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Abstract

Methods that measure compatibility between
mention pairs are currently the dominant ap-
proach to coreference. However, they suf-
fer from a number of drawbacks including
difficulties scaling to large numbers of men-
tions and limited representational power. As
the severity of these drawbacks continue to
progress with the growing demand for more
data, the need to replace the pairwise ap-
proaches with a more expressive, highly scal-
able alternative is becoming increasingly ur-
gent. In this paper we propose a novel
discriminative hierarchical model that recur-
sively structures entities into trees. These trees
succinctly summarize the mentions providing
a highly-compact information-rich structure
for reasoning about entities and coreference
uncertainty at small, large, and massive scales.
The unique recursive structure of our entities
allows our model to adapt to entities of vari-
ous sizes, express features over entity hierar-
chies, and scale to massive data, making our
approach a desirable new standard to replace
the antiquated pairwise model.

1 Introduction

Coreference resolution, the task of clustering men-
tions into the real-world entities they refer to, is
fundamental for high-level information extraction
and data integration problems including semantic
search, question answering, and knowledge base
construction. For example, coreference is vital
for determining author publication lists in bibli-
ographic knowledge bases such as CiteSeer and
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Google Scholar, where the repository must know
if the “R. Hamming” that authored “Error detect-
ing and error correcting codes” is the same” “R.
Hamming” that authored “The unreasonable effec-
tiveness of mathematics.” Features of the mentions
(e.g., bags-of-words in titles, contextual snippets
and co-author lists) provide evidence for resolving
such entities.

Over the years, many machine learning tech-
niques have been applied to different variations of
the coreference problem. A commonality in many
of these approaches is that they model the prob-
lem of entity coreference as a collection of decisions
between mention pairs (Bagga and Baldwin, 1999;
Soon et al., 2001; McCallum and Wellner, 2005;
Singla and Domingos, 2005; Bengston and Roth,
2008). That is, coreference is solved by answering
a quadratic number of questions of the form: does
mention A refer to the same entity as mention B?
While these models have been quite successful in
some domains, they also exhibit a number of unde-
sirable characteristics. The first problem is that pair-
wise models lack the expressivity required to rep-
resent properties of the entities themselves. Recent
work has shown that these entity-level properties al-
low systems to correct coreference errors made from
myopic pairwise decisions (Ng, 2005; Culotta et al.,
2007b; Yang et al., 2008; Rahman and Ng, 2009;
Wick et al., 2009), and can even provide a strong sig-
nal for unsupervised coreference (Bhattacharya and
Getoor, 2006; Haghighi and Klein, 2007; Haghighi
and Klein, 2010).

A second problem, that has received significantly
less attention by the literature, is that the pairwise
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Figure 1: Discriminative hierarchical factor graph for coreference: Nodes summarize lower-levels of
the tree. Pairwise factors (compatibility functions), indicated by black boxes, lie between each child and its

parent, aveiding quadratic blow-up. Deciding whether to merge the two entities requires evaluating just a

single factor, corresponding te the new child-parent relatienship (indicated as the gray boex).

coreference models scale poorly te veluminous cel-
lections of mentions where the expected number of
mentions in each entity cluster is large. Current sys-
tems cope with this by either blocking the data to re-
duce the search space (Herndndez and Stolfo, 1995;
McCallum et al., 2000; Bilenko et al., 2006), using
fixed heuristics to greedily compress the mentions
(Ravin and Kazi, 1999; Rac et al., 2010), cr employ-
ing other clever inference techniques to reduce the
number of comparisens (Milch et al., 2005; Richard-
son and Demingos, 2006; Singh et al., 2011). How-
ever, while these metheds help manage the search
space for medium-scale data, evaluating each coref-
erence decision in many of these systems still scales
linearly with the number of menticons in an entity,
resulting in the prehibitive computational costs as-
sociated with large datasets. This dependence on
entity size seems particularly wasteful because al-
though it is commen for an entity te be referred to
by a large number of mentions, many of these coref-
erent mentiens are highly similar to each other. For
example, in author coreference the two mest com-
mon strings that refer to Richard Hamming might
have the form “R. Hamming” and “Richard Ham-
ming”. In newswire coreference, a prominent entity
like Barack Obama may have millions of “Obama”
mentions {many cccurring in similar semantic con-
texts). Deciding whether a mention belongs to this

entity need not require comparisens to all contextu-
ally similar “Obama™ mentions; rather we prefer a
mere compact representation for efficiently reason-
ing about them.

In this paper we propose a novel hierarchical dis-
criminative factor graph for coreference resclution
that recursively structures each entity as a tree. Our
hierarchical model avoids the aforementioned con-
cemns of the pairwise approach: not only can it
jeintly reasen about attributes of entire entities (us-
ing the power of discriminative conditicnal randem
fields), it is able to scale to datasets with enor-
meus numbers of mentions because scoring enti-
ties does not require cemputing a quadratic num-
ber of compatibility functions. The key insight is
that each node in the tree functions as a highly
compact information-rich summary of its children.
Thus, a small handful of upper-level nodes may
summarize millions of mentions (for example, a sin-
gle node may summarize all contextually similar “R.
Hamming™ mentions). Although inferring the struc-
ture of the entities requires reasoning over a larger
state-space, the latent trees are actually mutually
beneficial te inference, resulting in improved sam-
pling power similar to data-augmentation methods
from statistical physics {e.g., Swendsen and Wang
(1987)). Moreover, each step of inference is compu-
tationally efficient because evaluating the cost of at-
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Figure 2: An example of an cbserved author coref-
erence mentien extracted from a BibTeX record.

taching {or detaching) sub-trees requires computing
just a single compatibility function (as seen in Fig-
ure 1). Further, our hierarchical approach provides a
number of additional advantages. First, the recursive
nature of the tree (arbitrary depth and width) allows
the model te adapt to a different types of data and
effectively compress entities of different scale. Sec-
ond, the model alse contains compatibility functions
at all levels of the tree enabling it to simultanecusly
reasen at multiple granularities of entity compres-
sion. Third, the trees can provide semantically inter-
esting interpretations of the entity by placing con-
textually similar mentions under the same subtree.
Finally, if memory is limited, redundant mentions
can easily be pruned by replacing subtrees with their
roots.

Empirically, we demenstrate that our medel is
several orders of magnitudes faster than a pairwise
model allowing us te perform coreference on nearly
six million auther mentions obtained by combining
DBLP with additional BibTeX files spidered from
the web.

2  Background: Pairwise Coreference

Coreference is the problem of clustering mentions
into entities, and is alsoc known as entity disambigua-
tion/reselution and record linkage/de-duplication.
For example, in author coreference, each mention
might be represented as a record extracted from the
author field of a textual citation or BibTeX record
{see Figure 2). The mention recerd may centain at-
tributes for the first, middle, and last name of the
author, as well as some contextual information such
as bags of words of co-authers, titles, topics, and in-
stitutions that may occur in the citation string. The
goal is to cluster these mentien recerds inte the real-
world academic authors to which they refer; we use
this task as a running pedagogical example.

If we let M be the space of observed mention
records, then the traditional pairwise coreference
approach medels the preblem with a compatibility
function v : M x M — R that measures how
likely it is that the two mentions refer to the same
entity!. In discriminative log-linear models, the
function 1 takes the form of a log-linear combi-
nation of features and weights, i.e. (m;, m;} =
exp (@ - ¢(m;, m;})}. For example, in author coref-
erence, the feature functions ¢ might test whether
the name fields for two author mentions are string
identical, or compute cosine similarity between the
two mentiens’” bag of words contexts. The corre-
sponding real-valued weights 8 determine the im-
pact of these features on the overall pairwise score.

Given this pairwise compatibility function, coref-
erence is solved by clustering mentions into the en-
tities that they refer. While it is possible to indepen-
dently make pairwise decisions and enforce transi-
tivity post hoc, this can lead to poor accuracy be-
cause the decisions are tightly coupled. For higher
accuracy, a graphical model such as a conditicnal
random field {CRF) is constructed from the compat-
ibility functicons to jointly reason about the pairwise
decisions using statistical inference (McCallum and
Wellner, 2005). We now describe the pairwise CRF
for coreference as a factor graph.

2.1 Pairwise Conditional Random Field

Each mention m; € M is an observed variable, and
for each mention pair (m;,m;} we have a binary
coreference decisien variable y;; whose value de-
termines whether mm; and m; refer to the same en-
tity (i.e., 1 means they are coreferent and 0 means
they are not coreferent). The pairwise compatibility
functions become the facters in the graphical model.
Each factor examines the properties of its mention
pair as well as the setting to the coreference decision
variable and outputs a score indicating how likely
the setting of that coreference variable is. The joint
prebability distribution over all possible settings to
the coreference decision variables (y) is given as a
preduct of all the pairwise compatibility factors:

Pr{y|m)} oc]___[]___[il)(ma',mj,ya'j) (1)

i=1j=1

"We can also include an incompatibitity function for when

the mentions are not coreferent, e.g., ¢ : M x M x {0,1} = R
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Figure 3: Pairwise model on six mentions: Open
circles are the binary coreference decision variables,
shaded circles are the observed mentions, and the
black boxes are the factors of the graphical model
that encode the pairwise compatibility functions.

Given the pairwise CRF, the problem of coreference
is then selved by searching for the setting of the
coreference decision variables that has the highest
probability according to Equation 1 subject to the
constraint that the setting to the coreference vari-
ables obey transitivity?; this is the maximum proba-
bility estimate (MPE) setting. However, the solution
to this problem is intractable, and even approximate
inference methoeds such as loopy belief propagation
can be difficult due to the cubic number of determin-
istic transitivity constraints.

2.2  Approximate Inference

An approximate inference framework that has sue-
cessfully been used for coreference models is the
MCMC-based Metropolis-Hastings (MH) algorithm
(Milch et al. (2005), Culotta and McCallum (2006),
Poon and Demingos (2007), amongst others). MH
is a flexible framework for specifying customized
local-search transitien functions and provides a prin-
cipled way of deciding which local search moves
to accept. A propesal function ¢ takes the current
coreference hypothesis and proposes a new hypoth-
esis by modifying a subset of the decision variables.

2We say that a full assignment to the coreference variables
v obeys transitivity if Vigk gy, = 1Ay =1 = mr =1

The proposed change is accepted with probability a:

& — min (1 Pr(y’) q(yly’))
" Priy) q(y'ly)

When using MH for MPE inference, the second term
q(y'|ly}/q¢(y|y’} is optional, and usually omitted.

2)

An important observation is that moves that reduce
medel score may be accepted and an opticnal tem-
perature can be used for annealing. The primary
advantages of MH for coreference are (1) only the
compatibility functions of the changed decision vari-
ables need to be evaluated to accept a move, and
(2) the propeosal function can enforce the transitiv-
ity constraint by only exploring the feasible space.
A commenly used proposal distribution for coref-
erence is the following: (1) randomly select two
mentions (m;, m;}, (2) if the mentions (m;, m;} are
in the same entity cluster according to y then move
cne mentien inte a singleton cluster (by setting the
necessary decision variables to 0), otherwise, move
mention m; so it is in the same cluster as m; (by
setting the necessary decision variables). Typically,
MH is employed by first initializing to a singleton
configuration (all entities have one menticn), and
then executing the MH for a certain number of steps.
This preposal distribution always moves a single
mention /. from some entity e; to another entity e;
and thus the configuration y and y' only differ by the
setting of decision variables governing which entity
. refers to. In order to guarantee transitivity and
a valid coreference equivalence relation, we must
preperly remove m from e; by untethering m from
each mention in e; (this requires computing |e;| — 1
pairwise factors). Similarly—because of transitiv-
ity—in order to complete the move into e; we must
tie m to each mention in e; (this requires computing
le;| pairwise factors). Clearly, all the other corefer-
ence decision variables are independent and so their
corresponding factors cancel because they yield the
same scores under y and y'. Thus, evaluating each
preposal for the pairwise model scales linearly with
the size of the entities, requiring the evaluation of
2(le;| + |e;| — 1) compatibility functions (factors).

3 Hierarchical Coreference

Instead of only capturing a single notion of corefer-
ence between mention pairs, we can imagine more



specific notions of coreference over multiple gran-
ularities. For example, mentions of an author may
be further partitioned into semantically similar sets,
such that mentions from each set have topically sim-
ilar papers. This partitioning can be recursive, i.e.
each of these sets may be further divided based on a
yet another measure of similarity. In this section, we
describe a model that captures arbitrarily deep hier-
archies over such layers of coreference decisions, fa-
cilitating efficient inference and rich representations
for entity-level reasoning.

3.1 Discriminative Hierarchical Model

In contrast to the pairwise model, where each en-
tity is a flat cluster of mentions, our proposed model
structures each entity recursively as a tree. The
leaves of the tree are the observed mentions as be-
fore with a set of attributes as shown earlier in Fig-
ure 2. Each internal node of the tree also contains a
set of unobserved attributes; recursively, these node
records summarize the attributes of their child nodes
(see Figure 1), for example, they may aggregate the
bags of context words of the children. The root of
each tree represents the entire entity, with the leaves
defining its mentions. More formally, the corefer-
ence decision variables in the hierarchical model no
longer represent pairwise decisions directly. Instead,
a decision variable Yrir; = 1 indicates that node-
record r; is the parent of node-record r;. We say
a node-record exists if either it is a mention, has a
parent, or has at least one child. Let R be the set of
all existing node records, let 7” denote the parent for
node r, thatis y, .» = 1, and Vi’ # 7P, y, ,» = 0. As
we describe in more detail later, the structure of the
tree and the values of the unobserved attributes are
determined during inference.

In order to represent our hierarchical notion of
coreference, we include two types of factors: pair-
wise factors vy, that measure compatibility between
a child node-record and its parent, and unit-wise fac-
tors vy that measure compatibilities of the node-
records themselves. For efficiency we enforce that
parent-child factors only produce a non-zero score
when the corresponding decision variable is 1. The
unit-wise factors can examine compatibility of set-
tings to the attribute variables for a particular node
(for example, the set of topics may be too diverse
to represent just a single entity), as well as enforce

priors over the tree’s breadth and depth. Our recur-
sive hierarchical model defines the probability of a
configuration as:

Pr(y, Rlm) H Yew (1) Ypw(r,7P) ()

reER

3.2 MCMUC Inference for Hierarchical models

The state space of our hierarchical model is substan-
tially larger (theoretically infinite) than the pairwise
model due to the arbitrarily deep (and wide) latent
structure of the cluster trees. Inference must simul-
taneously determine the structure of the tree, the la-
tent node-record values, as well as the coreference
decisions themselves.

While this may seem daunting, the structures be-
ing inferred are actually beneficial to inference. In-
deed, despite the enlarged state space, inference in
the hierarchical model is substantially faster than a
pairwise model with a smaller state space. One in-
tuition for why this may be the case comes from
the statistical physics community: we can view
the latent tree as auxiliary variables in a data-
augmentation sampling scheme that guide MCMC
through the state space more efficiently. There
is a large body of literature in the statistics com-
munity describing how these auxiliary variables
can lead to faster convergence despite the enlarged
state space (classic examples include Swendsen and
Wang (1987) and slice samplers (Neal, 2000)).

Further, evaluating each proposal during infer-
ence in the hierarchical model is substantially faster
than in the pairwise model. Indeed, we can replace
the linear number of factor evaluations (as in the
pairwise model) with a constant number of factor
evaluations for most proposals (for example, adding
a subtree requires re-evaluating only a single parent-
child factor between the subtree and the attachment
point, and a single node-wise factor).

We now describe our modified Metropolis-
Hastings inference algorithm. In classic MH, a sam-
ple is generated by choosing to accept or reject a
single proposal (according to Equation 2). How-
ever, because inference in our model must also infer
the structure of the entity trees, it considers multiple
proposals. For each sample we make k proposals
and sample one according to its model ratio score
(the first term in Equation 2). More specifically, for



each MH step, we first randomly select two sub-trees
headed by node-records 7; and r; from the current
coreference hypothesis. If r; and r; are part of dif-
ferent clusters, we propose several alternate merge
operations: (also illustrated in Figure 4):

e Merge Left - merges the entire subtree of r; into
node 7; by making r; a child of r;

e Merge Entity Left - merges r; with 7;’s root

e Merge Left and Collapse - similar to merge-left,
but instead takes all the children of r; and moves
them to be children of r; and then deletes the vacu-
ous head r;.

e Merge Up - merges node r; with node r; by cre-
ating a new parent node-record variable P with r;
and r; as the children. The attribute fields of ¥ are
determined using a canonicalization function that
takes the attributes of r; and r; as input and chooses
among them. The bags of words for P are combined
by accumulating the word counts

Otherwise r; and r; are subtrees in the same entity
tree, then the following proposals are used instead:
o Split Right - Make the subtree r; the root of a new
entity by detaching it from its parent

e Collapse - If r; has a parent, then move 7;’s chil-
dren to r;’s parent and then delete ;.

Computing the model ratio for many of these pro-
posals requires only a constant number of compat-
ibility functions. On the other hand, for evaluating
proposals in the pairwise model, we must compute a
number of compatibility functions equal to the num-
ber of mentions in the clusters being modified.

Note that changes to the attribute values of the
node-record still require evaluating a linear number
of factors, but this is only linear in the number of
child nodes, not linear in the number of mentions re-
ferring to the entity. Further, attribute values rarely
change once the entities stabilize. Finally, we note
that if a decomposable similarity metric like cosine
distance is used, then we do not have to re-evaluate
compatibilities with the children when bags of word
counts are incrementally updated.

4 Experiments

We evaluate the performance on the problem of au-
thor coreference resolution.

4.1 Author Coreference

Analysis of bibliographic data is important as the
knowledge generated by the scientific communities
continues grow. Author coreference forms a major
sub-component to understand and provide scientific
data to researchers, funding agencies, and govern-
ments, by comprehensively identifying the contri-
butions of individual scientists. The problem is ex-
tremely difficult due to the wide variations of names,
limited contextual evidence, misspellings, people
with common names, lack of standard citation for-
mats, and large numbers of mentions.

To gather the data for this task we spider the web
for BibTeX files and collect 4394 .bib files contain-
ing 817,193 entries. We extract 1,322,985 author
mentions with records containing the first, middle,
last names, and construct bags of words from the to-
kens in paper titles, topics in paper titles (by running
latent Dirichlet allocation (Blei et al., 2003)), and
last names of co-authors; we intend to release this
dataset to the community. In addition we include
2833 labeled mentions from the REXA dataset (Cu-
lotta et al., 2007a) for accuracy evaluation. We also
include ~5 million mentions from DBLP.

4.2 Models and Inference

Due to the paucity of labeled training data, we con-
struct the compatibility functions manually by spec-
ifying their log scores. The pairwise compatibility
functions punish a mismatch of first, middle, and
last name, (—8&); reward a match (4+2); and reward
for initials matching (+1). Additionally, we use
the cosine similarity (shifted and scaled between —4
and 4) between title tokens, topics, and co-author
last names. These compatibility functions become
the factors in the pairwise model and the parent-
child factors in the hierarchical model. Addition-
ally, we include priors over the model structure. We
encourage each node to have eight children using
1/(|number of children— 8|+ 1), manage tree depth
by placing a cost on the creation of intermediate tree
nodes —8 and encourage clustering by placing a cost
on the creation of root-level entities —7.

We initialize the MCMC procedures to the single-
ton configuration for each model, and run the MH
algorithm described in Section 2.2 for the pairwise
model and run modified MH algorithm described in
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Figure 4: Example coreference proposals for the case where r; and r; are initially in different clusters.

Section 3.2 for the hierarchical moedel. We augment
these samplers using canopies constructed by con-
catenating the first initial and last name: thatis, men-
tions are only selected from within the same canopy
{or block) to reduce the search space (Bilenko et al.,
2006). During the course of MCMC inference, we
record the pairwise F1 scores of the labeled subset.

4.3 Comparison to Pairwise Model

In Figure 5a we plot the number of samples over
time for a 145k subset of the data. Recall that we
initialized to the singleton configuration and that as
the size of the entities grows, the cost of evaluat-
ing the entities in MCMC becomes more expensive.
The pairwise model struggles with the large cluster
sizes while the hierarchical medel is hardly affected.
Even though the hierarchical model is evaluating up
to four propesals for each sample, it is still able to
sample much faster than the pairwise medel, which
is expected because the cost of evaluating a proposal
requires evaluating much fewer factors.

Next, we plot coreference F1 accuracy over time
and show in Figure 6a that the prolific sampling
rate of the hierarchical model results in faster coref-
Using the plot, we can compare running
times for any desired level of accuracy. For exam-

erence.

ple, on the 145k mention dataset, at a 60% accu-
racy level the hierarchical medel is 19 times faster
and at 90% accuracy it is 31 times faster. These
performance improvements are even mere prefound
on larger datasets: the hierarchical model achieves
a 60% level of accuracy 72 times faster than the
pairwise medel on the 1.3 million mention dataset,
reaching 90% in just 2,350 seconds. Note, however,
that the hierarchical model takes a larger number of
samples to reach a similar level of accuracy due to
the larger state space (Figure 5b).

4.4 Massive-Scale Experiments

In order to demonstrate the scalability of the hierar-
chical medel, we run it on nearly 5 million author
mentions from DBLP. In under two hours (6,700
seconds), we achieve an accuracy of 80%, and in
under three hours (10,600 seconds), we achieve an
accuracy of over 90%. Finally, we combine DBLP
with our spidered dataset to preduce a dataset with
almost & million mentions (5,803,811). Our perfor-
mance on this dataset is similar to DBLP, taking just
13,500 seconds to reach a 90% accuracy.

5 Related Work

The hierarchical cereference medel of Singh et al.
(2011) treats entities as a two-tiered structure, by
intreducing the concept of sub-entities and super-
entities. Super-entities reduce the search space in
order to propose fruitful jumps. Sub-entities provide
a tighter granularity of coreference and can be used
to perform larger block moves during MCMC. How-
ever, the hierarchy in this model is fixed and shallow.
In centrast, our medel can be arbitrarily deep and
wide. Additionally, their model contains pairwise
factors and may suffer from the quadratic curse.

The work of Rac et al. (2010) uses streaming
clustering for large-scale coreference. However, the
greedy nature of the approach means errors can
never be revisited. Further, they summarize entities
on just a single level by averaging the mention fea-
ture vectors. We are able to provide richer entity
compression, the ability to revisit errors, and scale
to larger data.

Our hierarchical model provides the advantages
of recently proposed entity-based coreference sys-
tems that are known to provide higher accuracy
(Haghighi and Klein, 2007; Culotta et al., 2007b;
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Yang et al., 2008; Wick et al., 2009; Haghighi and
Klein, 2010). However, these systems reason over a
single layer of entities and do not scale.

Techniques such as lifted inference (Singla and
Domingos, 2008) for graphical models attempt to
exploit redundancy in the data, but fail to achieve
any significant compression on real-world data be-
cause the observations usually negate any symmetry
assumptions. On the other hand, our model is able
to compress similar (but potentially different) obser-
vations together in order to make inference fast even
in the presence of real observed data.

6 Conclusion

In this paper we presented a new hierarchical model
for large scale coreference and applied it to the prob-

lem of author disambiguation. Our model recur-
sively defines an entity as a summary of its children
nodes, allowing succinct representations of millions
of mentions. Indeed, inference in the hierarchy is
orders of magnitude faster than a pairwise CREF, al-
lowing us to scale to six million mentions taken
from DBLP and a web crawl. In future work we
would like to investigate and manipulate the seman-
tic meaning of the entity hierarchies in order to pro-
vide interpretable summaries of large datasets, such
as all the entities in mentioned in New York Times.

7 Acknowledgments

This work was supported in part by the Center
for Intelligent Information Retrieval and in part by
TARPA via Dol/NBC contract #D11PC20152. Also,



the University of Massachusetts gratefully acknowl-
edges the support of Defense Advanced Research
Projects Agency (DARPA) Machine Reading Pro-
gram under Air Force Research Laboratory (AFRL)
prime contract no. FA8750-09-C-0181. Any opin-
ions, findings, and conclusion or recommendations
expressed in this material are those of the authors
and do not necessarily reflect the view of DARPA,
AFRL, or the US government , The U.S. Gov-
ernment is authorized to reproduce and distribute
reprint for Governmental purposes notwithstanding
any copyright annotation thereon.

References

Amit Bagga and Breck Baldwin. 1999. Cross-document
event coreference: annotations, experiments, and ob-
servations. In Proceedings of the Workshop on Coref-
erence and its Applications, CorefApp *99, pages 1-8,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Eric Bengston and Dan Roth. 2008. Understanding
the value of features for coreference resolution. In
Empirical Methods in Natural Language Processing
(EMNLP).

Indrajit Bhattacharya and Lise Getoor. 2006. A latent
dirichlet model for unsupervised entity resolution. In
SDM.

Mikhail Bilenko, Beena Kamath, and Raymond J.
Mooney. 2006. Adaptive blocking: Learning to scale
up record linkage. In Proceedings of the Sixth Interna-
tional Conference on Data Mining, ICDM ’06, pages
87-96, Washington, DC, USA. IEEE Computer Soci-
ety.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993-1022, March.

Aron Culotta and Andrew McCallum. 2006. Practical
markov logic containing first-order quantifiers with ap-
plication to identity uncertainty. In Human Language
Technology Workshop on Computationally Hard Prob-
lems and Joint Inference in Speech and Language Pro-
cessing (HLT/NAACL), June.

Aron Culotta, Pallika Kanani, Robert Hall, Michael
Wick, and Andrew McCallum. 2007a. Author dis-
ambiguation using error-driven machine learning with
a ranking loss function. In Sixth International Work-
shop on Information Integration on the Web (IIWeb-
07), Vancouver, Canada.

Aron Culotta, Michael Wick, Robert Hall, and Andrew
McCallum. 2007b. First-order probabilistic mod-
els for coreference resolution. In Human Language

Technology Conference of the North American Chap-
ter of the Association of Computational Linguistics
(HLT/NAACL), pages 81-88.

Aria Haghighi and Dan Klein. 2007. Unsupervised
coreference resolution in a nonparametric bayesian
model. In Proceedings of the 45th Annual Meeting
of the Association of Computational Linguistics, pages
848-855, Prague, Czech Republic, June. Association
for Computational Linguistics.

Aria Haghighi and Dan Klein. 2010. Coreference reso-
lution in a modular, entity-centered model. In Human
Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for
Computational Linguistics, HLT °10, pages 385-393,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Mauricio A. Hernandez and Salvatore J. Stolfo. 1995.
The merge/purge problem for large databases. In Pro-
ceedings of the 1995 ACM SIGMOD international
conference on Management of data, SIGMOD ’95,
pages 127-138, New York, NY, USA. ACM.

Andrew McCallum and Ben Wellner. 2005. Conditional
models of identity uncertainty with application to noun
coreference. In Lawrence K. Saul, Yair Weiss, and
Léon Bottou, editors, NIPS17. MIT Press, Cambridge,
MA.

Andrew K. McCallum, Kamal Nigam, and Lyle Un-
gar. 2000. Efficient clustering of high-dimensional
data sets with application to reference matching. In
Proceedings of the Sixth International Conference On
Knowledge Discovery and Data Mining (KDD-2000),
Boston, MA.

Brian Milch, Bhaskara Marthi, Stuart Russell, David
Sontag, Daniel L. Ong, and Andrey Kolobov. 2005.
BLOG: Probabilistic models with unknown objects. In
IJCAL

Radford Neal. 2000. Slice sampling. Annals of Statis-
tics, 31:705-767.

Vincent Ng. 2005. Machine learning for coreference res-
olution: From local classification to global ranking. In
Annual Meeting of the Association for Computational
Linguistics (ACL).

Hoifung Poon and Pedro Domingos. 2007. Joint in-
ference in information extraction. In Proceedings of

the 22nd national conference on Artificial intelligence
- Volume 1, pages 913-918. AAAI Press.

Altaf Rahman and Vincent Ng. 2009. Supervised mod-
els for coreference resolution. In Proceedings of the
2009 Conference on Empirical Methods in Natural
Language Processing: Volume 2 - Volume 2, EMNLP
’09, pages 968-977, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.



Delip Rao, Paul McNamee, and Mark Dredze. 2010.
Streaming cross document entity coreference resolu-
tion. In COLING (Posters), pages 1050-1058.

Yael Ravin and Zunaid Kazi. 1999. Is Hillary Rodham
Clinton the president? disambiguating names across
documents. In Annual Meeting of the Association for
Computational Linguistics (ACL), pages 9-16.

Matthew Richardson and Pedro Domingos.  2006.
Markov logic networks. Machine Learning, 62:107—
136.

Sameer Singh, Amarnag Subramanya, Fernando C. N.
Pereira, and Andrew McCallum. 2011. Large-scale
cross-document coreference using distributed infer-
ence and hierarchical models. In ACL, pages 793-803.

Parag Singla and Pedro Domingos. 2005. Discrimina-
tive training of markov logic networks. In AAAI, Pitts-
burgh, PA.

Parag Singla and Pedro Domingos. 2008. Lifted first-
order belief propagation. In Proceedings of the 23rd
national conference on Artificial intelligence - Volume
2, AAAT 08, pages 1094—1099. AAAI Press.

Wee Meng Soon, Hwee Tou Ng, and Daniel Chung Yong
Lim. 2001. A machine learning approach to coref-
erence resolution of noun phrases. Comput. Linguist.,
27(4):521-544.

R.H. Swendsen and J.S. Wang. 1987. Nonuniversal crit-
ical dynamics in MC simulations. Phys. Rev. Lett.,
58(2):68-88.

Michael Wick, Aron Culotta, Khashayar Rohanimanesh,
and Andrew McCallum. 2009. An entity-based model
for coreference resolution. In SIAM International
Conference on Data Mining.

Xiaofeng Yang, Jian Su, Jun Lang, Chew Lim Tan, Ting
Liu, and Sheng Li. 2008. An entity-mention model for
coreference resolution with inductive logic program-
ming. In ACL, pages 843-851.



