since

this approach is agnostic as to the actual factors

scores, ES[f ] ≡ EF[f ]. A low p leads to fast evalua-

tion, however it may require a large number of sam-

ples due to the substantial approximation. On the

other hand, although a higher p will converge with

fewer samples, evaluating each sample is slower.

3.3 Confidence-Based Sampling

Selecting the best value for p is difficult, requiring

analysis of the graph structure, and statistics on the

distribution of the factors scores; often a difficult

task in real-world applications. Further, the same

value for p can result in different levels of approxi-

mation for different proposals, either unnecessarily

accurate or problematically noisy. We would prefer

a strategy that adapts to the distribution of the scores

in F.

Instead of sampling a fixed proportion of factors,

we can sample until we are confident that the cur-

rent set of samples Sc is an accurate estimate of the

true mean of F. In particular, we maintain a run-

ning count of the sample mean ESc [f ] and variance





pare the marginals obtained during sampling with

the true marginals, computed exactly. We evalu-

ate the previously described uniform sampling and

confidence-based sampling, with several parameter

values, and plot the L1 error to the true marginals

as more factors are examined. Note that here, and

in the rest of the evaluation, we shall use the num-

ber of factors scored as a proxy for running time,

since the effects of the rest of the steps of sam-

pling are relatively negligible. The error in compar-

ison to regular MCMC (p = 1) is shown in Fig-

ure 2, with standard error bars averaging over 100
models. Initially, as the sampling approach is made

more stochastic (lowering p or increasing i), we see

a steady improvement in the running time needed

to obtain the same error tolerance. However, the

amount of relative improvements slows as stochas-

ticity is increased further; in fact for extreme values

(i = 0.05, p = 0.1) the chains perform worse than

regular MCMC.

4.2 Entity Resolution in Citation Data

To evaluate our approach on a real world dataset,

we apply stochastic MCMC for MAP inference on

the task of citation matching. Given a large number

of citations (that appear at the end of research pa-

pers, for example), the task is to group together the

citations that refer to the same paper. The citation

matching problem is an instance of entity resolution,

in which observed mentions need to be partitioned

such that mentions in a set refer to the same under-

lying entity. Note that neither the identities, or the

number of underlying entities is known.

In this paper, the graphical model of entity reso-

lution consists of observed mentions (mi), and pair-

wise binary variables between all pairs of mentions

(yij) which represent whether the corresponding ob-

served mentions are coreferent. There is a local

factor for each coreference variable yij that has a

high score if the underlying mentions mi and mj

are similar. For the sake of efficiency, we only in-

stantiate and incorporate the variables and factors

when the variable is true, i.e. if yij = 1. Thus,

ψ(y) =
∑

e

∑

mi,mj∈e
f(yij). The set of possible

worlds consists of all settings of the y variables that

are consistent with transitivity, i.e. the binary vari-

ables directly represent a valid clustering over the

mentions. An example of the model defined over 5

m2

m1

m3

m5

m4

1

1

1 1

y12

y23

y13

y45

Figure 3: Graphical Model for Entity Resolution:

defined over 5 mentions, with the setting of the vari-

ables resulting in 2 entities. For the sake of brevity,

we’ve only included variables set to 1; binary vari-

ables between mentions that are not coreferent have

been omitted.

mentions is given in Figure 3. This representation

is equivalent to Model 2 as introduced in McCal-

lum and Wellner (2004). As opposed to belief prop-

agation and other approximate inference techniques,

MCMC is especially appropriate for the task as it

can directly enforce transitivity.

When performing MCMC, each sample is a set-

ting to all the y variables that is consistent with tran-

sitivity. To maintain transitivity during sampling,

Metropolis Hastings is used to change the binary

variables in a way that is consistent with moving in-

dividual mentions. Our proposal function selects a

random mention, and moves it to a random entity,

changing all the pairwise variables with mentions in

its old entity, and the pairwise variables with men-

tions in its new entity. Thus, evaluation of such a

proposal function requires scoring a number of fac-

tors linear in the size of the entities, which, for large

datasets, can be a significant bottleneck. In prac-

tice, however, these set of factors are often highly

redundant, as many of the mentions that refer to the

same entity contain redundant information and fea-

tures, and entity membership may be efficiently de-

termined by observing a subset of its mentions.

We evaluate on the Cora dataset (McCallum et

al., 1999), used previously to evaluate a number

of information extraction approaches (Pasula et al.,

2003), including MCMC based inference (Poon and

Domingos, 2007; Singh et al., 2009). The dataset







and domain knowledge for blocking (Singh et al.,

2010). Thus we feel providing a method to speed up

MCMC inference can have a significant impact.

There has also been recent work in designing

scalable approximate inference techniques. Belief

propagation has, in particular, has gained some re-

cent interest. Similar to our approach, a number

of researchers propose modifications to BP that per-

form inference without visiting all the factors. Re-

cent work introduces dynamic schedules to priori-

tize amongst the factors (Coughlan and Shen, 2007;

Sutton and McCallum, 2007) that has been used to

only visit a small fraction of the factors (Riedel and

Smith, 2010). Gonzalez et al. (2009) utilize these

schedules to facilitate parallelization.

A number of existing approaches in statistics

are also related to our contribution. Leskovec and

Faloutsos (2006) propose techniques to sample a

graph to compute certain graph statistics with asso-

ciated confidence. Christen and Fox (2005) also pro-

pose an approach to efficiently evaluate a proposal,

however, once accepted, they score all the factors.

Murray and Ghahramani (2004) propose an approx-

imate MCMC technique for Bayesian models that

estimates the partition function instead of comput-

ing it exactly.

Related work has also applied such ideas for

robust learning, for example Kok and Domingos

(2005), based on earlier work by Hulten and Domin-

gos (2002), uniformly sample the groundings of an

MLN to estimate the likelihood.

6 Conclusions and Future Work

Motivated by the need for an efficient inference tech-

nique that can scale to large, densely-factored mod-

els, this paper considers a simple extension to the

Markov chain Monto Carlo algorithm. By observ-

ing that many graphical models contain substantial

redundancy among the factors, we propose stochas-

tic evaluation of proposals that subsamples the fac-

tors to be scored. Using two proposed sampling

strategies, we demonstrate improved convergence

for marginal inference on synthetic data. Further,

we evaluate our approach on two real-world entity

resolution datasets, obtaining a 13 times speedup on

a dataset containing 5 million mentions.

Based on the ideas presented in the paper, we will

consider additional sampling strategies. In partic-

ular, we will explore dynamic sampling, in which

we sample fewer factors during the initial, burn-

in phase, but sample more factors as we get close

to convergence. Motivated by our positive results,

we will also study the application of this approach

to other approximate inference techniques, such as

belief propagation and variational inference. Since

training is often a huge bottleneck for information

extraction, we will also explore its applications to

parameter estimation.
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