
Local Text Reuse Detection

Jangwon Seo
jangwon@cs.umass.edu

W. Bruce Croft
croft@cs.umass.edu

Center for Intelligent Information Retrieval
Department of Computer Science

University of Massachusetts, Amherst
Amherst, MA 01003

ABSTRACT

Text reuse occurs in many different types of documents and
for many different reasons. One form of reuse, duplicate or
near-duplicate documents, has been a focus of researchers
because of its importance in Web search. Local text reuse
occurs when sentences, facts or passages, rather than whole
documents, are reused and modified. Detecting this type of
reuse can be the basis of new tools for text analysis. In this
paper, we introduce a new approach to detecting local text
reuse and compare it to other approaches. This comparison
involves a study of the amount and type of reuse that oc-
curs in real documents, including TREC newswire and blog
collections.

Categories and Subject Descriptors

H.3.1 [Content Analysis and Indexing]: Indexing meth-
ods

General Terms

Algorithms, Measurement, Experimentation

Keywords

Text reuse, fingerprinting, information flow

1. INTRODUCTION
Text reuse and duplication can occur for many reasons.

Web collections, for example, contain many duplicate or
near-duplicate versions of documents because the same in-
formation is stored in many different locations. Local text
reuse, on the other hand, occurs when people borrow or pla-
giarize sentences, facts, or passages from various sources.
The text that is reused may be modified and may be only a
small part of the document that is being created.

Near-duplicate document detection has been a major fo-
cus of researchers because of the need for these techniques in
Web search engines. These search engines handle enormous
collections with a great number of duplicate documents. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’08, July 20–24, 2008, Singapore.
Copyright 2008 ACM 978-1-60558-164-4/08/07 ...$5.00.

duplicate documents make the system less efficient in that
they consume considerable system resources. Further, users
typically do not want to see redundant documents in search
results. Many efficient and effective algorithms for near-
duplicate document detection have been described in the
literature [1, 4, 5, 6].

The obvious application involving local text reuse is pla-
giarism detection, but being able to detect local reuse would
be a powerful new tool for other possible applications involv-
ing text analysis. For example, Metzler et al. [15] discussed
tracking information flow, which is the history of statements
and “facts” that are found in a text database such as news.
This application was motivated by intelligence analysis, but
could potentially be used by anyone who is interested in ver-
ifying the sources and “provenance” of information they are
reading on the Web or in blogs.

Local text reuse detection requires different algorithms
than have been developed for near-duplicate document de-
tection. The reason for this is that, in the case of local
text reuse, only a small part (or parts) of a document may
have been taken from other sources. For example, state-
of-art near-duplicate detection algorithms like the locality
sensitive hash [5] assume a transitive relation between doc-
uments. That is, if a document A is a near-duplicate of
document B, which is a near-duplicate of document C, then
document A should be a near-duplicate of document C. A
text reuse relationship based on parts of documents, how-
ever, violates this assumption, as shown in Figure 1.

In this paper, we focus on algorithms for detecting local
text reuse based on parts of documents. In Section 2, we dis-
cuss the related literature. In Section 3, we expand on the
idea of local text reuse by introducing categories of reuse.
These categories are the basis of our experimental evalua-
tion. In Section 4, we introduce a novel algorithm for local
text reuse detection called DCT fingerprinting. This algo-
rithm is evaluated for efficiency and effectiveness in Section
5. In Section 6, the local reuse detection algorithm is used
to measure the amount and type of text reuse that occurs
in TREC news and blog collections.

2. RELATED WORK
There have been broadly two approaches to text reuse

detection. One approach is using document fingerprints
through hashing subsequences of words in documents. This
approach is known to work well for copy detection. Shiv-
akumar and Garcia-Molina [19, 20] and Broder [3] intro-
duced efficient frameworks. Since handling many finger-
prints is too expensive, various selection algorithms for fin-

T2

T1

Document A

T3

T1

Document B

T3

T4

Document C

0∆ =

1∆ = 0∆ =

Figure 1: Text reuse by partial text of documents
(local text reuse), where ∆ is an indicator function
that is 1 if two documents have no text reuse rela-
tionship. A document A and a document B have a
text reuse relationship by text T1. Document B and
a document C have a relationship by text T3. But,
Document A and C have no such relationship.

gerprints were proposed by Manber [14], Heintze [9], Brin
et al. [2] and Schleimer [18]. Broder et al. [4] suggested
an efficient near-duplicate algorithm generating new finger-
prints (super-shingles) by hashing sequences of fingerprints
again. Charikar [5] introduced a hashing algorithm based on
random projections of words in documents. Henzinger [10]
empirically compared a variant of Broder et al’s algorithm
and Charikar’s algorithm on a large scale Web collection.
Chowdhury et al. [6] and Bernstein and Zobel [1] proposed
filtration algorithms for fast near duplicate detection.

Another approach is computing similarities between doc-
uments in the Information Retrieval sense. Shivakumar and
Garcia-Molina [19] and Hoad and Zobel [11] suggested simi-
larity measures based on relative frequency of words between
documents. Metzler et al. [15] compared similarity measures
using an evaluation corpus that was developed for studies of
local text reuse.

3. TEXT REUSE DETECTION

3.1 Fingerprints
Most algorithms for near-duplicate detection use a chunk

or a shingle as a text unit [2, 4, 9, 14, 18]. A chunk or a
shingle generally represents a substring or a subsequence of
words. Since these chunks are based on small pieces of text,
they may be expected to also work well for our local text
reuse detection task. Therefore, the techniques mentioned
later use this approach. The drawback with this approach is
that some forms of text modification will not be captured.

In order to efficiently perform text reuse detection, the
string form of a chunk must be converted into a numeric
form. Generally, the conversion is performed by hashing
algorithms such as MD5 [17] or Rabin fingerprinting [16].
For convenience, we refer to the hash value as the chunk
instead of the string. We use a subset of a set of chunks
generated in a document to represent the document for text
reuse detection. Chunk values in the subset are referred to
as fingerprints and the process for obtaining them is referred
to as fingerprinting.

3.2 Describing the Amount of Shared Text
A text reuse relationship is a pairwise relationship. Given

a pair of documents, we need to estimate the amount of
text shared between the two documents. The amount of

Table 1: Definitions of text containment terms
Term Most Considerable Partial
Range C(A,B) ≥ 0.8 C(A, B) ≥ 0.5 C(A,B) ≥ 0.1

Table 2: Text Reuse Categories
Term Relationship

C1 Most-Most
C2 Most-Considerable
C3 Most-Partial
C4 Considerable-Considerable
C5 Considerable-Partial
C6 Partial-Partial

text of document A that is shared with document B can be
represented as a ratio of the number of shared fingerprints
to the number of fingerprints of document A. The ratio,
containment of A in B [3] is estimated as follows:

C(A, B) =
|FA ∩ FB |

|FA|
(1)

where FA and FB are sets of fingerprints of document A and
B, respectively.

Note that the shared fingerprint ratio is a non-symmetric
metric, i.e. C(A, B) 6= C(B, A). Generally, symmetric met-
rics like resemblance [3] have been used for near-duplicate
detection because it has to be determined whether the es-
timated value is greater than a threshold in order to easily
check if the document pair has a near-duplicate relationship.
Since our goal is to understand more general forms of text
reuse rather than simply judging near-duplicate documents,
we use the non-symmetric metric that contains more infor-
mation.

We divide containment values into three ranges as shown
in Table 1. That is, if greater than 80%, 50% or 10% of the
total fingerprints of document A are shared with a document
B, then we say that most, considerable or partial text of
document A is reused by document B. These thresholds are
not fixed but may be changed based on the properties of
collections or goals of the text reuse application. Here, we set
the values based on reviewing results for various collections.

3.3 Text Reuse Category
General text reuse occurs in various levels. Most of the

text of a document might be shared with other documents,
or only several words of a document might be shared with
other documents. As a basis for evaluating local detection
techniques and investigating the frequency of text reuse, we
classify text reuse relationships into six categories as shown
in Table 2. For example, if partial text of document A is
shared with document B and the shared text is most text of
document B, then document A and document B have a C3
type relationship.

Note that in a broad sense, C1, C2 and C4 correspond
to near-duplicate cases, whereas C3, C5 and C6 correspond
to local text reuse. We now briefly describe each category
or type. An analysis of real collections based on these cate-
gories is presented in Section 6.

• C1 (Most-Most): This is a typical near-duplicate case,
where two documents are almost identical.

• C2 (Most-Considerable): Generally, in this case, a short
passage is added to text of another document. A typ-
ical example can be observed in blogs, i.e. copying

the entire text of a news article and appending a short
comment about the article.

• C3 (Most-Partial): In this case, a whole document is
used as a partial text of a new document. C3 types are
typically shown in cases where a news article is com-
posed of several small news articles or where a docu-
ment quotes interviews from other short news articles.

• C4 (Considerable-Considerable): This is a case where
a new document is composed of large parts of other
documents.

• C5 (Considerable-Partial): This is generally similar to
C4 except for the amount of the shared text.

• C6 (Partial-Partial): This generally happens with boil-
erplate text or common phrases.

4. FINGERPRINTING TECHNIQUES FOR

TEXT REUSE DETECTION
The fingerprints of a document are numerical representa-

tions for text reuse detection and, for local reuse detection,
should represent as much as possible of the content of the
document. For example, if the fingerprints of documents are
hash values of the first three sentences of each document,
then they do not capture enough of the content. Documents
can be very different even if the fingerprints of the docu-
ments are identical.

For efficient text reuse detection, an inverted index is gen-
erally built with fingerprints extracted from documents. To
find all documents which have text reuse relationships with a
document A, we first read all inverted lists of the fingerprints
of document A, then merge the lists, and finally, find text
reuse relationships according to the rules in Section 3. The
first step is the most critical in time complexity because it
requires significant I/O access, whereas the other steps can
be performed in main memory. Since the maximum length
of the inverted list is the number of documents in the collec-
tion, this can be naively thought as an O(Mn) algorithm,
where M and n are the number of the fingerprints of doc-
ument A and the number of documents in the collection,
respectively.

On real collections, however, the length of the inverted list
is at most the occurrence count of the most frequent finger-
prints in the collection. Moreover, we can restrict the upper
bound of the length by setting very common fingerprints to
stop-fingerprints in the same way as stop-words in Informa-
tion Retrieval. Therefore, the practical time complexity is
O(Ml), where l is the restricted length of the inverted list
such that l ≪ n.

When we try to discover all text reuse relationships in the
collection, the above process is repeated n times, where n
is the number of documents in the collection. This is an
O(nml) algorithm, where m is the average number of the
fingerprints of a document.

Since the length of the inverted list is not only invariant
regardless of the fingerprinting methods but also generally
small, the average number of the fingerprints m is more crit-
ical than the length of the list l for efficiency.

In sum, good fingerprinting techniques for text reuse de-
tection should satisfy the following properties.

• For accuracy, a fingerprinting technique should gener-
ate fingerprints that accurately represent documents.

• For efficiency, a fingerprinting technique should gener-
ate the smallest number of fingerprints possible.

Considering accuracy and efficiency, we introduce several
fingerprinting methods. There are broadly two kinds of
fingerprinting techniques for text reuse detection: overlap
methods and non-overlap methods. We first review the over-
lap methods and introduce the non-overlap methods later.1

4.1 Overlap Methods
Overlap methods use a sliding window. Basically, the win-

dow is shifted by a word, and a word sequence in the window
or its hash value is handled as a chunk. If the size of the
window is k, i.e. the ith window contains the ith word to
the i + k − 1th word in the document, then the ith chunk in
document D is computed as follows:

C(D, i) = h(t(D, i), t(D, i + 1), · · · , t(D, i + k − 1)) (2)

where h and t(D, i) are the hash function and the ith term
in document D.

As you see, k − 1 of the words that appeared in the pre-
vious window appear in the current window again. That
is, methods based on the sliding window are referred to as
overlap methods in that the adjacent windows overlap each
other.

Generally, overlap methods generate many chunks, but
show good performances. However, since processing a large
number of chunks as fingerprints can be too expensive, chunk
selection techniques have been introduced [9, 14, 18].

4.1.1 k-gram

k-gram is the simplest technique of the overlap methods.
It uses all the chunks generated from each sliding window as
fingerprints. Thus, the number of the fingerprints of docu-
ment D is computed as follows:

Mk-gram(D) = L(D) − k + 1 (3)

where L(D) is the term count of document D.
As k-gram uses all chunks, it generally shows good per-

formance. However, it might be infeasible in big collections
because of too many fingerprints.

4.1.2 0 mod p

Instead of using all the chunks generated by the sliding
window, 0 mod p tries to select some of them as fingerprints
[14]. A random selection of chunks would reduce the number
but we cannot predict which chunks would be selected. If
different chunks are selected each time, then two documents
may be determined to be different even when they are iden-
tical. Therefore, all chunk selection methods have to satisfy
the property that the same chunks should be selected for
identical documents.

0 mod p selects only chunks such that C(D, i) mod p ≡ 0.
When two documents are identical, chunks in the documents
are the same. Assuming that the chunk values are uniformly
distributed, the expected number of selected chunks, i.e. the
number of fingerprints of document D, is given by:

M0 mod p = Mk-gram(D)/p (4)

That is, 0 mod p can reduce the number of the fingerprints
by a factor p.

This method may however not represent the whole doc-
ument accurately. For example, although the upper halves

1Although we only describe cases of using subsequences of
words for fingerprinting in this paper, all methods intro-
duced here can be used for fingerprinting based on sub-
strings.

of two documents are identical, the lower halves might be
different. In the worst case, if chunks in either the upper
halves or the lower halves are selected, then the detection
algorithms would falsely determine the reuse relationship.

4.1.3 Winnowing

Winnowing is another selection method based on k-gram
[18]. Winnowing adopts another fixed size window, i.e. a
winnowing window over the sequence of chunks generated
by the original window, and it selects a chunk whose value
is the minimum in each winnowing window. If there is more
than one minimum value in the winnowing window, then the
rightmost minimum value in the window is selected.

Schleimer et al. [18] showed that winnowing performs
better than 0 mod p in practice. Further, they showed that
the expected number of fingerprints has a lower bound as
follows:

Mwinnowing(D) =
2

w + 1
Mk-gram(D) (5)

where w is the size of winnowing window.

4.2 Non-overlap Methods
A main idea of non-overlap methods is splitting text into

a few meaningful text segments such as phrases or sentences
instead of generating many subsequences of words. Thus,
sliding windows are not used, and accordingly, there is no
overlap between chunks. We refer to a process of splitting
text segments as breaking. A word position where a break
occurs is referred to as a breakpoint.

A chunk value of non-overlap method is computed as fol-
lows:

C(D, i + 1) = h(t(D, b(i) + 1), · · · , t(D, b(i + 1))) (6)

where b(i) is a breakpoint for the ith text segment.
A simple breaking method is using punctuation characters

like ‘.,!?’. In case of well formatted text, punctuation char-
acters play an significant role in forming sentence bound-
aries. However, in general Web text including blogs, there
is substantial noise and text segments are often defined by
HTML tags rather than by punctuation. In such environ-
ments, where text reuse detection algorithms are often used,
breaking by punctuation does not work well. Therefore, the
non-overlap methods to be introduced here are based on
mathematical properties of text instead of punctuation.

4.2.1 Hash-breaking

Hash-breaking [2] is a non-overlap version of 0 mod p. A
hash value h(w) for each word w is computed, and hash
values such that h(w) mod p ≡ 0 are selected as breakpoints
for text segments. That is, a sequence of words from the next
word of the previous breakpoint to the current breakpoint
is considered as a meaningful text segment. We can get a
chunk by applying Equation (6) to the text segment. Since
the number of chunks generated in a document is relatively
small, any selection method does not need to be used and
all the chunks are used as fingerprints of the document.

The expected number of fingerprints is given by L(D)/p.
That is, the average length of text segments is p. In bad
cases, the length of text segments might be much shorter
than we expected. The worst case is that the text segment
includes only a very common word such as ‘a’ or ‘the’. Then,
the fingerprint is noise and hurts the text reuse performance.
To address this problem, we suggest a simple revision of the
original hash-breaking algorithm. When we set a p value,

we expect the length of text segment to be p. Thus, we can
ignore text segments whose lengths are shorter than p. We
can reduce noisy fingerprints through this approach.

A weak point that still remains is that hash-breaking is
too sensitive to small modifications of text segments. In case
of overlap methods, even if there is a small change in a sen-
tence, then adjacent chunks without the change as well as
chunks with the change are generated by window overlap-
ping. Accordingly, the effect of the change can be minimized.
On the other hand, since there is no overlap between chunks
split by hash-breaking and the number of chunks is small,
the change might be overestimated.

4.2.2 DCT fingerprinting

We propose a robust method called DCT fingerprinting
to address the sensitivity problem of hash-breaking. The
Discrete Cosine Transform (DCT) is a real valued version of
Fast Fourier Transform (FFT) and transforms time domain
signals into coefficients of frequency component. By exploit-
ing a characteristic that high frequency components are gen-
erally less important than low frequency components, DCT
is widely used for data compression like JPEG or MPEG.
DCT is formulated as follows:

Xk =
N−1
∑

n=0

xn cos

[

π

N

(

n +
1

2

)

k

]

(7)

k = 0, 1, · · · , N − 1 (8)

where xn and Xk are the nth value in the time domain signal
sequence and a coefficient of the kth frequency component,
respectively. Note that the length of the time domain sig-
nal sequence N is the same as the number of the frequency
domain components.

A main idea of DCT fingerprinting is that a sequence of
hash values of words can be considered as a discrete time
domain signal sequence. That is, we can transform the hash
value sequence into the coefficients of frequency components
by using DCT.

The process of DCT fingerprinting is composed of seven
steps.

i. Get a text segment by using revised hash-breaking
with a parameter p.

ii. Compute hash values for words in the text segment,
x0, x1, · · · , xN−1, where N is a length of the text seg-
ment.

iii. Perform a vertical translation of the hash values so
that the median of the hash values is located at 0.

iv. Normalize the hash values by the maximum value.
v. Perform DCT with the normalized hash values.
vi. Quantize each coefficient to be fitted in a small number

of bits, e.g., 2, 3 or 4 bits.
vii. Form a fingerprint with the quantized coefficients Qk’s

as shown in Figure 2. If N is so big that all Qk’s can-
not fit the format, use only lower frequency coefficients.
One approach is to use only the p lower frequency co-
efficients if the length of the text segment N is greater
than the hash-breaking parameter p.

DCT fingerprinting is expected to be more robust against
small changes than hash-breaking. As you see in Equation
(7), when there is a small change of an input value, i.e. a
hash value of a word, the change is propagated over all coeffi-
cients by a reduced effect. Since we quantize the coefficients,
the final fingerprint value can be kept unchanged. That is,

The first value of the input sequence … … … …

Upper 16 bits of Quantized coefficient (16/ bits) x
0x N N

0Q 1Q 2Q 1NQ
−

Figure 2: A format of 32bit DCT fingerprint

this robustness can be interpreted as an advantage of data
reduction. The following examples show the robustness of
DCT fingerprinting. The numbers in [] are the fingerprints
for the right string sequences.

[0x295D0A52] one woman comedy by person Willy
[0x295D0A52] one woman show by person Willy
[0xF1315F87] company scheduled another money
[0xF1315F87] company slated another money

It is difficult to show theoretically how many changes DCT
fingerprinting can be tolerant of because input signal values
are almost randomly mapped to by hashing. That is, while
a minor change, e.g., a change from ‘product’ to ‘products’
might cause a big change of the hash value of the word, a
word replacement might be coincidentally mapped to the
same value. Nevertheless, a single word change tends to
change a few high frequency components, and we can ignore
the high frequency components by the formatting scheme.
Thus, we can expect that DCT fingerprinting sometimes
handles a single word change. When more than one word is
changed, the input signal shape is likely to be distorted and
the DCT coefficients are changed. Moreover, if words are
added to or removed from the text segment, then even the
number of the coefficients is changed. Therefore, we con-
clude that DCT fingerprinting can be tolerant of at most a
single word replacement.

Note that DCT fingerprinting and hash-breaking generate
the same number of fingerprints. Although computation of
DCT fingerprinting might seem somewhat expensive, it re-
quires only p2 more multiplications for each fingerprint com-
pared to hash-breaking. In practical, since running time of
text reuse detection mostly depends on the amount of I/O
access, computation complexity of DCT fingerprinting has
little impact on the time.

We should mention that there have been some efforts to
use DCT as a robust hash function for images [12] or videos
[7]. However, they have totally different schemes and con-
texts from ours and there is no similarity except for using
the DCT approach.

5. EVALUATION

5.1 Comparison of Fingerprinting Techniques
To compare fingerprinting techniques, we designed exper-

iments on a test dataset. To build the dataset, we ran each
technique on TREC newswire collection and collected de-
tected document pairs. Then, by manually judging them,
we obtained 100 labeled document pairs for each text reuse
type defined in Section 3.3.

We first optimized parameters for each fingerprinting tech-
nique with 50 document pairs of the dataset. Then, with
the remaining 50 document pairs, we ran our text use detec-
tion engine using each technique with the tuned parameters
to evaluate the performance. Small values were chosen for
the parameters, e.g., k = 3 for k-gram, p = 6 for 0 mod p,
w = 10 for winnowing and p = 3 for hash-breaking and DCT

 0.6

 0.65

 0.7

 0.75

k-gram
0 mod p

winnowing

hash-breaking

DCTfingerprinting

 0

 50

 100

 150

 200

 250

 300

 350
F1
m

Figure 3: Overall performance of fingerprinting
techniques. F1 and m represent the average of F1 of
the six categories and the average number of finger-
prints of a document, respectively.

fingerprinting. For near-duplicate detection, big values for
the parameters are generally used to avoid false detections
and to reduce the number of fingerprints. However, in order
to catch local text reuse, small values are more desirable.

For our experiments, we used 32 bit integers for finger-
prints. Since we used MD5 [17], i.e. a 128 bit algorithm
for hashing, we had to choose the upper 32 bits of the MD5
value. We used the harmonic mean of recall and precision,
F1 as an evaluation metric for accuracy in that this task
could be considered as a classification problem with six cat-
egories. The number of fingerprints was used as another
metric to evaluate efficiency.

Table 3 and Figure 3, 4 and 5 show the experimental re-
sults. Overall, in accuracy, k-gram outperformed the others
as shown in Figure 3. However, it generated too many fin-
gerprints as we predicted. DCT fingerprinting showed the
second best accuracy with a small number of fingerprints.
For near-duplicate cases (C1, C2 and C4), both k-gram and
winnowing showed good performance as shown in Figure 4.
For the local text reuse cases (C3, C5 and C6), DCT finger-
printing worked as well as k-gram as shown in Figure 5. It
is also noticeable that DCT fingerprinting generated many
fewer fingerprints than k-gram while they showed similar
performance.

Based on the results, if there is enough resources and the
target collection is small, then k-gram is the best. Other-
wise, DCT fingerprinting would be the most practical choice.
When the main purpose is near-duplicate detection, win-
nowing might be a good choice. For local text reuse, DCT
fingerprinting is most desirable considering both accuracy
and efficiency.

5.2 Empirical Validation for DCT fingerprint-
ing

DCT fingerprinting needs to be validated in practice in
that its robustness might be misunderstood as a result of
hash collisions and false detection. The best way to validate
would be to directly examine all detected pairs, but that
is impossible. Thus, we chose an indirect method: com-
parison with k-gram. We know that k-gram is the most
accurate method. Moreover, it has the lowest probability of
false detection because it uses all chunks. Although testing
on a larger collection where the false detection probabil-
ity tends to be higher is preferable, running k-gram on big
collections is too expensive. Therefore, we used a TREC

Table 3: Performance of fingerprinting techniques on TREC newswire collection. Numbers are values of F1.
m represents the average number of fingerprints.

k-gram 0 mod p winnowing hash-breaking DCT fingerprinting
C1 0.8958 0.8125 0.8791 0.7529 0.7816
C2 0.6783 0.5968 0.7156 0.7475 0.7475
C3 0.6234 0.5714 0.6234 0.7711 0.7857
C4 0.7480 0.7193 0.7778 0.6726 0.7179
C5 0.7327 0.6304 0.5941 0.6195 0.6415
C6 0.8636 0.8511 0.7111 0.7742 0.7872

Average F1 0.7570 0.6969 0.7186 0.7230 0.7436
m 316 50 56 44 44

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

k-gram
0 mod p

winnowing

hash-breaking

DCTfingerprinting

 0

 50

 100

 150

 200

 250

 300

 350
F1
m

Figure 4: Near-duplicate detection performance of
fingerprinting techniques. F1 and m represent the
average of F1 of C1, C2 and C4 and the average num-
ber of fingerprints of a document, respectively.

 0.6

 0.65

 0.7

 0.75

k-gram
0 mod p

winnowing

hash-breaking

DCTfingerprinting

 0

 50

 100

 150

 200

 250

 300

 350
F1
m

Figure 5: Local text reuse detection performance
of fingerprinting techniques. F1 and m represents
the average of F1 of C3, C5 and C6 and the average
number of fingerprints of a document, respectively.

newswire collection containing about 758,224 documents as
the test collection. The collection is comprised of Associated
Press (1988-1990), the Wall Street Journal (1987-1992), the
Financial Times (1991-1994) and the Los Angeles Times
(1989-1990).

Table 4 presents the results of the two techniques. They
show almost same results for each type. The fact that DCT
fingerprinting detected slightly more documents means that
there might be false detections in some degree, but that
would not be significant. Further, while the size of the index
for k-gram was 1.4 gigabytes, that for DCT fingerprinting
was only 239 megabytes. The running time for DCT fin-
gerprinting (1 hour) was also shorter than that of k-gram
(3 hours). Thus, we conclude that DCT fingerprinting is
comparable in effectiveness and more efficient than k-gram.

Table 4: Text reuse detection results of k-gram and
DCT fingerprinting in TREC newswire collection.
‘#Sibling’ represents the average number of docu-
ments which are related to the detected document
through a category

k-gram DCT fingerprinting
Type #Doc %#Sibling #Doc %#Sibling
C1 21087 2.78% 1.68 20173 2.66% 1.48
C2 21579 2.85% 1.93 21080 2.78% 1.60
C3 9338 1.23% 1.59 8533 1.13% 1.33
C4 33448 4.41% 21.96 31477 4.15% 20.67
C5 41693 5.50% 4.90 41406 5.46% 3.74
C6 99219 13.09% 59.72 101934 13.44% 62.38

Total 171320 22.59% 40.60 170874 22.54% 42.36

6. TEXT REUSE ON REAL COLLECTIONS
In this section, we analyze the amount and type of text

reuse in two collections using DCT fingerprinting. We use
two metrics to analyze the collections. One metric, the num-
ber of documents in each text reuse type, shows how many
documents involve text reuse. Another metric is the aver-
age number of siblings. The siblings of a document represent
documents which have text reuse relationships with the doc-
ument.

6.1 Newswire Collection
News articles are public and official documents written by

professional reporters or editors. Text reuse happens most
frequently when stories are revised or when journalists “bor-
row” from earlier stories. The results in Section 5.2 and in
Table 4 were based on news collections.

We sampled 50 document pairs for each type from the
detection results and manually classified the text reuse into
three more classes based on the style of text reuse (rather
than the amount of text). These classes are ‘Text reuse’,
‘Common Phrase’ and ‘Template’. The results are shown in
Table 5.

‘Text reuse’ patterns correspond to actual text reuse cases.
That is, a document pair with these patterns is derived from
the same source or has a direct relation. For example, while
an article A written on April 4, 1988 describes an event with
four sentences, another article B written on April 5, 1988 has
six sentences in addition to the four sentences. We can infer
an information flow from article A to article B.

‘Common phrase’ patterns are caused by common phrases.
Thus, we might not infer any actual relation. For example,
‘Dow Jones average of 30 industrials’ and ‘the New York
Stock Exchange’ are commonly used in many articles about
the stock market. If two documents share these phrases, we

Table 5: Text reuse in the TREC newswire collec-
tion.
Pattern C1 C2 C3 C4 C5 C6 Total
Text Reuse 64% 68% 100% 0% 48% 6% 48%
Common Phrase 0% 0% 0% 0% 12% 84% 16%
Template 36% 32% 0% 100% 40% 10% 36%

cannot say that they have a text reuse relationship.
The most interesting patterns are ‘Template’ patterns,

which make up one third of the total detected relationships.
In these patterns, there are reusable templates where only a
few words are replaced. The following is an example where
only highlighted numbers are changed with the remaining
words unchanged.

U.S. automakers were scheduled to make 167,791 cars
this week, compared with 170,279 a week ago and
152,751 in the same week in 1987. [AP880616-0266]

Such template patterns are easily found in the economic
news about stock market indexes, foreign exchange rates, or
bank interest rates. These patterns are observed in most
text reuse types and the class C4 is particularly dominated
by these patterns.

Consequently, the news collection has a small amount of
text reuse if we exclude C4 and C6 which are dominated by
noisy patterns like ‘Common Phrase’ and ‘Template’. That
is, to build an accurate text reuse detection system, local
text reuse detection which can identify this type of noise
is necessary. Further, each document typically has few sib-
lings. That is, the reused text is not likely to move through
many documents and the propagation paths are limited.

6.2 Blog Collection
Blogs are generally operated by individuals, in contrast

to news organizations. We use the TREC Blogs06 collection
[13], which contains about 3 million postings. Since the
collection size is about 100 gigabytes, it is difficult to process
using the k-gram technique.

When we find text reuse in blog collections, there is a
problem to be considered. In most blogs, navigation bars are
located on the top or the side of each page and advertisement
links like Google AdSense2 or links to the previous postings
occupy the corners of each page. Text in such frames is
repeated in most of the postings of a blog. As a result, blog
postings could be falsely detected as text reuse relationships
even though their actual contents are not related to each
other at all. We refer to this as frame noise. To remove
such noise, we employed a Document Slope Curve (DSC)
content selection algorithm [8]. The algorithm plots a curve
as follows:

DSC[k] =

0 if k = 0
DSC[k − 1] + 1 else if T [k] is a tag
DSC[k − 1] otherwise

(9)

where T [k] is the kth token in an HTML page. By exploiting
the observation that there are fewer HTML tags in content
bodies than in the other areas, we regard the lowest slope
area of the curve as the content body.

We ran our detection engine using DCT fingerprinting.
Despite the collection size, the index size was only 1.3 giga-
bytes, which can be easily handled in main memory. The

2http://www.google.com/adsense

Table 6: Text reuse detection result in TREC
Blogs06 collection. ‘#Sibling’ represents the aver-
age number of documents which are related to the
detected document through a category.

Type #Doc % #Sibling
C1 125241 3.90% 562.16
C2 171619 5.34% 612.54
C3 166527 5.18% 731.68
C4 269064 8.38% 528.34
C5 439655 13.69% 688.60
C6 450539 14.03% 973.53

Total 675015 21.02% 1749.43

run took 10 hours with eight 3.2 MHz CPUs. We also tried
to use k-gram for time comparison, for which the index size
was 10 gigabytes. In addition, we employed a speed-up algo-
rithm for k-gram, ‘SPEX’ [1], which filters out unnecessary
unique fingerprints while building the index. Nevertheless,
processing had not finished after several days of elapsed time
because of heavy I/O load.

Table 6 shows the text reuse detection result. Many more
documents are involved in text reuse relationships compared
to the newswire collection. In fact, the numbers were over-
estimated as we see later.

We sampled 50 document pairs for each type from the
results and identified five styles of reuse, i.e., ‘Text Reuse’,
‘Common Phrase’, ‘Spam’, ‘Frame’ and ‘URL Aliasing’. The
result is shown in Table 7.

In ‘Text Reuse’ patterns, text reuse originated from au-
thoritative sources such as news articles or academic papers.
This appears more frequently than text reuse based on other
blog postings. That is, many bloggers seem to still trust au-
thoritative sources more than blog documents.

Most ‘Common phrase’ patterns are composed of boiler-
plate text, in contrast to the newswire collection. For ex-
ample, the following paragraph is a representative example
of boilerplate text which is located below content text with
the highlighted date changed.

This entry was posted on Friday, January 13th, 2006
at 12:00 pm and is filed under XXX. You can follow any
responses to this entry through the RSS 2.0 feed.

The boiler plate text is different from ‘Template’ patterns
in that the text forms a small part of the document, e.g.,
a header or footer rather than the content of the document
and is observed in most postings.

‘Frame’ patterns correspond to frame noise. Although we
preprocessed the collection by using the DSC content selec-
tion algorithm, a considerable amount of frame noise still
remains. Since this noise is almost evenly distributed over
all types, we cannot distinguish it easily by classification.

Another new pattern is ‘Spam’. Spam phrases such as ‘free
gift’ and ‘poker casino’ tend to be repeated in or between
spam postings, and accordingly, they could be detected as
text reuse.

Another special pattern is ‘URL Aliasing’ which has been
reported in near-duplicate studies on Web [20]. While two
postings have different URLs, they correspond to the same
document. Since their contents are identical, these patterns
are observed in only the C1 type.

As you see in Table 7, noisy patterns like ‘Frame’ and
‘Spam’ account for 50∼70% of each class, which causes most

Table 7: Text reuse in the TREC Blogs06 collection.
Pattern C1 C2 C3 C4 C5 C6 Total
Text Reuse 16% 20% 20% 6% 12% 18% 15%
Common Phrase 2% 12% 12% 24% 28% 28% 18%
Spam 30% 22% 20% 8% 12% 20% 19%
Frame 36% 46% 48% 62% 48% 34% 46%
URL Aliasing 16% 0% 0% 0% 0% 0% 3%

of the overestimation of text reuse. Therefore, to more ac-
curately investigate text reuse in blog or Web collections,
better content selection techniques and spam filtering algo-
rithms are required.

Taking the overestimation into account, the blog collec-
tion does not contain more text reuse than the newswire
collection. However, the number of the siblings in the blog
collection is still greater than that in the newswire collec-
tion. This shows that the reused text is easily spread over
the blogs.

In addition, ‘Text Reuse’ patterns are almost equally dis-
tributed over all text reuse types. That is, we need to con-
sider all text reuse types in order to accurately infer rela-
tionships between documents. Therefore, for text reuse de-
tection applications like information flow tracking, local text
reuse detection is likely to more effective than near-duplicate
detection which can detect only a few text reuse types.

7. CONCLUSION
We defined a general framework for text reuse detection.

The six categories for text reuse detection can be flexibly
applied to various tasks including near-duplicate detection
and local text reuse detection.

We reviewed several fingerprinting techniques for the frame-
work and introduced a robust technique, DCT fingerprint-
ing. Through performance comparison and empirical valida-
tion, we showed that DCT fingerprinting is one of the best
candidates for general or local text reuse detection with high
accuracy and efficiency.

Finally, using this algorithm, we investigated the text
reuse aspects of a newswire collection and a blog collection.
Through the analysis, we showed that the text reuse pat-
terns of the two collections are different from each other and
local text reuse detection will be more effective than near-
duplicate detection for applications like information flow
tracking on such collections.

8. ACKNOWLEDGMENTS
This work was supported in part by the Center for Intel-

ligent Information Retrieval, in part by NHN Corp. and in
part by NSF grant #IIS-0534383. Any opinions, findings
and conclusions or recommendations expressed in this ma-
terial are the authors’ and do not necessarily reflect those of
the sponsor.

9. REFERENCES
[1] Y. Bernstein and J. Zobel. Accurate discovery of

co-derivative documents via duplicate text detection.
Information Systems, 31:595–609, 2006.

[2] S. Brin, J. Davis, and H. Garćıa-Molina. Copy
detection mechanisms for digital documents. In Proc.
of the 1995 ACM SIGMOD Intl. Conf. on
Management of data, pages 398–409, 1995.

[3] A. Z. Broder. On the resemblance and containment of
documents. In Proc. of the Compression and
Complexity of Sequences, pages 21–29, 1997.

[4] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. Comput.
Netw. ISDN Syst., 29(8-13):1157–1166, 1997.

[5] M. S. Charikar. Similarity estimation techniques from
rounding algorithms. In Proc. of the 34th Ann. ACM
Symp. on Theory of computing, pages 380–388, 2002.

[6] A. Chowdhury, O. Frieder, D. Grossman, and M. C.
McCabe. Collection statistics for fast duplicate
document detection. ACM Trans. Inf. Syst.,
20(2):171–191, 2002.

[7] B. Coskun, B. Sankur, and N. Memon.
Spatio-temporal transform based video hashing. IEEE
Transactions on Multimedia, 8(6):1190–1208, 2006.

[8] A. Finn, N. Kushmerick, and B. Smyth. Fact or
fiction: Content classification for digital libraries. In
Joint DELOS Workshop: Personalisation and
Recommender Systems in Digital Libraries, 2001.

[9] N. Heintze. Scalable document fingerprinting. In 1996
USENIX Workshop on Electronic Commerce, 1996.

[10] M. Henzinger. Finding near-duplicate web pages: a
large-scale evaluation of algorithms. In Proc. of the
29th Ann. Intl. ACM SIGIR Conf. on Research and
development in information retrieval, pages 284–291,
2006.

[11] T. C. Hoad and J. Zobel. Methods for identifying
versioned and plagiarized documents. J. Am. Soc. Inf.
Sci. Technol., 54(3):203–215, 2003.

[12] C.-Y. Lin and S.-F. Chang. A robust image
authentication method distinguishing JPEG
compression from malicious manipulation. IEEE
Transactions on Circuits and Systems for Video
Technology, 11(2):153–168, 2001.

[13] C. Maconald and I. Ounis. The TREC blogs06
collection: Creating and analysing a blog test
collection. Technical Report TR-2006-224, University
of Glasgow, Department of Computing Science, 2006.

[14] U. Manber. Finding similar files in a large file system.
In Proc. of the USENIX Winter 1994 Tech. Conf.,
pages 1–10, 1994.

[15] D. Metzler, Y. Bernstein, W. B. Croft, A. Moffat, and
J. Zobel. Similarity measures for tracking information
flow. In Proc. of the 14th ACM Intl. Conf. on
Information and knowledge management, pages
517–524, 2005.

[16] M. O. Rabin. Fingerprinting by random polynomials.
Technical report, Harvard University, 1981. TR-15-81.

[17] R. Rivest. The MD5 Message-Digest Algorithm, RFC
1321, 1992.

[18] S. Schleimer, D. S. Wilkerson, and A. Aiken.
Winnowing: local algorithms for document
fingerprinting. In Proc. of the 2003 ACM SIGMOD
Intl. Conf. on Management of data, pages 76–85, 2003.

[19] N. Shivakumar and H. Garćıa-Molina. SCAM: A copy
detection mechanism for digital documents. In Proc.
of the 2nd Ann. Conf. on the Theory and Practice of
Digital Libraries, 1995.

[20] N. Shivakumar and H. Garćıa-Molina. Finding
near-replicas of documents on the web. In Intl.
Workshop on the World Wide Web and Databases,
1999.

