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Abstract

Methods that measure compatibility between

mention pairs are currently the dominant ap-

proach to coreference. However, they suf-

fer from a number of drawbacks including

difficulties scaling to large numbers of men-

tions and limited representational power. As

the severity of these drawbacks continue to

progress with the growing demand for more

data, the need to replace the pairwise ap-

proaches with a more expressive, highly scal-

able alternative is becoming increasingly ur-

gent. In this paper we propose a novel

discriminative hierarchical model that recur-

sively structures entities into trees. These trees

succinctly summarize the mentions providing

a highly-compact information-rich structure

for reasoning about entities and coreference

uncertainty at small, large, and massive scales.

The unique recursive structure of our entities

allows our model to adapt to entities of vari-

ous sizes, express features over entity hierar-

chies, and scale to massive data, making our

approach a desirable new standard to replace

the antiquated pairwise model.

1 Introduction

Coreference resolution, the task of clustering men-

tions into the real-world entities they refer to, is

fundamental for high-level information extraction

and data integration problems including semantic

search, question answering, and knowledge base

construction. For example, coreference is vital

for determining author publication lists in bibli-

ographic knowledge bases such as CiteSeer and

Google Scholar, where the repository must know

if the “R. Hamming” that authored “Error detect-

ing and error correcting codes” is the same” “R.

Hamming” that authored “The unreasonable effec-

tiveness of mathematics.” Features of the mentions

(e.g., bags-of-words in titles, contextual snippets

and co-author lists) provide evidence for resolving

such entities.

Over the years, many machine learning tech-

niques have been applied to different variations of

the coreference problem. A commonality in many

of these approaches is that they model the prob-

lem of entity coreference as a collection of decisions

between mention pairs (Bagga and Baldwin, 1999;

Soon et al., 2001; McCallum and Wellner, 2005;

Singla and Domingos, 2005; Bengston and Roth,

2008). That is, coreference is solved by answering

a quadratic number of questions of the form: does

mention A refer to the same entity as mention B?

While these models have been quite successful in

some domains, they also exhibit a number of unde-

sirable characteristics. The first problem is that pair-

wise models lack the expressivity required to rep-

resent properties of the entities themselves. Recent

work has shown that these entity-level properties al-

low systems to correct coreference errors made from

myopic pairwise decisions (Ng, 2005; Culotta et al.,

2007b; Yang et al., 2008; Rahman and Ng, 2009;

Wick et al., 2009), and can even provide a strong sig-

nal for unsupervised coreference (Bhattacharya and

Getoor, 2006; Haghighi and Klein, 2007; Haghighi

and Klein, 2010).

A second problem, that has received significantly

less attention by the literature, is that the pairwise









specific notions of coreference over multiple gran-

ularities. For example, mentions of an author may

be further partitioned into semantically similar sets,

such that mentions from each set have topically sim-

ilar papers. This partitioning can be recursive, i.e.

each of these sets may be further divided based on a

yet another measure of similarity. In this section, we

describe a model that captures arbitrarily deep hier-

archies over such layers of coreference decisions, fa-

cilitating efficient inference and rich representations

for entity-level reasoning.

3.1 Discriminative Hierarchical Model

In contrast to the pairwise model, where each en-

tity is a flat cluster of mentions, our proposed model

structures each entity recursively as a tree. The

leaves of the tree are the observed mentions as be-

fore with a set of attributes as shown earlier in Fig-

ure 2. Each internal node of the tree also contains a

set of unobserved attributes; recursively, these node

records summarize the attributes of their child nodes

(see Figure 1), for example, they may aggregate the

bags of context words of the children. The root of

each tree represents the entire entity, with the leaves

defining its mentions. More formally, the corefer-

ence decision variables in the hierarchical model no

longer represent pairwise decisions directly. Instead,

a decision variable yri,rj
= 1 indicates that node-

record rj is the parent of node-record ri. We say

a node-record exists if either it is a mention, has a

parent, or has at least one child. Let R be the set of

all existing node records, let rp denote the parent for

node r, that is yr,rp = 1, and ∀r′ 6= rp, yr,r′ = 0. As

we describe in more detail later, the structure of the

tree and the values of the unobserved attributes are

determined during inference.

In order to represent our hierarchical notion of

coreference, we include two types of factors: pair-

wise factorsψpw that measure compatibility between

a child node-record and its parent, and unit-wise fac-

tors ψrw that measure compatibilities of the node-

records themselves. For efficiency we enforce that

parent-child factors only produce a non-zero score

when the corresponding decision variable is 1. The

unit-wise factors can examine compatibility of set-

tings to the attribute variables for a particular node

(for example, the set of topics may be too diverse

to represent just a single entity), as well as enforce

priors over the tree’s breadth and depth. Our recur-

sive hierarchical model defines the probability of a

configuration as:

Pr(y, R|m) ∝
∏

r∈R

ψrw(r)ψpw(r, rp) (3)

3.2 MCMC Inference for Hierarchical models

The state space of our hierarchical model is substan-

tially larger (theoretically infinite) than the pairwise

model due to the arbitrarily deep (and wide) latent

structure of the cluster trees. Inference must simul-

taneously determine the structure of the tree, the la-

tent node-record values, as well as the coreference

decisions themselves.

While this may seem daunting, the structures be-

ing inferred are actually beneficial to inference. In-

deed, despite the enlarged state space, inference in

the hierarchical model is substantially faster than a

pairwise model with a smaller state space. One in-

tuition for why this may be the case comes from

the statistical physics community: we can view

the latent tree as auxiliary variables in a data-

augmentation sampling scheme that guide MCMC

through the state space more efficiently. There

is a large body of literature in the statistics com-

munity describing how these auxiliary variables

can lead to faster convergence despite the enlarged

state space (classic examples include Swendsen and

Wang (1987) and slice samplers (Neal, 2000)).

Further, evaluating each proposal during infer-

ence in the hierarchical model is substantially faster

than in the pairwise model. Indeed, we can replace

the linear number of factor evaluations (as in the

pairwise model) with a constant number of factor

evaluations for most proposals (for example, adding

a subtree requires re-evaluating only a single parent-

child factor between the subtree and the attachment

point, and a single node-wise factor).

We now describe our modified Metropolis-

Hastings inference algorithm. In classic MH, a sam-

ple is generated by choosing to accept or reject a

single proposal (according to Equation 2). How-

ever, because inference in our model must also infer

the structure of the entity trees, it considers multiple

proposals. For each sample we make k proposals

and sample one according to its model ratio score

(the first term in Equation 2). More specifically, for



each MH step, we first randomly select two sub-trees

headed by node-records ri and rj from the current

coreference hypothesis. If ri and rj are part of dif-

ferent clusters, we propose several alternate merge

operations: (also illustrated in Figure 4):

• Merge Left - merges the entire subtree of rj into

node ri by making rj a child of ri
• Merge Entity Left - merges rj with ri’s root

• Merge Left and Collapse - similar to merge-left,

but instead takes all the children of rj and moves

them to be children of ri and then deletes the vacu-

ous head rj .

• Merge Up - merges node ri with node rj by cre-

ating a new parent node-record variable rp with ri
and rj as the children. The attribute fields of rp are

determined using a canonicalization function that

takes the attributes of ri and rj as input and chooses

among them. The bags of words for rp are combined

by accumulating the word counts

Otherwise ri and rj are subtrees in the same entity

tree, then the following proposals are used instead:

• Split Right - Make the subtree rj the root of a new

entity by detaching it from its parent

• Collapse - If ri has a parent, then move ri’s chil-

dren to ri’s parent and then delete ri.
Computing the model ratio for many of these pro-

posals requires only a constant number of compat-

ibility functions. On the other hand, for evaluating

proposals in the pairwise model, we must compute a

number of compatibility functions equal to the num-

ber of mentions in the clusters being modified.

Note that changes to the attribute values of the

node-record still require evaluating a linear number

of factors, but this is only linear in the number of

child nodes, not linear in the number of mentions re-

ferring to the entity. Further, attribute values rarely

change once the entities stabilize. Finally, we note

that if a decomposable similarity metric like cosine

distance is used, then we do not have to re-evaluate

compatibilities with the children when bags of word

counts are incrementally updated.

4 Experiments

We evaluate the performance on the problem of au-

thor coreference resolution.

4.1 Author Coreference

Analysis of bibliographic data is important as the

knowledge generated by the scientific communities

continues grow. Author coreference forms a major

sub-component to understand and provide scientific

data to researchers, funding agencies, and govern-

ments, by comprehensively identifying the contri-

butions of individual scientists. The problem is ex-

tremely difficult due to the wide variations of names,

limited contextual evidence, misspellings, people

with common names, lack of standard citation for-

mats, and large numbers of mentions.

To gather the data for this task we spider the web

for BibTeX files and collect 4394 .bib files contain-

ing 817,193 entries. We extract 1,322,985 author

mentions with records containing the first, middle,

last names, and construct bags of words from the to-

kens in paper titles, topics in paper titles (by running

latent Dirichlet allocation (Blei et al., 2003)), and

last names of co-authors; we intend to release this

dataset to the community. In addition we include

2833 labeled mentions from the REXA dataset (Cu-

lotta et al., 2007a) for accuracy evaluation. We also

include ∼5 million mentions from DBLP.

4.2 Models and Inference

Due to the paucity of labeled training data, we con-

struct the compatibility functions manually by spec-

ifying their log scores. The pairwise compatibility

functions punish a mismatch of first, middle, and

last name, (−8); reward a match (+2); and reward

for initials matching (+1). Additionally, we use

the cosine similarity (shifted and scaled between −4
and 4) between title tokens, topics, and co-author

last names. These compatibility functions become

the factors in the pairwise model and the parent-

child factors in the hierarchical model. Addition-

ally, we include priors over the model structure. We

encourage each node to have eight children using

1/(|number of children−8|+1), manage tree depth

by placing a cost on the creation of intermediate tree

nodes −8 and encourage clustering by placing a cost

on the creation of root-level entities −7.

We initialize the MCMC procedures to the single-

ton configuration for each model, and run the MH

algorithm described in Section 2.2 for the pairwise

model and run modified MH algorithm described in
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Figure 5: Sampling Performance Plots for 145k mentions
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(b) Accuracy vs. time (1.3 million mentions)

Figure 6: Runtime performance on two datasets

Yang et al., 2008; Wick et al., 2009; Haghighi and

Klein, 2010). However, these systems reason over a

single layer of entities and do not scale.

Techniques such as lifted inference (Singla and

Domingos, 2008) for graphical models attempt to

exploit redundancy in the data, but fail to achieve

any significant compression on real-world data be-

cause the observations usually negate any symmetry

assumptions. On the other hand, our model is able

to compress similar (but potentially different) obser-

vations together in order to make inference fast even

in the presence of real observed data.

6 Conclusion

In this paper we presented a new hierarchical model

for large scale coreference and applied it to the prob-

lem of author disambiguation. Our model recur-

sively defines an entity as a summary of its children

nodes, allowing succinct representations of millions

of mentions. Indeed, inference in the hierarchy is

orders of magnitude faster than a pairwise CRF, al-

lowing us to scale to six million mentions taken

from DBLP and a web crawl. In future work we

would like to investigate and manipulate the seman-

tic meaning of the entity hierarchies in order to pro-

vide interpretable summaries of large datasets, such

as all the entities in mentioned in New York Times.
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