Selecting Actions for Resource-bounded Information
Extraction using Reinforcement Learning

Pallika Kanani
University of Massachusetts, Amherst
Ambherst, MA, USA
pallika@cs.umass.edu

ABSTRACT

Given a database with missing or uncertain information,
our goal is to extract specific information from a large cor-
pus such as the Web under limited resources. We formu-
late the information gathering task as a series of alterna-
tive, resource-consuming actions to choose from and use Re-
inforcement Learning to select the best action to perform
at each time step. We use temporal difference Q-learning
method to train the function that selects these actions, and
compare it to an online, error-driven algorithm called Sam-
pleRank. We present a system that finds information such
as email, job title and department affiliation for the faculty
at our university, and show that the learning-based approach
accomplishes this task efficiently under a limited action bud-
get. Applying our method to the task of filling missing val-
ues in a large scale database with millions of rows and a large
number of columns can help obtain the required information
from the Web efficiently, and lead to reduced resource con-
sumption.

General Terms
Web Mining

Keywords
Resource-bounded Information Extraction, Active Informa-
tion Acquisition, Reinforcement Learning, Missing Data

1. INTRODUCTION

Resource-bounded Information Extraction (RBIE) is the pro-
cess of searching for and extracting specific pieces of infor-
mation from an external information source under a limited
budget of resources, such as computational time, network
bandwidth, and storage space [4]. The problem of missing
information in databases is ubiquitous. However, in many
cases, this information is available on some external source,
such as the Web. In order to fill in the missing slots, we need
a mechanism to automatically extract the required informa-
tion. In such settings, it is undesirable, infeasible, or even

Andrew McCallum
University of Massachusetts, Amherst
Ambherst, MA, USA
mccallum@cs.umass.edu

computationally intractable to use traditional information
extraction pipelines on the entirety of a vast, external, un-
structured or semistructured corpus for obtaining relatively
small amount of information. Under the RBIE framework,
we obtain the required information by issuing appropriate
queries to the external source, such as a web search API,
downloading only a small fraction of documents from the
search results, and processing even fewer of them to extract
the specified field.

Consider a real world example. We are building a database
of all faculty at a university as shown in Table 1. We have the
names, but some of the other information such as contact
details, job titles and department affiliations are missing.
Surprisingly, in some cases, even the administration may not
have such a comprehensive, university-wide database. This
may be due to the lack of data exchange, joint appointments
across departments, changing contact details, etc. Building
such a database would be incredibly useful, since it can help
maintain up-to-date records of the faculty, foster collabora-
tion across departments, and so on. A large portion of this
information exists on the Web, but it may not always be
found on faculty home pages. Lecturers and faculty in some
of the departments do not have home pages, and their in-
formation could be scattered around the Web. Finding this
information can be challenging, since it is hardly available
in a uniform, structured manner. There are other problems
like name ambiguities and incorrect or incomplete data.

One way to obtain this information is by crawling all the
websites under the university domain. This, by itself is a
resource-intensive task, since most university websites are
large and complex, and we would need to use a lot of com-
putational power to crawl and download the pages, along
with the corresponding network bandwidth, and disk space
for storing them. We would also lose out on all the infor-
mation that is scattered on the Web, outside the university
domain. Can we accomplish the same task using a much
smaller fraction of these resources?

We know that the information missing in the database is
available on some relatively small number of pages on the
Web. We need to run some extraction algorithms on those
pages in order to obtain the required information. But be-
fore we can run extraction, we need to download them to
our computing infrastructure, and before we can download
them, we need to know where they are located on the Web.
A search engine API, such as Google can help us retrieve

| Faculty Name | Phone |

Andrew McCallum
Jerrold S. Levinsky ?
Edward G. Voigtman ?
Robert W. Paynter ?

(413) 545-1323
‘?

mccallum@cs.umass.edu

Email | Job Title | Department Name |
Professor | Computer Science
? Lecturer Legal Studies
? ? ?
? ? Anthropology

Table 1: Example Database of University Faculty

these web pages. We first formulate queries driven by in-
formation that is already available in the database, issue
them to the search interface, obtain the location of the web
pages, and download them. Then we can run the necessary
algorithms to extract information, and use it to fill missing
entries in the database. This process is much more efficient,
and would use relatively smaller amounts of resources.

The problem of Resource-bounded Information Extraction
(RBIE) was first introduced in our previous work [4]. Queries
are formed by combining existing, relevant information in
the database with user defined keywords. All such queries
are issued to the search API, and all of the result documents
are downloaded. The resource savings come from selecting
a subset of the web documents to process by exploiting the
network structure in the data. In general, we may need mul-
tiple queries to obtain information about a single entry in the
database, and some queries work better than others. In our
university faculty example, we may form different queries
with keywords such as “curriculum vitae” or “home page”,
and it may be that one of them is always more successful
than the other in finding the information we need. In some
cases, the information in different fields may be interdepen-
dent, and finding one before another may be more efficient.
In order to make the best use of available resources, we need
to issue the most effective queries first.

In most scenarios, one only need process a subset of the doc-
uments returned by the queries. We need to know which of
the search results are most likely to contain the information
we are looking for. Information returned in the search re-
sult snippet can be exploited to decide if a web page is worth
downloading. Similarly, some preliminary observation of the
downloaded document can be useful to decide if it is worth
passing through an expensive extraction pipeline. Hence,
instead of viewing RBIE as selecting a subset of documents
to process, [3] cast the information-gathering task as a series
of resource-consuming actions, along with a mechanism to
select the best action to perform at each time step.

In this paper, we formulate the RBIE problem formally as
a Markov Decision Process (MDP), and propose the use of
reinforcement learning techniques for solving it. The State
of this MDP is the state of the database at each time step,
and action is any act that leads to obtaining the required
information, such that performing the action in one state
leads to a different state. RBIE process is then finding the
optimal policy in this MDP, so as to obtain most amount
of information with the given budget of actions, since we
assume that actions consume resources. In RBIE from the
Web context, actions are - query, which is issuing a query to
a search API, download, which is downloading a web doc-
ument, and extract, which runs an actual extraction algo-
rithm on a document. By formulating RBIE for the Web as

an MDP, we can start exploring the rich methods of optimal
action selection offered by Reinforcement Learning.

This work builds significantly on [3], which uses an on-
line, error driven algorithm, called SampleRank to learn a
value function. In contrast, we use Temporal Difference Q-
learning, which takes into account delayed reward. In the
RBIE for the web setting, query actions might not lead to
immediate reward, but they are necessary to perform before
download and extract actions, which may lead to positive
rewards. As opposed to the URL classification in the previ-
ous work, our example task requires actual text extraction,
making it more important to model delayed reward. Since
both SampleRank and Q-learning are novel approaches for
the RBIE framework, in this paper, we compare their rela-
tive performance on the task of finding emails, job titles and
department affiliation for faculty in our university.

In general, we can use any model of choice for information
extraction in our framework that can extract the required
information from a web page, and provide a confidence score
for the extracted value. This score can be used to choose the
best among the potential candidate values, and to determine
whether or not an existing entry in the database should be
updated by the newly extracted value. We present a sim-
ple, but novel information extraction method that can easily
scale to large problem domains. The basic idea is to gener-
ate a list of potential candidate values from the web page,
and using a binary classifier, such as Maximum Entropy, to
classify them as being correct values or not, by observing
features of the context in which they are found. The candi-
date with the maximum probability of being correct is used
to fill the entry in the database.

Our experiments show that the Q-learning strategy performs
better than a random action selection strategy, as well as
SampleRank based approach to learning a value function.
Given the large number of actions to choose from at each
time step, and the size of the corresponding state space,
the policy learned is impressive, even though it is not an
‘optimal’ one. The Q-learning based approach is able to
obtain 90.2% of the final F1, by only using 28.5% of the total
actions, demonstrating the effectiveness of our method.

2. RESOURCE-BOUNDED INFORMATION
EXTRACTION

2.1 General Problem Definition

The general problem of Resource-bounded Information Ex-
traction (RBIE) was first defined in our previous work [3].
We are given a database with missing values in some of the
entries, and a set of possible actions to help acquire that in-
formation from an external source, such as the Web. Select
the best action from the set of alternative actions available

at each time point, so as to acquire most information with
least number of actions.

2.2 Resource-bounded Information Extraction

From the Web

For RBIE from the Web, we consider three different types of
actions - query, download, and extract. A query action con-
sists of issuing a single query to a web search API and ob-
taining a set of search results. In order to form the query, we
need to use some existing information from an input record
in the database and a set of keywords. A download action
consists of downloading the web page corresponding to a
single search result. Finally, an eztract action consists of
performing extraction on the downloaded webpage to ob-
tain the required piece of information and using it to fill the
slot in the original database.

Note that in the case of RBIE from the Web, the query ac-
tions can be initialized at the beginning of the task because
they are fixed, but download actions and extract actions
are generated dynamically and added to the list of avail-
able actions. That is, after a query action is performed, the
download action corresponding to each of the search results
is generated. Similarly, after a web page is downloaded,
the corresponding eztract action is generated. At each time
point, only the actions that are instantiated can be consid-
ered as alternative actions to be performed. The RBIE task
is to select the “best” action at each time point from a set
of all valid actions.

Before selecting an action to perform at each time step, we
need to consider several factors. We need to take into ac-
count the current state of the database, such as the number
of slots filled and the uncertainty about them. We need to
take into account the context provided by the results of all
the actions so far, such as the results of the queries, pages
that are not yet downloaded and processed. Even if this
context is not yet in the database, it can provide valuable
information for deciding which action to select. Finally, we
also need to consider the properties of the candidate action
itself, before selecting it.

We assume that we are given an existing model, M. for
extracting the required pieces of information from a single
web page. We also assume that this model provides a confi-
dence score for each value predicted. This score can be used
to choose the best among the potential candidate values,
and to determine whether or not an existing entry in the
database should be updated by the newly extracted value.

2.3 Markov Decision Process Formulation
In this paper, we cast the Resource-bounded Information
Extraction problem as solving a Markov Decision Process

(MDP), M, where the states represent the state of the database

at a given time, along with any intermediate results obtained
from the Web, and actions represent the query, download,
and extract actions as described in the previous section. We
represent state as a tuple Si;(DBy, Ry, R;), where DBy is
the state of the database at time t, R; is the list of in-
termediate URL results and R, is the list of intermediate
page results. The MDP for RBIE is described as a tuple,
M{So,v,T(S,a,S"), R(S)), where Sy is the initial state of

Algorithm 1 Resource-bounded Information Extraction for
the Web Using Q-function
Input:
Database DB with missing entries, F;
Learned Q-function Q(a, S)
Learned extraction model, M.
Time budget, b
Initialize all queries using keywords
t=0
while ¢t <=1b do
at+1 = arg max, Q(a, S)
if aty1 is a query action then
Issue query to a web search API
Enqueue corresponding download actions
else if a:y1 is a download action then
Download the web page
Enqueue corresponding eztract action
else if a;y1 is an extract action then
Extract all candidate values from the web page
Score each candidate using the model, M.
Fill the value of the best candidate in E;
end if
t=t+1
end while

the database, ~ is the discount factor, T'(S, a, S’) is the state
transition probability, or the probability that action a in
state S at time ¢ will lead to state S’ at time ¢+ 1, and R(S)
is the reward function for being in state S.

One of the standard ways of solving an MDP is Q-learning[15],
which provides a way to learn to select the best action at
each time step. The Q-function, Q(a, S) is the expected util-
ity of taking action a in state, S. Hence, the best action to
select at each step is:

ary+1 = argmax Q(a, S) (1)

Algorithm 1 summarizes the RBIE for Web framework for
filling missing information in a database using Q-function.

2.4 Learning Q-function

At the heart of solving an MDP for RBIE is the Q-function,
Q(a, S). We now discuss a method to learn it from real data.
Much of the material in this section follows from [12, 14].

We know that Q-function obeys the following constraints:

Q(a,8) = R(S) + 7Y _T(S,a,5) maxQ(a’,8') (2)

S/

To use this update equation, we need to learn the transition
probability model, T'(S, a, S"), which is difficult in our setup.
Hence, we use the temporal-difference, or TD Q-learning
approach, which is also called model-free, because it lets us
learn the Q-function without using the transition probability
model. The update equation for TD Q-learning is !:

Q(a, 8) — Q(a,9) + a(R(S") + ymax Q(d', S") = Q(a, 5))
(3)

!There is some disagreement amongst Q-learning experts
about using R(S) vs. R(S"). We choose to use R(S").

Algorithm 2 Temporal Difference Q-learning for RBIE,
with e-greedy exploration

Input:
Training database, DB
Initial parameters, 6
Q Function, Qg(a,S) = >, 0:fi(a,S)
Reward Function, R(S)
Learning Rate, «
Discount factor, v
So < Initial State of DB
for ¢t «— 0 to number of iterations 7' do
e=1-— %
With probability e, pick a random action, a:
With probability 1 — ¢, pick a; = arg max, Qo, (a, St)
St+1 = a:(St) //perform a:
Let a’ be all the valid actions from state, Siy1
for i = 0 to number of features do
01 = 07 + a[R(Si41) + ymaxy Qg,(a’, Si+1) —
Qo (at, St)]fi(ar, St)
end for
end for

Where, « is the learning rate. For any real-world RBIE task,
the state space for the corresponding MDP is large enough
to make it very difficult to learn this function accurately.
Hence, we use function approximation. We represent the
Q-function as a weighted combination of a set of features as
follows:

Qo(a,5) = Z 0ifi(a,S) (4)

Where fi(a,S) are the features of the state S and action
a, and 6; are the weights on those features that we wish to
learn. We now use the following equation for updating the
values of 6; to try to reduce the temporal difference between
successive states.

0Qo(a, S)
00;
(5)

We can now use this update equation to learn the parameters
of our Q-function from training data. The TD-Q-learning al-
gorithm for RBIE is described in Algorithm 2. Note that we
use e-greedy approach for exploring the state space, where ¢
decreases in proportion to the number of training iterations.

0: — 0i + a[R(S") +ymax Qo(a’, 5) — Qo(a, 9)]

We also need to design a custom reward function, R(S) for
using this algorithm. Under the RBIE from the Web setting,
we can compute value of the reward function after perform-
ing action aty1 on Sy = (DBy, Ry, RQ) as a weighted sum of
correct, incorrect and total number of filled values and some
properties of the intermediate results.

2.5 Building Extraction Model, 1/,

In general, we can use any model of choice for information
extraction in our framework that can extract the required
information from a web page, and provide a confidence score
for the extracted value. In this section, we present a sim-
ple, but novel information extraction method that can easily
scale to large problem domains. The basic idea is to gener-
ate a list of potential candidate values from the web page,
and using a binary classifier, such as Maximum Entropy, to
classify them as being correct values or not, by observing

features of the context in which they are found. Algorithm
3 describes how we train the model.

Let E be the set of entries with missing values in the database.
We use patterns and lexicons to generate a list of candi-
dates, Cg, for each entry, E; € E. A candidate is a unique
string that is a potentially correct value for an entry in the
database. Each candidate, ¢; € Cg,, consists of a list of
mentions, M;, which represent the actual occurrence of the
candidate string in the web documents. Each candidate may
have multiple mentions, across different web pages. Cor-
responding to each mention, mi € M;, we have a list of
properties, or features, f(my) which describe the context in
which it was found. Since we are interested in classifying
the single, canonical value of these mentions, i.e, the candi-
date, we collapse the properties of different mentions for a
candidate ¢; into a single feature function, f(c;).

Let y;; be a binary variable that represents whether ¢; is
the correct value for entry F;. We can then represent the
probability of ¢; being the correct candidate as:

Plyisles) = 5 exp(3- Mifi(er, i) (6)

Where, A\; are the weights on the features, and Z, the nor-
malization factor is given by:

Z=> exp(>_ Nfiles, i) (7)
» [

Since this is a supervised approach, our training data con-
sists of the true values of E, which can be used to train the
classifier. At test time, during an extract action, we classify
each ¢; € Cg; at that time point, and select the one with
the maximum posterior probability, P(y;;|c;), as the “best”
candidate to fill the slot.

3. SAMPLERANK FOR RBIE

In our previous work, we presented a different approach to
learning a value function for selecting actions for a different
problem domain[3]. We proposed the use of an online, error
driven learning algorithm, called SampleRank [1, 16]. Since,
we are also interested in investigating the effectiveness of
the SampleRank approach in our current problem domain,
we give its brief introduction here. For further details on
training SampleRank for RBIE, please refer to [3].

Remember that we represent a state as, S¢(DBi, Re, R;).
Our goal is to learn a value function similar to the Q-function,
called V (DB, R, R}, a), which is used to select the best ac-
tion in a given state. In order to learn this function from
training data, we first assume that its functional form is as
follows:

V(DBi, Ry, Ry, a) = exp(Y_ M fe(DBy, R, Riya)) (8)
k

Where, A\r are model parameters and fr are feature func-
tions, defined over the database context, the current action,
and the results of all previous actions.

We start training with state Sp, that represents the original
state of the database. We consider all available actions at
this point, and sample from states that result from these ac-
tions. We choose the state S*, which is the result of the best

Algorithm 3 Building Extraction Model, M,
Input:
Training Database DB with entries, F
Pattern or Lexicon Matcher, L(w) that returns a set
of matches, M,, from a Web Page, w
Feature functions, f(.) describing context of M,
A Supervised Learning algorithm, such as Max Ent
Initialize all queries using keywords
Initialize set of potential candidates per entry, Cg, = {}
Initialize set of candidates for training, Cy = {}
while Any more actions remain do
Pick a random action, a to perform
if a is a query action, or a download action then
Perform a and enqueue corresponding download or
extract actions
else if a is an extract action for Web Page, w then
My, — L(w)
for Each match, my € M, do
if String value (my) matches ¢; € Cg; then
Add my as a mention of ¢;
Merge the features, f(ms) with f(c;)
else
Create a new candidate, ¢;, and add to Cg;
label(c;) < string value (¢;) = true value (E;)?
Add my as a mention of ¢;
Set f(c;) — f(m)
end if
end for
end if
end while
for all Cg, do
Ct — Ct U C‘E1
end for
M. «— Train a Max Ent classifier with f(c), for ¢; € Ct

action a*, predicted by V, and the state S’, which is the best
state predicted by the objective, or reward function, R(S).
SampleRank is an error driven learning algorithm, which
lets us update parameters when the function learned up to
a given point makes a mistake. We say the ranking is in
error if the function learned so far assigns a higher score to
the sample with the lower objective, or reward value, R(S),
ie.:

[(VA(S™) > VA(S)DOAR(S™) < R(S)IVI(VA(S™) < Va(S))A

)
(R(S™) > R(S"))]

When this condition is true, we update the parameters, A
using perceptron update as follows:

A <= AT 4 a(f(Shar) — £(S7,a))) 9)

where « is the learning rate used to temper the parameter
updates. Note that SampleRank is a special case of rein-
forcement learning, which makes the comparison between
the two approaches very interesting.

4. RELATED WORK

4.1 Resource-bounded Reasoning

Knoblock et al. [6] did some of the early work in planning for
information gathering, followed by more Resource-bounded
Reasoning work by Zilberstein et al. [18]. The problem of

Resource-bounded Information Extraction (RBIE) was first
introduced in our previous work [4], in which the main idea
was to select a subset of the web documents to process by
exploiting the network structure in the data. The example
task in [4] is to find a missing year of publication in citation
data. All available queries are issued, and all the search
results are downloaded, which are then filtered using a sim-
ple heuristic. The number of documents that need to be
processed for extraction is reduced by propagating informa-
tion obtained from the Web through the underlying citation
graph structure.

The state-action framework for RBIE was formulated in our
more recent work [3], in which we also proposed the use of
SampleRank [1, 16] algorithm to learn a value function for
selecting actions. The task in [3] is to find URL of the fac-
ulty directory pages of top Computer Science departments
in the U.S. The state-action framework is similar to the one
described in this paper, except that the extract actions con-
sist of simply classifying the web page as a faculty directory
or not. Note that SampleRank does not have a direct no-
tion of delayed reward. Hence, the delayed reward is ‘baked
into’ the reward function, which includes intermediate re-
sults. Since URL of the web page plays a big role in pre-
dicting whether or not the web page is a faculty directory
or not, examining the intermediate results provide a useful
signal to the value function learner.

We introduce a novel extraction method using candidates
and mentions, which can easily scale to large scale RBIE
from the web applications. This paper also builds signif-
icantly over [3] by reformulating the RBIE problem as an
MDP, introducing the use of Reinforcement Learning to
solve it, and demonstrating the effectiveness of temporal dif-
ference QQ-learning on a task that requires extracting values
from web pages, as opposed to classifying URLs. Note that,
in our case, the intermediate results are not as useful as in
[3], which means that the notion of delayed reward is much
more significant in learning to select actions. However, due
to the novelty of both SampleRank and Q-learning as appli-
cable in this domain, we choose to test the effectiveness of
both the algorithms empirically.

4.2 Information Extraction From the Web

In the traditional information extraction settings, we are
usually given a database schema, and a set of unstructured
or semi-structured documents. The goal of the system is to
automatically extract records from these documents, and fill
in the values in the given database. These databases are then
used for search, decision support and data mining. In recent
years, there has been much work in developing sophisticated
methods for performing information extraction over a closed
collection of documents. Several different approaches have
been proposed for different phases of information extraction
task, such as segmentation, classification, association and
coreference. Most of these proposed approaches make ex-
tensive use of statistical machine learning algorithms, which
have improved significantly over the years. However, only
some of these methods remain computationally tractable as
the size of the document corpus grows. In fact, very few
systems are designed to scale over a corpus as large as, say,
the Web [2].

There are some large scale systems that extract information
from the Web. Among these are KnowItAll [2], InfoSleuth
[11] and Kylin [17]. The goal of the KnowlItAll system is a
related, but different task called, “Open Information Extrac-
tion”. In Open IE, the relations of interest are not known in
advance, and the emphasis is on discovering new relations
and new records through extensive web access. In contrast,
in our task, what we are looking for is very specific and the
corresponding schema is known. The emphasis is mostly on
filling the missing fields in known records, using resource-
bounded web querying. Hence, KnowlItAll and RBIE frame-
works have very different application domains. InfoSleuth
focuses on gathering information from given sources, and
Kylin focuses only on Wikipedia articles.

The Information Retrieval community is rich with work in
document relevance (TREC). However, traditional informa-
tion retrieval solutions can not directly be used, since we
first need to automate the query formulation for our task.
Also, most search engine APIs return full documents or text
snippets, rather than specific values. A closely related fam-
ily of methods is question answering [7]. These systems do
retrieve a subset of relevant documents from the Web, along
with extracting a specific piece of information. However,
they target a single piece of information requested by the
user, whereas we target multiple, interdependent fields of a
relational database. They need to interpret natural language
question, whereas we need a keywords based mechanism for
formulating queries. Most QA systems do not focus on pri-
oritizing information acquisition actions, and the ideas in
this paper could prove useful in building them. The seman-
tic web community has been working on similar problems,
but their focus is not targeted information extraction.

4.3 Active Information Acquisition

Learning and acquiring information under resource constraints

has been studied in various forms. Consider these different
scenarios at training time: active learning selects the best in-
stances to label from a set of unlabeled instances; active fea-
ture acquisition [10] explores the problem of learning models
from incomplete instances by acquiring additional features;
budgeted learning [8] identifies the best set of acquisitions,
given a fixed cost for acquisitions. At test time, the two com-
mon scenarios are selecting a subset of features to acquire,
e.g. [13], and selecting the subset of instances for which to
acquire features [5]. In our work, the resource-constraints
are only applied at test time, and availability of unlimited
resources is assumed at training time.

S. EXPERIMENTS

5.1 Extracting Faculty Information

Given a list of names of university faculty, our goal is to
extract their email address, job title and department affil-
iation from the Web. In this section, we describe how we
apply the RBIE framework to build a system that can effi-
ciently acquire the required information. We also describe
our experiments to test the effectiveness of SampleRank and
Q-learning algorithms at selecting the most effective actions
at each time step.

This is a challenging task due to several factors. In some
cases, this information is readily available on faculty home

| Dataset | # Faculty | # Queries | # Docs | Total Actions |

Training 70 1400 13686 28772
Testing 30 600 6065 12730
Total 100 2000 19751 41502

Table 2: Datasets

pages, which are semi-structured. However, lecturers and
faculty in many departments do not have home pages. Their
information is scattered around the Web, without a uniform
structure. Web pages are extremely noisy, and may lead to
unexpected errors while performing extraction. Name am-
biguity is another challenge, since many of the faculty have
common names they share with other famous personalities.
Some information on the Web is stale, or contradicting. For
example, a faculty can be listed on one page as “assistant
professor”, while on another as “associate professor”, reflect-
ing a recent change of title. Finally, some information is not
available on the Web at all.

5.2 Dataset Description
We start with a list of faculty from University of Massachusetts
at Amherst. We randomly choose 100 of these records as
our dataset. The fields contain the first, middle and last
name of the faculty, their email address, a list of job titles,
and a list of department affiliations. The reason for mul-
tiple job titles and department affiliations is joint appoint-
ments. Unfortunately, the dataset we received contained
several inaccuracies and was cleaned for better evaluation
of our methods. For example, in some cases, a single col-
umn contained names of different departments. These are
split into multiple columns. Punctuation and abbreviations,
such as “Assoc. Prof.” are cleaned and expanded. Despite
the cleaning effort, the dataset we use is incomplete or con-
tains errors. For example, the most current job titles are
not reflected, and only one email address is included in the
dataset, which may not be the one used by the person, or
published on the Web. These imperfections in the data make
both training and evaluation of our system challenging. An-
other problem in evaluating the accuracy of our system is
the “generic-specific” problem in department names. For
e.g., our system might predict the department affiliation for
a faculty as “finance”, while it might be listed as “manage-
ment” in the ground truth dataset, or vice-versa. Since we
use exact string match, we may even miss a match such as
“school of management”. Despite the difficulties, it is an
interesting real world task for RBIE.

We use the Google search API for our experiments. In our
task, the three fields that we extract are related to each
other and often found in the proximity of each other on the
same web pages. Hence, our query actions correspond to the
entire record in the database, as opposed to a single ‘entry’,
or cell. We formulate 20 different types of queries per fac-
ulty, as shown in Table 3, and consider top 20 hits returned
by the search API. Assuming that we are not operating un-
der resource-constraints, i.e., we perform all possible actions
available, we get the dataset as described by Table 2.

5.3 Training The Extraction Models

Before we move to the action selection experiments, we need
to build a model for extracting the required information from

Name

Name + Univ

Name + Univ + Curriculum Vitae
Name + Univ + Resume

Name + Univ + Profile

Name + Univ + Bio

Name + Curriculum Vitae
Name + Resume

Name + Profile

Name + Bio

Name in quotes + Univ

Name with middle name + Univ
Name + HomePage

Name + Contact

Name In Univ

Name in quotes In Univ

Name with middle name In Univ
Name + HomePage In Univ
Name + Contact In Univ

Table 3: Types of Queries. “Name” refers to first
and last name, ‘Univ’ refers to keywords “university
of massachusetts at amherst” and “In Univ” refers
to “site:umass.edu”

individual web pages. Section 2.5 describes the algorithm we
use for training the model. We use mallet [9] toolkit’s im-
plementation of the Maximum Entropy classifier. The avail-
able data is first split by 70%-30% for training and testing.
The training phase for the extraction model is not resource-
constrained, i.e., we use all possible query, download and
extract actions.

The algorithm described in section 2.5 uses a pattern or lex-
icon matcher that returns a set of matches from a web page.
These matches are added as a list of candidates to be filled
in the database entry. For emails, we use a regular expres-
sion to match all the emails found in the web document. For
job titles and department affiliations, we first build N-grams
from body of the web page, where N = 1,2,3,4. These N-
grams are matched against lexicons to find candidate men-
tions in the web page. The features used to describe the
context of these matches are shown in Table 4. The features
across a mention are collapsed by using an ‘OR’ operator,
since they are mostly binary. That is, if any feature is turned
on in one of the mentions, it would be turned on for the
candidate. In our early experiments, we found this method
perform better than other merging operations, however, in
future, we can build a more sophisticated method.

Let us first study the performance of the candidate classifier,
in isolation of the Resource-bounded Information Extraction
task. Any inaccuracy in this model, will not only result in
poor accuracy during the RBIE process, but also mis-guide
it due to inaccurate confidence prediction. Table 5 shows
the classification performance of M.. Note that F1 is the
geometric mean of Precision and Recall. The main reasons
of relatively lower F1 values on this model are inaccuracy
of training data as described above, as well as the noisy
nature of the web data. The advantage of using this model
is that it is easy to build, and is scaleable for very large scale
problems. In the future, we would like to experiment with

Features for Email Extractor

Type of query used
Email domain is from UMass
Web page domain name from UMass
Email host and web page URL host match
Relative position of faculty name and email
Match between faculty name and email username
Similarity between faculty sname and email username

Features for Job Title Extractor

Too many matches found on page
Web page domain name from UMass
Web page URL contains faculty name
Position of match on the document
The words “Assistant” or “Associate” preceds match
Relative position of faculty name and job title

| Features for Department Extractor |

Too many matches found on page
Web page domain name from UMass
Web page URL contains faculty name
Position of match on the document
The word “Department” precedes match
Relative position of faculty name and job title

Table 4: Features of the Extraction Models

Measure Email | JobTitle | Department
Accuracy 97.97 92.76 95.83
Yes Precision | 100.0 42.85 38.70
Yes Recall 43.75 23.07 44.44
Yes F1 60.86 30.00 41.37
No Precision 96.89 94.63 98.09
No Recall 100.0 97.78 97.59
No F1 98.42 96.18 97.84

Table 5: Performance of the Extraction Models

a more sophisticated extraction model, in order to facilitate
better accuracy of the classifier, as well as the RBIE process.

5.4 [Evaluation

At test time, we start with the database that contains names
of faculty. All other columns are empty. We consider this
as time, t = 0. We assume that each action takes one time
unit. The action selection scheme that we are testing selects
one of the available actions, which is performed as described
in Algorithm 1. The action is then marked as completed and
removed from all available actions. If an extraction action
is selected, it may affect the database by filling a slot and
altering the confidence value associated with that slot. We
evaluate the results on the database at the end of a given
budget, b, or if we run out of actions.

We are interested in finding the email address, job title
and department affiliation, all of which can have multiple
true values. Note that this also includes minor variations.
Throughout our evaluations, we compare against the multi-
ple values of a column, and declare a match if the predicted
value matches at least one of them. We use the follow-
ing evaluation metrics to measure our system’s performance.
Since our task is slightly different from a traditional infor-
mation extraction task, we use the following definitions of

evaluation metrics. Note that extraction recall measures the
proportion of entries for which a true candidate value has
been extracted from the web page. It may or may not get
ranked as the “best” candidate. However, for the purpose of
evaluating the order of selecting the query, download and ex-
tract actions, this is a very important metric. Even though
at test time, it is independent of the performance of the un-
derlying extraction model, M., it is still influenced indirectly
by M. through training.

No. of Correctly Filled Entries in the Database

Precision = No. of Filled Entries in the Database

No. of Correctly Filled Entries in the Database
No. of Test Entries in the Database

No. of Correct Candidates Extracted
No. of Test Entries in the Database

Fl = 2«Precision«Recall
(Precision+Recall)

Recall =

Extraction Recall =

5.5 Baselines

We use two baselines for our experiments : random, and
straw-man. At each time step, the random approach selects
an action randomly from all available actions. The straw-
man approach works as follows. The first query in the list
is issued for each test instance. Next, the first hit from the
search result for each test instance is downloaded and pro-
cessed for extraction. Then, subsequent hits from the search
result for each test instance are downloaded and processed.
Finally, subsequent queries are issued in the descending or-
der, followed by their corresponding download and extract
actions. Note that this approach would quickly fill up the
slots with the top hits of the queries, making it a very tough
baseline to beat.

5.6 Learning Q-function from Data

We now describe how parameters 6 for Q-function Qg(a, S)
are learned using training data. Table 6 describes the fea-
tures used. Note that at train time, we do not impose re-
source constraints. That is, training is performed till more
actions are available. However, we only run Q-function pa-
rameter updates for a given number of iterations, which acts
as a type of budget. We determine the number of iterations
and learning rate empirically.

Similar to the test time, we start with a database with the
email, job title and department name columns empty. The
true values of these columns are only used to calculate the
reward function. We initialize the parameters to zero. At
each time step, we explore all possible actions, and update
the parameters as described in Algorithm 2. We then choose
the next action to perform as per the updated parameters
and proceed similarly for the specified number of iterations.

We use the following objective function for training. Here,
n is the number of slots filled in the database, d is the num-
ber of slots filled correctly, d is the number of slots filled
incorrectly, r is the number of web pages downloaded so far
that contain the correct slot value, and 7 is the number of
web pages downloaded so far that do not contain the correct
slot value. We choose these particular coefficients because
of their emphasis on pracision, along with balancing recall.

0:(St+1) =nx14+d*100+ 710 —d* 200 — 7 * 0.5 (10)

| Features related to query action

Type of query

Features related to download action

Type of the corresponding query
Hit value in the search result
URL is from UMass
Webpage is HTML
Title contains keywords
Title contains faculty name

Features related to extract action

Type of the corresponding query
Hit value in the search result
URL is from UMass
Webpage is HTML
Title contains keywords
Title contains faculty name
Appropriate Size
Bad request code found

Table 6: Features for learning using SampleRank
and Q-function

Since we are interested in comparing the SampleRank ap-
proach, we use the same features and objective function, or
reward function as Q-learning.

5.7 Results and Discussion

We now compare the test-time performance of the two base-
lines, the value function learned using SampleRank, and the
Q-function on their ability to select good actions at each
time step. Note that we have already evaluated performance
of the extraction method, and we are now focussing on qual-
ity of the action selection strategy. We evaluate performance
after each 2000 actions from 0 to 14000 (since the total num-
ber of actions at test time is 12730). The most effective ac-
tion selection scheme is the one that is fastest in achieving
high values of evaluation metrics.

5.7.1 RBIE Using an Oracle

We first evaluate performance of the four action selection
schemes in the presence of an oracle that perfectly classifies
each candidate as the correct value for an entry or not with
infinite confidence. We do this to isolate the effect of in-
accuracies in the extraction model, M., which can severely
misguide the RBIE system with wrong confidence values.
For e.g., even if the action selection scheme selects a good
web page for extraction, M. can choose the wrong candi-
date for updating the value in the corresponding slot. While
training the Q-function, this translates to incorrect reward
values, which can severely impede learning. Table 5 shows
that the F1 value for ‘yes’ label for each of the extractors
are not high enough to avoid these problems.

Figure 1 shows the extraction recall values during the RBIE
process for different fields, and the total number of entries.
Note that in the presence of an Oracle, other evaluation
metrics are not useful, since the precision is always 1, and
the recall is the same as the extraction recall. We ran 1000
iterations of both SampleRank and Q-learning training with
a learning rate, a = 1, and discount factor, v = 0.9 for this
experiment. As we can see, the straw-man method is ex-

tremely effective, because it knows to process the top hits
for a good query for each entry first. Given the complex-
ity of the action domain, and the size of the state space,
this policy is very difficult for a Q-learner to learn, espe-
cially after around 2000 iterations. It does, however, learn
to beat the random action selection, as well as the value
function learned by SampleRank. As expected, Q-learning
performs better than SampleRank due to its modeling of de-
layed rewards, despite the use of exactly the same features
and reward functions. For example, in the case of depart-
ment name, it is able to obtain 82.8% of the best extraction
recall, using only 42.8% of all actions.

5.7.2 RBIE Using Extraction Model, M.

We now study the performance of our proposed method us-
ing an actual extraction model, M.. In this case, each action
selection strategy needs to balance both precision and recall.
We ran 1000 iterations of both SampleRank and Q-learning
training with a learning rate, o = 1, and discount factor,
v = 0.9 for this experiment. Figure 2 shows the extrac-
tion recall, precision, recall and F1 values for total number
of entries in the database. In these methods, precision and
recall curves go down towards the end of information gath-
ering process due to noise in the web data, and the extrac-
tion process. As before, we see that the straw-man method
performs better in terms of extraction recall. However, its
precision and recall drops mid-way through the information
acquisition process, and Q-learning method performs bet-
ter. Q-learning also comfortably out-performs random and
SampleRank approaches. It achieves 90.2% of the final F1,
by only using 28.5% of the total actions. This demonstrates
the effectiveness of the policy learned by the Q-learner for
selecting good actions for information gathering task. We
believe that with more accurate labeling, a better extractor,
and longer training, Q-learning method can be shown to be
even more efficient.

6. CONCLUSION AND FUTURE WORK

In this paper, we formulated the problem of RBIE for the
Web as a Markov Decision Process, and proposed the use
of temporal difference Q-learning to solve it. We learn a
policy for effectively selecting information-gathering actions,
leading to significant reduction in resource-usage. On our
example task of extracting faculty email, job titles and de-
partment names, the Q-learning based approach is able to
achieve 90.2% of the final F1, by only using 28.5% of the
total actions. We also compare it to a recently proposed, on-
line, error-driven algorithm called SampleRank, and found
that Q-learning performs better due to it’s ability to model
delayed reward. We also presented a novel extraction tech-
nique that can scale well for large scale, information gather-
ing tasks.

The basic formulation of RBIE as an MDP opens up many
interesting avenues of research. Use of TD Q-learning is one
of the first attempts to learn general information gathering
policies. Reinforcement Learning literature is rich with vari-
ations of Q-learning, which can be explored further. This
framework is extendable in many ways. We can easily re-
place the candidate-mention scheme described in the paper
with a more sophisticated extraction algorithm. We can
also extend the set of information gathering actions defined
here to suit the specific needs of a problem, and still use

0.6 4
0.5 4
F 0.4 - .’
g 3
8034 ¢
E ‘
€02 Rand
24 | — Random
. Ay o - Strawman
iy 0 o -SampleRank
3 . Qlearnin
'.l‘ll // 9
0 fe=r’ ‘ ; . : . .
0 2000 4000 6000 BOOO 10000 12000 14000
Time Budget
0.9 4
0.8
0.7 A
.
- .
" 0.6 1 ¢
8 :
% 0.5 - .
o
o4
T
= g
& — — Random
= = = -Strawman
------------------- SampleRank
Qlearning
|
1] T T T T 1

T T
0 2000 4000 6000 8000 10000 12000 14000
Time Budget

o
=]
L

o
]
L

[=]
(]
L

— — Random

= = = -Strawman
il e S MPle Rank
Qlearning

Extraction Recall
o
-
.

o
]
L

o
-
L

o

0 2000 4000 6000 8000 10000 12000 14000
Time Budget

o
(]
L

Extraction Recall
o
-y
.

0.3 4 '
4 — — Random
- = = «Strawman
s S miple Rank
ot] Qlearning

0 - T T T T T T 1
0 2000 4000 6000 8000 10000 12000 14000
Time Budget

Figure 1: RBIE Using the Oracle. The graphs from
top to bottom are : Email, Job Title, Department
Name and Total Entries

the general MDP framework. The success of such a learning
05 based approach can lead to its application in many resource-
0.7 conscious, real-world domains.
01 o 7. ACKNOWLEDGMENTS
E 02 ¥ y; d I,‘.""' This research draws on data provided by the University Re-
S04 ! yd | f search Program for Google Search, a service provided by
EM J 2 I,.w"" Google to promote a greater common understanding of the
% ‘ _gtarr;f:n”:an web. We are thankful to Michael Wick for useful discussions.
024 - SampleRank This work was supported in part by the Center for Intelli-
0.1/ Qlearning gent Information Retrieval and in part by the Central Intel-
o : ‘ : ‘ : : . ligence Agency, the National Security Agency and National
0O 2000 4000 6000 8000 10000 12000 14000 Science Foundation under NSF grant number 11S-0326249.
Time Budget Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author and do not
0.6 - necessarily reflect those of the sponsor.
05 B 8. REFERENCES
04 ¥ A - [1] A. Culotta. Learning and inference in weighted logic
< ’ . with application to natural language processing. PhD
3 ' thesis, University of Massachusetts, May 2008.
L [2] O. Etzioni, M. Cafarella, D. Downey, S. Kok,
— — Random A. Popescu, T. Shaked, S. Soderland, D. Weld, and
:tar;:‘re“;:nk A. Yates. Web-scale information extraction in
Qlearning knowitall. In WWW’04. ACM, May 2004.
i ' [3] P. Kanani and A. McCallum. Learning to select
be tonne aR05 TE06GE SHOUG! SO0d0! G5e00EA000 actions for resource-bounded information extraction.
Time Budget CIIR Technical Report 2011, IR-833
http://www. cs.umass.edu/~pallika/publications/IR-
0.45 - 853.pdf.
e e [4] P. Kanani, A. McCallum, and S. Hu.
- , Yo Resource-bounded information extraction: Acquiring
) ! v missing feature values on demand. In Proceedings of
037 the 14th PAKDD, pages 415-427, 2010.
§0254) [5] P. Kanani and P. Melville. Prediction-time active
& 02 L | feature-value acquisition for customer targeting. In
0154 o ,.-"""I — o Random Workshop on Cost Sensitive Learning, NIPS, 2008.
01l * o :;r:]‘glfe“;a"nk [6] G. A. Knoblock. Planning executing, sensing and
5. o Qlearning replanning for information gathering,. In Proceeding of
; the International Joint Conference onAl, IJCAI 1995.
! T U O SO (N T . [7] J. Lin, A. Fernandes, B. Katz, G. Marton, and
Time Budget S. Tellex. Extracting answers from the web using
knowledge annotation and knowledge mining
i techniques, 2002.
0.45 | .. [8] D. J. Lizotte and O. Madani. Budgeted learning of
04 | K o R naive-bayes classifiers. In UAI-2003, pages 378-385.
0.35 | K i - N Morgan Kaufmann.
W . [9] A. K. McCallum. Mallet: A machine learning for
o language toolkit. http://mallet.cs.umass.edu, 2002.
= dor | [10] P. Melville, M. Saar-Tsechansky, F. Provost, and
) X e R R. Mooney. An expected utility approach to active
0151 I - = = :Strawman feature-value acquisition. In ICDM’05, pages 745-748,
014, - SampleRank 2005.
' Qlearning
-0 [11] M. H. Nodine, J. Fowler, T. Ksiezyk, B. Perry,
0 R NS SO A (NS S o . M. Taylor, and A. Unruh. Active information
Time Budget gathering in infosleuth. IJCIS, 9(1-2):3-28, 2000.
[12] S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach (Second Edition). Prentice Hall,
Figure 2: RBIE Using Extraction Model On Total 2003.
Entries. The graphs from top to bottom are : Ex- [13] V. S. Sheng and C. X. Ling. Feature value acquisition

traction Recall, Precision, Recall and F1 in testing: a sequential batch test algorithm. In ICML

’06, pages 809-816, New York, NY, USA, 2006. ACM.

[14]
[15]

[16]

[17]

[18]

R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

C. J. C. H. Watkins and P. Dayan. Q-learning.
Machine Learning, 8(3-4):279-292, 1992.

M. Wick, K. Rohanimanesh, K. Bellare, A. Culotta,
and A. McCallum. Samplerank: Training factor
graphs with atomic gradients. In /CML, 2011.

F. Wu, R. Hoffmann, and D. S. Weld. Information
extraction from wikipedia: moving down the long tail.
In 14th ACM SIGKDD, pages 731-739, 2008.

S. Zilberstein. Resource-bounded reasoning in
intelligent systems. ACM Comput. Surv, 28, 1996.

