TREC and TIPSTER Experiments
With INQUERY

James P. Callan, W. Bruce Croft and John Broglio
Computer Science Department
University of Massachusetts

Ambherst, MA 01003-4610, USA

E-mail: {callan, croft, broglio}@cs.umass.edu

July 8, 1994

Abstract

INQUERY is a probablistic information retrieval system based upon a Bayesian
inference network model. This paper describes recent improvements to the system as
a result of participation in the TIPSTER project and the TREC-2 conference. Im-
provements include transforming forms-based specifications of information needs into
complex structured queries, automatic query expansion, automatic recognition of fea-
tures in documents, relevance feedback, and simulated document routing. Experiments
with one and two gigabyte document collections are also described.

To appear in Information Processing and Management.

1 Introduction

The effectiveness of an information retrieval (IR) system depends upon representation and
matching. The system must represent the information need, it must represent the docu-
ments, and it must determine how well the information need matches each document. Our
approach has been to use improved representations of document text and queries in the
framework of the inference network model of retrieval. This model uses Bayesian networks
to describe how text and queries should be used to identify relevant documents [11; 6; 12].
Document retrieval and routing are viewed as probabilistic inference processes that compare
text representations based on different forms of linguistic and statistical evidence to rep-
resentations of information needs based on similar evidence from natural language queries
and user interaction. Learning techniques are used to modify the initial queries both for
short-term and long-term information needs (relevance feedback and routing, respectively).

This approach, generally known as the inference net model and implemented in the
INQUERY system [4], emphasizes retrieval based on combination of evidence. Different text
representations (such as words, phrases, paragraphs, or manually assigned keywords) and
different versions of the query (such as natural language and Boolean) can be combined
in a consistent probabilistic framework. This type of “data fusion” has been known to be
effective in the information retrieval context for a number of years, and was one of the
primary motivations for developing the inference net approach.

Another characteristic of the inference net approach is the ability to capture complex
structure in the network representing the information need (i.e. the query). A practical
consequence of this is that complex Boolean queries can be evaluated as easily as natural
language queries to produce ranked output. It is also possible to represent “rule-based” or
“concept-based” queries in the same probabilistic framework. This has led to us concen-
trating on automatic analysis of queries and techniques for enhancing queries rather than
on in-depth analysis of the documents in the database. In general, it is more effective (as
well as efficient) to analyze short query texts rather than millions of document texts. The
results of the query analysis are represented in the INQUERY query language which contains
a number of operators, such as #SUM, #AND, #0R, #NOT, #PHRASE, and #SYN [13;
4]. These operators implement different methods of combining evidence.

Some of the specific research issues we are addressing are morphological analysis, the
use of phrases and other syntactic structure, the use of feature recognizers (for example,
company and country name recognizers) in representing documents and queries, analyzing
natural language queries to build structured representations of information needs, learning
techniques appropriate for routing and structured queries, techniques for acquiring domain
knowledge by corpus analysis, and probability estimation techniques for indexing.

The TIPSTER and TREC evaluations have made it clear that much remains to be learned
about retrieval and routing in large, full-text databases based on complex information needs.
On the other hand, we have made considerable progress in developing effective techniques
for this environment, and the evaluations have shown that good levels of performance can
be achieved.

John Davenport, 52 years old, was appointed chief executive officer of this international
telecommunications concern’s U.S. subsidiary, Cable & Wireless North America Inc. Mr.
Davenport, who succeeds John Zrno, is currently general manager of the group’s opera-

tions in Bermuda.

Figure 1: Indexing example: Original document text.

john davenport 52 year old appoint chief execut offic intern telecommun concern u.s.
#USA subsidiar cabl wireless north america inc #COMPANY davenport succee john
zrno current gener manag group oper bermuda #FOREIGNCOUNTRY

Figure 2: Indexing example: Document text indexed.

2 The INQUERY System

The INQUERY document retrieval and routing system is based on the inference network
model [13; 4]. The main processes in INQUERY are document indexing, query processing,
query expansion, query evaluation, and relevance feedback. Each is described below.

2.1 Document Indexing

The document parseris a set of text processing modules, organized into four phases: (1) lay-
out analysis, (2) lexical analysis, (3) syntactic analysis, and (4) feature recognition. Layout
analysis is the only phase in which the document can be modified. It transforms the raw
document into a canonical format, saving structural information as necessary, and identi-
fies which portions to index. Syntactic analysis verifies that the document conforms to an
expected format. The other two phases, lexzical analysis and feature recognition, record the
locations of terms (words or numbers) and features (company names, countries, etc) in the
document text.

The lezical analysis module identifies and records word boundaries, recognizes stopwords,
stems the words, and indexes the words for retrieval. In theory, every word in the document
collection will be indexed. In practice, it is helpful to identify very common words, such as
operators or closed-class words, which do not carry any meaningful information for retrieval
purposes (although they may offer significant information for text extraction [10]). These
stopwords are usually not indexed, although they are retained in the text so that subsequent
textual analysis (syntactic analysis, feature recognition) may make use of them. Stopwords
can be indexed, however, if they are capitalized (but not at the start of sentences) or joined
with other words (e.g. “the The-1 system”). Stemming is performed to conflate words that
have the same root form or stem, in spite of different endings.

Feature recognition is an important step in representing text at different levels of ab-
straction. Feature recognizers search text for words that correspond to simple semantic
components, for example company names or country names. The document is indexed by
both the words (e.g. “Lotus Development Corp”) and the feature (e.g. #company). The set
of feature recognizers delivered with INQUERY is shown below.

Company name recognizer: For each mention of a company in the text, generates a

Document will describe marketing strategies carried out by U.S. companies for their
agricultural chemicals, report predictions for market share of such chemicals, or report
market statistics for the chemicals. pesticide, herbicide, fungicide, insecticide, fertilizer,

predicted sales, market share, stimulate demand, price cut, volume of sales

Figure 3: Natural language query text.

market strateg carr #usa compan #company agricultur chemic report predict market
share chemic report market statist market agrochem #fusa pesticid herbicid fungicid

insecticid fertil predict sale stimul demand price cut volum sale

Figure 4: Query text, after stopword and stop-phrase removal.

transaction for the special term #COMPANY.

U.S. city recognizer: For each mention of a U. S. city in the text, generates a transaction

for #CITY.

Country recognizer: For each mention of a country in the text, generates a transaction

for either #USA or #FOREIGNCOUNTRY.

These features extend the range of queries that can be specified. Figures 1 and 2 illustrate
the role that these features play in document indexing. This completes the usual processing
for document text.

The INQUERY text processing behavior is customized easily. We have discussed the
default behavior, but these modules can be replaced easily if some other behavior is desired.

The document indexing process also involves building the compressed inverted files that
are necessary for efficient performance with very large databases. Since positional infor-
mation is stored, the indices are typically about 40% of the size of the original document
collection, after compression.

2.2 Query Processing

Queries can be made to INQUERY by using either natural language or a structured query
language or a mixture of the two. Natural language queries are transformed incrementally
into complex structured queries in the INQUERY query language by a series of query text
processing modules [3]. Query text processing must minimally mirror the indexing text
processing. But because query texts are much shorter than document collections, it is
practical to experiment with more thorough textual analysis at the research and development
stage. This reduces the need to repeatedly index large document collections in order to make
small experimental adjustments. All query text processing is experimental and the sequence
of operations is adjusted frequently as more is learned about the effects of this processing.

Currently, INQUERY has a small number of internal query text processors [3]. These
include stop-phrase removal (e.g., “A document must discuss”), conversion of hyphenation
and sequences of capitalized words (proper names) into proximity constraints, insertion of
features, case conversion, stopword removal and stemming (Figures 3 and 4).

<DOC>

<TITLE> amnesty program </TITLE>

<TEXT>

... 1986(3), act(3), control(2), immigrant/immigration(16), law(8), reform(4), 1982(2),
1987(3), agency(3), aliens(13), duarte(2), el-salvador(2), employers(8), documenta-
tion(2), guatemala(2), file(3), government(6), fear(2), entered(3), illegal(14), natural-
ization(2), mandates(2), legalization(3), nelson(5), nicaragua(2), new-york(2), perma-
nent(4) ...

</TEXT>

</DOC>

Figure 5: A PhraseFinder pseudo-document for the concept amnesty program. Numbers in
parenthesis indicate the number of repetitions of the word preceding.

Orthographic clues such as hyphenation and capitalization, when reliable, are very good
clues to phrasal grouping. Hyphens are generally discarded during indexing so that expres-
sions such as Iran-Conitra or voice-activated are indexed as terms Iran and Conitra or voice
and actiwvated, respectively. In query processing, the corresponding procedure is to remove
the hyphen and to place a proximity constraint on the words, as shown below.

voice-activated = #1(voice activated)

Groups of capitalized words are similarly constrained, as shown below.

House of Representatives = #1 (House of Representatives)

2.3 Query Expansion

Our approach to query expansion (called PhraseFinder') is based on the assumption that
concepts found in similar lexical contexts may also be related semantically. For example,
the words “connectionist” and “neural networks” might occur in similar lexical contexts,
but rarely in the same documents. The semantic relationship captured is not necessarily
synonymy, because PhraseFinder also might relate “connectionist” and “back propagation”,
which co-occur but have different meanings.

A PhraseFinder database is an INQUERY database of pseudo-documents. Each pseudo-
document represents a concept, in this case a noun sequence, that occurs in the document
collection. The “text” of the pseudo-document consists of words that occur near the con-
cept in the document collection. For example, a PhraseFinder document for a Wall Street
Journal collection contains an amnesty program pseudo-document that is indexed by 1986,
act, control, immigrant, law (Figure 5), Although very different in implementation, the
approach is similar in spirit to the distributed representations employed by the MatchPlus
and Bellcore systems [1].

The usual document retrieval algorithms (discussed in Section 2.4) are used to retrieve
the pseudo-documents that represent concepts. Thus, INQUERY can use any structured
query to retrieve a ranked list of concepts. The most highly ranked concepts are those that

IPhraseFinder was called WordFinder until we discovered that WordFinder is the trademark name of a
commercial software product.

Query 115: Impact of the 1986 Immigra-
tion Law - will report specific consequence
consequences of the U.S.’s Immigration

Reform and Control Act of 1986.

Query 132: “Stealth” Aircraft - will pro-
vide cost, technical, and/or performance
data on U.S. “stealth” aircraft projects.

illegal immigration
illegals

undocumented aliens
amnesty program
immigration reform law
editorial-page article
naturalization service
civil fines

new immigration law
legal immigration
employer sanctions
simpson-mazzoli immigration reform
statutes

applicability

seeking amnesty

legal status

immigration act
undocumented workers
guest worker

sweeping immigration law

northrop corp.
tactical fighter
aerospace companies
flying wing design
enemy radar

stealth bomber
development program
radar-evading aircraft
bat-winged aircraft
cost overruns
expensive plane
stealth fighter
radar-evasion standards
full-scale production
palmdale
radar-evading
pentagon official
flying wing

air force officials
development costs

Figure 6: Query expansion example: Concepts discovered automatically for TIPSTER topics
115 and 132.

are most highly associated (in that collection) with the query. Figure 6 shows the top 20
concepts returned by INQUERY for two TIPSTER topics, filtered to remove concepts that
already appeared in the query.

A query is expanded by evaluating it against a PhraseFinder database, selecting the top
ranked concepts, weighting them, and adding them to the query. Our current approach is to
select the top n concepts and weight them at one half the weight of the initial query terms.

PhraseFinder is sensitive to several parameters, including the size of the collocation win-
dow, decisions about what syntactic classes to include in the window, and whether low and/or
high frequency noun groups are removed from the database. The current implementation of
PhraseFinder shows promise on the TIPSTER data, but more work is necessary to build a
PhraseFinder that would be effective on a variety of document collections [9].

2.4 Query Evaluation

The query evaluation process uses the inverted files and the query represented as an inference
net to produce a document ranking. Documents are ranked according to the belief that they
are relevant to the query.

Query evaluation involves probabilistic inference based on the operators defined in the
INQUERY query language. These operators define new concepts and how to calculate the
belief in those concepts using linguistic and statistical evidence. The belief in a document
due to the occurrence of a single term ¢ is:

log(tf + 0.5) log ()
)k

belierm(t) = dp + (1 —dp) - (dt +(1—de)-

log(maz_tf +1.0)) log(C)
where
tf = the frequency of term ¢ in the document,
maz_tf = the frequency of the most frequent term in the document,
df = the number of documents in which term ¢ occurs,
C = the number of documents in the collection,
d; = minimum term frequency component when a term occurs in a document,
dy = minimum belief component when a term occurs in a document.

This equation is a variation of the well-known tf.idf approach, with values normalized to
remain between 0 and 1, and further modified by default term frequency (d;) and default
belief (dp) values that the user may define at program invocation. d; and d default to 0.4.

The belief in a document due to a given query language operator depends on the type of
operator and the belief in its arguments. The query language operators have been discussed
in detail elsewhere [13; 4], so we merely provide several examples to illustrate their general
operation. #WSUM is a weighted sum operator, #UWn is an unordered window proximity
operator, and #PROXn is an ordered interword proximity operator.

w; - bel(Q; st Wy - bel(@Qrn)) - wy
belusum (w1 - Qry oo W - Q) = (@)Jﬁ'fw’n (@m)) (2)
belproxn(@1, @2, - - @m) = belierm(Q') (3)

belUWn(Ql; QZ; s Qm) = belterm(Q”) (4)

where

m = the number of arguments to an operator,

n = a positive integer argument to the proximity operator,

(); = aterm or a nested query net operator,

w; = a positive real number, used as a query term weight,

wy, = the maximum value that the #wsum operator can yield (normally 1.0),

@' = a compound term created temporarily during query evaluation to represent
the locations where @;, ..., @, occur in order with an inter-word
separation < m, and

Q" = a compound term created temporarily during query evaluation to represent

the locations where ()4, ..., (), occur in any order within a text window
? ? y
of size < n.
The efficiency of retrieval is comparable to commercial information retrieval systems.

2.5 Relevance Feedback

The INQUERY system is able to refine queries automatically based upon relevance feedback
by a user. The general approach is for the system to select terms from relevant documents,
add them to the query, and then reweight all of the query terms.

Early experiments [7] showed that ranking terms by the product of their frequency in
relevant documents (rdf) and their inverse document frequency (i¢df) was best on small and
medium-sized collections with relatively small numbers of relevance judgements. The number
of terms added was set empirically to 5. Term weights were determined by their frequency
in relevant documents (rtf). The INQUERY system still uses this model for interactive
relevance feedback, where the number of relevance judgements per query is generally low

(e.g. < 15).

3 Use of INQUERY in TIPSTER and TREC

In this section we describe modifications made to INQUERY for the TIPSTER and TREC
evaluations. Specifically, we focus on query processing, query evaluation, and relevance
feedback /routing.

3.1 Query Processing

TIPSTER query processing is performed as a preprocessing step rather than in the body
of the INQUERY program, to simplify research and experimentation. Preprocessing stages
are made up of sed, awk, flex (or lex) scripts and C code. What follows is a description
of the text preprocessing modules that have been used for TIPSTER queries. The order of
their use is not fixed, but it can be significant. For example, it was found useful to phrase
a hyphenated compound such as wordI-word2 as #1 (wordl word2) and to phrase a group
of capitalized words as #3 (wordl word2). We have experimented with removing names of
countries and some capitalized expressions from medium-sized phrases. For example:

#PHRASE (wordil capitalized-group word2) =

#PHRASE (wordl word2) capitalized-group.
It makes a difference whether you process hyphenated and capitalized words before or after
you generate the larger #PHRASE.

There are two main kinds of query styles: a natural language query and a keyword or key
concept query. For example, the <desc> and <narr> fields of a TIPSTER topic (Figure 7)
represent natural language queries of varying levels of abstraction. The <con>, <title>
and <fac> fields represent key concepts in the query. The main difference between the
two types of processing is that the key concept query has more controlled information. The
phrasing and emphasis are already given and do not have to be conjectured from the language
structure. It is valuable to discover how to treat both styles of query, because a good user
interface will make it easy for a user to input both styles. For example, a user may enter
a prose query and then highlight the important words and phrases in the query in some
convenient manner. These highlighted words would then be treated as key concepts in the
query processing.

Natural language query fields are tagged for syntactic category by a part-of-speech (POS)
tagger [5]. Additionally, we change operator phrases to single words in order to simplify later
processing. An example of this simplification is replacing the phrase in order to with the
infinitive particle to or replacing with respect to with the word regarding. The goal of this

<num> Number: 106

<dom> Domain: Law and Government

<title> Topic: U.S. Control of Insider Trading

<desc> Description:

Document will report proposed or enacted changes to U.S. laws and regulations designed
to prevent insider trading.

<narr> Narrative:

A relevant document will contain information on proposed or enacted changes to U.S.
laws and regulations, including state laws and stock market rules, which are aimed at
increasing penalties or closing loopholes in existing institutional discouragements to in-
sider trading. NOT relevant are reports on specific insider trading cases, such as the
prosecutions and settlements related to the Boesky - Milken - Drexel Burnham Lambert
scandal, unless the report also contains specific information on legal or regulatory change.
<con> Concept(s):

1. insider trading

2. securities law, bill, legislation, regulation, rule

3. Insider Trading Sanctions Act, Insider Trading and Securities Fraud Enforcement Act
4. Securities and Exchange Commission, SEC, Commodity Futures Trading Commission,
CFTC, National Association of Securities Dealers, NASD

<fac> Factor(s):

<nat> Nationality: U.S.

Figure 7: Query processing example: Original query.

#WSUM (1.0

'Terms from <title> field:

2.0 #UW50 (Control of Insider Trading)

2.0 #PHRASE (#USA Control) 5.0 #PHRASE (Insider Trading)
! Terms from <con> field:

2.0 #PHRASE (securities law) 2.0 bill 2.0 legislation 2.0 regulation 2.0 rule
2.0 #3 (Insider Trading Sanctions Act)

2.0 #3 (Insider Trading and Securities Fraud Enforcement Act)
2.0 #3 (Securities and Exchange Commission) 2.0 SEC

2.0 #3 (Commodity Futures Trading Commission) 2.0 CFTC

2.0 #3 (National Association of Securities Dealers) 2.0 NASD

! Terms from <desc> field:

1.0 proposed 1.0 enacted 1.0 changes 1.0 #PHRASE (#USA laws)
1.0 regulations 1.0 designed 1.0 prevent

' Terms from <fac> field:

2.0 #NOT(#FOREIGNCOUNTRY))

Figure 8: Query processing example: Automatically processed query.

replacement is to remove phrases that resemble noun phrases syntactically but that are really
syntactic operators (e.g., phrasal prepositions) with no substantive content.

When the text is tagged and the potentially irrelevant material removed, syntactically-
based noun group capture is performed. Certain kinds of noun phrase patterns are enfolded

in a #PHRASE operator (Figure 8):

1. A noun phrase that contains more than one modifying adjective and noun is enclosed

in a #PHRASE operator;

2. A head noun with no premodifiers and followed by a prepositional phrase is enclosed
in a #PHRASE operator with the head noun of the prepositional phrase;

All text in the query is searched for constraint expressions. Among these expressions
are “company”, “not U. S.” or a restriction in the nationality section of the <fac> field
to the U.S. or another nation. A restriction to U.S. nationality as the area of interest is
implemented by penalizing documents for references to foreign countries. A restriction to
other nationalities is implemented by repeating that country as a term. This asymmetry
depends on the fact that the document collection is drawn solely from U.S. sources, and
therefore the U.S., as the default area of interest, is rarely referred to unless a government
body or foreign policy implementation is under discussion (Figure 8).

There i1s some recognition of simple time expressions, such as “since 1984,” which are
expanded to the set of years that might be intended by the phrase in question.

Countries are recognized as such and are handled so that expressions like “South Africa”
are phrased as #1(south africa) even when they appear in the middle of a larger group
of capitalized words. Proper names such as country names are moved out of the scope of
#PHRASE operators, since it generally increases the effectiveness of a #PHRASE to reduce

the number of words in it. Nationality constraints can better be maintained within the scope
of the larger and more tolerant #SUM operator. For example the phrase

“import ban on South African diamonds”
becomes by stages,

#PHRASE (import ban on #SYN (#1 (south african) #1 (south africa))

diamonds)
and finally
#SUM (#SYN (#1(south african) #1(south africa))
#PHRASE (import ban on diamonds)).

Key concept query processing is different from prose query processing since the concept
separation provided by the user can presumably be trusted. Instead of using a part-of-speech
tagger, we rely on comma delimitation of concepts, and #PHRASE the words found between
each pair of delimiters (Figure 8: Terms from <con> field).

Additionally, if any constraints were found anywhere else in the query, e.g., a mention of
the word “company” or an exclusionary geographical constraint (e.g., “not USA” or “only
USA”), the query will be modified according to these constraints. For example (Figure 8),

“only USA” = #NOT (#FOREIGNCOUNTRY)
and

“not USA” = #NOT (#USA).

If the word “company” is found in a query, then a second copy of the key concepts (the
<con> field), is produced where each item in the field appears in an unordered window
operator with the feature #COMPANY. For example, if “South Africa” appears as a key
concept and “company” appears somewhere in the query), then the preprocessor produces
the query text #UW50 (#COMPANY #1 (south africa)), which matches any document that
has a company name within fifty words of “South Africa”.

Term weights depend upon the TIPSTER topic field in which the term occurred. Terms
from the Title and Concept fields get twice the weight of terms from the Description and
Narrative fields. Simple query optimization may further alter term weights by collapsing
multiple occurrences of a query term into one occurrence carrying the sum of the weights
(e.g. #PHRASE (Insider Trading) in Figure 8).

We have experimented with manual modification of processed queries in order to measure
the feasibility and effectiveness of simple user adjustments to automatic query processing out-
put. We have explored simple modifications such as adding a term from the Narrative field,
deleting a term, and constraining existing terms to appear near each other in a document
(Figure 9). This has sometimes proved to be effective in increasing the quality of retrieval
results.

3.2 Query Evaluation

The formula that determines belief in a document due to the occurrence of a term (Equation
1) scales the log of ¢tf by the log of maz_tf, producing values in the range [0,1]. One
consequence of this approach is that it favors long documents. For example, if a term
occurs 3 times in a document and the most frequent term occurs 6 times, the result is

%(%l = 0.644. However, if the term and the most frequent term both occur 10 times

10

#WSUM (1.0

2.0 #UW50 (Control of Insider Trading)

3.0 #3 (Insider Trading) 1.0 #3 (securities law)

2.0 #uwb0 (#syn (bill law regulation rules) insider trading)
1.0 #3 (Insider Trading Sanctions Act)

1.0 #3 (Insider Trading and Securities Fraud Enforcement Act)
1.0 #3 (Securities and Exchange Commission) 1.0 SEC

1.0 #3 (Commodity Futures Trading Commission) 1.0 CFTC
1.0 #3 (National Association of Securities Dealers) 1.0 NASD
2.0 #NOT (#FOREIGNCOUNTRY)

! Terms extracted manually from the Narrative:

1.0 #3 (increasing penalties) 1.0 #3 (closing loopholes)

1.0 #NOT (Boesky) 1.0 #NOT (Milken)

1.0 #NOT (#3 (Drexel Burnham Lambert)))

Figure 9: Query processing example: Manually modified query.

more often in another document, the result is 1:;)g(307-|—0.5) = 0.831.
og (60+1

A slight bias towards long documents is reasonab%e, so that the system is not unduly
influenced by the occurrence of a single term in a short document. However, this bias proved
too strong for a collection in which document lengths varied greatly.

A quick solution was to include a bias against very long documents. The method chosen
(Equation 5) reduced the default tf value for long documents.

log(tf +0.5)) log(§)
c

(5)

belierm(Q) = dﬁ(l‘d")'(dt'H U4 g (man tf + 10)) Tog(0)

200

otherwise
maz_tf

g o {1.0 if maztf < 200

The penalty H was effective, if not pleasing theoretically. It prevented INQUERY from
being biased unduly towards long documents, but still allowed them to be retrieved. Only
four of the TREC-2 systems retrieved more relevant Federal Register documents than did

INQUERY [8]. Each of those systems also retrieved at least twice as many non-relevant
Federal Register documents as did INQUERY.

3.3 Routing

Our approach to the routing portion of our TIPSTER and TREC work was based initially
upon our existing relevance feedback mechanisms. Routing profiles were constructed by a
two step process. The first step was to produce automatically a query representing each
TIPSTER topic, as described above in Section 2.2. The second step was to modify the
query, using relevance feedback. This modified query was then used as a routing profile in
the routing experiments.

Experiments with creating routing profiles showed that better results could be obtained
by replacing the idf component of the term selection algorithm with log %, where df is the

11

number of documents in which the term occurs (document frequency) and tf is the frequency
of the term in the collection. The number of terms added to the query was also increased,
from 5 to 30. This modified algorithm appears effective even with small numbers of relevance
judgements.

The addition of proximity operators further improves the average precision of routing
profiles. INQUERY considers every pair of terms within a distance of n in a relevant doc-
ument as a potential source of a proximity operator to add to a query. Experiments with
values of n ranging from 3 to 50 showed that a range of values is superior to any single value.
The resulting set of pairs, which can be quite large, is filtered to remove pairs that occur
rarely in relevant documents. The resulting pairs are ranked by the formula below.

rdf ndf
(W - w) ikl

|R| is the number of relevant documents, rdf is the number of relevant documents in which
the pair co-occur, rtf is the number of times the pair co-occur in relevant documents, ndf is
the number of non-relevant documents in which the pair co-occur, and |NR| is the number
of non-relevant documents. In our TIPSTER experiments, 10 unordered window proximity
(#UWn)? operators with n = 5, and 20 #UWn operators with n = 50, were added to
each query. These operators were intended to capture phrase-level and paragraph-level co-
occurrence.

The TIPSTER document collection differs from previously available document collec-
tions in that it contains many more documents and many more relevance judgements per
query. One might expect having more relevance judgements to improve the reliability of the
statistics obtained by analyzing relevant documents, but it is not clear that this is so. Exper-
iments showed that INQUERY’s performance improved steadily as the number of relevant
documents used was increased to about 275-300 documents. After 300 relevant documents,
performance began to degrade slowly. Further work is required to understand this behavior.

It can be argued that several hundred relevant documents are a better representation of
a user’s interest than the query that retrieved them along with irrelevant documents. We
found that better results were obtained by discarding the user’s original query and creating a
completely new routing query using the relevance feedback methods described above. Figure
10 shows a query created by this method.

In addition to the number of relevance judgements, it is unusual to have relevance judge-
ments from a diverse set of systems. In an operational setting, even over long term use, one is
likely to only have relevance judgements resulting from use with a single system. We found
that restricting INQUERY’s attention to only those relevant documents that it retrieved
reduced the number of relevance judgements needed to reach a given level of performance.
Using relevant documents retrieved by many systems (e.g. the TREC-1 systems) eventually
yielded similar performance, but required analysis of many more relevant documents.

The routing experiments show that it is feasible to automatically construct relatively
accurate profiles in an operational setting. Profiles can be created from a set of relevant
documents, or from repeated interaction with a user. Either approach will yield relatively
accurate routing profiles. The experiments also showed that, even when large numbers of

2The #UWn operator looks for co-occurrence in any order in a text window of size n.

12

#q051 =
#WSUM(1.000000 .433963 dougla 30.622835 subsid 14.105722 mcdonnel 2.856207 spain

22.664160 boe 30.620134 european 5.776313 g.m.b.h. 8.629494 340 14.828697 messer-
schmit 24.899202 industri 7.524240 jet 28.518532 aerospac 6.187950 unfair 34.157051 air-
craft 5.245394 construccion 5.942457 330 12.249618 boelkow 5.435017 west 5.136472 franc
8.268916 aerospatial 5.439325 aeronautica 6.971968 jetlin 11.957228 blohm 9.611669 ger-
man 10.252533 mbb 25.656782 consortium 16.704779 british 138.805618 airbu 10.874762
plane 2.533194 plc 2.73149 #UWS5(#company #foreigncountry) 6.74627 #UW50(330
airbu) 6.36442 #UW50(aid airbu) 6.03555 #UWS50(airbu messerschmit) 8.87131
#UWS50(aircraft subsid) 7.39724 #UWS5(british aerospac) 11.1438 #UW50(british
airbu) 3.45497 #UWb50(competitor airbu) 6.27218 #UWb50(cost airbu) 20.7534
#UWS50(european airbu) 4.8756 #UW50(g.m.b.h. airbu) 14.6286 #UWb50(german
airbu) 23.6137 #UW50(govern airbu) 4.41921 #UWS5(govern european) p3.63681
#UWS50(help airbu) 4.04575 #UW5(mcdonnel boe) 8.33751 #UW5(mcdonnel dougla
) 3.19623 #UWS5(offic u.s.) 8.1083 #UW50(partner airbu) 4.9825 #UW50(price airbu
) 6.19649 #UW50(project airbu) 10.3209 #UWb50(say airbu) 18.1742 #UW50(subsid
airbu) 15.8317 #UW50(trade airbu) 25.5183 #UW50(u.s. airbu) 5.23789 #UW5(
u.s. trade) 2.04795 #UW5(wall street) 11.3886 #UWB50(west airbu) 6.19697 #UW5(

west german))

Figure 10: Routing profile created automatically from relevant documents.

relevant documents are available for analysis, a combination of automatic query formation
and manual query construction (from previous ad hoc experiments) is superior to either
approach alone.

4 Experiments and Results

INQUERY was evaluated as part of TREC and as part of the TIPSTER program. TREC
is helpful because it evaluates systems on a broad set of relevance judgements collected by
a variety of information retrieval systems. However, the number of experiments one can
perform in TREC is limited. TIPSTER evaluated systems on a more narrow set of relevance
judgements collected by three systems, but a larger number of experiments was permitted.
In this section, we describe results of both TREC and TIPSTER evaluations.

Unless otherwise noted, the results shown are average precision over 11 recall points,

based upon a full-ranking of documents, using the TREC-2 relevance judgements. This
methodology makes the TIPSTER and TREC results directly comparable.

4.1 The TREC Experiments

Four experiments were submitted to the TREC evaluation, two “ad-hoc” and two “routing”.
In these experiments, we emphasized automatic query processing and automatic feedback
algorithms for routing. The following is a summary:

e AdHoc: topics 101-150 against TIPSTER volumes 1 and 2.

13

INQOO01: Created automatically from TIPSTER topics. Contains phrases. Details of
query processing used are described above.

INQO002: INQOO1 queries, modified manually. Modifications were restricted to elimi-
nating words and phrases, and adding paragraph-level operators around existing
words and phrases. The method was somewhat different than the method used
at last year’s TREC conference, as discussed below.

e Routing: topics 51-100 against TIPSTER volume 3.

INQO03: Created automatically from TIPSTER topics and relevance judgements
from Volumes 1 and 2. Baseline queries (from a previous TIPSTER evaluation)
were modified by reweighting and adding single-word terms. The term weighting
and selection function used was df.idf, as described in [7]. Only the top 120 rele-
vant documents found by INQUERY were used for feedback, and 30 terms were
added to each query.

INQO004: Formed by combining (using the #SUM operator) INQ003 queries and IN-
QRYP queries (used in TIPSTER 18 month evaluation). The INQRYP queries
were produced automatically and then modified manually. Modifications were re-
stricted to eliminating words and phrases, and adding paragraph-level operators
around existing words and phrases.

Table 1 gives the results for the adhoc queries. There was little difference in effectiveness
between the automatically processed queries and the semi-automatically processed queries.
This result is surprising given the large difference we observed in the previous TREC. One
reason for this difference is that query processing for the automatically processed queries
has been significantly improved, as described in the previous section. Another reason is
that this time paragraph-level concepts were formed in a much more mechanistic way and
were constrained by the language of the Description and Narrative fields. In the previous
conference, the only constraint was the vocabulary used in the queries, and the user’s “world
knowledge” was used to group concepts. The earlier approach resulted in considerably better
retrieval performance. Additional experiments using manually edited queries are discussed
in the next section.

Query Type Average Precision
5 Docs 30 Docs 100 Docs 11-Pt Avg
INQOO1 (automatic baseline): .62 .58 49 .39

INQO02 (manual, simulated NLP): .60 (—3.9%) .59 (+2.1%) .51 (+2.6%) .39 (—0.4%)
Table 1: Results for Adhoc queries

The routing results (Table 2) show that some improvement is obtained by combining the
manual queries with the queries that were automatically modified using relevance feedback
techniques. The difference in performance between the two types of queries is considerably
less than last year, however. Our own experiments have also shown that no additional gains
in performance were obtained by using more than the top 150 documents from the INQUERY

14

output. This is a significant result from a practical viewpoint, since in an operational envi-
ronment we will not want to rely on having output from other systems or need thousands of
relevance judgements before performance improves.

Query Type Average Precision
5 Docs 30 Docs 100 Docs 11-Pt Avg
INQOO03 (relevance feedback): .65 55 44 38

INQO04 (#suM (INQOO3 INQRYP)): .66 (+1.8%) :58 (+4.7%) :45 (1.4%) :39 (+3.2%)

Table 2: Results for Routing queries

4.2 The TIPSTER Experiments

In the TIPSTER 24 month evaluation, which took place soon after the TREC-2 evaluation,
we did a number of experiments that complement those done in TREC. In particular, we
evaluated paragraph-based retrieval, expansion using an automatically generated thesaurus,
and feedback techniques that use phrases. In this section, we report some of the most inter-
esting results. The precision figures given here are calculated using the TREC-2 relevance
judgements, rather than the TIPSTER judgements.

Table 3 shows the results of the ad-hoc runs. INQO09 is the baseline result obtained
using automatic query processing on the TIPSTER topics, excluding the Narrative field.?
INQO10 and INQO41 are the results obtained by manually modifying the queries produced
for INQO09. In the case of INQO10, the queries were modified by adding natural language
structures from the Narrative that a sophisticated parser with limited lexical semantics
might reasonably be expected to extract. For INQO041, in making modifications, the user
was allowed to use world knowledge when deciding what to delete, reweight, structure or
extract from the Narrative. This latter approach was effective in the first TIPSTER and
TREC evaluations.

These results show that manually modified queries can achieve significantly better preci-
sion at low recall levels. For example, at the 5 document cutoff level, the average precision
for INQO41 is 10.3% higher than INQ009. The overall average is similar, however. This is a
much smaller difference than was seen in the first TREC and TIPSTER evaluations of the
INQUERY system. The result may be due to the fact that the automatic query processing
has improved considerably, or it may be due to the difficulty of the topics in the third set.

3The National Institute of Standards and Technology required that the TREC and TIPSTER query sets
have different identifiers, even if the query sets were identical. The INQO09 and INQOO1 query sets differ on
one query, due to a minor error being fixed between the TREC-2 and TIPSTER, 24 month evaluations. The
INQO10 and INQOO2 query sets are identical.

4The precision figures shown for INQ011 and INQO012 were supplied by NIST, as part of the TIPSTER
evaluation. They are based on TIPSTER relevance judgements. NIST rated the average precision (non-
interpolated) over all relevant documents of INQO11 as 27.9% worse than INQO09, and INQO012 as 4.3%
better than INQO09. These figures, while interesting, are not directly comparable to the 11 point average
precision shown for other experiments. Our approach to paragraphs had changed sufficiently by the time
TREC relevance judgements became available that we could not easily generate full recall/precision tables

for INQO11 and INQO12.

15

Query Type Average Precision

5 Docs 30 Docs 100 Docs 11-Pt Avg
INQO09 (baseline): .62 .58 .49 .39
INQO10 (manual, simulated NLP): .60 (—3.9%) 59 (+2.1%) 51 (4+2.6%) 39 (—0.4%)
INQO15 (PhraseFinder 1): 60 (—3.2%) 59 (+1.9%) 50 (40.8%) 39 (+1.2%)
INQO16 (PhraseFinder 2): .60 (—3.2%) .59 (+1.9%) 50 (40.8%) 39 (+0.9%)
INQO41 (manual): .68 (+10.3%) .60 (+4.5%) 50 (+0.4%) .39 (+0.8%)
INQO44 (#suM (INQOO9 INQO41)): .65 (+4.5%) .61 (+6.4%) .51 (+3.5%) .41 (4+6.6%)
INQO11 (Paragraph): 45 (—27.7%) .45 (—21.5%) .41 (—17.5%) N/A*
INQO12 (Doc+Par/2): 64 (4+2.6%) 57 (—0.2%) 51 (+2.5%) N/A*

Table 3: Ad-hoc results.

The results for INQO010 also suggest that using NLP techniques to analyze the Narrative
section of a topic may not improve the query.

The INQO15 and INQO16 results were for an early version of the PhraseFinder query ex-
pansion system. Although these results show no significant differences, better PhraseFinder
results are presented below.

The automatically processed queries and the manually modified queries are two different
representations of the information need. Experience has shown that combining different
sources of evidence can yield superior results. One experiment combined these two versions
of the information need using the INQUERY framework. The result of this combination
(INQO044) was slightly worse than INQO041 at the 5 document cutoff level, but overall was
better than either the automatic or manual queries on their own (Table 3).

The INQO11 experiment investigated using the query to rank document paragraphs and
then assigning each document the score of its best matching paragraph. Paragraph bound-
aries are not marked in this collection, so they were inferred from indentation and other
orthographic clues. The INQ012 experiment combined the results of document-level repre-
sentations with paragraph-level representations, using the INQUERY #WSUM operator. An
improvement in performance was obtained when the paragraph-level results were weighted
at 1/2 the importance of the document-level results. The performance of the paragraph-level
search on its own was poor, because paragraph boundaries in this collection often do not
indicate content shift in documents.

Table 4 shows the results of the routing experiments. INQ026 is the result of using the
automatically processed version of the original queries with no relevance feedback. INQ020
is the result of using simple techniques for reweighting terms and adding thirty new terms
based on feedback from relevant documents in the earlier databases. It can be seen that
these feedback techniques result in significant improvements.

INQO022 shows the result of using the manually modified version of the query (no relevance
feedback), and INQO21 gives the combination of the manual queries and the queries produced
using simple relevance feedback. Once again the combination results in an improvement,
although it is small for this experiment due to the relatively poor performance of the manual
queries.

16

Query Type Average Precision

5 Docs 30 Docs 100 Docs 11-Pt Avg

INQO026 (automatic baseline): .59 .51 .39 .34

INQO20 (relevance feedback): 66 (+12.9%) .57 (+11.0%) .45 (+15.0%) .39 (
INQO022 (INQO020 w/user:) 63 (+7.5%) .53 (+4.3%) .41 (+4.1%) .34 (
INQO21 (#sSUM(INQO20 INQ022)): .70 (+18.4%) .58 (+12.9%) .46 (+16.0%) .40 (4+19.0%)
INQO023 (INQ020 w/prox): 67 (+13.6%) .60 (+16.8%) .47 (+19.8%) .41 (
INQO24 (INQO20 w/o INQO26): .68 (+15.7%) .59 (+16.1%) .46 (+16.5%) .42 (

Table 4: Routing results.

INQO023 and INQO024 show the result of using more complex relevance feedback techniques
in which proximity structures (paragraph and phrase level) were extracted from relevant
documents as well as simple terms. Twenty paragraph-level proximities, ten phrase-level
proximities and thirty terms were added. A phrase-level concept is a #UW5 two-word
pattern that occurs frequently in the relevant documents, and a paragraph-level concept is
a #UW50 two-word pattern. Both phrase-level and paragraph-level proximities produced
significant improvements. The best result (INQ024) was from a run where the original query
was ignored and all terms came from relevant documents.

These results show that there is little difference between using the original query or just
the relevant documents. This is probably due to the large number of relevance judgements
available in this routing experiment. In a relevance feedback situation, where there are far
fewer relevant documents, the original query is very important. It is clear that the addition
of phrase and paragraph-level structure to the routing query has improved performance. The
average precision for INQ023 is 4.8% higher than INQ020. Combining these new runs with
manually modified routing queries produced further improvements.

Table 5 shows additional results using PhraseFinder. TipC and TipT were the results
of using topics 51-100 expanded using the best 5 unique concepts, and an average of 6

duplicate concepts, retrieved by PhraseFinder.® These queries were run against the third

TIPSTER disk. For TipC, the query used to search PhraseFinder was the Concepts field
from each topic, whereas for TipT, it was the Topic field. The results show substantial
improvements. They were all obtained using a training set of 250,000 documents from WSJ,
AP and Ziff to build the PhraseFinder database. The results in S3T, T3C, T5C and T10C
were obtained using a smaller 50,000 document collection as the basis for PhraseFinder. The
results, although not as good as with the larger database, are still significant. The T3C,
T5C and T10C experiments show the effects of changing the size of the collocation window
used to index noun groups.

SIf a PhraseFinder concept was already in the query, it is called a duplicate, otherwise it is unique. All
concepts ranked (by PhraseFinder) above the fifth unique concept were added to the query.

17

+16.7%)
+2.7%)

+22.3%)
+24.2%)

Query Type

Average Precision

5 Docs 30 Docs 100 Docs 11-Pt Avg
INQO026 (automatic baseline): .59 .51 .39 .34
TipC (Concept fld, 250K db, 5 win): .64 (+8.2%) .54 (+4.9%) .42 (+5.3%) .36 (+6.5%)
TipT (Topic fid, 250K db, 5 win): .58 (—0.7%) .53 (+3.3%) .40 (+2.3%) .34 (+2.4%)
S3T (Topic fld, 50K db, 3 win): 58 (—2.0%) .53 (+3.5%) .40 (+1.8%) .34 (+2.1%)
T3C (Concept fld, 50K db, 3 win): 61 (+4.1%) .53 (+3.9%) .41 (+4.3%) .35 (+4.7%)
T5C (Concept fld, 50K db, 5 win): 60 (+2.0%) .52 (+1.4%) .41 (+3.1%) .35 (+4.4%)
T10C (Concept fld, 50K db, 10 win): .62 (+4.8%) .53 (+3.9%) .42 (+6.4%) .36 (+6.2%)

Table 5: PhraseFinder results. INQO026 is the baseline result. TipC through T10C show the

effects on INQO26 of query expansion under varying conditions.

5 Efficiency Issues

INQUERY was developed to run under the UNIX operating system, on workstations man-
ufactured by Digital Equipment Corporation, and SUN Microsystems. It has been ported
to the MS-DOS operating system (with and without the Windows graphical user interface)
on personal computers containing the Intel 486 microprocessor. These hardware platforms
include 16, 32 and 64 bit architectures.

The amount of memory and disk space required for depends on the size of the document
collection. For a collection of N bytes, INQUERY needs about 5N bytes of disk space to
build its document database. Once the database is built, INQUERY needs about 1.5N bytes
of disk space to store the document database (N bytes for the raw text, 0.5 - N bytes for
the indices). Memory requirements are more difficult to predict, because they depend upon
the characteristics of the document collection, and the complexity of the queries. For UNIX
workstations, a very rough estimate is that INQUERY requires about iv—s bytes of virtual
memory for TIPSTER queries. A reasonable amount of physical memory is %.
2 gigabyte collection would need a minimum of about 135 MB of virtual memory and 32 MB
of physical memory. For PCs running DOS, about % bytes of physical memory is needed.

Although INQUERY'’s appetite for memory and disk space is not unreasonable when

compared with comparable information retrieval systems, it is being reduced. Experiments

Therefore a

have been conducted with an in-memory approach to document indexing that significantly
reduces the disk space needed during index creation. The advantages of this approach are
its simplicity for the user, and a reduction of the peak disk space usage from about 5N bytes
to 1.9N bytes. The disadvantage is that permanent disk usage is increased from 1.5N bytes
to 1.9N bytes. Experiments are also being conducted with a different approach to document
retrieval that will allow a user or system administrator to control the amount of memory
consumed by INQUERY, essentially trading memory for response time.

The INQUERY system builds document collections automatically at about 40-50
megabytes per CPU hour on a SUN SPARCserver 690 UNIX system with 128 MB of physical
memory. Speed varies with the size of the document collection, because transaction sorting
takes time proportional to nlogn.

18

On the same UNIX system, document retrieval takes an average of about 1 CPU second
per query term on a 1 gigabyte document collection. The time varies widely, depending
upon the frequency of the term in the collection and the type of query language operators
used. Proximity and synonym operators require considerably more time and space than do

operators like #WSUM, #AND and #NOT that ignore locations of terms in a document.

6 Conclusions

The TIPSTER and TREC evaluations have demonstrated that the INQUERY approach to
retrieval and routing is both effective and efficient. We have shown that the probabilistic
framework is portable, trainable and improvable. The extensibility and robustness of this
approach are further demonstrated in technology transfer efforts involving INQUERY. Apart
from these general accomplishments, however, we can be more specific about the lessons that
have been learned in the major areas of work.

The most important lesson was that sophisticated query processing produces significant
improvements. We developed a variety of query processing techniques that together improved
the overall system effectiveness considerably. In general, automatically processed queries
were competitive with hand-crafted queries.

We also learned that highly structured routing profiles created automatically from rele-
vance judgements consistently outperform profiles created semi-automatically and manually.
One of the most effective techniques is the automatic inclusion of proximity pairs in the
profile.

The shift from indexing a static set of phrases during document indexing to dynamic
extraction of phrases during query processing revealed the difficulty of finding evidence for
phrases in documents. Straightforward methods appear effective for recognizing phrases in
queries, but it remains unclear how best to recognize when a phrase matches a document.

The TIPSTER topics are much longer than typical IR queries. The mutual disambigua-
tion produced by the presence of so many terms makes word sense disambiguation a marginal
technique. For the same reason, simple query expansion techniques, such as using a general
thesaurus, were not effective in this environment. However, PhraseFinder demonstrates that
more sophisticated automatic query expansion can still yield significant improvements.

The idea of combining multiple sources of evidence turned out to be central to our work.
For example, we showed that paragraph-level matching can produce significant improvements
in effectiveness when combined (in the INQUERY framework) with document-level matching.
We also showed that manually-modified queries can improve results when combined with
automatically processed queries.

Feature extraction/recognition appears to be most effective in narrow domains. Our
experiments with including extraction in the indexing and retrieval process showed only
small effectiveness improvements in TIPSTER. Our experience with other collections have
shown more promise.

19

7 Future Work

Work with the TIPSTER/TREC collection raises as many questions as it answers. In this
section, we focus on four of the most interesting areas for future research with INQUERY:
the Narrative field, estimation, PhraseFinder, and passage retrieval.

The Narrative field of the TIPSTER topic describes precisely the criteria that make a
document relevant. It would seem to make sense to incorporate those criteria into the query.
However, we found it safer to ignore the Narrative than to use it.

The Narrative is difficult for at least two reasons. First, it describes subjects that are
required, desirable, and prohibited in relevant documents. Distinguishing among these cate-
gories during query processing can be difficult. Second, the Narrative describes the subjects
at a different level of abstraction than is used in documents. The IR system must figure out
that “changes to U.S. laws” in the Narrative matches “amendment passed” in a document
text.

Further improvements in precision and recall are possible if the estimation formulae
(e.g. Equation 1) and stopword list are tuned for TIPSTER/TREC. We avoid tuning for a
collection by requiring that any change maintain or improve results on several test collections.
However, the fact that tuning is effective suggests that further improvements to INQUERY
are possible.

One priority is removal of max_tf, in order to produce more stable behavior with different
stopword lists and stemming algorithms. A second priority is removal of the penalty H
applied to long documents (Equation 5). This penalty has been effective, but is not justified
theoretically. It suggests that the current treatment of ¢f needs improvement.

PhraseFinder is promising, but much remains to be learned. It is not clear how large
a sample is necessary, whether to filter out frequent and/or infrequent associations, or how
best to incorporate concepts for query expansion. Building a PhraseFinder database also
requires more CPU cycles and disk space than is desirable. (Accessing a PhraseFinder
database requires about the same amount of resources as document retrieval.)

Finally, our disappointing results with paragraph retrieval suggest that evidence from
paragraphs is only marginally useful in document retrieval. However, we have recently
experienced more success with overlapping fixed-length passages of 200-300 words [2]. The
apparent explanations are that heuristics for identifying paragraphs are imperfect, and that
authors are not consistent in their use of paragraphs.

Acknowledgements

We thank Bob Krovetz, David Haines, Stephen Harding, Yufeng Jing, Michelle LaMar,
Dan Nachbar and Margie Connell for their assistance in the work described here. This
research was partially supported by the NSF Center for Intelligent Information Retrieval at
the University of Massachusetts, Amherst.

20

References

1]

2]

(6]

7]

8]

[9]

[10]

[11]

[12]

[13]

W. R. Caid, S. T. Dumais, and S. I. Gallant. Learned vector-space models for document
retrieval. Information Processing and Management, (this issue).

J. P. Callan. Passage-level evidence in document retrieval. In Proceedings of the Seven-
teenth Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 302-310, Dublin, Ireland, 1994. Association for Computing
Machinery.

J. P. Callan and W. B. Croft. An evaluation of query processing strategies using the
TIPSTER collection. In R. Korfhage, E. Rasmussen, and P. Willett, editors, Proceed-
ings of the Sizteenth Annual International ACM SIGIR Conference on Research and
Development wn Information Retrieval, pages 347-356, Pittsburgh, PA, June 1993. As-
sociation for Computing Machinery.

J. P. Callan, W. B. Croft, and S. M. Harding. The INQUERY retrieval system. In
Proceedings of the Third International Conference on Database and FEzpert Systems
Applications, pages 78-83, Valencia, Spain, 1992. Springer-Verlag.

Kenneth Church. A stochastic parts program and noun phrase parser for unrestricted
text. In Proceedings of the 2nd Conference on Applied Natural Language Processing,
pages 136-143, 1988.

W. Bruce Croft and Howard R. Turtle. Text retrieval and inference. In P. Jacobs,
editor, Text-Based Intelligent Systems, pages 127-156. Lawrence Erlbaum, 1992.

David Haines and W. B. Croft. Relevance feedback and inference networks. In R. Ko-
rfhage, E. Rasmussen, and P. Willett, editors, Proceedings of the Sirteenth Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 2-11, Pittsburgh, PA, June 1993. Association for Computing Machin-
ery.

D. Harman, editor. The Second Text REtrieval Conference (TREC2). National Institute
of Standards and Technology Special Publication 500-215, Gaithersburg, MD, 1994.

Y. Jing and W. B. Croft. An association thesaurus for information retrieval. In RITAO
4 Conference Proceedings, New York, October 1994.

B. Sundheim, editor. Proceedings of the Third Message Understanding Fvaluation and
Conference. Morgan Kaufmann, Los Altos, CA, 1991.

H. R. Turtle and W. B. Croft. Evaluation of an inference network-based retrieval model.
ACM Transactions on Information Systems, 9(3):187-222, 1991.

H. R. Turtle and W. B. Croft. A comparison of text retrieval models. Computer Journal,
1992.

Howard R. Turtle and W. Bruce Croft. Efficient probabilistic inference for text retrieval.
In RIAO 8 Conference Proceedings, pages 644-661, Barcelona, Spain, April 1991.

21

