
Toward Interactive Training and Evaluation

Gregory Druck
University of Massachusetts Amherst

gdruck@cs.umass.edu

Andrew McCallum
University of Massachusetts Amherst

mccallum@cs.umass.edu

ABSTRACT

Machine learning often relies on costly labeled data, and
this impedes its application to new classification and infor-
mation extraction problems. This has motivated the devel-
opment of methods for leveraging abundant prior knowledge
about these problems, including methods for lightly super-
vised learning using model expectation constraints. Building
on this work, we envision an interactive training paradigm
in which practitioners perform evaluation, analyze errors,
and provide and refine expectation constraints in a closed
loop. In this paper, we focus on several key subproblems
in this paradigm that can be cast as selecting a represen-
tative sample of the unlabeled data for the practitioner to
inspect. To address these problems, we propose stratified
sampling methods that use model expectations as a proxy
for latent output variables. In classification and sequence
labeling experiments, these sampling strategies reduce ac-
curacy evaluation effort by as much as 53%, provide more
reliable estimates of F1 for rare labels, and aid in the speci-
fication and refinement of constraints.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning

General Terms

Algorithm, Experimentation, Measurement, Performance

Keywords

interactive training, stratified sampling, evaluation, lightly
supervised learning

1. INTRODUCTION
Machine learning often relies on costly labeled data, and

this impedes its application to new classification and infor-
mation extraction problems. However, even in the absence
of labeled data we typically have a wealth of prior knowl-
edge about these problems. For example, when extracting
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information from research papers, we know that the word
ACM should usually be part of a journal or a conference.
Though this knowledge does not yield labeled data, it does
provide a desirable aggregate property of predictions for un-
labeled data. Several methods incorporate such properties
into learning by encoding them as constraints on the expec-
tations of a probabilistic model [6, 9, 15, 16].

Building on this work, we envision an interactive training
paradigm in which users perform evaluation, analyze errors,
and specify and refine supervision in a closed loop. In con-
trast to active learning [21], in this paradigm the system aids
the user in understanding what the model is predicting, and
the user leverages this insight to direct the learning process.
There are at least two benefits to building this paradigm
around methods for learning with expectation constraints.
First, expectation constraints provide a flexible and powerful
language for users to give feedback to the system. Second,
interactive analysis may enable users to specify more accu-
rate and useful constraints than would be possible otherwise.

In this paper, we focus on several key subproblems in our
interactive training paradigm that can be cast as selecting
a representative sample of the unlabeled data for the user
to inspect. Specifically, we develop methods to assist the
user in performing evaluation at multiple levels of granu-
larity, and in specifying and refining constraints. Random
sampling can be applied to these problems, but the resulting
sample may not be representative. Instead, we develop sam-
pling strategies based on stratified sampling [24], a method
that has a long history in statistics [17]. In stratified sam-
pling, points are grouped into strata, and random sampling
is performed within each stratum. If the statistic of inter-
est varies across the strata, then stratified sampling yields
a lower variance estimator than random sampling. To per-
form stratification, we use model expectations as a proxy for
latent output variables. In classification and sequence label-
ing experiments, these sampling strategies reduce accuracy
evaluation effort by as much as 53%, provide more reliable
estimates of F1 for rare labels, and aid in the specification
and refinement of constraints.

2. RELATED WORK
In contrast to active learning [21], in which the system

queries the user, our interactive training paradigm allows the
user to provide supervision based on error analysis, which
may enable more efficient training. Our interactive paradigm
and active learning with expectation constraints [7, 15] could
also be combined, allowing a mixture of user-initiated and
system-initiated interactions.



There is growing interest in interaction in machine learn-
ing, including some work in interactive training and model
selection. Huang and Mitchell [10] develop methods for in-
teractive clustering, including allowing the user to provide
features that indicate cluster membership, assign instances
to clusters, or delete clusters. Roth and Small [18] develop
interactive feature space construction, in which an annota-
tor uses domain knowledge to iteratively modify model fea-
tures. Culotta et al. [3] develop a method for interactively
correcting errors of Conditional Random Fields (CRFs) [13]
using constrained inference. Settles [22] develops an inter-
face for interactive training in which users can label both
instances and features. Kumar et al. [12] argue for an in-
teractive classification framework in which annotation cost
and both current and future utility are jointly optimized. In
contrast, the proposed paradigm is based on learning with
expectation constraints1, and assists the user in evaluation,
analysis, and the specification and refinement of constraints.

Note that interactive machine learning often refers to learn-
ing directly from interactions with the world, for example
based on rewards received for taking context-dependent ac-
tions [14]. Though we are interested in exploring this direc-
tion in future work, in this paper learning is user-directed.

This paper focuses on developing sampling methods for
various subproblems in interactive training. These methods
are based on stratified sampling, discussed in Section 4.1,
and use model expectations as a proxy for latent output
variables. Stratified sampling using model predictions has
also been applied to address specific evaluation problems
in information retrieval [25]. More closely related, Bennett
and Carvalho [1] develop a confidence-based stratified sam-
pling method for estimating classifier accuracy. In contrast,
we apply stratified sampling to rapid evaluation of classi-
fiers and structured models trained using expectation con-
straints. We propose an extension to the method of Bennett
and Carvalho [1] that reduces error in this setting in Sec-
tion 5.1. Additionally, we propose a general approach that
is also applicable to other problems in interactive training.
Alternatives to stratified sampling include methods based
on importance sampling [19, 20]. We plan to consider these
approaches in future work.

3. BACKGROUND
In this paper we train discriminative probabilistic models

of output variables y conditioned on observed input vari-
ables x. For classification tasks we use logistic regression
models, also known as maximum entropy classifiers

p(y|x;θ) = 1

Z(x;θ)
exp

(

θ · f(x, y)
)

,

where θ are parameters, f are model feature functions, and
Z(x;θ) =

∑

y exp
(

θ·f(x, y)
)

is the partition function, which

ensures that
∑

y p(y|x;θ) = 1.
For sequence labeling tasks, we use first-order linear chain

Conditional Random Fields (CRFs) [13]

p(y|x;θ) = 1

Z(x;θ)
exp

(

T
∑

t=1

θ · f(x, yt−1, yt)
)

,

1Settles [22] uses a naive Bayes based method rather than
GE (Section 3), but we hypothesize that GE will provide
higher accuracy for complex, structured problems, and in
settings where constraints have precise target expectations.

where Z(x;θ) =
∑

y
exp

(
∑T

t=1 θ · f(x, yt−1, yt)
)

is the par-
tition function and T is the sequence length. Inference is
performed using the Viterbi and Forward-Backward algo-
rithms. For more detail the reader is referred to [23].

Parameters θ can be estimated to maximize likelihood if
labeled data is available. However, we typically have an
abundance of knowledge about the tasks we would like to
solve that does not come in the form of labeled instances.
For example, when extracting information from research pa-
pers, we know that the word ACM should usually be part
of a journal or a conference. Recently methods have been
developed for estimating parameters with such knowledge
and unlabeled data [6, 9, 15, 16]. Formally, these methods
encode knowledge as preferences about the values of model
expectations of constraint features φ(x,y). Given unlabeled
data D = {x1, . . . ,xN}, the model expectation of φ is

N
∑

j=1

Ep(y|xj ;θ)[φ(x
j ,y)] =

N
∑

j=1

∑

y

p(y|xj ; θ)φ(xj ,y).

In this paper we use the Generalized Expectation (GE) frame-
work, though the methods we develop are also applicable to
other frameworks such as Posterior Regularization [9]. GE
expresses preferences with a score function S that evaluates
model expectations of constraint features. A higher score
signifies that the model complies with our preferences more
closely. To estimate parameters, we solve

θ̂ = argmax
θ

S
(

N
∑

j=1

Ep(y|xj ;θ)[φ(x
j ,y)]

)

+ log p(θ).

GE has been applied to both logistic regression models [6]
and linear chain CRFs [7, 16]2. GE provides a flexible and
powerful framework for users to give feedback to the system
during interactive training. Understanding the details of GE
is not critical to understanding this paper, so for additional
detail the reader is referred to the aforementioned papers.
As in previous work [6, 7, 16], in this paper we predom-

inantly use input feature label distribution constraints. For
text classification tasks, these constraints specify a target
distribution over labels for documents that contain a par-
ticular word. For sequence labeling tasks, these constraints
specify a target distribution over labels for tokens for which
a particular input feature fires. The constraint features φ

are designed so that their expectations are probability distri-
butions, and we use the negative KL divergence from some
target distribution φ̃ as the score function S. These con-
straints can be obtained by having the user “label” input
features, and converting these labels to target distributions
using simple heuristics [6, 7, 16]. For example, a user could
label puck as hockey, or ACM as journal and conference.

3.1 Tasks and Data Sets
We conduct text classification and sequence labeling ex-

periments. For classification, the data sets are binary sub-
sets of the 20 Newsgroups data set used in a previous appli-
cation of GE to logistic regression [6]. The model features
f(x, y) are word counts, after removing stopwords. To make
the experiments in this paper more realistic, we use the in-
put feature label distribution constraints that users provided
in the experiments in [6]. We use models trained with these

2Note that an O(|Y|2) (rather than O(|Y|3) [16]) algorithm
has been developed for GE training of linear chain CRFs [5].



constraints as starting points for performing interactive eval-
uation, error analysis, and refinement. This simulates a sce-
nario in which a user specifies constraints to train an initial
model, and then improves the model interactively.

We also conduct experiments with the Cora citation ex-
traction data set. The task is to extract 13 BibTex-like fields
such as title and journal from research paper citations. We
use a standard set of word, lexicon, and regular expression
features, as well as context features in a window of ±3 to-
kens [7]. We again use input feature label distribution con-
straints that were provided by users in previous work [7].

4. SELECTING REPRESENTATIVE

SAMPLES
In this paper we aim to develop methods to assist the

user in evaluation, error analysis, and the specification and
refinement of constraints. We cast these problems as in-
stances of the following more general problem: selecting a
sample of the data for the user to inspect. In this section we
summarize our stratified sampling approach to this problem.

4.1 Stratified Sampling
We first review stratified sampling [24], a sampling method

we use pervasively in this paper. We assume an iid un-
labeled dataset D = {x1, . . . ,xN}. We aim to compute
the mean of a per-instance function r(xj ,yj) that considers
both the input variables and the true values of the latent
output variables. To simplify notation in this section we
define rj = r(xj ,yj). The true mean is r̄∗ = 1

N

∑N
j=1 r

j .

Because the output variables yj are latent, evaluating r is
costly. Rather than evaluating r for each instance, we choose
a sample S of size n and use it to estimate the mean of r.

The most basic strategy is random sampling, in which n
instances are selected uniformly at random from D. The
estimate of the population mean is the sample mean ˆ̄rrs =
1
n

∑n
j=1 r

j . This estimator is unbiased, meaning that the

expected value of ˆ̄rrs over all possible samples of size n is
r̄∗. However, when the sample size n is small, ˆ̄rrs has high
variance. With replacement3, the estimated variance of ˆ̄rrs
is V̂ ar(ˆ̄rrs) =

S2

n
, where S2 is the sample variance.

Stratified sampling has a long history in statistics [17]. In
stratified sampling, instances are partitioned into m strata
{Ds1, . . . ,Dsm}, where each xj ∈ D appears in exactly one
stratum. To obtain a complete sample of size n, for each
stratum i, ni instances are randomly sampled (n =

∑m
i=1 ni).

An estimate of the mean of r can be obtained using

ˆ̄rss =

m
∑

i=1

Ni

N

1

ni

ni
∑

j=1

rji =

m
∑

i=1

Wi ˆ̄ri,

where rji is r for the jth instance in the ith stratum, Wi =

Ni/N is the weight of the ith stratum, and ˆ̄ri =
1
ni

∑ni

j=1 r
j
i

is the mean estimate for the ith stratum. This estimator is
also unbiased. The estimated variance of ˆ̄rss is

V̂ ar(ˆ̄rss) =

m
∑

i=1

W 2
i V̂ ar(ˆ̄ri),

where V̂ ar(ˆ̄ri) = S2
i /ni is the estimated variance of ˆ̄ri. A

1− α confidence interval for ˆ̄rss is ˆ̄rss ± zα/2

√

V̂ ar(ˆ̄rss).

3Without replacement V̂ ar(ˆ̄rrs) = (1− n
N
)S

2

n
.

For a given sample size n, we consider two methods for
choosing the number of samples from each stratum. With
proportional allocation, the sampling proportions are equal
to the weights, ni/n = Wi. It can be shown that the true
variance of the proportional allocation estimator is lower
than the true variance of the random sampling estimator:
V ar(ˆ̄rss) ≤ V ar(ˆ̄rrs). The difference of the variances is

V ar(ˆ̄rrs)− V ar(ˆ̄rss) =
1

n

m
∑

i=1

Wi(r̄
∗
i − r̄∗)2. (1)

Equation 1 has implications in stratification, as it shows that
the variance reduction is larger when strata means r̄∗i have
high variance, or are very different from each other.

The second sample allocation method is optimal alloca-

tion. In optimal allocation, per-stratum sample sizes ni are
not proportional to the size of the stratum. Instead, the idea
is to use more samples in strata where r has higher variance.
Formally, suppose that the true standard deviations σi for
each stratum are known. Optimal allocation assigns samples
to each stratum using the following equation

ni = n× Niσi
∑m

i′=1 Ni′σi′
.

Optimal allocation can outperform proportional allocation
when the variance of r varies across different strata.

Because the rj are latent, we must select proxy variables
to stand in for them to perform stratified sampling. These
proxy variables can be used for both stratification and esti-
mating strata variances for optimal allocation.

4.2 Estimating Vector-Valued and
Non-Linear Functions

In many applications of interest we need to estimate the
means of several functions simultaneously, which we view as
estimating the mean of a vector-valued function r instead
of a scalar function r. Often a vector-valued function r is
required because we are interested in estimating a non-linear

function with the sample. A non-linear function is one that
cannot be computed as the mean of a function on individual
instances in the sample. For example, accuracy is the mean
of a function that evaluates correctness on each instance,
but F1 is non-linear, as computing it requires the number of
correct, predicted, and true instances in the entire sample.
Vector-valued and non-linear functions have implications in
stratification, sample allocation, and estimation.

Stratification & Sample Allocation: As described in
Section 4.1, for scalar r strata should be selected so that stra-
tum means r̄∗i are much different than the population mean
r̄∗. In the vector-valued r case, stratification is less straight-
forward. Intuitively, the stratification should be helpful for
estimating all elements of r, but note that for some non-
linear functions certain estimates ri may be more important
than others. We simply stratify so that a composite variable,
correlated with r, varies across strata. Alternative methods
for future study include multi-way [2] and clustering-based
stratification. We also perform optimal allocation using the
estimated standard deviation of a composite variable.

Estimation: A natural estimator of a non-linear func-
tion ω is ω̂ = ω(ˆ̄r) [11]. Note that although ˆ̄r is an unbiased
estimate of r̄∗, ω̂ is not necessarily an unbiased estimate
of ω(r̄∗). Computing the variance of ω̂ is not straightfor-
ward, as we only obtain one value of ω from the sample. A



general approach is to use re-sampling methods such as jack-
knifing, in which each instance is held out of the sample in
turn, providing n different function values that can be used
to estimate variance [8]. Jackknife estimates for stratified
sampling have also been developed [11].

4.3 General Stratified Sampling Approach
For each stratified sampling method we propose through-

out this paper, we describe four components: the target

function, the stratification function, the stratification scheme,
and the sample allocation scheme. We next describe these
components and our general approach to designing them.

As described in the previous section, in some cases we
are not interested in the mean estimates ˆ̄r, but rather some
non-linear function of the estimates ω(ˆ̄r). We refer to the
non-linear function ω as the target function. The target
function varies in different applications. In the linear case
the target function is the identity function.

The stratification function s computes a proxy value for
each instance that can be used for stratification and sample
allocation. Though the output variables y are latent, if we
have a trained model we do have some information about
the values of these variables. Our general approach is to
use current model predictions as a proxy for latent output
variables y. Specifically, a method we use pervasively is
to stratify according to the expectation of some function of
interest r′ (often r′ = r)

s(xj) = Ep(y|xj ;θ)[r
′(xj ,y)] =

∑

y

p(y|xj ;θ)r′(xj ,y).

This approach makes the reasonable assumption that model
predictions are correlated with the true output variables.
This implies that the improvement provided by stratified
sampling is bounded by accuracy of the current model.

When estimating a vector of means ˆ̄r, we take a simple
approach and continue to use a scalar stratification function
s(x), essentially defining a composite variable. One simple
strategy is to use the expectation of a single element of the
vector: r′ = ri, s(x) = Ep(y|xj ;θ)[ri(x

j ,y)].
The stratification scheme takes as input the values com-

puted by the stratification function and defines the strata.
We use two methods for defining strata, which we discuss in
detail in the following sections.

Finally, the sample allocation scheme defines how samples
are allocated to strata. If optimal allocation is used, rather
than proportional allocation, then a stratum variance esti-

mator that defines a procedure for estimating the variance
of strata must also be defined. We estimate within-stratum
variances by using the sample estimates (for instances that
have already been inspected), using model probabilities as
a proxy for the latent output variables, or a combination.
To use model probabilities, we advocate a simple strategy
in which values for the latent output variables are sampled
according to the model, r is computed, and the resulting
sample variance estimates of r stand-in for true variances.

Note that, in general, inspecting individual instances to
estimate a statistic could also yield labeled instances as a
by-product. In future work we could perform training using
both constraints and labeled instances.

5. OVERALL EVALUATION
Suppose we have an initial model for the task we would

like to solve. Our goal is to interactively improve this model.

A natural first step is to come to an understanding of what
the model is predicting and how accurate it is, in order to
decide where to focus analysis and provide supervision. Im-
portantly, we want to do this with minimal effort. In this
section we apply stratified sampling to choose sets of in-
stances (with model predictions) for manual inspection. For
concreteness and to allow thorough validation, we focus on
the task of using the sample to estimate a performance met-
ric such as accuracy. However, we also suggest that with
appropriate adjustments to the sampling scheme, viewing a
sample of instances selected by this method would provide
accurate representations of other properties of interest.

Note that the methods described here, though motivated
by interactive training, could also be used in a non-interactive
setting to evaluate lightly supervised learning. This is an im-
portant problem on its own, as in a lightly supervised setting
there is typically no data available for evaluation.

5.1 Evaluating Classification Accuracy
We first estimate classification accuracy. Formally, we aim

to estimate the mean of the correctness indicator function

rc(x, y) = 1{ŷ=y},

where ŷ is the predicted label, ŷ = argmaxy p(y|x;θ), and
1{p} returns 1 if the predicate p is true, and 0 otherwise.
When computed with the true label, rc returns 1 if the model
is correct, and 0 otherwise. We next devise several stratified
sampling schemes for estimating ˆ̄rc.
Target Function: Classification accuracy is a linear func-

tion, as ˆ̄rc is an estimate of accuracy. Consequently the
target function ω is simply the identity function ω(ˆ̄rc) = ˆ̄rc.

Stratification Function: Equation 1 suggests that strata
should be defined to maximize the variance in individual
stratum accuracies. Because the stratum accuracies are un-
available, we instead stratify using the expectation of rc.

sc(x
j) = Ep(y|xj ;θ)[rc(x

j , y)]

=
∑

y

p(y|xj ;θ)1{ŷ=y} = p(ŷ|xj ;θ) (2)

Equation 2 shows that the model expectation of rc is the
probability of the best label, or the model’s confidence in its
prediction. Note that, using our general approach, we re-
cover the stratification function of Bennett and Carvalho [1].
When applied to other tasks in interactive training our ap-
proach yields different stratification functions.

Stratification Scheme: We use a uniform size stratifi-

cation scheme. First, we sort unlabeled instances according
to sc(x

j). Then, we define strata by splitting the sorted list
intom pieces, each containing the same number of instances.

Sample Allocation: Finally, we must allocate samples
to the strata. With a uniform size stratification scheme, pro-
portional allocation allocates n/m samples to each stratum.
We additionally use optimal allocation, where the challenge
is estimating the standard deviations in each stratum σ̂i.
Bennett and Carvalho [1] propose online stratified sam-

pling, in which the σ̂i are re-estimated using the observed
values rji after each sample. As the number of samples in-
creases, the estimates become more accurate, and savings
increase. However, a potential disadvantage of this approach
is that many samples may be required to obtain estimates
that are accurate enough to be beneficial. Because we are
especially interested in evaluation with minimal effort, we



propose two additional methods for estimating σ̂i that lever-
age model predictions.

We can model each unobserved rji in stratum i as a Bernoulli

random variable cji with pji = p(ŷ|xj ;θ). Summing all cji for
stratum i yields an expected accuracy random variable with
a Poisson Binomial distribution4. We can use the variance
of this distribution as an estimate of the stratum variance
σ̂2
i =

∑

j p
j
i (1 − pji ). This method prioritizes strata where

there are expected to be a mix of correct and incorrect pre-
dictions over strata with expected accuracy near 0 or 1.

As n increases, we expect online stratified sampling to
eventually provide better estimates than the above method.
Consequently, we propose a novel compromise. In each it-
eration, we sample a correctness value for each unlabeled
instance cji ∼ p(yj |xj ;θ), and treat these values as pseudo-

observations of rji that are down-weighted by parameter α.
We then estimate σ̂i as in online stratified sampling, com-
bining the true and pseudo-observations.

5.2 Classification Experiments
We compare approaches for evaluating the accuracy of

document classifiers for binary subsets of 20 Newsgroups

(see Section 3.1). The classifiers are trained with GE us-
ing constraints provided by users in previous work [6].

We compare random sampling (random) and stratified
sampling approaches that use confidence stratification with
m = 5 strata and different sample allocation methods: pro-
portional allocation (pro conf ), optimal allocation using on-
line variance estimation (opt online) [1], and optimal alloca-
tion using the combined confidence and online variance es-
timation method (opt conf online). We also conduct but do
not display experiments with confidence-based optimal allo-
cation. In general, opt conf online outperforms this method
more as n increases. We begin stratified sampling by allocat-
ing two samples to each stratum. For the optimal allocation
methods, we reestimate σ̂i after each sample, and smooth
the estimates with 10 pseudo-observations5; for opt online

these pseudo-observations are uniform, while for opt conf

online the pseudo-observations are sampled correctness val-
ues (i.e. α = 10/Ni). To compute estimates of ˆ̄r, we reveal
the true labels for instances in the sample. We run 1000 tri-
als, and report the mean absolute accuracy estimation error.

Figure 1 displays error vs. n. First, note that the strat-
ified sampling approaches provide lower mean absolute er-
ror than random sampling. We assess significance with a
Mann-Whitney U test, the non-parametric counterpart of
an unpaired t-test. Of the 216 possible comparisons between
random sampling and a stratified sampling method (9 tasks
× 8 different sample sizes × 3 stratified sampling methods),
stratified sampling provides significantly lower error (signif-
icance level α = 0.05) in 209 cases. Random sampling never
significantly outperforms stratified sampling. Attaining the
same mean absolute error with random sampling would of-
ten require significantly more effort. For example, in the
med-space task with User 1 ’s constraints, a sample of size
n = 20 using opt conf online gives error of 0.0406. Random
attains comparable performance with 30 samples, giving an
error of 0.0418. This is a 33% reduction in evaluation effort.

4The sum is a Binomial random variable if p is the same for
each instance.
5We initially smoothed with 1/

√
ni pseudo-observations as

in [1], but this significantly increased error for opt online.

We conclude that the accuracy of classifiers trained with GE
can be estimated more efficiently using stratified sampling.

Opt conf online provides lower mean absolute error than
any other method in 54 of the 72 cases (9 tasks × 8 sample
sizes). Of the 162 reductions in these 54 cases, 133 are signif-
icant. Opt conf online significantly outperforms opt online

43 times, and is significantly outperformed by opt online

only once. Error analysis reveals that opt online tends to
overestimate the differences in variance between strata. Ad-
ditional smoothing reduces error with large n, but increases
error with small n, as opt online approaches pro conf as the
amount of smoothing increases. We conclude that opt conf

online is preferable for minimal effort evaluation.

5.3 Estimating Token Accuracy
We next propose stratified sampling methods for evaluat-

ing token accuracy for sequence labeling models. We esti-
mate the mean of the vector-valued function rsc defined

rsc0(x,y) =
T
∑

t=1

1{ŷt=yt}

rsc1(x,y) = T,

where T is the length of the sequence and t indexes positions
in the sequence. The function rsc returns the number of cor-
rectly predicted labels in the first position, and the length in
the second. We describe the components of several stratified
sampling schemes.
Target Function: While instance accuracy and average

token accuracy are linear, token accuracy is non-linear. To-
ken accuracy is defined ωta(ˆ̄rsc) = ˆ̄rsc0/ˆ̄rsc1

6.
Stratification Functions: We propose two stratification

functions. The first is the expectation of rsc0.

sexc(x
j) = Ep(y|xj ;θ)[rsc0(x

j ,y)] =

T
∑

t=1

p(ŷt|xj ;θ)

This can be interpreted as the expected number of correct
tokens, where p(ŷt|xj ;θ) is the marginal probability of the
predicted label at position t. The stratification function
sconf is the expectation of a function that returns 1 only
if the labeling of the entire sequence is correct.

sconf (x
j) = Ep(y|xj ;θ)[1{ŷ=y}] = p(ŷ|xj ;θ).

The expectation is the probability of the predicted label se-
quence. This can be interpreted as model confidence.
Stratification Scheme: We use the uniform size strati-

fication scheme, described in Section 5.1, for this task.
Sample Allocation: We use both proportional and op-

timal allocation. In optimal allocation, we allocate sam-
ples using estimates of the standard deviation of rsc0(x

j ,y).
This is preferable to using the standard deviation of 1{ŷ=y}

in the applications we explore here, as complete instance
accuracy is low. As in Section 5.1, we use both online es-
timation of the variance with the samples, and a combined
method. In the combined method, pseudo-observations of
token correctness are sampled according to the marginal

6We could use the population mean length in place of ˆ̄rsc1.
Stratified sampling provides even larger improvements with
this estimator, but the estimates have higher error due to
discrepancies between the population mean length and ˆ̄rsc1.
This may result in accuracy >1, for example. Therefore, in
this paper we estimate all arguments to ω from S.



100 150 200 250 300 350 400 450 500
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065
Cora: Token Accuracy Evaluation

samples (tokens)

m
e
a
n
 a

b
s
 e

rr
o
r

 

 

random
pro conf
pro ex
opt online
opt ex online

Figure 2: Stratified sampling methods significantly

outperform random sampling for evaluating token

accuracy on the Cora data set.

probabilities of the predicted labels p(ŷt|xj ;θ), and these
pseudo-observations are combined with the labeled sample
estimates, as described in Section 5.1.

5.4 Sequence Labeling Experiments
This experiment uses the Cora data set as described in

Section 3.1. The model is trained with the constraints pro-
vided by User 3 in [7], and an additional constraint with
weight 10 that specifies that 80% of transitions between la-
bels should be self-transitions. In this task each sequence
is a complete citation. To enable precise sampling, we split
citations into smaller subsequences. However, using very
short subsequences would obscure helpful context, making
the user’s task more difficult. Consequently, we split cita-
tions into subsequences of maximum length 10.

The sampling strategies for this experiment are random,
sconf stratification with proportional allocation (pro conf ),
sexc stratification with proportional allocation (pro ex ), sconf

stratification with online optimal allocation (opt online),
and sconf stratification with combined optimal allocation
(opt ex online). We do not report results with sexc strat-
ification and optimal allocation. The results are similar to
opt ex online, but with higher error. For opt online, we used
the same smoothing strategy as [1], which performed better
than a fixed value of 10 for this task (the opposite was true
in Section 5.2). We did not tune α for opt ex online, keep-
ing α = 10/Ni, giving an advantage to opt online. We use
m = 5 strata, and conduct 1000 trials. To simulate rapid
evaluation, we use 100-500 tokens (∼10-50 subsequences).

Figure 2 displays the results. The x-axis is the total num-
ber of tokens evaluated. All stratified sampling methods
significantly outperform random sampling (Mann Whitney
U test with significance level α = 0.05). Opt ex online out-
performs all methods significantly at each point on the graph
except for pro conf at 300, and pro conf and opt online at
500. At 200 tokens, the mean absolute error with opt ex

online is 0.0309. Random sampling does not attain a com-
parable error of 0.0311 until n = 425. This is a savings of
225 tokens, or 53% of total evaluation effort.

In this experiment pro conf outperforms pro ex. Note that
sexc ≤ T . Error analysis shows that sexc yields strata that
are more correlated with T than sconf .

6. FINE-GRAINED EVALUATION
In Section 5, we found that stratified sampling methods

can provide significantly more accurate estimates of over-
all performance than random sampling. One possible next
step in interactive training is to drill down and perform fine-
grained evaluation, with the goal of using this information
to refine or provide new supervision. In this section, we pro-
pose a stratified sampling approach to fine-grained evalua-
tion and error analysis. As an example error analysis task,
we consider computing token F1 for a particular label of
interest ℓ for sequence labeling tasks. This is an important
problem because in a particular application some labels may
be more important than others. Additionally, awareness of
low F1 for ℓ provides a path for improving the model.
The function of interest, rfℓ, is defined as

rfℓ0(x,y) =
T
∑

t=1

1{yt=ℓ ∧ ŷt=ℓ}

rfℓ1(x,y) =
T
∑

t=1

1{ŷt=ℓ}

rfℓ2(x,y) =

T
∑

t=1

1{yt=ℓ}.

In words, the first element is the number of correctly pre-
dicted labels whose value is ℓ, the second element is the
number of predictions of ℓ, and the third element is the
number of true labels whose value is ℓ.

Target Function: The F1 target function for label ℓ is

ωF1
(ˆ̄rfℓ) =

2× ˆ̄rfℓ0/ˆ̄rfℓ1 × ˆ̄rfℓ0/ˆ̄rfℓ2
ˆ̄rfℓ0/ˆ̄rfℓ1 + ˆ̄rfℓ0/ˆ̄rfℓ2

.

Stratification Function: The stratification function is
the expectation of rfℓ2

sfℓ2(x
j) = Ep(y|xj ;θ)[rfℓ2(x

j ,y)] =
T
∑

t=1

p(yt = ℓ|xj ;θ).

This can be interpreted as the expected number of ℓ tokens.
Stratification Scheme: We again use the uniform size

stratification scheme. However, we find that the density of
rfℓ2 is less uniform than the density of the stratification
functions used for overall evaluation. There are often a few
xj for which sfℓ2 is large, and many xj for which sfℓ2 is
very small. This occurs when ℓ is infrequent, for example.
Consequently, we also experiment with non-uniform size

stratification. A standard method for determining stratum
boundaries is the cum

√
F rule [4], which aims to minimize

within-stratum variance. Performing stratification accord-
ing to the cum

√
F rule first involves splitting the instances

into k initial sorted classes, where Ci denotes the ith class.
Next, the cumulative function c of the square root of the
class frequencies is computed.

c(j) =

j
∑

i=1

√

|Ci|

The stratum width w is then computed as w = c(k)/m.
Finally, the initial classes are grouped into strata of equal
width w using the cum

√
F values, c(j).

Sample Allocation: We allocate two initial samples to
each stratum (to enable computing V̂ ar(ˆ̄rss) if needed), and



allocate the remaining samples proportionally. When n =
2m, this can be viewed as optimal allocation with σ̂i that are
inversely proportional to the stratum sizes, σ̂i = 1/Ni. This
scheme is appropriate because in this setting large strata are
likely to have small sfℓ2 values, and consequently we expect
few occurrences of ℓ in those strata.

6.1 Experiments
We use the same data set and initial model as in Sec-

tion 5.4. Citations are again split into subsequences of max-
imum length 10. To simulate obtaining a rapid estimate of
token F1 for ℓ, we evaluate using n = 10 subsequences.

We compare random sampling, sampling proportionally
from equal-sized strata using sfℓ2 (ex uniform), and sam-

pling proportionally from strata determined by the cum
√
F

rule using sfℓ2 (ex cum
√
F ). We use m = 5 strata. For the

cum
√
F rule, we use k = 20 initial classes that each cover a

fixed-width segment of the range of sfℓ2 (i.e. one class is all
x with sfℓ2(x) ∈ [0, 0.5]). In some cases with k = 20 initial
classes less than m of them contain instances — empirical
evidence of the statement above that the density of sfℓ2 can
be highly non-uniform. In this case we multiply k by 10
iteratively until we have at least m+ 1 non-empty classes.

Table 1 reports the results. We evaluate both the mean
absolute error in the F1 estimate (F1 err) and the percent-
age of wasted trials (waste). A wasted trial occurs when
none of the 10 subsequences contain a true occurrence of
the label of interest. In this case it is not possible to obtain
a meaningful recall estimate7. Bold denotes that a method
gives the lowest F1 err or waste. A ∗ in the F1 err column
denotes statistical significance (Mann Whitney U test with
significance level α = 0.05).

The ex cum
√
F method performs as well as or better than

the other methods. In terms of F1, it always significantly
outperforms random, and significantly outperforms ex uni-

form in all cases except title and date. The ex cum
√
F

method also avoids a wasted sample in 1000 trials in all cases
except for note. Using non-uniform strata with sfℓ2 typically
results in a small stratum with instances that are very likely
to contain ℓ. This greatly reduces waste. However, strati-
fied sampling also samples other instances, ensuring that we
obtain an unbiased estimate of r̄∗ even if model predictions
are poorly correlated with the true labels. This illustrates
the utility of stratified sampling for targeted evaluation.

7. SPECIFYING NEW CONSTRAINTS
Thus far we have focused on evaluation and analysis. We

now shift our focus to improving the model. Users could
specify new constraints manually, or select from candidate
constraints [6, 7]. In this section we propose a new paradigm
in which the user specifies constraints while inspecting data.
For example, after inspecting [ journal : Transactions ] [ title:
on Pattern Analysis ] . . ., the user may choose to add new
constraints that specify that Transactions should almost al-
ways be labeled journal, and that transitions from journal

to title are extremely unlikely. This paradigm can help the
user specify more accurate constraints, find constraints that
are particularly useful, and may suggest constraints to the
user that they may not have considered otherwise. Note

7Following standard conventions, recall is 1 if there are no
true occurrences of ℓ in the sample, and precision is 1 if there
are no predicted occurrences of ℓ in the sample.

random ex uniform ex cum
√

F

F1 err waste F1 err waste F1 err waste
author 0.073 0.004 0.051 0.000 0.041∗ 0.000
journal 0.273 0.069 0.221 0.006 0.143∗ 0.000
note 0.843 0.843 0.822 0.822 0.274∗ 0.274
booktitle 0.183 0.017 0.139 0.000 0.105∗ 0.000
tech 0.392 0.501 0.363 0.364 0.129∗ 0.000
volume 0.293 0.084 0.239 0.004 0.091∗ 0.000
location 0.286 0.286 0.262 0.145 0.093∗ 0.000
editor 0.510 0.605 0.468 0.488 0.172∗ 0.000
institut. 0.351 0.427 0.339 0.257 0.136∗ 0.000
title 0.079 0.000 0.056 0.000 0.051 0.000
date 0.123 0.006 0.080 0.000 0.077 0.000
pages 0.183 0.052 0.133 0.000 0.081∗ 0.000
publisher 0.392 0.149 0.356 0.071 0.157∗ 0.000

Table 1: Using n = 10 subsequences to evaluate token

label F1 for each Cora label. Stratified sampling provides

more accurate F1 estimates and avoids wasted samples.

that constraints apply to the entire data set, and hence pro-
vide more supervision than labeling data [6, 7]. However, in
future work we plan to allow both types of supervision. We
focus on targeted improvement of the model. In this section
we aim to improve token F1 for a particular label ℓ.

We can view this as an estimation problem as follows.
Based on their prior knowledge, the user has some set of
candidate constraints that they are capable of specifying.
For each instance, the function r simply returns the number
of times each candidate constraint is applicable with respect
to the targeted improvement task. Note that computing r is
expensive, since the user must manually inspect instances.
The user decides which constraints to add based on the mean
candidate constraint estimate ˆ̄r. When applying stratified
sampling to improve label ℓ, we use the same sample alloca-
tion and cum

√
F stratification method as in Section 6.

7.1 Experiments
We use the same data set and constraints as in Section 5.4.

Initial models are trained with either the full set of 108
constraints or a random subsample of 52 constraints (small).

We simulate the specification of new constraints so that
we can conduct a large number of trials. To simulate user
prior knowledge, we use labeled data to define constraints
as in previous work [6, 7, 15]. Candidate constraints include
input feature label distribution constraints of the form used
in [7] for input features that occur at least 10 times and
have label distribution entropy ≤ 0.7. In addition, there are
candidate constraints that discourage unlikely label transi-
tions8. In this experiment unlikely transitions are those that
do not occur in the labeled data. Candidate constraints are
applicable if they apply to a token with true or predicted
label ℓ. Any constraint i with ˆ̄ri ≥ 0 is then added. For
input feature label distributions, the target distribution is
assigned using the “labeling” method used in [7].

We evaluate the targeted improvement of three moder-
ately infrequent labels in the Cora data set: institution,
journal, and location. We use n = 10 sub-sequences of length
at most 10 to find constraints, and subsequently retrain the
model with the augmented set of constraints. Results com-

8The probability of taking any transition in the unlikely set
is encouraged to be close to 0 using KL divergence. To
balance this constraint with the others, its weight is set to
the number of labeled feature constraints.



constraints label initial random stratified

small
institution 0.178 0.271 0.448∗

journal 0.341 0.473 0.634∗

location 0.466 0.580 0.684∗

full
institution 0.661 0.682 0.717∗

journal 0.635 0.593 0.671∗

location 0.655 0.685 0.727∗

Table 2: Using stratified sampling to find new con-

straints improves token F1 for a label of interest.

paring random and stratified sampling with 100 trials are
presented in Table 2. In all cases, stratified sampling yields
significantly higher token F1 for ℓ. The improvement is the
result of finding additional applicable constraints. While
specifying these constraints takes additional time, when ℓ
is infrequent, we expect finding appropriate constraints to
dominate the time required to specify them. As in Sec-
tion 6, this method encourages the sample to contain a mix
of correct predictions of ℓ, false positives, and false negatives.
Other sampling strategies do not provide this coverage. For
example, uncertainty sampling may miss true occurrences of
ℓ, and certainty sampling method may miss false negatives.

8. ESTIMATING TARGET EXPECTATIONS
Input feature label distribution constraints typically use

target distributions over labels that are set with simple heuris-
tics [6, 7, 16]. It is known that as these target distributions
become more precise, the resulting model becomes more ac-
curate [16]. Additionally, users occasionally make mistakes
when specifying constraints. For example, in the baseball-

hockey task, User 1 mistakenly provided the constraint that
Devils 7→ baseball. The user was likely thinking of the Tampa
Bay Devil Rays, rather than the New JerseyDevils (a hockey
team). Such incorrect constraints can be detrimental to GE.

Incorrect constraints can be corrected and imprecise con-
straints can be refined by having the user view a few occur-
rences of the constraint feature φ in context. Mann and Mc-
Callum [16] found that this target estimation method gave
higher accuracy than traditional sequence labeling with the
same number of labels. In this section we use stratified sam-
pling to ensure that the small number of occurrences con-
sidered by the user are representative. Note that these ideas
could be applied to other expectation estimation problems.

The specific task we consider is estimating a distribution
over labels for a particular input feature q. The function of
interest returns a vector with the count of q with each label.
For a classification task, the function rq is

rqℓ(x, y) = 1{y=ℓ}q(x)

For a sequence labeling task, the function rq is

rqℓ(x,y) =
T
∑

t=1

1{yt=ℓ}q(x, t)

Target Function: We aim to estimate the distribution
over labels for each input feature. Consequently ωex(ˆ̄rq)
simply returns ˆ̄rq normalized to sum to 1.

Stratification Functions: We need only consider xj

where q(xj)=1, or q(xj , t)=1 for some t. For binary classi-
fication tasks, the stratification function is the expectation
of rq0, where 0 refers to one of the labels.

sq0(x
j) = Ep(y|xj ;θ)[rq0(x

j , y)] = p(y = 0|xj ;θ),

constraint and data sets
random stratified

err rt acc err rt acc
(1) baseball-hockey 0.178 0.932 0.113∗ 0.948∗

(1) ibm-mac 0.274 0.784 0.244∗ 0.790∗

(1) med-space 0.139 0.921 0.108∗ 0.931∗

(2) baseball-hockey 0.234 0.912 0.163∗ 0.932∗

(2) ibm-mac 0.310 0.782 0.303∗ 0.782
(2) med-space 0.205 0.912 0.175∗ 0.919∗

(3) baseball-hockey 0.178 0.923 0.119∗ 0.942∗

(3) ibm-mac 0.250 0.809 0.226∗ 0.816∗

(3) med-space 0.112 0.922 0.094∗ 0.928∗

Table 3: Stratified sampling provides lower error tar-

get expectation estimates, and higher accuracy when the

classifier is retrained with the refined targets.

where again we only consider xj with q(xj)=1.
For a non-binary task we stratify according to the index

of the most frequently predicted label ℓmax.

sℓmax(x
j) = Ep(y|xj ;θ)[rqℓmax(x

j ,y)]

=

T
∑

t=1

p(yt = ℓmax|xj ;θ)q(xj , t).

In ongoing work we are developing improved, clustering-
based methods for stratification for expectation estimation.
Stratification Scheme and Sample Allocation: We

use the cum
√
F rule, described in Section 6, for stratifica-

tion, and the same sample allocation scheme.

8.1 Classification Experiment
For this experiment we use the same data sets and con-

straints as the experiments in Section 5.2. We use m = 2
strata, 4 samples per constraint, and repeat the experiment
1000 times with different random seeds. We evaluate using
the mean absolute expectation estimation error (err), and
the accuracy of the logistic regression model after re-training
with the refined constraints (rt acc). Table 3 displays results
comparing random sampling and stratified sampling with
cum

√
F rule stratification using sq0 (stratified). Stratified

sampling always provides more accurate expectation esti-
mates, and provides higher accuracy when the model is re-
trained with the refined constraints in all cases except one.
Cases in which stratified sampling significantly outperforms
random sampling are indicated with a ∗.

8.2 Sequence Labeling Experiment
Finally, we refine User 3’s constraints for Cora with n=4

and n= 10 samples of the constraint occurring in context.
We use m=2 strata for n=4, m=5 strata for n=10, and
conduct 100 trials. We use the same initial model as in Sec-
tion 5.4, which has accuracy of 82.8%. Note that here strata
with low sℓmax values do not necessarily have low variance.
Therefore, in this experiment we avoid over-stratifying, al-
lowing<m strata if there are fewer non-empty initial classes.

Using random sampling gives mean absolute expectation
estimation error of 0.259 with n=4 and error of 0.171 with
n= 10. Using proportional allocation with sqmax and cum√
F stratification gives error of 0.215 with n=4, a 17% error

reduction, and error of 0.136 with n=10, a 20% error reduc-
tion. Retraining the model with the refined constraints ob-
tained using random sampling gives accuracy of 82.5% with
n= 4 and accuracy of 86.3% with n= 10, while retraining
the model with refined constraints using stratified sampling



gives statistically significantly higher accuracy of 84.0% with
n=4 and accuracy of 87.2% with n=10. Random sampling
requires n=16 samples per constraint to match the accuracy
of stratified sampling with n=10, a 37.5% reduction.

The user may instead use the sample to specify their own
target expectation. In this case, we want the sample to
include as many labels as possible, to remind the user of
the input feature’s uses. Random sampling with n=4 finds
61.1% of the labels input features occur with, whereas strat-
ified sampling finds 70.4%. With n=10, random sampling
finds 69.5%, whereas stratified sampling finds 82.9%.

We also conjecture that in applications where the target
label distributions have higher entropy, reductions in target
estimation error will yield larger accuracy improvements.

9. FUTURE WORK
In this paper we addressed subproblems in interactive

training that can be cast as selecting a representative sam-
ple for the user to review. In this section we discuss future
opportunities in interactive training. In addition to the di-
rections below, we are interested in stratification schemes
that additionally consider the input variables, and in devel-
oping a complete interactive training system.

Model Prediction Rationales: In addition to helping
the user understand what the model is predicting, it may
be beneficial to help the user understand why the model is
making a prediction. For example, knowing why the model
is making a mistake could help a user add the necessary
constraints to fix it. We conjecture that a user could under-
stand a model prediction by inspecting similar contexts and
studying the way the prediction changes with the input.

Summarizing Differences between Models: We are
interested in developing sampling methods for summarizing
the similarities and differences between two models. This
could help the user understand how the model is changing
with the addition of new constraints.

Detecting Incorrect Constraints: In some cases we
suspect that incorrect constraints could be automatically de-
tected, as we have observed that constraints whose targets
are poorly matched during training are often incorrect. This
method could assist the user in prioritizing refinement.
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User 2: ibm-mac, med-space, baseball-hockey
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User 3: ibm-mac, med-space, baseball-hockey
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Figure 1: Stratified sampling methods provide classification accuracy estimates with lower error. Opt conf

online typically outperforms all other methods.


