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ABSTRACT

DISCOVERING AND USING IMPLICIT DATA FOR
INFORMATION RETRIEVAL

SEPTEMBER 2011

XING YI

B.Eng., TSINGHUA UNIVERSITY, BEIJING, CHINA

M.Eng., TSINGHUA UNIVERSITY, BEIJING, CHINA

M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

Directed by: Professor James Allan

In real-world information retrieval (IR) tasks, the searched items and/or the users’

queries often have implicit information associated with them – information that de-

scribes unspecified aspects of the items or queries. For example, in web search tasks,

web pages are often pointed to by hyperlinks (known as anchors) from other pages,

and thus have human-generated succinct descriptions of their content (anchor text)

associated with them. This indirectly available information has been shown to im-

prove search effectiveness for different retrieval tasks. However, in many real-world

IR challenges this information is sparse in the data; i.e., it is incomplete or missing in

a large portion of the data. In this work, we explore how to discover and use implicit

information in large amounts of data in the context of IR.

We present a general perspective for discovering implicit information and demon-

strate how to use the discovered data in four specific IR challenges: (1) finding rele-

ix



vant records in semi-structured databases where many records contain incomplete or

empty fields; (2) searching web pages that have little or no associated anchor text;

(3) using click-through records in web query logs to help search pages that have no

or very few clicks; and (4) discovering plausible geographic locations for web queries

that contain no explicit geographic information.

The intuition behind our approach is that data similar in some aspects are of-

ten similar in other aspects. Thus we can (a) use the observed information of

queries/documents to find similar queries/documents, and then (b) utilize those sim-

ilar queries/documents to reconstruct plausible implicit information for the original

queries/documents. We develop language modeling based techniques to effectively

use content similarity among data for our work. Using the four different search tasks

on large-scale noisy datasets, we empirically demonstrate the effectiveness of our ap-

proach. We further discuss the advantages and weaknesses of two complementary

approaches within our general perspective of handling implicit information for re-

trieval purpose.

Taken together, we describe a general perspective that uses contextual similarity

among data to discover implicit information for IR challenges. Using this general

perspective, we formally present two language modeling based information discovery

approaches. We empirically evaluate our approaches using different IR challenges.

Our research shows that supporting information discovery tailored to different search

tasks can enhance IR systems’ search performance and improve users’ search experi-

ence.
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CHAPTER 1

INTRODUCTION

In many information retrieval (IR) tasks, the searched items and/or the users’

queries often have associated implicit information – information that describes un-

specified aspects of the items or queries. For example, websites such as Monster

Worldwide 1 and Linkedin 2 ask users to provide their personal information using

online forms that contain many textual fields instead of using unstructured plain text

boxes. Those textual fields can usually provide important information of users’ pro-

files such as users’ skills, education, work experience, etc. However, users tend to fill

the fields carelessly and thus leave many incomplete or empty fields. In many cases,

although the information is not explicitly present in some fields, it is implicit in other

fields; e.g., specific skills might be omitted from a user profile, but are implied by –

so implicit in – the work experience.

As another example, many IR tasks such as Google blog search and Monster job

search allow users to formulate advanced queries that contain multiple textual fields

to better represent their information need. The fields in those complex queries provide

useful information to help searching relevant items for the users. Again, users often

include only some of them and omit most fields, but often the information in those

empty query fields is implicit in other fields – e.g. the book search query {title =

“differential geometry”, subject = “math” audience level=“ ”} (i.e. the audience

1http://www.monster.com

2http://www.linkedin.com/
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level field is empty) strongly suggests that the target audience level of the relevant

books may be undergraduate or higher.

The additional aspects of the data – the searched items and queries – are usually

very helpful for finding relevant information and play an important role in design-

ing and enhancing modern IR systems for different retrieval tasks. Unfortunately,

previous research has shown that the examples above are realistic: human-generated

information is often sparse in the data, i.e. it is incomplete or missing in a large

portion of the data. This situation presents a major obstacle to many existing re-

trieval techniques that leverage this information for improving search. Here are more

examples from real-world search tasks:

1. In a 2004 snapshot of the National Science Digital Library collection, only 3.5%

of the records mention the target audience. Thus, if a query contains audience

= ‘elementary school’, it will consider at most 3.5% of all resources in the

collection when the simple exact-match approach is used. The audience field’s

value is missing, so is at best implicit information in 96.5% of the records.

2. A traveler may issue the query ‘space needle tour’ to web search engines with-

out explicitly specifying the geographic location ‘seattle’ in the query. Search

engines that leverage explicit geographic information to provide relevant travel

information will not work for this query. The intended location of the query is

implicit information.

3. In email search tasks, users may specify keywords in the subject field to search

previously received emails; however, the target emails may have subject key-

words different from the user-specified ones, or even worse, only have empty or

meaningless subject fields (such as ones only containing ‘Re:’ or ‘No subject’).

The actual subject of a message is frequently implicit or inaccurate information.
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Figure 1.1. The general perspective of our implicit information discovery approach
in an IR context

4. In some online product search tasks, potential buyers may query with incorrect

or missing information for some key attributes (such as brand names or sizes) of

the products they are interested in. Thus, the search engines of web companies

cannot match relevant products to the buyers’ request. The brand name or size

is implicit information here.

Ignoring the implicit information in the above examples will degrade the retrieval

performance of the IR systems and negatively affect users’ search experience. In

this research, we are concerned with methods for discovering and using implicit data

aspects for retrieval purpose.

Our approach is illustrated by the high-level general perspective depicted in Fig-

ure 1.1. The upper-left and upper-right external boxes denote the information that

consists of different data aspects on the query side and the searched item side, respec-

tively. The implicit data aspect information of the queries or the searched items is

denoted by two shadowed internal boxes surrounded by the dashed lines in the figure.
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Figure 1.2. Illustration of our approach of discovering implicit geographic informa-
tion for a query: “space needle tour” for web search.

The bottom box denotes available training data (queries or searched items depending

on the search task) that contain observed information for all different aspects. Our

goal is to more effectively retrieve items that are relevant to users’ information needs

by discovering plausible implicit data aspects on the query side or on the searched

item side (depending on the search task).

Our approach consists of three basic steps: (1) use the observed part (the unshad-

owed internal boxes in Figure 1.1) of the queries or searched items to find similar

training data; (2) use the observed information in the similar training data to esti-

mate plausible implicit information for the corresponding data aspects of the queries

or searched items; (3) use the original and the reconstructed data aspect information

for retrieving relevant items. Our approach takes advantage of the fact that data

similar in some aspects are often similar in other aspects.

As an example, Figure 1.2 shows intuitively how we use this general perspective

to discover implicit geographic information in the second example discussed above (in

page 2). In this figure, we (1) use the observed non-location part (“space needle tour”)
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of the query to find a city language model that has similar non-location information

in the training data; (2) then we can predict the likely related city (“Seattle”) for the

query; in the end, (3) we can provide more travel information around Seattle for the

traveler.

In this thesis, based on the general perspective in Figure 1.1, we develop two com-

plementary language modeling based approaches – the query-side and the searched-

item-side approaches – for discovering and using implicit data information for different

real-world IR challenges.

The query-side approach uses our developed technique called Structured Relevance

Models (SRM), and is depicted on the left side or the query side in Figure 1.1. In

this SRM based approach, we (a) design probabilistic generative language models

to infer plausible (but missing) information for the observed queries and then (b)

search plausibly relevant items that can match the original and/or the new discov-

ered query aspects. We will formally describe the SRM technique in §2.3 of Chap-

ter 2. Using a hypothetical probabilistic model of generating semi-structured data

(queries/documents), SRM can leverage the dependencies of the words (or other dis-

crete attribute values) within and across data aspects for effectively discovering im-

plicit information in different data aspects that use very different languages. Thus,

the query-side approach can find relevant items that cannot be retrieved by only using

the original query, by extending the query to cover every aspect of searched items.

The searched-item-side approach follows a contextual language translation (CLX)

approach (Jing andCroft 1994; Xu andCroft 1996; Wang and Zhai 2008) and is

depicted on the right side or the searched-item side in Figure 1.1. Here, we (a) use the

CLX approach to infer plausible implicit information for a small set of items (retrieved

using the original queries) from the items’ observed part and then (b) rerank the items

based on both the original and the discovered data aspects of the items, in order to

push the highly relevant ones up to the top of the ranked list. We will formally describe
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our CLX based approach used for the searched-item-side information discovery in

§3.3.2 of Chapter 3 and §4.3.2 of Chapter 4. The CLX approach leverages rich textual

content of the search-items to reliably infer implicit information for different data

aspects of the search-items. Then the discovered information is used to smooth the

content of the search-items for reranking. Therefore, compared with the query-side

approach that uses the discovered information for query expansion, the searched-item-

side approach is more resistant to irrelevant noise from the training data (depicted

in the bottom box in Figure 1.1) and topic-drifting. Nevertheless, this approach

assumes that the implicit data aspects share some vocabulary with the content of the

searched items and the queries; in addition, it uses a reranking scheme which relies

on the quality of the top ranked items returned by the original query. Both issues

limit the usage of this approach.

This thesis will demonstrate how we can use our general perspective in Figure

1.1 and its two approaches above to discover implicit information for different IR

tasks. To limit the scope of our discussion and illustrate how our approach works

in practice, we focus on four specific real-world IR challenges: (1) finding relevant

records in semi-structured databases where many records contain incomplete or empty

fields; (2) searching web pages that have little or no associated anchor text; (3) using

click-through information in web query logs to help search pages that have no or very

few clicks; and (4) discovering plausible city information for web queries that contain

no explicit geographic information.

Next, we provide a general brief discussion of previous work related to our research

in §1.1. Then in §1.2 to §1.5, we use the general perspective in Figure 1.1 to introduce

each of the above IR challenges to be addressed in this thesis. After that we summarize

the general contributions of our research in §1.6 and present the structure of the

remaining chapters of the thesis in §1.7.
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1.1 Related Information Discovery

1.1.1 Missing Data Issue in Statistical Learning

Because we specifically focus on discovering implicit data in the context of IR

in this research, it is worthwhile to briefly review two missing data mechanism as-

sumptions – missing completely at random (MCAR) and missing at random (MAR) –

which are well known in the statistics and machine learning research community when

using incomplete data for learning tasks (Koller and Friedman 2010, pp.850–856).

Intuitively, the MCAR assumption is that the missing data mechanism is completely

independent of the domain variables thus the missing values are randomly distributed

across all observations. The MAR assumption has a weaker assumption on the miss-

ing data mechanism: it assumes that this mechanism is conditionally independent of

the missing values given the observed variables; thus, the mechanism does not depend

on the true value of the missing variable, but it may depend on the value of other ob-

served variables. In our research, where we need to handle implicit data in real-world

searched item collections and users’ queries, we usually face a more complex situation,

where data are hidden for greatly varied reasons and that both MCAR and MAR are

often violated. Therefore, we do not make general missing data assumptions for all

different IR challenges, but describe the individual implicit data aspect addressed in

each retrieval task instead.

To handle missing data problems and also learn probabilistic models that have

hidden variables, a parametric approach – the Expectation-Maximization (EM) al-

gorithm – has been widely used in the statistics and machine learning research

(Dempster et al. 1977; Little and Rubin 1986), where the missing data and the

probabilistic model parameters are estimated and updated iteratively to maximize

log-likelihood of the data. In our research, we focus on a common missing infor-

mation situation in the IR context, where plausible implicit values are from a large

vocabulary of natural language. Different from the parametric approach, we develop
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language modeling based non-parametric approaches to estimate implicit information

for queries and/or searched items based on their observed information (Lavrenko

2004; Silverman 1986). Based on the assumption that data similar in some aspects

are often similar in other aspects, our approach uses contextual language similarity

for effectively discovering implicit aspects of queries/searched items for retrieval. We

point out that here we do not model the missing data mechanism (e.g. MCAR, MAR)

in our implicit information discovery approach. We leave approaches that explicitly

model the missing data mechanism as future work.

1.1.2 Information Discovery in Information Retrieval

Because user-specified query information is often not directly available (thus im-

plicit) in relevant documents, one core part of IR research is investigating how to

bridge the semantic gap between the users’ input queries and their relevant docu-

ments, in order to better search relevant information for the users. To achieve this

goal, a lot of research has been devoted into two major directions: (1) leveraging

all available information (explicit and/or implicit) to reformulate the user-specified

queries for better representing users’ information need and matching relevant doc-

uments; and (2) enriching the representation of each document and inferring each

document’s implicit information for better matching related queries. Both research

directions cover many important IR research issues. The goal of our thesis research

is to discover implicit information for different aspects of queries/searched items, in

order to help bridge the vocabulary gap between user-specified query information and

relevant items. Therefore our research contributes to this important IR research area

of addressing the semantic gap challenge in both research directions. Next, we will

name a few important research issues that are closely related to our research in each

direction. Our intent is to provide a high-level picture of how the thesis research
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contributes to this IR research area, rather than an exhaustive list of research issues

in this area. More detailed work is provided in the individual chapters as needed.

In the first research direction (reducing the semantic gap from the query side), one

important research issue is to reduce vocabulary mismatch through query expansion.

The vocabulary mismatch problem is one of the major causes of failures in IR sys-

tems and happens because users often describe their information need using different

words than are found in relevant documents (Croft 1995). To address this problem,

many effective automatic query expansion techniques have been designed (Rocchio

1971; Robertson 1991; Lavrenko and Croft 2001; Zhai and Lafferty 2001a)

for discovering plausibly useful terms that can help to identify relevant documents

from either top-ranked documents initially retrieved using the original query (pseudo-

relevance feedback) or judged relevant documents (relevance feedback). The discov-

ered terms (most of which are missing thus implicit in the original query) can usually

help find more relevant documents and greatly improve search performance in many

search tasks, thus effectively reducing vocabulary mismatch. Our SRM based query-

side information discovery approach (depicted on the left side of Figure 1.1) directly

extends relevance-based language models (Lavrenko and Croft 2001), a highly

effective version of the above query expansion techniques, to discover implicit infor-

mation for different query aspects for better representing users’ information need and

reducing vocabulary mismatch. Different from the above classical query expansion

techniques which usually focus on handling unstructured plain-text queries, our ap-

proach considers more complex retrieval scenarios where different query aspects are

used for search and each query aspect may contain implicit information represented

by a very different language.

Another important research issue in addressing the semantic gap from the query

side is to discover queries’ inherent semantic structure, which is often not explicitly

presented (e.g. when queries are input through an unstructured plain-text search
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box), for more accurately representing users’ information need. Then the discovered

semantic units in the queries can be used for matching the corresponding semantic

units (which may or may not be explicit) in documents to precisely search relevant

documents. These semantic units could be named entities, concepts (noun phrases),

n-gram phrases, semi-structured fields as well as other information units that repre-

sent certain unspecified aspects of users’ information need. On this research issue,

Metzler and Croft (2005) developed a Markov random field model based general

framework to use term dependencies (including ordered/unordered phrases and other

term proximity information) for better searching relevant documents; they further

proposed (2007) using their model to discover latent concepts from pseudo-relevant

or relevant documents for query expansion. Bendersky and Croft (2008a) proposed

using a supervised machine learning technique for discovering key concepts in plain-

text verbose queries and re-weighting these concepts in retrieval models to achieve

better search performance. Guo et al. (2008) developed a unified model based on the

Conditional Random Field technique for simultaneously predicting hidden phrasal

structure and correcting possibly existing errors for queries. Kim et al. (2009) pro-

posed a language modeling based approach to discover implicit semi-structured field

structure in unstructured plain-text queries for helping search semi-structured doc-

uments. The above research complements our research: we assume that queries’

semantic structures (or data aspects) are known beforehand or have been discovered

using schemes from the above research and focus on discovering implicit information

in different query aspect for helping search.

In the second research direction (reducing the semantic gap from the document

side), similarly, one important research issue is to reduce vocabulary mismatch through

document expansion. Document expansion techniques typically enrich each docu-

ment’s content using words from its similar documents (Kurland and Lee 2004;

Liu and Croft 2004; Tao et al. 2006; Mei et al. 2008) or from the document’s la-
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tent topics which are discovered by applying statistical topic models on the searched

collection (Hofmann 1999; Wei and Croft 2006; Yi and Allan 2009). In this

way, each query can be better covered by the enriched content of its plausibly rel-

evant documents. The above research has shown that similar to query expansion,

the document expansion approach can also statistically significantly improve search

performance and effectively reduce vocabulary mismatch. Similar to some of the

above document expansion techniques that infer each document’s implicit content

from its similar documents, our CLX based searched-side approach (depicted on the

right side of Figure 1.1) infers implicit information of each different data aspect of a

searched item from the corresponding data aspect of its similar items. Different from

the typical document expansion approach that usually focuses on enriching the con-

tent representation of documents, our approach considers the situation where some

unspecified aspects of searched items besides their content can be used for search

and each data aspect may contain implicit information that can be inferred from the

observed other aspects of each item.

Recently, IR researchers have begun to address the data sparseness issue that exists

in many real-world IR tasks, such as web search (Craswell and Szummer 2007;

Gao et al. 2009; Metzler et al. 2009; Seo et al. 2011) and collaborative filtering

(Ma et al. 2007), in order to further improve retrieval effectiveness. As mentioned

in the introduction of this chapter, although human-generated information is usually

highly effective for helping search and reducing semantic gap between queries and

relevant documents, it is often very sparse. Thus, it is unreliable to directly use this

information for retrieval. Researchers have explored how to reduce data sparseness

using different available information in different specific search tasks. To address

anchor text sparsity for web search, Metzler et al. (2009) proposed using the web

hyperlink graph and propagating anchor text over the web graph to discover missing

anchor text for web pages. To address click-through data sparseness for web search,
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Craswell and Szummer (2007) proposed applying Markov random walk algorithm

on the query-URL click graph to find plausible missing clicks; Gao et al. (2009)

proposed a Good-Turing estimator (Good 1953) based method to smooth click-

through features for web pages that have received no clicks; Seo et al. (2011) proposed

two techniques for smoothing click counts based on a statistical model and spectral

analysis of document similarity graph. To address user-item rating sparseness for

collaborative, Ma et al. (2007) proposed estimating the missing rating of an item from

a user by averaging ratings from similar items and similar users3. Our research also

addresses data sparseness for some of the above IR tasks, but we focus on discovering

implicit language information for different query/searched-item aspects and reduce

data sparseness following the formal language modeling retrieval framework (Ponte

and Croft 1998).

To summarize, this thesis research directly relates to and contributes to a clas-

sical and core IR research area of bridging the semantic gap between users-specified

queries and relevant items, and also an important frontier IR research area of address-

ing the data sparseness issue for many real-world IR tasks where human-generated

information is used for improving search performance.

1.2 Discovering Implicit Field Values for Searching Semi-

structured Records

The use of semi-structured documents, such as HTML/XML documents, to store

information and data has been quickly expanding. This trend will presumably con-

tinue due to the convenience of using semantic document structures to represent

human knowledge. Using a traditional relational database and the Structured Query

Language (SQL) keyword-match approach to search semi-structured data runs into a

3The similarity between two items/users is measured by the correlation of their ratings from/over
the same set of users/items, respectively.
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Figure 1.3. The specific perspective of discovering implicit field values for searching
semi-structured records

number of obstacles: inconsistent schemata (e.g. different markups that represent the

same semantic units), unstructured natural language fields, and even empty fields.

When searching semi-structured records, both the records and the queries may

have incomplete or empty fields; the original user-specified query fields may be par-

tially or completely missing in the search target collection. To address this issue, we

use the approach depicted in Figure 1.3 to discover the implicit field values for search,

following the SRM based query-side approach from our general perspective in Figure

1.1.

Here the searched items are semi-structured records and the implicit data in-

formation is in semi-structured fields. We hypothesize that semi-structured records

that have similar attribute values in some fields may have similar attribute values

in other fields due to the cross-field relations between attribute values in different

fields. For example, articles with “quantum” in their titles are more likely to share

a higher reading level. Using this assumption, we discover plausible implicit field

values of semi-structured records by using their similar records’ corresponding infor-

mation. As shown in Figure 1.3, given a query, we first leverage the observed fields

of the query to find training records that have similar fields; then we use the infor-
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mation in the similar training records to estimate an extended semi-structured query

that covers all record fields in the searched collection. Each field in this extended

query now contains plausible field values indicated by the original query. Finally, all

the records are ranked by their language modeling based similarity to the extended

query. Here we only consider the SRM based query-side approach instead of the CLX

based searched-item-side approach that uses reranking, because that the query-side

approach can better handle the situations that (1) different fields often use very dif-

ferent languages and (2) the original query fields may be completely missing in many

relevant records.

We use the SRM based approach of Figure 1.3 to address two large-scale real-

world semi-structured record searching tasks in Chapter 2. The first is to find relevant

records in the National Science Digital Library (NSDL) record collection. The second

is to match semi-structured job and resume electronic records in a industry-scale

job/resume collection provided by Monster Worldwide, a well-known online job service

company.

1.3 Discovering Implicit Anchor Text Information for Web

Search

There are rich dynamic human-generated hyperlink structures on the web. Most

web pages contain some hyperlinks, referred to as anchors, which point to other pages.

Each anchor consists of a destination URL and a short piece of text, called anchor

text. Anchors play an important role in helping web users conveniently navigate

the web for information they are interested in, in part because anchor text usually

provides a succinct description of the destination URL’s page content. The description

means that anchor text is very helpful for web search. However, most web pages have

few or no incoming hyperlinks (anchors) and therefore lack associated anchor text

information (Broder et al. 2000). This situation is known as the anchor text

14



Figure 1.4. The specific perspective of discovering anchor text for web search: (a)
using similar web pages for anchor text discovery; (b) viewing queries as web pages
and reconstructing better queries for search.

sparsity problem (Metzler et al. 2009) and presents a major obstacle for any web

search algorithms that want to use anchor text to improve retrieval effectiveness.

We use both the query-side and the searched-item-side approaches depicted in

Figure 1.4 to address the above anchor text sparsity problem, following the general

perspective from Figure 1.1. Here, the searched items are web pages and the implicit

information of data is the web pages’ associated anchor text. We hypothesize that web

pages that are similar in content may be pointed to by anchors having similar anchor

text due to the common semantic relation between anchor text and page content.

Under this assumption, the two approaches in Figure 1.4 use the similarity among

web pages and their anchor text to discover plausible anchor text information for web

search. These approaches are briefly described as follows.

In the CLX based searched-item-side approach, shown in Figure 1.4(a), we run

each original web query, which is an unstructured plain text string, against the web
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page collection to retrieve a small subset of web pages that may be relevant to the

query. Next, for each page in the retrieved set, we discover plausible anchor text and

then use the page content and the discovered anchor text information together to

rerank the page. To discover a page’s implicit anchor text, we first find training web

pages similar in content to the target page, then use those pages’ associated anchor

text to estimate the plausible anchor text for the page. The whole web page collection

and all anchor text in the collection are used as the training data.

In the SRM based query-side approach, shown in Figure 1.4(b), we add structure

to the original unstructured web queries and adapt the approach in §1.2 (depicted in

Figure 1.3) for search. The basic idea of this approach is to first discover implicit in-

formation in the (now structured) queries and then search with the extended queries.

We view queries as very short web pages that contain two fields: Content and As-

sociated Anchor Text. The two shadowed internal boxes in the upper-left external

box (query side) in the figure are surrounded by solid lines because we assume that

they are observed but incomplete. We also assume that both the observed Content

and Associated Anchor Text fields contain the same copy of the original query string:

intuitively, the query is searching for pages that match the query in content and/or

anchor text. We first leverage the observed fields of a query to find training pages

that have similar fields. After that, we use the information in the similar training

pages to estimate all plausible implicit field values indicated by the original query.

Finally, all the pages to be searched will be ranked by their language modeling based

similarity to the extended query.

In Chapter 3, we use the two approaches above to address the anchor text sparsity

problem for the standard TREC web search tasks.
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1.4 Discovering Missing Click-through Information for Web

Search

The click-through information in web search query logs contains important user

preference information (both individual and collective) over the returned web search

results. This information plays an important role in designing and enhancing modern

web search engines. However, click-through data usually suffer from a data sparseness

problem where a large volume of queries have few or no associated clicks. This is

known as the missing click problem or incomplete click problem in web search (Gao

et al. 2009).

We employ both the query-side and the searched-item-side approaches depicted

in Figure 1.5 to address the above missing/incomplete click problems, again following

the general perspective from Figure 1.1. Note that these two approaches are similar

to those for addressing the anchor text sparsity problem in §1.3. Here, the searched

items are web pages and the implicit information is web pages’ click-associated queries

(i.e. queries that led to clicks on the pages). We hypothesize that web pages that are

similar in content may be clicked by web searchers issuing similar queries, because

of the semantic relation between queries and the web page content of their clicked

URLs. Under this assumption, the two approaches in Figure 1.5 use the semantic

similarity among web pages and their click-associated queries to discover plausible

click-through query language information for helping search. These approaches are

briefly described as follows.

In the CLX based searched-item-side approach, shown in Figure 1.5(a), we run

each original web query, which is an unstructured plain text string, against the web

page collection to retrieve a small subset of web pages that may be relevant to the

query. Next, for each page in the retrieved set, we discover the page’s plausible click-

associated queries and then use the page content and the discovered query content

together to rerank the page. To discover a page’s click-associated information, we
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Figure 1.5. The specific perspective of discovering plausible click-through features
for web search: (a) using similar web pages for discovering plausible click-associated
queries; (b) finding similar page-query pairs to reconstruct better queries for search.

first find training web pages similar in content to the target page, then use those

pages’ click-associated queries to estimate plausible click-associated query content for

the page. All the clicked pages in the web query logs and their click-associated queries

are used as the training data.

In the SRM based query-side approach, shown in Figure 1.5(b), we add structure

to the original unstructured web queries and use an approach similar to that in Figure

1.4(b) to handle the click-through sparseness problem here. Again, the basic idea of

this approach is to first discover implicit information for the (now structured) queries

and then search with the extended queries. We view both queries and web pages as

containing two fields: Page Content and Query Content. The two shadowed internal

boxes in the upper-left external box (query side) in the figure are surrounded by solid

lines because we assume that they are observed but incomplete. We also assume the

observed Page Content and Query Content fields contain the same copy of the original

query string: intuitively, the query is searching for pages that match the query in
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content and/or their click-associated queries. We first use this semi-structured query

to find clicked page-query pairs that have similar fields from the training set. After

that, we use the information in the similar training pairs to estimate all plausible

implicit field values for the query. Finally, we rank all the searched pages by their

language modeling based similarity to the extended query.

In Chapter 4, we use the two approaches above to address the click-through sparse-

ness problem, using a publicly available query log sample from Microsoft web search

engine to help improve search performance for the standard TREC web search tasks.

1.5 Discovering Implicit Geographic Information in

Web Queries

Many times a user’s information need has some kind of geographic entity asso-

ciated with it, or geographic search intent. For example, when the user issues the

query “coffee amherst”, he or she probably wants information about coffee shops

only in Amherst, Massachusetts. Using explicit geographic (referred to as “geo” for

simplicity) information in the queries can help to personalize web search results, im-

prove a user’s search experience and also provide better advertisement matching to

the queries. However, research has found that only about 50% of queries with geo

search intent have explicit location names (Welch and Cho 2008). Thus, identi-

fying implicit geo intent and accurately discovering missing location information are

important for leveraging geo information for search.

Figure 1.6 illustrates our approach for detecting implicit geo intent and predicting

city level geo information, using the general perspective from Figure 1.1. Here, the

searched items are web pages and the implicit information is city-level geo informa-

tion. We hypothesize that implicit geo intent queries may be similar in content to the

non-location part of explicit geo intent queries and that plausible city level informa-

tion in the implicit geo intent queries corresponds to the location part of their similar
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Figure 1.6. The specific perspective of discovering implicit city information in
location-specific web queries

explicit geo queries. Under this assumption, we build bi-gram query language models

for different cities (called city language models or CLMs) from the non-location part

of explicit geo intent training queries. Then we calculate the posterior of each city

language model generating the observed query string (non-location part of the query)

for predicting plausible city information and detecting implicit geo search intent.

Previous research has demonstrated how to improve retrieval performance for

a query by incorporating related geo information when this information explicitly

appears in the query or is known beforehand (Andrade and Silva 2006; Yu and

Cai 2007; Jones et al. 2008). Therefore, we do not investigate how to incorporate

the discovered geo information for retrieval, but explore only finding city-level geo

information when it is implicit. Accordingly, we show the retrieval part of the web

search task in Figure 1.6 with the dashed line.

In Chapter 5, we use the approach in Figure 1.6 to discover implicit geo informa-

tion for simulated implicit geo intent queries, generated from a large scale industry-

level web query log sample from Yahoo! search engine.
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1.6 Conclusion

We highlight the specific contributions of our research for each of the four specific

IR challenge here. For the implicit field value challenge (introduced in §1.2 and

discussed in Chapter 2):

1. We develop a language modeling based technique, called Structured Relevance

Models (SRM) that can discover plausible implicit field values in large-scale

semi-structured data. We present how to use the discovered information for

semi-structured record search task.

2. Using the National Science Digital Library (NSDL) dataset, we empirically show

the effectiveness of our technique for discovering implicit field values. In a multi-

labeled learning task where the goal is to predict a set of appropriate plausible

subject values from the whole NSDL collection for synthetic records having

empty subject fields, our technique correctly predicts 5-6 plausible subject values

in its top 8 suggestions and achieves an average precision of 74.5% for selecting

the subject field values.

3. We demonstrate the effectiveness of our approach for two real-world semi-

structured records search tasks: searching the NSDL collection; and matching

semi-structured job and resumes records in an industry-scale online job/resume

collection. In the former task, our approach achieves a mean average preci-

sion of over 20% when the user-specified query fields are empty in the searched

NSDL records; in the latter one, our approach brings more than one matching

resume in the top-5 returned results when using job descriptions to search.

4. We design synthetic retrieval experiment on the NSDL collection to show that

our technique can work with data where the missing field problem is severe in

different degrees; the retrieval performance of the technique degrades gradually

instead of drastically with more information missing.
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For the anchor text challenge (introduced in §1.3 and discussed in Chapter 3):

1. Although content similarity has been used widely in other applications, to the

best of our knowledge, we are the first to utilize web content similarity to address

the anchor text sparsity problem.

2. We present two complimentary language modeling based techniques – the query-

side approach (SRM) and the searched-item-side approach (called relevant an-

chor text language model or RALM) from our general perspective – to discover

plausible anchor text information and use it for retrieval.

3. We design experiments with two large-scale TREC web corpora (GOV2 and

ClueWeb09) to demonstrate that RALM can effectively discover missing anchor

text for synthetic web pages with no in-links, compared with Metzler et al.’s

link-based approach (2009).

4. We use TREC web named-page finding tasks to evaluate the utility of the

discovered information by different approaches for helping web search. We

show that RALM improves the IR performance by more than 8% over other

alternative approaches, including some web hyperlink graph based approaches

that discover missing anchor text for a page through collecting anchor text from

its web neighbors.

For the click-through challenge (introduced in §1.4 and discussed in Chapter 4):

1. Although content similarity has been used widely in other applications, to the

best of our knowledge, we are the first to utilize web content similarity to

discover plausible additional semantic click-through features from web query

logs for web search.

2. We present two language modeling based approaches based on our general per-

spective in Figure 1.1 to address the click-through sparseness problem for web
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search. The query-side approach is based on SRM and the searched-item-side

approach, called relevant (click-associated) query language model (RQLM), is

based on using web content similarity. We further combine RQLM and the

random walk approach for reducing the click-through sparseness and improving

retrieval performance.

3. Using a publicly available query log sample (Microsoft Live Search 2006 Query

Log Excerpt) and two sets of TREC ad hoc web search tasks (TREC Terabyte

Track 2005-2006 and Web Track 2009-2010), we demonstrate the effectiveness

of using our two approaches (SRM and RQLM) to discover additional semantic

click-through features from click-through data for web search. For the TREC

Web Track ad hoc web search tasks, compared with a standard query likelihood

baseline that does not use click-through information, SRM achieves more than

15% improvement of mean average precision (MAP) on the training queries,

and RQLM achieves more than 11% improvement of MAP on both the training

and testing queries when combined with the state-of-the-art Markov random

walk approach (Craswell and Szummer 2007; Gao et al. 2009).

4. For this challenge, we show that RQLM is less prone to irrelevant noise in

the training web collection than the SRM based approach and achieves better

retrieval performance on test queries in both TREC ad hoc web search tasks.

For the geo information challenge (introduced in §1.5 and discussed in Chapter 5):

1. We present how to detect web queries’ underlying search intent that is im-

plicitly associated with city-level geographic (geo) boundary and discover the

corresponding plausible city information, using the query-side approach from

our general perspective for handling implicit information. We build geo-related

query language models for each city from the non-location part of web queries

that explicitly contain the same city, and use the built query language models
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(called city language models or CLMs) for our implicit geo search intent analysis

task.

2. We generate a large set of synthetic implicit city-level geo search intent queries

using a large-scale query log sample from the Yahoo! search engine. Then we

demonstrate that on these queries, (1) our approach achieves over 90% precision

and more than 74% accuracy for detecting implicit geo search intent and (2)

the CLMs effectively discovers implicit cities with high precision (88%) and

recall (74%). Further human evaluation experiments show CLMs achieves high

accuracy (84.5%) of predicting real city labels for the implicit geo intent queries

which are highly possibly related to certain particular cities.

Across the tasks and others, our research has the following major general contri-

butions:

1. We present a general perspective for discovering and using implicit data infor-

mation for different IR challenges. Our approach can be adapted for addressing

implicit information for other IR challenges, beyond the four specific challenges

investigated in this thesis.

2. We develop language modeling based techniques for effectively discovering im-

plicit information in large-scale real-world textual data for retrieval purposes.

3. We present how to incorporate the discovered information into retrieval pro-

cess. Using a variety of IR tasks performed on different large-scale real-world

datasets, we empirically evaluate the effectiveness of our presented approaches,

and demonstrate that using discovered information can improve the retrieval

performance for different search tasks.

4. Using our general implicit information discovery perspective, we investigate

both the query-side and the searched-item-side approaches of handling implicit
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information for several real-world search tasks. The query-side approach intro-

duces a technique called Structured Relevance Models (SRM) to discover im-

plicit information in different query aspects for query expansion. The searched-

item-side approach employs a contextual language translation (CLX) approach

to discover implicit information in different data aspects of the searched items

for smoothing and reranking. We empirically compare their effectiveness and

discuss their relative advantages and weaknesses.

1.7 Structure of the Thesis

The remaining parts of the thesis is organized as follows. In the next four chap-

ters, we describe the details of our research on handling the implicit information for

the four specific IR challenges, in the same order as we described them in this chap-

ter. Specifically, we present how to discover implicit field values in semi-structured

databases for finding relevant records in Chapter 2, how to discover anchor text for

web search in Chapter 3, how to discover additional click-through query language

information from web query logs for web search in Chapter 4 and how to discover

implicit geographic information in web queries in Chapter 5.

Each of these four chapters is organized similarly as follows. First, we provide

background of the implicit data information addressed in that chapter and briefly

introduce our approach for that task. Then we review related research. Next, we for-

mally describe our language modeling based approach to discover implicit information

for each specific IR challenge. When necessary, we also introduce some alternative

information discovery approaches to be compared, which use additional information

that is only available for that specific search task. After that, we design experiments

with large-scale real-world data-sets for evaluating the effectiveness of our proposed

approach and comparing it with other available alternative approaches. Finally, we

summarize the discovery of our research for that specific IR challenge and conclude.
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At the end of this thesis in Chapter 6, we discuss some general observations in our

research, such as the advantages and weaknesses of the SRM based query-side and the

CLX based searched-item-side approaches of discovering implicit information; then

we conclude and discuss some future research directions.
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CHAPTER 2

DISCOVERING IMPLICIT FIELD VALUES IN

SEMI-STRUCTURED DATABASES FOR SEARCHING
RELEVANT RECORDS

2.1 Introduction

In this chapter, we address the challenge of finding relevant records in large-scale

semi-structured databases that contain records with incomplete or empty fields. We

start with a detailed description of this research issue.

Information processing of semi-structured data is a prominent research area in

both the IR and Relational Databases (DB) research fields. “Semi-structured” typ-

ically means that the data have some semantic structures, e.g. tags and markups,

but do not conform with the formal structure of tables and data models associated

with typical database systems (Buneman 1997). For example, HTML/XML doc-

uments and emails are some types of semi-structured data because they use simple

HTML/XML tags or email fields, respectively, to denote semantic units in the doc-

uments instead of formal relational structure of tables and data models. Here we

consider semi-structured documents/records that contain natural language textual

fields. For example, if documents contained subject and author fields, we might see

queries looking for documents about the theory of relativity by the author Einstein.

Some relational database research combined the Structured Query Language (SQL)

and some typical IR relevance metrics (e.g. tf ⋅idf score) to use a structured Boolean

relational query for searching and ranking semi-structured documents (e.g., Grabs

and Schek (2002)). For example, a structured query like: subject = ‘elementary dif-

ferential geometry’ AND audience = ‘undergraduate’ might be formulated to answer
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a user’s request for finding undergraduate reading materials about elementary dif-

ferential geometry. Then the returned documents are ranked according to the query

terms’ tf ⋅idf scores in each document’s field (Grabs and Schek 2002). However,

such an Boolean field matching SQL-like approach usually assumes complete infor-

mation for every record in the database, while in many real-world semi-structured

documents, many text fields are incomplete or even missing. Thus, this approach

might miss many plausible relevant documents about ‘elementary differential geom-

etry’, only because they lack the target audience (reading level) information. Our

research aims to find all plausible relevant information in response to a query such as

the one above.

Our research is motivated by the challenges we encountered in working with the

National Science Digital Library (NSDL) collection.1 Each item in the collection

is a scientific resource, such as a research paper or an educational video. In addi-

tion to its main content, each resource is annotated with metadata, which provides

information such as the author or creator of the resource, its subject area, format

(text/image/video) and intended audience – in all over 90 distinct fields. Making use

of such extensive metadata in a digital library paves the way for constructing highly-

focused models of the user’s information need. These models have the potential to

dramatically improve the user experience in targeted applications, such as the NSDL

portals.

However, directly using a relational engine for searching a semi-structured collec-

tion similar to the NSDL collection will run into a number of obstacles. One problem

is that natural language fields are filled inconsistently: e.g., the audience field may

contain values such as K-4, K-6, second grade, and learner, all of which are clearly

semantically related. A larger problem is that of empty fields. Table 2.1 shows some

1http://www.nsdl.org
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records average unique
covered length words

title 655,673 (99%) 7 102,772
description 514,092 (78%) 38 189,136

subject 504,054 (77%) 12 37,385
content 91,779 (14%) 743 575,958

audience 22,963 (3.5%) 4 119
Table 2.1. Summary statistics for the five NSDL fields used in our experiments.

statistics of 5 fields (title, description, subject, content and audience) from a Jan-

uary 2004 snapshot of the NSDL collection. It can be observed that 23% of the

records in the collection have empty subject field and only 3.5% mention target au-

dience. Therefore if a relational engine were directly applied for querying records in

the NSDL collection, it will bump into the empty field problem. For example if a

query contains audience = ‘elementary school’, it will consider at most 3.5% of all

potentially relevant resources in the NSDL collection.

(a) (b)

Figure 2.1. Discovering implicit field values for semi-structured records following
the general perspective for discovering implicit information

To address the above issue, following our general perspective from Figure 2.1(a)(also

shown in Figure 1.1 in Chapter 1), we employ the approach of Figure 2.1(b) to discover

implicit field values for the semi-structured record retrieval tasks. Our hypothesis is

that semi-structured records that have similar attribute values in some fields may have
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similar attribute values in other fields due to the cross-field relations between attribute

values in different fields. Using this assumption, we discover plausible implicit field

values of semi-structured records by using their similar records’ corresponding infor-

mation. Then the inferred information can be used for retrieval. We develop language

modeling based technique to estimate the likely implicit field values for every empty

field in a given query, based on the context of the observed query fields.

We evaluate the performance of our approach by investigating two different re-

trieval tasks on two large-scale real-world semi-structured databases that contain

incomplete data records. The first is the IR challenge on the National Science Digital

Library (NSDL) collection described at the beginning of this chapter. The second is to

match semi-structured job and resume records in a large scale job/resume collection

provided by Monster Worldwide2.

The remaining parts of this chapter will be organized as follows. We begin by re-

viewing related work in §2.2. In §2.3, we formally describe a hypothetical probabilistic

procedure of generating semi-structured records and present how to use this procedure

to estimate the distributions of plausible implicit field values in semi-structured data.

Next, in §2.4 we design synthetic experiments using the NSDL collection mentioned

earlier to directly evaluate the quality of the discovered field values by our approach;

for comparison, we also report the evaluation results of using an alternative machine

learning approach on the simulated data. These results demonstrate the potential of

using our approach for retrieval. After that, in §2.5 we describe the details of how to

employ our technique for retrieval. In §2.5.2, we evaluate the retrieval performance of

our approach on the NSDL search task. In §2.5.3, we design a small-scale synthetic IR

experiment with the NSDL records to evaluate how our approach performs when en-

countering different amount of missing information in the semi-structured data. After

2http://www.monster.com, an online job service company

30



that, in §2.5.4 we employ our approach for another large-scale semi-structured data

search task: matching suitable job/resume pairs in the Monster data. We conclude

in §2.6.

2.2 Related Work

The issue of handling missing field values in semi-structured data is addressed in

a number of publications straddling the areas of relational databases and machine

learning. Researchers usually introduce a statistical model for predicting the value

of a missing attribute or relation, based on observed values. Friedman et al. (1999)

introduced a directed graphical model, Probabilistic Relational Models (PRM) that

extends Bayesian networks for automatically learning the structure of dependencies

and reasoning in a relational database. Taskar et al. (2001) demonstrated how PRM

can be used to predict the category of a given research paper and show that cate-

gorization accuracy can be substantially improved by leveraging the relational struc-

ture of the data. They also proposed a technique called relational Markov networks

(RMNs) (Taskar et al. 2002), which use undirected graphical models for reason-

ing with autocorrelation in relational data. Heckerman et al. (2004) introduced the

Probabilistic Entity Relationship model as an extension of PRM that treats rela-

tions between entities as objects. Neville et al. proposed several relational learning

models, including Relational Bayesian Classifier (RBC) (Neville et al. 2003), Rela-

tional Probabilistic Trees (RPT) (Neville et al. 2003) and Relational Dependency

Networks (RDN) (Neville and Jensen 2003), to predict unknown (or missing) at-

tribute values of some records in relation databases, based on different assumptions

of the dependencies in relational data. Different from these approaches, we work with

free-text fields that contain thousands of different field values (words), whereas rela-

tional learning tasks usually deal with closed-vocabulary values, which usually exhibit

neither the synonymy nor the polysemy inherent in natural language expressions.
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Discovering multiple implicit field values can be viewed as a multi-labeled clas-

sification problem in machine learning (ML) research where each unique field value

represents a different label and each record has multiple labels. The challenging goal

is to automatically classify each data sample into more than one category. Zhu et al.

(2005) provided a detailed survey for different approaches of multi-labeled classifica-

tion techniques. Some research built complicated hierarchical discriminative learning

models (Godbole and Sarawagi 2004; Rousu et al. 2006) while our research fol-

lows a generative approach for this classification problem. The generative approach

typically relies on some hypothetical generative probabilistic model to generate sam-

ples, and learns posteriors for classification. McCallum (1999) described a parametric

generative mixture model which assumes that each multi-labeled sample is generated

by a mixture of single-labeled generative models, then utilized EM algorithm for

learning parameters. Different from this research, we focus on the specific task of dis-

covering implicit values in semi-structured database and develop our technique based

on a probabilistic procedure of generating semi-structured records. We also directly

handle large scale incomplete semi-structured data where there are a large number

of empty fields. Furthermore, the goal of our work is different: we aim for using dis-

covered field values for retrieval purpose, i.e., accurately ranking incomplete records

by their relevance to the user’s query. Our approach is related to the relevance based

language models (RMs), proposed by Lavrenko and Croft (2001). Their original work

introduces the RMs to discover plausibly useful query terms for query expansion while

our approach further leverages the structure in the queries and searched records for

building structured RMs and searching relevant records.

Our work is also related to a number of existing approaches for semi-structured

text search. Desai et al. (1987) followed by Macleod (1991) proposed using the stan-

dard relational approach to searching semi-structured texts. The lack of an explicit

ranking function in their approaches was partially addressed by Blair (1988). Fuhr
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(1993) proposed the use of Probabilistic Relational Algebra (PRA) over the weights of

individual term matches. Vasanthukumar et al. (1996) developed a relational imple-

mentation of the inference network retrieval model. A similar approach was taken by

de Vries and Wilschut (1999), who managed to improve the efficiency of the approach.

De Fazio et al. (1995) integrated IR and RDBMS technology using an approached

called cooperative indexing. Cohen (2000) described WHIRL – a language that al-

lows efficient inexact matching of textual fields within SQL statements. A number of

relevant works have been published in the proceedings of the INEX workshop.3 The

main difference between these endeavors and our work is that we are explicitly focus-

ing on the cases where parts of the structured data are incomplete or missing. For

the situation where the original queries do not have explicit field structure, Kim et al.

(2009) proposed a language modeling based approach to discover the implicit query

field structure for better searching relevant records. Their research complements our

work which focuses on the implicit field values in queries and searched records.

Our approach for discovering plausible implicit field values for retrieval was ini-

tially presented in one published paper (Lavrenko et al. 2007), which focused on

searching relevant semi-structured NSDL records where both the query and its rele-

vant records may contain incomplete or empty fields. In this paper, Lavrenko designed

a hypothetical process of generating semi-structured records in the language modeling

framework and proposed a retrieval technique based on this generative process; then

we together implemented the retrieval technique and designed retrieval experiments

with the NSDL collection to evaluate the performance of the technique. The experi-

mental results are also described in §2.5.2 in this chapter. I did further experiments

to evaluate the robustness of our approach when encountering different amount of

missing information, and the results are presented in §2.5.3 in this chapter.

3http://inex.is.informatik.uni-duisburg.de/index.html and http://www.informatik.

uni-trier.de/˜ley/db/conf/inex/
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We further investigated directly discovering implicit field values in semi-structured

databases using our approach and compared its performance with several state-of-the-

art-relational learning approaches (Yi et al. 2007). Part of our results are described

in §2.4 in this chapter. Moreover, we applied this technique for the IR challenge of

matching appropriate resume/job pairs in the semi-structured Monster dataset that

also contain large amounts of incomplete or empty fields (Yi et al. 2007). This work

is also described in §2.5.4 in this chapter.

2.3 Discovering Implicit Field Values

In this section we provide a detailed description of our generative approach to

address the existing empty field problem when searching semi-structured records.

The search task here is to identify a set of records relevant to a semi-structured query

provided by the user. We assume the query specifies a set of keywords for each field of

interest to the user, for example Q: subject=‘physics,gravity’ AND audience=‘grades

1-4’ 4 Each record in the database is a set of natural-language descriptions for each

field. A record is considered relevant if it could plausibly be annotated with the query

fields. For example, a record clearly aimed at elementary school students would be

considered relevant to Q even if it does not contain ‘grades 1-4’ in its description of

the target audience.

This task is not a typical search task because the fielded structure of the query

is a critical aspect of the processing, not one that is largely ignored in favor of pure

content based retrieval. On the other hand, the approach used is different from most

DB work because we explicitly target the empty field problem.

Our approach is based on the idea that plausible values for a given field could be

inferred from the context provided by the other fields in the record. For instance,

4Here we will focus on simple conjunctive queries. Extending our model to more complex queries
is reserved for future research.
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a resource titled ‘Transductive SVMs’ and containing highly technical language in

its description is unlikely to be aimed at elementary-school students. Next in §2.3.1

and §2.3.2 we will describe a statistical model that will allow us to infer the values

of un-observed fields. At the intuitive level, the model takes advantage of the fact

that records similar in one respect will often be similar in others. For example, if two

resources share the same author and have similar titles, they are likely to be aimed at

the same audience. Formally, our model is based on the generative paradigm where

we assume a probabilistic process that could be viewed, hypothetically, as the source

of every record in our collection.

2.3.1 Definitions

We start with a set of definitions that will be used through the remainder of this

chapter. Let C be a collection of semi-structured records. Each record w consists

of a set of fields w1. . .wm. Each field wi is a sequence of discrete variables (words)

wi,1. . .wi,ni
, taking values in the field vocabulary Vi.

5 When a record contains no

information for the i’th field, we assume ni=0 for that record. We will use pi to denote

a language model over Vi, i.e. a set of probabilities pi(v)∈[0, 1], one for each word v,

obeying the constraint Σvpi(v) = 1. The set of all possible language models over Vi

will be denoted as the probability simplex IPi. We define � : IP1×⋅ ⋅ ⋅×IPm→[0, 1] to

be a discrete measure function that assigns a probability mass �(p1. . .pm) to a set of

m language models, one for each of the m fields present in our collection.

2.3.2 Generative Model

We now present a generative process that will be viewed as a hypothetical source

that produced every record in the collection C. We stress that this process is purely

hypothetical ; its only purpose is to model the kinds of dependencies that are useful

5We allow each field to have its own vocabulary Vi, since we generally do not expect author
names to occur in the audience field, etc. We also allow Vi to share words.
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for inferring implicit field values from observed parts of a record. We assume that

each record w in the database is generated in the following manner:

1. Pick m distributions p1. . .pm according to �

2. For each field i = 1. . .m:

(a) Pick the length ni of the i′tℎ field of w

(b) Draw i.i.d. words wi,1. . .wi,ni
from pi

Under this process, the probability of observing a record {wi,j : i=1..m, j=1..ni} is

given by the following expression:

P (w) =
∫

IP1...IPm

⎡

⎣

m
∏

i=1

ni
∏

j=1

pi(wi,j)

⎤

⎦ �(p1. . .pm)dp1. . .dpm (2.1)

2.3.2.1 A Generative Measure Function

The generative measure function � plays a critical part in Equation (2.1): it

specifies the likelihood of using different combinations of language models in the

process of generating w. The measure function can be set in a number of different

ways, leading to very different dependence structures among the fields of w. In

choosing � we tried to make as few assumptions as possible about the structure

of our collection, allowing the data to speak for itself. We use a non-parametric

estimate for �, which makes our generative model similar to Parzen windows or

kernel-based density estimators (Silverman 1986).6 Our estimate relies directly on

the combinations of language models that are observed in the training part of the

6The distinguishing feature of our model is that it operates over discrete events (strings of words),
and accordingly the mass function is defined over the space of language models, rather than directly
over the data points, as would be done by a Parzen window.
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collection. Each training record w = w1. . .wm corresponds to a unique combination

of language models pw

1 . . .p
w

m defined by the following equation:

pw

i (v) =
#(v,wi) + �icv

ni + �i
(2.2)

Here #(v,wi) represents the number of times the word v was observed in the i’th

field of w, ni is the length of the i’th field, and cv is the relative frequency of v in the

entire collection. Dirichlet smoothing parameters �i (Zhai and Lafferty 2001b)

allow us to control the amount of smoothing applied to language models of different

fields; their values are set empirically on a held-out portion of the data.

We define �(p1. . .pm) to have mass 1
N

when its argument p1. . .pm corresponds to

one of the N records w in the training part Ctn of our collection, and zero otherwise:

�(p1. . .pm) =
1

N

∑

w∈Ctn

m
∏

i=1

1pi=p
w

i
(2.3)

Here pw

i is the language model associated with the training record w (equation 2.2),

and 1x is the � Boolean indicator function that returns 1 when its predicate x is true

and zero when it is false. Note that by using this generative measure function �, the

integral in Equation (2.1) is not the Riemann integral but the Lebesgue integral and

the probability of observing a new record {w′ = w′
i,j : i=1..m, j=1..ni} is:

P (w′) =
1

N

∑

w∈Ctn

m
∏

i=1

ni
∏

j=1

pw

i (w
′
i,j) (2.4)

2.3.2.2 Assumptions and Limitations of the Model

The generative model described in the previous section treats each field in the

record as a bag of words with no particular order. This representation is often as-

sociated with the assumption of word independence. We would like to stress that

our model does not assume word independence, on the contrary, it allows for strong

37



un-ordered dependencies among the words – both within a field, and across different

fields within a record. To illustrate this point, suppose we let �i→0 in Equation (2.2)

to reduce the effects of smoothing. Now consider the probability of observing the

word ‘elementary’ in the audience field together with the word ‘differential’ in the

title (Equation 2.4). It is easy to verify that the probability will be non-zero only if

some training record w actually contained these words in their respective fields – an

unlikely event. On the other hand, the probability of ‘elementary’ and ‘differential’

co-occurring in the same title might be considerably higher.

While our model does not assume word independence, it does ignore the relative

ordering of the words in each field. Consequently, the model will fail whenever the

order of words, or their proximity within a field carries a semantic meaning.

2.3.3 Estimating Plausible Implicit Field Values

Now we utilize the generative model described above to estimate the distributions

over plausible values v ∈ Vi in different fields wi of a semi-structured record w =

w1. . .wm. Assume that the whole collection C has been divided into the training

part Ctn and the testing part Ctt. Given a testing record w′ ∈ Ctt, we now use the

training part Ctn to estimate plausible implicit field values forw′ by using the observed

w′
1. . .w

′
m. Specifically, we calculate a set of relevance models R1. . .Rm for w′, where

the relevance model Ri(v) specifies how plausible it is that word v would occur in the

i’th field of w′ given the observed w′ = w′
1. . .w

′
m, by:

Ri(v) = P (w′
1. . .v∘w

′
i. . .w

′
m)/P (w′

1. . .w
′
i. . .w

′
m). (2.5)

We use v∘w′
i to denote appending word v to the string w′

i. We call the estimated

distributions R(w′)= R1. . .Rm Structured Relevance Models (SRM) for w′, since

they may provide all plausible relevant information that can be inferred from the

observed parts of the record w′.

38



To calculate the SRM R(w′) for w′, we can rewrite Equation (2.5) as:

Ri(v) = (
∑

w∈Ctn

P (w′
1. . .v∘w

′
i. . .w

′
m∣w) ∗ P (w))/P (w′). (2.6)

According to the generative process and Equation (2.4), we further have:

Ri(v) =
∑

w∈Ctn p
w

i (v) ∗ P (w∣w′),

P (w∣w′) ∝ P (w′∣w).
(2.7)

In this way, the SRM R(w′) can be computed using Equation (2.2) and (2.7). Simi-

lar to how the typical relevance models are implemented in practice (Lavrenko and

Croft 2001), for efficiency R(w′) is computed from the top-k most similar records of

w′, i.e. records that have the top-k highest posterior probabilities P (w∣w′
1. . .w

′
i. . .w

′
m)

in Equation (2.7). We can use this approximation method because that the posteriors

of other records in Equation (2.7) are relatively small thus have little impact on the

result Ri(v). We tune the value of k on training data in different experiments.

2.4 Evaluating Discovered Field Values

In this section, we focus on directly evaluating the quality of the discovered plau-

sible field values by using the Structured Relevance Models approach. The purpose

here is to investigate the potential of using our approach for retrieval. Employing the

proposed technique for real-world retrieval tasks will be described later in §2.5.

We can use the value Ri(v) of each plausible value v, i.e. v’s estimated occurrence

probability in the i’th field of a semi-structured recordw, in the computed SRMR(w)

to rank the relative importance of v in the i’th field of w. Thus through analyzing

the quality of the top-k most important values in each field according to the SRM,

we can evaluate its effectiveness of discovering plausible implicit field values for semi-

structured records. From the view of machine learning research, predicting multiple
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un-observed field values is a multi-labeled classification problem where each unique

field value represents a different category label and each record has multiple labels.

Our SRM approach follows a generative approach for this classification problem where

we use a hypothetical generative model for estimating the probability of each record

belonging to each category. Alternatively, we could have followed a discriminative

approach in the machine learning research for predicting multiple un-observed labels

(Tang et al. 2009), where we can build discriminative classifiers for each category

(known as One-Vs-Rest approach) and use the trained classifiers for the prediction.

However, it will induce high computational cost to employ the discriminative approach

to predict plausible textual field values: these fields usually consist of free text instead

of closed-vocabulary small-sized labels. For example, we can see in Table 2.1 (in §2.1)

that there are 119 categories in the audience field and 37,385 categories in the subject

field, from the view of the multi-labeled learning. Nevertheless, we use a small-

scale subset records from the NSDL snapshot to compare the performance of the

SRM approach and the discriminative learning approach. Only a limited number

of NSDL records are selected for this comparison experiment because training and

testing with the whole NSDL collection (656,992 records) with huge label variety

are prohibitively expensive using the discriminative approach. We then move to a

large-scale experiment, where the whole NSDL collection is used and only the SRM

approach can be employed.

In the small-scale experiment, we confine ourselves to a subset of the NSDL collec-

tion. This subset includes all the NSDL records in which all five fields (title, content,

description, subject and audience) in Table 2.1 are non-empty – overall there are

11,596 of these records. The multi-labeled learning task is to predict the subject

field values of each NSDL record given its title, content and description fields’ in-

formation, i.e. we assume the subject values are missing for these records and the

original subject values are then used as ground-truth values for evaluation. Because
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Figure 2.2. Average error rates for the SRM and SVM approaches to selecting the
subject field values, as a function of the number of records of a subject label there are
in the corpus.

of the computational cost issue of the discriminative approach, we only consider the

211 most frequent values in the subject field of the whole NSDL collection – each

subject value is viewed as an individual category. The discriminative approach we

employ for this task is the multi-labeled Support Vector Machines (SVM) (Chang

and Lin 2006), which is similar to the approach used by Tang et al. (2009) for query

classification.

We use 5-fold cross validation and calculate the per-value average error rates for

both the SVM approach and the SRM approach, as a function of the number of

records of the subject value there are. Errors are measured as the proportion of

incorrect labels that are ranked higher than the one being measured. Figure 2.2 and

Table 2.2 shows, for example, that if a subject value occurs 20-30 times, the SVM

error rate is 31% compared to only 22% for our approach; on the other hand, with

160-200 records, the error rates are 5% and 12%, respectively. The results show that

SRM can achieve lower error rates than the SVM approach on values that appear less

frequently in the records.

Table 2.3 further shows the statistics for the number of records of different subject

values in the original NSDL collection. We can observe that more than 90% of the
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Num of records 20-30 30-40 40-50 50-60 60-70 70-80
SVM avg 31.37% 22.15% 12.57% 11.66% 9.49% 9.13%

stdev 2.58% 2.23% 2.24% 2.16% 2.37% 3.33%
SRM avg 22.19% 19.51% 11.91% 10.80% 11.19% 14.55%

stdev 2.25% 2.71% 1.74% 1.78% 3.51% 1.67%

Num of records 80-90 90-100 100-120 120-160 160-200 200-250
SVM avg 7.90% 6.65% 5.25% 5.40% 5.04% 3.46%

stdev 4.75% 3.22% 0.87% 2.52% 1.54% 1.46%
SRM avg 9.50% 12.04% 6.46% 10.72% 11.68% 5.96%

stdev 1.06% 1.79% 0.86% 1.70% 1.35% 1.37%

Num of records 250-300 300-400 400-500 500-800 800-1000 1000-2000
SVM avg 3.15% 3.29% 1.94% 2.09% 1.37% 1.12%

stdev 1.03% 0.93% 0.96% 0.86% 1.12% 0.38%
SRM avg 8.37% 7.48% 4.70% 5.32% 2.60% 1.39%

stdev 1.05% 1.50% 0.24% 0.21% 0.47% 0.06%
Table 2.2. Averages and standard deviations of the error rates for the SRM and
SVM approaches to selecting the subject field values.

Bin 0-10 10-20 20-30 30-40 40-50 50-60 60-70
Frequency 28724 2476 1110 658 476 355 264

Cumulative% 76.83% 83.46% 86.43% 88.19% 89.46% 90.41% 91.11%

Bin 70-80 80-90 90-100 100-120 120-160 160-200 200-250
Frequency 210 176 187 268 348 270 203

Cumulative% 91.68% 92.15% 92.65% 93.36% 94.29% 95.02% 95.56%

Bin 250-300 300-400 400-500 500-800 800-1000 1000-2000 >2000

Frequency 158 249 172 309 114 248 410

Cumulative% 95.98% 96.65% 97.11% 97.94% 98.24% 98.90% 100.00%

Table 2.3. Statistics for the number of records of different subject values.

subject values have fewer than 60 instances. This indicates that for the free-text field

value discovery in the large-scale collection, SRM can be a more appropriate choice

than SVM for the major portion of unique field values, in terms of both effectiveness

and computational cost.

Now we consider an environment where the SVM training approach was pro-

hibitively expensive in terms of time. For each test record, we ask the system to

predict a subset of subject field values from the 37,385 possible values in the NSDL

collection for a semi-structured record. That number of possible values is sufficiently
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Examples Term frequency Ground-truth terms Rsubject(v) Ordered term lists
Subject 1 3 wave 0.145 wave★

2 interference 0.132 physics★

1 physics 0.053 probable★

1 quantum 0.051 interference★

1 tutorial 0.039 quantum★

1 particle 0.037 tutorial★

1 slit 0.028 travel
1 probable 0.022 slit★

2 1 astronomy 0.348 astronomy★

1 historic 0.175 general
1 myth 0.174 historic★

1 legend 0.173 constellate★

1 constellate 0.006 physics
3 1 science 0.182 calculus★

1 theory 0.137 variable
1 precalculus 0.137 single
1 calculus 0.0167 science★

1 linear 0.0164 multivariable
1 algebra 0.0162 geometry
1 number 0.0131 compute

Table 2.4. Some examples of employing SRM for discovering plausible subject field
values. For each record, Column 3 shows the true field values of that record, Column 5
and Column 4 show top-N term lists returned by SRM (cut by the number of true field
values for subject field) and their corresponding probabilities in SRM, respectively. ★

indicates the predicted subject value is correct according to Column 3.
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large that we could not reasonably train an SVM for each one as we did in the

small-scale experiment. We just report results for the SRM approach.

To evaluate this, we randomly select 1,122 records (10% of our earlier set) that

had all five fields. For each record, we again use the content, description, and title

fields to predict its plausible subject values. We use the remaining 655,870 records

as training data for building SRM, though it is important to note: 23% of training

records have no subject field (i.e. category label information is missing in them), and

some feature information used for prediction are also missing in the training data, e.g.

22% of the records are missing description field and 86% lack a content field. Each

test record can have multiple values of the field (on average, records contain 12 subject

values). The system’s output is a ranked list of subject values. Table 2.4 presents

some example outputs of the predicted plausible values by SRM in this experiment.

To evaluate the system’s output, we use standard IR measures, including Precision

at k (P@k), Recall-Precision (R-Precision), based on where in the ranked list the

correct values occur. “P@k” measures the proportion of correct subject values listed

in the top k items. The “R-precision” value measures the proportion of correct

suggestions in the top R listed, where R is the actual number of suggestions that would

have ideally been found. The experimental results are shown in Table 2.5. P@5≈ 46%

shows that almost half of the subject values listed in the top five items suggested are

correct. R-precision ≈ 70% shows that about 70% suggestions in the top R listed are

correct, e.g. if a record has 8 subjects assigned (in the truth), then on average the top

8 suggestions would have included 5-6 (70%) that are correct. These results indicate

that the SRM approach is very effective at discovering plausible implicit values in

free-text fields in large-scale semi-structured data, thus has very promising potential

to be used for retrieval.
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P@5 0.4617
P@20 0.1496

R-precision 0.7010
Table 2.5. Using SRM for discovering missing subject values in the NSDL collection.

2.5 Searching Incomplete Semi-structured Databases

In this section, we first formally describe how we use SRM for search tasks on

semi-structured records that may contain incomplete fields, following our approach

depicted in Figure 2.1 in the introduction of this chapter (also shown in Figure 1.3 in

Chapter 1). Then we apply our approach for different retrieval tasks, including both

synthetic and real-world ones, and evaluate its retrieval performance when encoun-

tering different amounts of missing field values.

2.5.1 Retrieval Procedure

Our approach is to discover plausible implicit field values in the semi-structured

queries given their observed field information (as shown in Figure 2.1(b)), and then

search relevant semi-structured records (complete or incomplete) in the database by

matching them to the extended queries. Here we formally describe this approach.

Suppose that a user’s query q takes the same representation as a semi-structured

record w (described in §2.3.1) in the collection C, i.e., q={qi,j∈Vi : i=1..m, j =

1..ni} and that C has been partitioned into the training portion Ctn and the testing

portion Ctt. Now we assume that the input query is also a sample from the semi-

structured record generative process described in §2.3.2, albeit a very short one.

Using this assumption, we can employ the probabilistic model in §2.3.2 to discover

plausible implicit words in each query field. Then we can reconstruct a query with

the discovered information for better searching relevant records.

Specifically, we use the same technique described in §2.3.3 to calculate a Structured

Relevance Model: R(q)= R1. . .Rm for an input query q = q1. . .qm to better reflect

the user’s information need. Each relevance model Ri(v) specifies how plausible it is
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that word v would occur in the i’th field qi of a record, given that the record contains

a perfect match to the query fields q1. . .qm:

Ri(v) = P (q1. . .v∘qi. . .qm∣q1. . .qi. . .qm), (2.8)

where v∘qi denotes appending word v to the string qi. Ri(v) in Equation (2.8)

is computed using Equation (2.6) and (2.7) (in §2.3.3). At the intuitive level, the

SRM R(q) is computed using the field information from q’s similar records that have

highest posteriors P (w∣q1. . .qi. . .qm), as shown in Figure 2.1(b). In practice, as we

discussed in §2.3.3, we only use the top-k most similar records of q to compute the

Ri(v) for efficiency. The value of k is tuned on a held-out portion of the data.

After we compute the SRM R(q), we can rank testing records w′ ∈ Ctt by their

similarity to it. As a similarity measure we use weighted cross-entropy, which is an

extension of the ranking formula originally proposed by Lafferty and Zhai (2001):

H(R1..m;w
′
1..m) =

m
∑

i=1

�i

∑

v∈Vi

Ri(v) logp
w

′

i(v). (2.9)

The outer summation goes over every field of interest, while the inner extends over all

the words in the vocabulary of the i’th field. pw
′

i are estimated from Equation (2.2).

Meta-parameters �i allow us to vary the importance of different fields in the final

ranking; the values are also tuned on a held-out portion of the data.

2.5.2 Retrieval Experiment on the NSDL Snapshot

2.5.2.1 Data and Methodology

We first employ our SRM-based retrieval approach for a search task on the NSDL

collection (described in §2.1). We randomly split the NSDL snapshot into three subset

collections for the retrieval experiments: the training set, which contains 50% of the

records and is used for building the SRM; the held-out set, which comprises 25%
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of the data and is used to tune the smoothing parameters �i and the bandwidth

parameters �i for the i’th field of records; and the testing set, which contains 25%

of the records and is used to evaluate the performance of the tuned model7.

Our experiments are based on a set of 127 semi-structured queries. The queries

were constructed by combining some randomly picked subject words with some audi-

ence words, and then discarding any combination that had less than 10 exact matches

in any of the three subsets of our collection. This procedure yields queries such as

Q91={subject=‘artificial intelligence’ AND audience=‘researchers’}, or Q101=

{subject=‘philosophy’ AND audience=‘high school’}. Then we randomly split the

queries into two groups, 64 for training and 63 for evaluation.

We evaluate SRM’s ability to find “relevant” records in the face of empty fields.

In this experiment, we define a record w to be relevant to the user’s query q if every

keyword in q is found in the corresponding field of w. For example, in order to be

relevant to Q101 a record must contain the word ‘philosophy’ in the subject field and

words ‘high’ and ‘school’ in the audience field. If either of the keywords is missing,

the record is considered non-relevant.8

When the subject and audience fields of testing records are fully observable, achiev-

ing perfect retrieval accuracy is trivial: we simply return all records in the testing set

that match all query keywords in the subject and audience fields. However, our main

interest concerns the scenario when parts of the testing data are missing. We are

going to simulate this scenario in a rather extreme manner by completely removing

the subject and audience fields from all testing records. This means that a straight-

7In real use, a typical pseudo relevance feedback scheme can be followed: retrieve top-k documents
to build the SRM then perform IR again on the same whole collection.

8This definition of relevance is unduly conservative by the standards of IR researchers. Many
records that might be considered relevant by a human annotator will be treated as non-relevant,
artificially decreasing the accuracy of any retrieval algorithm. However, our approach has the ad-
vantage of being fully automatic: it allows us to test different models on a scale that would be
prohibitively expensive with manual relevance judgments.
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Figure 2.3. Discovering implicit field values for an NSDL search task. Recall that
shaded boxes represent implicit information.

forward approach – matching query fields against record fields – will yield no relevant

results. Our approach will rank testing records by comparing their title, description

and content fields against the query-based SRM. Figure 2.3 depicts our approach for

this retrieval task, following the representation of discovering implicit field informa-

tion for search in Figure 2.1. We point out that in this experiment, we only hide the

subject and audience fields in the testing set and the held-out set, and do not hide

the other three fields. Furthermore, we do not change any of the five fields in the

training set and show that our approach can still build SRM for effective search from

training data that contains many empty fields.

We use the standard rank-based evaluation metrics: precision and recall. Let NR

be the total number of records relevant to a given query, suppose that the first K

records in our ranking contain NK relevant ones. Precision at rank K is defined as

NK

K
and recall is defined as NK

NR
. Average precision is defined as the mean precision
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over all ranks where relevant items occur. R-precision is defined as precision at rank

K=NR.

2.5.2.2 Baseline Systems

To demonstrate the advantages of our SRM based approach of discovering implicit

field information for retrieval, in experiments we compare the ranking performance

of the following retrieval approaches:

cLM is a cheating version of un-structured text search using a state-of-the-art

language-modeling approach (Ponte and Croft 1998). We disregard the structure,

take all query keywords and run them against a concatenation of all fields in the

testing records. This is a “cheating” baseline, since the concatenation includes the

audience and subject fields, which by our construction are normally missing from

the testing records. We use Dirichlet smoothing with parameters optimized on the

training data. This baseline mimics the core search capability available on the NSDL

website9.

bLM is a combination of SQL-like structured matching and unstructured search

with query expansion. We take all training records that contain an exact match to

our query and select 10 highly-weighted words from the title, description, and content

fields of these records. We run the resulting 30 words as a language modeling query

against the concatenation of title, description, and content fields in the testing records.

We use this baseline to investigate the performance of using SQL-style exact match

and a state-of-the-art query expansion technique – true Relevance Model (Lavrenko

and Croft 2001)) – together to address the empty field problem here. This is a non-

cheating baseline.

SRM is the Structured Relevance Model. For reasons of both effectiveness and

efficiency, we first run the original query to retrieve top-500 records, then use these

9http://www.nsdl.org
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cLM bLM SRM %change improved
Retrieved Relevant: 949 914 861 -5.8 26/50
Average Precision: 0.1790 0.1668 0.2156 29.3 43/63
Precision at:

5 records 0.1651 0.2413 0.3556 47.4 32/43
10 records 0.1571 0.2063 0.2889 40.0 34/48
20 records 0.1540 0.1722 0.2024 17.5 28/47

R-Precision 0.1587 0.1681 0.2344 39.4 31/49
Table 2.6. Performance of the 63 test queries retrieving 1000 records on the testing
data. Bold figures show statistically significant differences. Across all 63 queries, there
are 1253 relevant records. The %change column shows relative difference between
SRM and bLM. The Bold figures indicate SRM statistically significantly improves
bLM (according to the sign test with p < 0.05) in terms of the IR metric in that row.

records to build SRMs. When calculating the cross entropy (Equation 2.9), for each

field we only include the top-100 words which will appear in that field with the largest

probabilities.

Note that our baselines do not include a standard SQL approach directly on testing

records. Such an approach would have perfect performance in a “cheating” scenario

with observable subject and audience fields, but would not match any records when

the fields are removed.

2.5.2.3 Results

Table 2.6 shows the performance of the SRM based approach against the two base-

lines. The model parameters were tuned using the 64 training queries on the training

and held-out sets. The results are for the 63 test queries run against the testing set.

(Similar results occur if the 64 training queries are run against the testing set.) The

%change column shows relative difference between our model and the baseline bLM.

The improved column shows the number of queries where SRM exceeded bLM vs.

the number of queries where performance was different. For example, 33/49 means

that SRM out-performed bLM on 33 queries out of 63, underperformed on 49−33=16

queries, and had exactly the same performance on 63−49=14 queries.
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The results show that SRM outperforms the baselines in the high-precision re-

gion, beating bLM’s mean average precision by 29%. User-oriented metrics, such

as R-precision and precision at 10 documents, are improved by 39.4% and 44.3%

respectively. These observations indicate: although standard information retrieval

techniques and structured field matching could be combined to address the empty

field problem, the SRM based approach outperforms them. The absolute perfor-

mance figures of SRM are also very encouraging. Precision of 28% at rank 10 means

that on average almost 3 out of the top 10 records in the ranked list are relevant,

despite the requested fields not being available to the model. It is encouraging to see

that SRM outperforms cLM, the cheating baseline that takes advantage of the field

values that are supposed to be “missing”. These results show that our approach can

effectively find relevant semi-structured records even when the query-specified fields

in those records are empty.

2.5.3 Retrieval Performance of the SRM-based Approach on Data with

Different Amount of Missing Information

Now we investigate how our SRM-based retrieval approach performs when en-

countering different amount of missing information. We design a small-scale synthetic

experiment where we can control the amount of missing field values and explore the

corresponding impact on the retrieval effectiveness of our approach.

We use the NSDL subset described in §2.4 to produce different searched target

collections for this experiment. As a reminder, this subset includes 11,596 records that

have all five of the title, content, description, subject and audience fields. The 127

semi-structured queries used in the previous section (§2.5.2) and their corresponding

relevance judgments are used again in this experiment. We first divide this NSDL

subset into two halves, one for train and one for test. Then we delete the queries
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Most frequent Most infrequent
Values dropped 2% 5% 10% 10% 20%

AvgP 0.2497 0.2151 0.1682 0.2822 0.2902
P@5 0.3627 0.3392 0.2843 0.4000 0.4020
P@20 0.2593 0.2309 0.1877 0.2907 0.2917

R-Precision 0.2764 0.2324 0.1786 0.3147 0.3234
Table 2.7. SRM’s IR Performance when most frequent or infrequent description
words are missing.

which do not have any relevant records in this NSDL subset – overall we obtain 102

remained queries for this study.

Some experimental setting of the search task here is similar to what we did in

§2.5.2. The search goal is to retrieve relevant records from the testing set given a

query that contains only subject and audience fields. All five fields are observable in

the training set, while only title, content and description fields are observable (subject

and audience are removed completely) in the testing set. To search relevant records

in the testing set, we first use records similar to the given query in the training set

to build SRM on the title, content and description fields, then use the built SRM for

search. In this experiment, there are overall 3860 relevant records in the testing set

for the 102 queries.

We fix all the tuned model parameters in our previous IR experiment in §2.5.2

to investigate the impact of different amount of implicit information on the retrieval

performance of our approach. In this study, we simulate the following different missing

information situations using the description field in both the training and testing sets:

(1) some records have empty description fields, generated by removing description

fields from randomly picked records; (2) some records have incomplete description

fields, generated by removing randomly picked description words in each record; (3)

all records lose some description words that occur most frequently or infrequently in

this NSDL subset.
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(a) The change of the SRM’s IR Performance
vs. the percentage of records completely missing
description fields.
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(b) The change of the SRM’s IR Performance vs.
the percentage of words missing in the descrip-

tion field of each record.

Figure 2.4. The impact of the amount of implicit information on the retrieval
performance of SRM. Different lines depict different evaluation metrics.

Figure 2.4 (a) and (b) show the change of the retrieval performance with different

portion of randomly picked records missing description fields and different portion

of randomly picked description words missing in each record, respectively. Table 2.7

presents the results when the most frequent (top 2%, top 5% or top 10% frequent)

or most infrequent (top 10% or top 20% infrequent) description words are missing.

We use the standard IR evaluation metrics: P@k and R-Precision, used in §2.5.2, for

measuring the performance. Figure 2.4 shows that SRM’s IR performance degraded

little by little when more and more information is missing, i.e. missing part of in-

formation will not change SRM’s IR performance drastically. This property is very

attractive because it enables SRM for more real-world search tasks on semi-structured

databases that have different situations of implicit information.

Here we observe that completely deleting description fields has a greater impact

on the SRM’s performance than dropping only part of the description fields: when

10% of the information is missing, the average precisions are about 0.21 and 0.27

respectively; when missing 50%, the average precisions are about 0.10 and 0.17 re-

spectively. Furthermore, missing frequent description words has a great impact on
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SRM’s IR performance: when only missing the 10% most frequent values, the aver-

age precision degrades to 0.1682. Another interesting observation in this experiment

is that when dropping the most infrequent description words, the average precision

does not degrade at all, e.g. 0.2822 when missing 10% and 0.2902 when missing

20%. However this phenomenon does not mean that we should delete infrequent field

values before applying SRM for IR because that this query set is small and biased,

which favors the topics appear frequently in the original NSDL snapshot – each query

generated is required to have more than 30 relevant records. Therefore, losing more

frequent field values has a greater impact on the IR performance on these queries.

2.5.4 Retrieval Experiment on the Monster Dataset

We further employ the Structured Relevance Models to handle implicit field val-

ues in another real-world semi-structured record retrieval challenge – matching semi-

structured job records and resume records in a large scale job/resume collection pro-

vided by the Monster Worldwide company.

2.5.4.1 Overview of the Search Task

We are interested in finding resumes that are appropriate matches to a job de-

scription, where appropriate means that a prospective employer would be interested

in reading the retrieved resumes. Prospective employees or employers usually submit

their resume or job information through online forms that contain many free text

fields such as job title, biography, etc. This information is typically maintained by a

relational database engine. An ideal system would retrieve candidate resumes for a

job or a list of jobs potentially suitable for a candidate. However using a relational

engine for this matching task will run into two major obstacles similar to the ones

we met when handling the NSDL collection. First, many fields are input as free form

text by users rather than a set of agreed upon keywords from a closed vocabulary.

That means that the contents cannot be reliably predicted; thus, the problem is more
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records covered average length unique terms
ResumeTitle 1,276,566 3 92,403
ResumeBody 988,107 477 1,636,980

Table 2.8. Statistics for some textual fields.

of a classic information retrieval one. Second, many fields are empty: users often do

not input all the fields in an online form. For example, in our collection, 23% of the

resumes do not have a ResumeBody field and 90% of the Summary field are empty.

We are given a collection of semi-structured resumes R, a collection of semi-

structured jobs J , and some known matched resume/job pairs < r, j >. The search

task is to retrieve a list of related resumes for any existing or new job j, or retrieve

a list of related jobs for any existing or new resume r. We focus on the former task

here; the latter one can be done in similar way and has similar performance.

2.5.4.2 Data and Methodology

This experiment is performed on a challenging large scale real-world semi-structured

collection. Each resume or job is represented as a record that may have some empty

fields – i.e. some fields are NULL. Fields can be numeric or textual. In total, the

collection contains 1,276,573 resume records (spanning 90 fields, 12 of them textual),

206,393 job records (spanning 20 fields, 9 of them textual) and 1,820,420 resume/job

pairs, which are implicitly annotated by recording job agents’ clicks when the agents

were browsing the resumes in the collection and may indicate potentially interesting

resumes for a particular job. Table 2.8 shows some statistics for resume fields.

We consider two baselines to demonstrate the advantages of the SRM based ap-

proach for this task. In the first baseline, we strip the structure from the resume

and job records by concatenating the free form text in all the fields, then run each

flattened job record as a query against the flattened resumes using a query likelihood

approach. We call this simple language modeling approach “sLM”. We expect its

performance to be weak because it does not have any way to bridge the vocabulary

55



divide between job descriptions and resumes. For example, if a job has “DB Ad-

ministrator” in the JobTitle field, it is likely that this phrase does not appear in an

appropriate candidate’s resume’s ResumeBody field, which may contain “SQL server”

or “MySQL” instead that indicate specific computer skills of the candidate. In the

second baseline, we also strip the structure of records but leverage past browsed re-

sume’/job pairs in a type of supervised query expansion. This approach is a variation

of Relevance Models (Lavrenko and Croft 2001) where the relevance model is

built from known relevant documents (resumes) rather than from highly ranked ones.

We call this approach tRM for “true relevance model.” It runs in three steps: (1)

we run the flattened job record as a query against the flattened job collection, and

retrieve a list of similar jobs; (2) we utilize the resumes that are known (by our

relevance judgments) to be related to those retrieved jobs, and build a relevance lan-

guage model from them; and (3) we run the relevance model against the flattened

resume collection and retrieve a list of similar resumes. Note that this approach has

the opportunity to bring resume-specific language that is related to the job into the

query.

We compare the two baselines above with our SRM based approach. In this

approach, we first run each field of a given job as a query against the corresponding

field of the semi-structured job collection, and merge the field-specific retrieved jobs

using weighted cross-entropy (Lafferty and Zhai 2001). We retain only the top

k most highly ranked jobs and then use the resumes known to be related to these

jobs to build the SRM. Then, we run the built SRM as a query and then rank all

resumes according to their similarity, again weighted cross-entropy. For SRM, we use

the title and body fields from both resumes and jobs (even though they have the same

name, the content is rarely similar). Figure 2.5 depicts our SRM based approach for

this retrieval task, following the representation of discovering implicit field values for

search in Figure 2.1.
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Figure 2.5. Discovering implicit field values for the Monster job/resume matching
task. Recall that the shaded box represents implicit information.

In the experiment we first randomly select a set of 300 jobs that had 60-80 an-

notated matching resumes. We split that set into two halves, one for train and

one for test. In addition, we split the set of resumes equally into training and test

sub-collections. We use the training resumes to build relevance model or SRM for

searching matching resumes in the test collection.

2.5.4.3 Results

Table 2.9 shows the performance of SRM against the two other approaches. We

are matching 150 test jobs against the test resume collection. We use the rank based

evaluation metrics (e.g. P@k and R-Precision) here, which have been described in

§2.5.2.1 and used in the NSDL retrieval experiments. The %change column shows

relative difference between SRM and tRM. The improved column shows the number

of matches where SRM exceeded tRM vs. the number of matches where performance

was different.
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sLM tRM SRM %change improved
Retrieved Matching records: 242 1134 1255 10.7 74/116

Average Precision 0.0018 0.0638 0.0726 13.9 101/147
Precision at:

5 docs 0.0093 0.1627 0.1947 19.7 23/33
10 docs 0.0073 0.1460 0.1740 19.2 31/41
20 docs 0.0070 0.1113 0.1280 15.0 40/58

R-Precision 0.0055 0.0824 0.0963 17.0 52/68
Table 2.9. Performance of matching 150 test jobs to the test resume collection.
Evaluation is based on retrieving 1000 resumes. Bold figures indicate SRM statisti-
cally significantly improves tRM (according to the sign test with p < 0.05) in terms
of the IR metric in that row. Across all 150 test jobs, there a total of 5173 matched
resumes.

The results show that without doing cross-field term inference, a classic retrieval

approach such as sLM performs very poorly for this task, i.e. we cannot directly

use text from job fields to find matching resumes due to the different languages used

in them. By using information from resumes related to a job query, both tRM and

SRM achieved much better performance. The tRM approach achieves promising

performance by incorporating a form of true relevance feedback to use related resume

information in the annotated job/resume pairs. However SRM outperforms tRM by

discovering implicit information in each related resume field for retrieval, beating

tRM’s mean average precision by almost 14%. R-precision and precision at 10 are

improved by 17% and 19% respectively.

We note that performing this resume/job matching task on a large-scale real-

world semi-structured database is very difficult. At 5 resumes retrieved, the precision

of SRM is less than 20% while on average there are 35 annotated training resumes

per job (half of the 60-80): that means that on average only 1 of the 35 relevant

resumes is found in the top five. To explore each test job’s matching result further,

we categorized the 150 jobs into 3 groups according to precision at 10; the size of

each group is shown in Table 2.10. For some jobs, both SRM and tRM find more

than 5 matched resumes in the top 10 listed (i.e., P@10 is more than a half). By
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P@10 < 0.1 0.1-0.5 > 0.5
SRM 77 49 24
tRM 87 45 18

Table 2.10. Counts of matching resumes’ results broken down by P@10 ranges.

looking into the text of some failed matching cases directly we observe that judgments

based on click-based implicit annotations are still not good enough. Although still

more analysis is needed, these preliminary results demonstrate that SRM is a very

promising technique for this challenging task.

2.6 Conclusions

In this chapter, we employed our general perspective of discovering implicit in-

formation for search in Figure 2.1(a) to handle implicit field values in searching

semi-structured records. We developed a language modeling based technique (called

Structured Relevance Models or SRM) which discovers plausible implicit field values

in large-scale semi-structured data for retrieval purpose. This technique is based on

the idea that plausible values for a given field could be inferred from the context

provided by the other fields in the record. To do the inference, SRM follows a gen-

erative paradigm and leverages a hypothetical probabilistic procedure of generating

semi-structured records. At the intuitive level SRM discovers plausible field values

for a record using its similar records’ corresponding information.

We validated the inference capability of SRM by examining the quality of its dis-

covered field values for simulated incomplete semi-structured records in two synthetic

experiments. In the first experiment where the inference task is to predict multiple

missing subject words for records in a small-scale subset of the NSDL collection, the

SRM approach performed effectively and achieved lower prediction error rates than

a state-of-the-art discriminative learning technique – SVM on the major portion of

unique subject words that appear less frequently in the collection. In the second large-

59



scale experiment where the inference task is to select a set of appropriate plausible

subject words from the whole NSDL collection for simulated incomplete records, SRM

also achieved very promising results: it brought 5-6 correct subject words into the

top 8 and achieved an average precision of 74.5% for suggesting the subject words.

These results demonstrated the effectiveness of using SRM to do cross-field inference

in semi-structured data and showed the promising potential of employing SRM for

retrieval tasks on large-scale incomplete semi-structured data.

Then we presented how to use SRM to search semi-structured databases that

contain incomplete or empty field records. We validated the SRM based retrieval

approach with two different large-scale real-world semi-structured data search tasks

that involve the empty field problem.

The first search task was performed on a large archive of the NSDL repository.

We developed a set of semi-structured queries that had relevant documents in the test

portion of collection. We then indexed the test records without the fields used in the

queries. As a result, using standard field matching approaches, not a single record

would be returned in response to the queries—in particular, no relevant records would

be found. We showed that standard information retrieval technique and structured

field matching could be combined to address the empty field problem, but that the

SRM based approach outperforms such an approach. SRM brought two relevant

records into the top five—again, querying on empty fields—and achieved an average

precision of 22%, a more than 30% improvement over a state-of-the-art relevance

model approach combining the structured field matching.

The second search task was performed on a large online job/resume collection.

The search goal is to find appropriate resumes matching to a job description. A large

set of human-annotated job/resume pairs were used for evaluation. We showed that

directly using text from job fields to search matching resumes led to poor results due

to the vocabulary mismatch between job fields and resume fields. The retrieval ap-
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proaches including SRM and a state-of-the-art relevance model approach performed

much better by inferring likely related resume field values for a job query. SRM

brought about one matching resume into the top five even the click-based matching

judgments are very incomplete. Moreover, by discovering implicit resume field in-

formation, SRM outperformed the relevance model approach that does not use the

field structure information, achieving 17% and 19% improvement over R-precision

and P@10, respectively. We point out that in this search task, we used the real-world

data without changing any implicit information in them – this is different from that

in the first NSDL search task we artificially generated a searched collection where

the query-specified fields are forced to be hidden in all searched records.

We further investigated how SRM’s IR performance changes when encountering

different amounts of missing field values, using a controlled small-scale synthetic re-

trieval experiment on an NSDL subset collection. Experimental results showed that

although SRM’s IR performance degraded with more information missing, the perfor-

mance degraded gradually, i.e., partially losing some field information did not change

SRM’s IR performance drastically. This property makes the SRM based retrieval

approach very attractive for many other real-world search tasks on semi-structured

databases where the situation of missing field values may be severe in different degrees.
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CHAPTER 3

DISCOVERING IMPLICIT ANCHOR TEXT

INFORMATION FOR WEB SEARCH

3.1 Introduction

In this chapter we leverage web anchor text to improve web search. We start with

a detailed description of the background of this research issue.

There exist rich dynamic human-generated hyperlink structures on the web. Most

web pages contain some hyperlinks, referred to as anchors, that point to other pages.

Each anchor consists of a destination URL and a short piece of text, called anchor text.

Anchors play an important role in helping web users quickly and conveniently navigate

the web for information they are interested in. Although some anchor text only func-

tions as a navigational shortcut which does not have direct semantic relation to the

destination URL (e.g.,“click here” and “next”), it is common that anchor text provides

some succinct description of the destination URL’s content, e.g. “WWW2010” and

“The Nineteenth International WWW Conference” are from some anchors linked to

http://wwwconference.org/www2010/. Anchor texts are usually reasonable queries

that web users may issue to search for the associated URL and have been used to

simulate plausible web queries relevant to the associated web pages (Nallapati et al.

2003). Dang and Croft (2009) demonstrated that using anchor text to help reformu-

late user-generated queries can achieve very similar retrieval effectiveness, compared

with using a real query log. Therefore, anchor text is highly useful for bridging the

lexical gap between user-issued web queries and the relevant web pages. It is arguably

the most important piece of evidence used in web ranking functions (Metzler et al.
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GOV2 ClueWeb09-T09B
# of web pages 25,205,179 50,220,423

# of inlinks 37,185,508 209,219,465
# of pages having inlinks 376,121 (1.5%) 7,640,585 (15.2%)
# of pages having original 977,538 (3.9%) 19,096,359 (38.0%)

or enriched in-links (Metzler et al. 2009)
Table 3.1. Summary of in-link statistics on two TREC web corpora used in our
study.

2009) and has been widely used in hypertextual domain search tasks like wiki search

(Dopichaj et al. 2009; Geva 2008) and web search (Craswell et al. 2001; Dou

et al. 2009; Eiron and McCurley 2003).

However, previous research has shown that the distribution of the number of in-

links on the web follows a power law (Broder et al. 2000), where a small portion of

web pages have a large number of in-links while most have few or no in-links. Thus,

most web pages do not have in-link associated anchor text, a situation originally

referred to as the anchor text sparsity problem by Metzler et al. (2009). This problem

presents a major obstacle for any web search algorithms that want to use anchor text

to improve retrieval effectiveness. Table 3.1 shows the anchor text sparsity problem

in two large TREC1 web corpora (GOV22 and ClueWeb09-T09B3).

To address this problem, Metzler et al. (2009) proposed aggregating, or propagat-

ing, anchor text across the web hyperlink graph so that web pages without anchor

text can be enriched with their linked web pages’ associated anchor text. Figure

3.1 illustrates the procedure they used to enrich a given web page P0’s anchor text

representation in the TREC GOV2 collection. P0’s original anchor text Aorig(P0)

comes from all anchors that are directly linked to P0 in the web pages external to

P0’s site (denoted as Linkedext(P0)). For example, Aorig(P0) consists of anchor text

1http://trec.nist.gov/

2http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm

3http://boston.lti.cs.cmu.edu/Data/clueweb09/
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Figure 3.1. Illustration of how to aggregate anchor text over the web graph for
discovering plausible additional anchor text for a web page (P0 in this example).
The page P0 is a GOV2 web page, whose DocID is GX010-01-9459902 and URL is
http://southwest.fws.gov/refuges/oklahoma/optima.html.
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“Optima National Wildlife Refuge” (in P8) and “Optima NWR” (in P9) in Figure

3.1. To enrich P0’s anchor text representation, their procedure first collects all pages

Linkedin(P0) = {P1, P2}, within the same site (domain), that link to P0. Then

the procedure collects all anchor text from pages Linkedaux(P0) = {P5, P6} that are

linked to any page in Linkedin(P0) from outside the site. The collected anchor text

set Aaux(P0) is used as auxiliary anchor text, or aggregated anchor text, for enriching

P0’s anchor text representation. Aaux(P0) contains anchor text “Oklahoma Refuge

Websites” (in P5) and “Oklahoma National Wildlife Refuges” (in P6) in this exam-

ple. The intuition behind Metzler et al.’s approach is that by semantic transition, the

original anchor text of the web neighbors may contain good descriptors of the target

page.

Metzler et al.’s approach (2009) achieved 38% reduction of URLs with no associ-

ated anchor text in a Yahoo! proprietary test web collection. Table 3.1 shows that the

number of URLs associated with some anchor text (Aorig or Aaux) in the two TREC

web corpora has also been significantly increased by using their approach. Never-

theless, in Table 3.1 we notice that large portion of web pages still do not have any

associated anchor text using their link-based enriching approach. This observation

motivated us to consider a content based approach, which does not have specific link

structure requirements on the target web page, to further reduce anchor text sparsity

and help web search tasks.

Our content based approach to address anchor text sparsity is shown in Figure

3.2(a), following our general perspective of Figure 1.1 (in Chapter 1). We hypothesize

that web pages that are similar in content may be pointed to by anchors having sim-

ilar anchor text due to the semantic relation between anchor text and page content.

Under this assumption, we develop a language modeling based technique for discover-

ing a web page’s plausible additional anchor text by using anchor text associated with

its similar pages. We then use the discovered information for retrieval. Because we
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Figure 3.2. The specific perspective of discovering plausible anchor text for web
search: (a) using similar web pages for anchor text discovery; (b) viewing queries as
web pages and reconstructing better queries for search.

are also interested in using a query-side approach for this task, we examine another

retrieval approach depicted in Figure 3.2(b) that naturally emerges from our general

perspective of Figure 1.1 (in Chapter 1). Intuitively, this approach adds structure to

an unstructured web query and attempts to directly discover the implicit informa-

tion in the query fields by using the Structured Relevance Model (SRM) approach

(described in §2); then the extended semi-structured query is used for retrieval.

We evaluate the performance of the above three different anchor text discovery

approaches, including Metzler et al.’s link-based approach, the content approach and

the query-side SRM approach, using the named-page finding tasks in the TREC

Terabyte tracks (Büttcher et al. 2006; Clarke et al. 2005).

The remaining parts of this chapter are organized as follows. We begin by re-

viewing related work in §3.2. Next, in §3.3, we describe webpage-side approaches for

discovering anchor text to enrich document representations from §3.3.1 to §3.3.3, and

66



then directly evaluate the discovered anchor terms by different approaches in §3.3.4.

After that, in §3.4 we present how to use different anchor text discovery approaches for

web search – we first present language modeling based retrieval models that leverage

web pages’ discovered anchor text information in §3.4.1; then we formally describe

the query-side approach of discovering implicit anchor text information for retrieval

in §3.4.2. In §3.4.3 we compare the retrieval performance of different approaches,

including both the webpage-side and the query-side, using the named-page finding

tasks in the TREC Terabyte tracks. We conclude in §3.5.

3.2 Related Work

Metzler et al. (2009) first directly addressed the anchor text sparsity problem

by using the web hyperlink graph and propagating anchor text over the web graph.

Our work also addresses the same problem but uses a different approach, which

is based on the content similarity between web pages. Our approach is related to

other similarity based techniques, such as cluster-based smoothing from the language

modeling framework (Kurland and Lee 2004; Kurland and Lee 2006; Liu and

Croft 2004; Tao et al. 2006), except we focus on enriching web documents’ anchor

text representation by using their similar documents’ associated anchor text.

Anchor text can be modeled in many different ways. Westerveld et al. (2001) and

Nallapati et al. (2003) model anchor text in the language modeling approach and

calculate an associated anchor text language model to update the original document

model for retrieval. Fujii (2008) further considers weighting each piece of anchor

text from each anchor pointing to the same page, in order to obtain a more robust

anchor text language model. Here, we also adopt the language modeling approach

but focus on discovering a plausible associated anchor text language model for web

pages with no or few inlinks. Our approach can be easily used together with any
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language modeling based retrieval model that takes document structure into account

(e.g., Ogilvie and Callan’s model (2003)).

Our approach of overcoming anchor text sparsity stems from ideas in the relevance

based language models (RMs), proposed by Lavrenko and Croft (2001). Their original

work introduces RMs to find plausible useful query expansion terms. Here we adapt

the RMs to compute a web content dependent associated anchor language model

for positing anchor terms and using anchor text for retrieval. Our approach is also

related to an effective contextual translation approach of finding term relations (used

for mining related query terms in query logs) in Wang and Zhai’s work (2008).

In addition, by viewing anchor text as a special semi-structured textual field of

a web page and plugging the same structure into web queries, we can adapt the

Structured Relevance Model approach (Lavrenko et al. 2007) described in Chapter

2 to do a query-side information discovery for this IR challenge. From a high level

point of view, the relation between the web content based approach and the SRM

approach is similar in spirit to the relation between document expansion (Liu and

Croft 2004; Tao et al. 2006) and query expansion (Lavrenko and Croft 2001).

Our content-based approach of discovering anchor terms for web search has also

been presented in a published paper (Yi and Allan 2010).

3.3 Discovering Implicit Anchor Text for Web Pages

We now describe three different approaches of discovering plausible anchor text

for web pages with few or no inlinks. The goal of each is to produce a ranked list of

plausible anchor text terms for a page.

We are interested in the effectiveness of different approaches for discovering plau-

sible description terms for a target page to reduce anchor text sparsity. Thus, we

directly evaluate the quality of discovered anchor terms by different approaches in

this section. We will evaluate using discovered terms for retrieval later in §3.4.
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3.3.1 Aggregating Anchor Text over Web Link Graph

As described in §3.1, Metzler et al.’s approach (2009) collects all the original

anchor text pointing to the within-domain web neighbors Linkedin(P0) of a target web

page P0, to discover P0’s plausible additional anchor text. The collected anchor text

is called P0’s auxiliary anchor text Aaux(P0). Note that this anchor text aggregation

procedure does not use any anchor text associated with internal inlinks (the links

between Linkedin(P0) and P0), because internal inlinks are typically generated by

the owner of the site for navigational purposes and their associating anchor text

tends to be navigational in nature (e.g., “home”,“next page”, etc.; refer to their

paper (Metzler et al. 2009) for more discussions on this issue). We emphasize that

we follow them here and do not use the anchor text associated with internal inlinks

in any way.

We use two typical methods to rank the relative importance of each anchor term

w in the Aaux. The first method, denoted as AUX-TF, is to use each term w’s term

frequency tfaux(w) in Aaux. The second method, denoted as AUX-TFIDF, is to

use each term w’s tfaux ⋅ idf(w) score, computed by multiplying tfaux(w) with w’s

idf score in the web collection. The quality of the discovered anchor term rank lists

produced from these two link-based methods implies the effectiveness of using Aaux

for discovering anchor text. We will compare the output term rank lists from these

two methods with that from the content based approach in §3.3.4.

3.3.2 Discovering Anchor Text through Finding Similar Web Pages

As discussed in §3.1, many web pages still cannot obtain any auxiliary anchor

text by using the link-based approach due to the link structure of them and their web

neighbors. Therefore, we propose a different, content based, approach to discover a

web page’s plausible anchor text. Intuitively, our approach assumes that similar web

pages may be described by similar anchor text. For example, in Figure 3.3, the target
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Figure 3.3. Illustration of how to discovering plausible additional anchor text for a
web page (P0 in this example) using its similar pages. The page P0 is the same GOV2
web page in Figure 3.1.

page P0 (the same target page in Figure 3.1), which is about Optima national wildlife

refuge, is similar in content with the page P4, which is about Buffalo Lake national

wildlife refuge. We observe that the anchor term “NWR”, which is the acronym of

“national wildlife refuge” and appears in original anchor text Aorig(P0) and Aorig(P4)

can be used to partially describe both P0 and P4 although two pages are concerned

about different places. Note from Figure 3.1 that “NWR” does not appear in auxiliary

anchor text Aaux(P0) of the target page P0.

We consider a language modeling approach to better use document similarity

and anchor text information, based on the idea from the relevance-based language

model (RM) (Lavrenko and Croft 2001). Given a query q, RM first calculates

the posterior p(Di∣q) of each document Di in the collection C generating the query q,

then calculates a query dependent language model p(w∣q):

p(w∣q) =
∑

Di∈C

p(w∣Di)× p(Di∣q), (3.1)

where w is a word from the vocabulary V of C. Similarly, given a target page P0, our

approach aims to calculate a relevant anchor text language model (RALM) p(w∣A0)
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by:

p(w∣A0) =
∑

Ai∈A
p(w∣Ai)× p(Ai∣A0), (3.2)

where Ai denotes the complete original anchor text that should be associated with Pi

but which may be missing, A denotes the complete original anchor text space for all

pages, and p(w∣Ai) is a multinomial distribution over the anchor text vocabulary VA.

To compute p(Ai∣A0) in Equation 3.2 where A0 and Ai information may be in-

complete, we view each page Pi’s content as its anchor text Ai’s context and use Pi’s

document language model pi = {p(w∣Pi)} as Ai’s contextual language model (or con-

textual model). Then we can calculate a translation model t(Ai∣A0) by using A0 and

Ai’s contextual models and use t(Ai∣A0) to approximate p(Ai∣A0). This contextual

translation approach is also used by Wang and Zhai (2008) for mining related query

terms in query logs.

When calculating a page Pi’s document language model pi = {p(w∣Pi)}, we employ

Dirichlet smoothing (Lafferty and Zhai 2001) on the maximum likelihood (ML)

estimate of observing a word w in the page (pML(w∣Pi)), i.e. pML(w∣Pi) is smoothed

with the word’s collection probability p(w∣C) by:

p(w∣Pi) =
NPi

NPi
+ �

pML(w∣Pi) +
�

NPi
+ �

p(w∣C), (3.3)

where NPi
is the length of Pi’s content and � is the Dirichlet smoothing parameter

(� = 2500 in our experiments). Then given two pages P0 and Pi, we use the Kullback-

Leibler divergence (KL)Div(⋅∣∣⋅) between their document models p0 and pi to measure

their similarity and view it as the contextual similarity between the associated anchor

text A0 and Ai. Then the contextually based translation probability t(Ai∣A0) is

calculated by:

t(Ai∣A0) =
exp(−Div(p0∣∣pi))

∑

i
exp(−Div(p0∣∣pi))

. (3.4)
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This t(Ai∣A0) is then used to approximate p(Ai∣A0) in Equation 3.2 to get:

p(w∣A0) ≈
∑

Ai∈A

p(w∣Ai)× t(Ai∣A0). (3.5)

A few transformations of Equation 3.4 can obtain:

t(Ai∣A0) ∝
∏

w
p(w∣Pi)

p(w∣P0), (3.6)

which is the likelihood of generating A0’s context P0 from Ai’s context Pi’s smoothed

language model and being normalized by A0’s context length. This likelihood can

be easily obtained by issuing P0 as a long query to any language model based search

engine. In addition, we use the observed incomplete original anchor text language

model pobs(w∣Ai) associated with Pi to approximate p(w∣Ai) in Equation 3.5, and

let pobs(w∣Ai) = 0 if Pi has no Aorig(Pi). In this way, the RALM p(w∣A0) can be

computed.

In practice, for efficiency the RALM of the target page P0 is computed from P0’s

top-k most similar pages’ associated original anchor text because t(Ai∣A0) in Equation

3.4 is very small for the other pages. Due to the anchor text sparsity, we select a

surprisingly high k = 2000 in our experiments. Because some of these similar pages

do not have associated Aorig, we use another parameter, m, to denote the number of

most similar pages that have original anchor text and so contribute information in

the RALM, and we tune m in the experiments. Intuitively, increasing m can increase

the number of anchor text samples to better estimate RALM but may also introduce

more noise when the sample size is large.

The probability p(w∣A0) of an anchor term w in the RALM directly reflects the

goodness of the term w used as original anchor text for the page P0, thus we use the

anchor terms that have the largest probabilities p(w∣A0) in the RALM to evaluate the

effectiveness of our content based approach. Theoretically our approach can associate
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any web page with some anchor term information if there is some anchor text in the

corpus, completely independent of link structure thus further reducing the anchor

text sparsity.

3.3.3 Using Keywords as Anchor Text

The keyword based approach comes from the intuition that important keywords

in a web page may in and of themselves be good description terms for the page, thus

may be arguably used as if they were anchor text. We use two typical term weighting

schemes to identify the keywords and rank the words in a web page’s content. The

first method, denoted as DOC-TF, uses each word w’s term frequency tfP0
(w) in

the page P0 for term weighting. The second method, denoted as DOC-TFIDF, uses

each word w’s tfP0
⋅ idf(w) score, computed by multiplying tfP0

(w) with w’s idf score

in the web collection. The top ranked terms in a page P0 by two methods are used

as the possible anchor terms for P0. We will use these two keyword based methods

as baselines in the next section.

3.3.4 Evaluating Discovery

We now directly compare the anchor text terms found by different approaches,

including two link based methods (AUX-TF and AUX-TFIDF), our content based

approach (RALM), and two keyword based methods (DOC-TF, DOC-TFIDF), in

order to evaluate the potential of using discovered information for retrieval. We will

evaluate retrieval directly in §3.4.

3.3.4.1 Data and Methodology

We use two publicly available large TREC web collections (GOV2 and ClueWeb-

T09B). GOV2 is a standard TREC web collection (Büttcher et al. 2006) crawled

from government web sites during early 2004. The ClueWeb09 collection is a much

larger and more recent web crawl, which contains over 1 billion pages crawled during
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01/06/2009-02/27/2009. ClueWeb09-T09B is a subset of ClueWeb09 and contains

about 50 million English web pages. Compared with GOV2 crawled only from the

gov domain, ClueWeb09-T09B is crawled from the general web thus is a less biased

web sample; in another aspect, GOV2 contains relatively high quality government

web pages thus having less noise than ClueWeb09-T09B. We use both GOV2 and

ClueWeb09-T09B in our experiments to show how different approaches perform in

web collections that have different characteristics.

The Indri Search Engine4 was used to index both collections by removing a stan-

dard list of 418 INQUERY (Broglio et al. 1993) stopwords and applying the Krovetz

stemmer. In a separate process, we run the Indri Search Engine’s harvestlinks utility

on the two collections to collect web page inlinks and raw anchor text information

where we do not perform stopping or stemming.

In order to evaluate the quality of discovered anchor text for a web page P0, we

need to have the ground-truth anchor text for P0, which could be subjective and

expensive to obtain through human-labeling. Therefore, we consider an alternative

approach and utilize web pages that have non-empty original anchor text Aorig to

generate the evaluation data. Specifically, we first hide a page P0’s existing Aorig(P0),

apply different anchor text discovery approaches on P0, then compare the discovered

anchor text with Aorig(P0), the ground-truth anchor text for P0.

We need to tread carefully because this way of generating evaluation data is

artificial. The simulated no-anchor-text web pages may have different properties

than the web pages that are truly missing anchor text. For example, a web page that

is associated with large amount of anchor text could be a high quality home-page

of some popular web portal or a very low quality page pointed to by some link-

spam farm, thus different from a typical page that has no anchor text. Nevertheless,

4http://www.lemurproject.org/indri/
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using this automatic data generation procedure enables us to leverage large numbers

of web pages to compare the relative performance of different approaches with no

human labeling effort. Furthermore, the purpose of this set of experiments is solely to

evaluate the potential of using plausible anchor text discovered by different approaches

for retrieval – if the discovered information is of poor quality, we would have no hope

for using it for improving search. We will address retrieval itself in §3.4.

For evaluation, we consider each anchor term in the hidden Aorig(P0) of a web page

P0 as a good description term, or a relevant term, for P0 while terms not in Aorig(P0)

as non-relevant ones; in this way, we generate term relevance judgments for P0. Then

we employ each different approach to discover a ranked list of plausible implicit anchor

terms for P0 and use the relevance judgments to evaluate the ranked anchor term list.

Note that for fair comparison, Aorig(P0) is not used in Equation 3.2 for calculating

RALM in the content based approach, i.e., we assume that pobs(w∣A0) = 0. In the

experiments, we perform stopping on the raw anchor text by removing a short list of

39 stopwords, which includes 25 common stopwords (Manning et al. 2008,p.26) and

14 additional anchor terms5 that are either common navigational purposed words or

part of URLs – it is common that anchor text contains a URL.

We calculate typical IR evaluation measurements including Mean Average Pre-

cision (MAP), Mean Reciprocal Rank(MRR), Precision at the number of relevant

terms(R-Prec), Precision at K (P@k) and also normalized discounted cumulative

gain (NDCG) (Järvelin and Kekäläinen 2002). For all measurements, a higher

number indicates better performance. In the experiments, we are specifically inter-

ested in the quality of top ranked discovered anchor terms; thus, we only use the

top-20 discovered terms to calculate the measurements 6. In order to compare dif-

5http, https, www, gov, com, org, edu, net, html, htm, click, here, next, home.

6When the number of relevant terms for a page is larger than 20, the R-Prec and MAP may
be under-estimated a little while NDCG may be over-estimated a little, depending on the actual
positions of the relevant terms in the term rank lists after the top-20 cut.
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MAP NDCG MRR P@5 P@20 R-Prec Discovered Rel.

DOC-TF 0.3162 0.4585 0.5441 0.2800 0.1333 0.2716 400

DOC-TFIDF 0.2936 0.4348 0.5400 0.2613 0.1240 0.2530 372

AUX-TF 0.1969 0.2598 0.3707 0.1773 0.0643 0.1643 193

AUX-TFIDF 0.1716 0.2423 0.3442 0.1720 0.0647 0.1428 194

RALM 0.3183 0.4275 0.5050 0.2840 0.1140 0.3051 342

Table 3.2. Performance on the GOV2 collection. There are 708 relevant anchor
terms overall. The last column shows overall relevant anchor terms discovered by
each different approach. RALM performs statistically significantly better than AUX-
TF and AUX-TFIDF by each measurement in columns 2–7 according to the one-sided
t-test (p < 0.005). There exists no statistically significant difference between each
pair of RALM, DOC-TF and DOC-TFIDF by each measurement according to the
one-sided t-test (p < 0.05).

MAP NDCG MRR P@5 P@20 R-Prec Discovered Rel.

DOC-TF 0.3517 0.4891 0.5588 0.2373 0.1090 0.2990 327

DOC-TFIDF 0.3107 0.4388 0.5145 0.2213 0.0983 0.2608 295

AUX-TF 0.1840 0.2507 0.3309 0.1463 0.0577 0.1675 172

AUX-TFIDF 0.1634 0.2347 0.3116 0.1383 0.0560 0.1402 167

RALM 0.2612 0.3615 0.4630 0.1733 0.0770 0.2398 231

Table 3.3. Performance on the ClueWeb09-T09B collection. There are 582 relevant
anchor terms overall. The last column shows overall relevant anchor terms discovered
by each different approach. DOC-TF performs statistically significantly better than
both RALM and AUX-TF by each measurement in columns 2–7 according to the
one-sided t-test (p < 0.05). RALM performs statistically significantly better than
AUX-TF and AUX-TFIDF by each measurement in columns 2–7 according to the
one-sided t-test (p < 0.05).

ferent approaches including the link-based approach, we randomly sample web pages

that have both associated Aorig and some auxiliary anchor text Aaux collected from

the web graph for generating evaluation data. For each of two collections, 150 random

samples are used for training and another 150 samples for testing. On each training

set from two collections, RALM’s parameter m = 15 described in §3.3.2 achieves the

highest MAP.

3.3.4.2 Results and Analysis

The performance of discovering original anchor text by different approaches on

the testing set of GOV2 and ClueWeb-09-T09B are shown in Table 3.2 and Table 3.3,
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respectively. The results show that the content based approach (RALM) can effec-

tively discover plausible implicit anchor terms in both collections that have different

anchor text sparsity, e.g. RALM’s MRR ≈ 0.5, means the first relevant anchor term

is discovered at about the 2nd rank position of its term rank list on average, in both

collections; R-Prec≈ 1/3 in GOV2 and 1/4 in ClueWeb09-T09B, means about 1/3

or 1/4 portion of top R discovered terms in the corresponding collection are rele-

vant where R is the number of relevant anchor terms that would have ideally been

found. Furthermore, on both collections RALM performs statistically significantly

better than two link based approaches (AUX-TF and AUX-TFIDF), which only use

the auxiliary anchor text collected over the web graph, with respect to all measure-

ments. This indicates that, for discovering a page’s plausible anchor text, the anchor

text associated with the similar pages provides more useful information than that

associated with the linked web neighbors. The numbers of discovered relevant anchor

terms by different approaches, shown in the last column of two tables, also show that

only using auxiliary anchor text misses more original anchor text information than

our content based approach.

Another observation is that RALM is not statistically significantly better on GOV2

and is worse on ClueWeb09-T09B than the keyword based approaches. This indicates

that words having high IR utility (high tf or tf ⋅ idf scores) are often also good

description terms for the page and could be used by human being as the anchor text.

Removing a long list of stopwords from web page content has also helped the keyword

based approaches to effectively select good description words from the web content.

One plausible reason that RALM performs relatively poorly on ClueWeb09-T09B

is that, compared with the high quality GOV2 pages, ClueWeb pages are crawled

from the general web, where the inlinks and anchor text may be generated in a more

noisy way (e.g. spam), degrading RALM’s performance. To better understand the

performance of different approaches, in Table 3.4 and Table 3.5 we show the top-

77



10 words of the anchor term rank lists discovered by different approaches for one

evaluation web page in GOV2 and ClueWeb09-T09B, respectively.

Although using keyword information can discover some good anchor terms, the

content-generated anchor terms found by the keyword based approaches do not help

bridge the lexical gap between a web page and varied queries that attempt to search

the page, since the content-generated ones already exist in the web page content.

In contrast, human generated anchor text is highly useful for reducing the word

mismatch problem in web search because the lexical gap between anchor text and

real queries is relatively small (Metzler et al. 2009). Indeed, anchor text has been

used as competitive surrogates of real queries for helping search, such as providing

effective query reformulations (Dang and Croft 2009). Here, we examine the

anchor terms discovered by different approaches to investigate whether our approach

can discover anchor text similar in nature to human generated anchor text thus have

the potential to also reduce word mismatch for search.

We first use the overlap number of the terms discovered by different approaches for

each web page to calculate some lexical gap size measurements. We use the outputs

from the keyword based DOC-TF, the link based AUX-TF, and our content based

RALM in this analysis. For each web page i in the testing set, we calculate the

intersection number Ii(X, Y ) of the discovered terms by the X and Y approaches,

then compute the total intersection number I(X, Y ) by:

I(X,Y ) =
∑

i

Ii(X,Y ). (3.7)

In addition, for each page i, we calculate the percentage pcti(X, Y ) of the terms

discovered by the X approach also appearing in the ones discovered by the Y ap-

proach, then compute the average percentage pct(X, Y ) with all the pages.

Table 3.6 and Table 3.7 show the term intersection number I(X, Y ) between each

pair of three approaches on the GOV2 and ClueWeb09-T09B, respectively. Table 3.8

shows three average percentage ratios pct(X, Y ) which we have specific interest in.
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“Optima National Wildlife Refuge”, “Optima NWR”,
“Washita Optima National Wildlife Refuge near Butler OK”

DOC-TF tfP0
(w) DOC-TFIDF tfP0

idf(w) AUX-TF tfaux(w)
refuge ★ 15 refuge ★ 79.69 oklahoma 6
wildlife ★ 10 optima★ 74.30 wildlife ★ 2
oklahoma 10 hardesty 47.48 refuge★ 2
optima ★ 8 hawk 36.20 website 1
species 6 oklahoma 36.03 u 1
hawk 6 wildlife ★ 31.98 service 1
habitat 6 guymon 29.35 s 1
area 6 habitat 26.42 office 1
prairie 5 species 23.70 national ★ 1
national 5 quail 21.74 fish 1

AUX-TFIDF tfauxidf(w) RALM P (w∣A0) Rel.
oklahoma 21.62 nwr ★ 0.1164 butler
refuge ★ 10.62 wildlife★ 0.0834 national
wildlife ★ 6.40 refuge★ 0.0834 near

fish 3.11 national ★ 0.0834 nwr
u 3.03 general 0.0657 optima

website 2.36 brochure 0.0657 refuge
office 1.54 kansas 0.0601 washita
s 1.29 lake 0.0522 wildlife

national★ 1.22 tear 0.0308
service 1.09 sheet 0.0308

Table 3.4. Discovered plausible anchor terms and their term weights by applying
different approaches on one GOV2 web page (TREC DocID in GOV2: GX010-01-
9459902) . The first row shows the original three pieces of anchor text associated
with the page. The Rel column in bold font shows the term relevance judgments
extracted from the first row. ★ indicates the relevant terms in the output lists by each
approach according to the Rel column. RALM can discover some term like “NWR”
(underlined in the table), which does not appear in both the page and the auxiliary
anchor text, thus may help to bridge the lexical gap between pages and web queries
as using the original anchor text does.

79



“Weight Loss Resolutions”, “Weight Loss New Year’s Resolution to Lose Weight”
“Resolve to Lose Weight”

DOC-TF tfP0
(w) DOC-TFIDF tfP0

idf(w) AUX-TF tfaux(w)
weight ★ 46 weight ★ 96.38 weight ★ 709
loss ★ 26 loss★ 78.65 loss ★ 705
lose ★ 20 lose ★ 64.47 diet 32
new ★ 17 resolution★ 46.57 weightloss 21
year ★ 15 diet 34.27 guide 20

resolution 13 goal 26.01 scott 8
time 12 eat 25.61 jennifer 8
make 10 year★ 23.90 contact 8
goal 9 calorie 15.73 site 6
diet 9 pound 15.34 s ★ 4

AUX-TFIDF tfauxidf(w) RALM P (w∣A0) Rel.
loss ★ 2132.63 weight ★ 0.2245 lose

weight ★ 1485.49 loss ★ 0.1737 loss
weightloss 157.70 diet 0.0550 new

diet 121.86 easy 0.0436 resolution
guide 37.26 lose ★ 0.0422 resolve
jennifer 33.96 way 0.0412 s
scott 28.52 myth 0.0396 weight

guidesite 22.04 warn 0.0232 year
em 13.15 ppa 0.0232

mlibrary 11.37 fda 0.0232
Table 3.5. Discovered plausible anchor terms and their term weights by applying
different approaches on one ClueWeb09 web page (ClueWeb09 RecordID: clueweb09-
en0004-60-01628). The first row shows the original three pieces of anchor text associ-
ated with the page. The Rel column in bold font shows the term relevance judgments
extracted from the first row. ★ indicates the relevant terms in the output lists by each
approach according to the Rel column. The keyword approaches discovered “new
year resolution”, which may be hard to be discovered by using the page’s web-graph
neighbor pages’ anchor text or using the page’s similar pages’ anchor text.

I(X,Y) DOC-TF AUX-TF RALM
DOC-TF 2996 281 530
AUX-TF 281 1358 556
RALM 530 556 2879

Table 3.6. The intersection number I(X, Y ) of the discovered terms between each
pair of three approaches on GOV2, where X and Y take each cell value in the first
column and row, respectively.
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I(X,Y) DOC-TF AUX-TF RALM
DOC-TF 2986 518 667
AUX-TF 518 2028 830
RALM 667 830 2982

Table 3.7. The intersection number I(X, Y ) of the discovered terms between each
pair of three approaches on ClueWeb09-T09B, where X and Y take each cell value
in the first column and row, respectively.

GOV2 ClueWeb09-T09B
pct(AUX-TF, DOC-TF) 30.5% 26.0%
pct(AUX-TF, RALM) 47.6% 46.3%
pct(RALM, DOC-TF) 26.0% 22.3%

Table 3.8. The average percentage pct(X, Y ) of the terms discovered by the X
approach appearing in the ones discovered by the Y approach.

(b)


(a)


Figure 3.4. The number of web pages (Y-axis) with their pcti(⋅,⋅) values falling into
the same binned percentage range vs. the binned percentage ranges. (a) results from
150 ClueWeb09-T09B pages; (b) results from 150 GOV2 pages.
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Figure 3.4 further shows for each of the three pair in Table 3.8, the count of web

pages which have their term overlap per page ratios pcti(X, Y ) between the (X,Y)

approaches falling into each binned percentage range in the X axis.

We have these observations: (1) RALM and AUX-TF have the largest intersec-

tion numbers (556 and 830 in GOV2 and ClueWeb09-T09B, respectively,) of over-

lapped terms between different approaches; (2) AUX-TF’s discovered terms have

much higher average overlap ratio pct(X, Y ) with RALM’s (47.6% and 46.3% in

GOV2 and ClueWeb09-T09B, respectively,) than with DOC-TF’s (30.5% and 26.0%

in GOV2 and ClueWeb09-T09B, respectively); (3) for many individual web pages,

AUX-TF’s discovered terms have high overlap with RALM’s and that RALM’s dis-

covered terms have low overlap with the ones generated by DOC-TF.

These results show that compared with the anchor text generated by using the web

content’s keywords, the anchor text discovered by our approach is much more similar

in nature to the auxiliary anchor text, which is also human generated. Therefore,

RALM can also be useful to bridge the lexical gap between web pages and queries

and help search. Indeed, in later retrieval experiments, we show that RALM can not

only bring additional information not in the original web page content for search, but

also discover implicit information indicated by the observed anchor text to further

improve retrieval performance.

3.4 Using Discovered Information for Web Search

We now use the discovered anchor text information in different retrieval ap-

proaches. We first present language modeling based retrieval models that use discov-

ered anchor text of web pages for reranking them. This approach of using webpage-

side discovered information for retrieval is shown in Figure 3.2(a) in the introduction

of this chapter (also shown in §1.3). Then we formally describe a query-side approach

(shown in Figure 3.2(b)) of discovering implicit anchor text information for retrieval
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in §3.4.2. After that, we evaluate the retrieval performance of different approaches

with the named-page finding tasks in the TREC Terabyte tracks.

3.4.1 Retrieval Models based on Document Smoothing

We follow the typical language modeling based retrieval approach (Ponte and

Croft 1998) and score each web page P for a query Q by the likelihood of the page

P ’s document language model p(w∣P ) generating the query Q:

p(Q∣P ) =
∏

w∈Q

p(w∣P ). (3.8)

When using Dirichlet smoothing, the document language model p(w∣P ) can be cal-

culated by Equation 3.3 and then used in Equation 3.8 for retrieval. We call this

query likelihood baseline QL. We fix � = 2500 in Equation 3.3 for the document

models used to calculate RALM, but tune the � for QL to achieve the best retrieval

performance in the retrieval experiments in §3.4.3.

We follow the mixture model approach (Nallapati et al. 2003; Ogilvie and

Callan 2003) to use the discovered anchor text information for helping retrieval. In

this approach, a web page P ’s document language model is assumed to be a mixture

of multiple component distributions where each component is associated with a prior

probability, or a mixture weight. Therefore, we can estimate a language model p(w∣A)

from anchor text discovered by each different approach for the page P and use p(w∣A)

as a component of P ’s document model thus obtaining a better document language

model p̃(w∣P ):

p̃(w∣P ) = �p(w∣P ) + (1− �)p(w∣A), (3.9)

where p(w∣P ) is the original smoothed document model in the QL baseline. Then

we can plug p̃(w∣P ) into Equation 3.8 for retrieval. We compare the retrieval per-

formance of document language models updated by different discovered anchor text

information.
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We consider three different anchor text sources to update a web page P ’s document

model: (1) the observed original anchor text Aorig(P ), (2) the auxiliary anchor text

Aaux(P ), and (3) the RALM computed by our approach for P . We estimate the

anchor text language model p(w∣Aorig) and p(w∣Aaux) by using the ML estimate of

observing each word w in Aorig(P ) and Aaux(P ), respectively. Here, we define the

following five retrieval methods that use the above three anchor text sources for

document smoothing in order to compare the relative utilities of different anchor text

discovery approaches for retrieval:

1. ORG, which only uses the observed original anchor text language p(w∣Aorig).

2. AUX, which only uses the auxiliary anchor text language p(w∣Aaux).

3. ORG-AUX, which uses both p(w∣Aorig) and p(w∣Aaux) to update the document

model p(w∣P ) by:

p̃(w∣P ) = �(�p(w∣P ) + (1− �)p(w∣Aorig))

+(1− �)p(w∣Aaux).
(3.10)

4. RALM, which only uses the RALM p(w∣A0) in Equation 3.2. The original

anchor text of P0 is not used in Equation 3.2 for calculating RALM.

5. ORG-RALM, which uses both p(w∣Aorig) and the RALM p(w∣A0) in Equation

3.2 by:

p̃(w∣P ) = �(�p(w∣P ) + (1− �)p(w∣Aorig))

+(1− �)p(w∣A0).
(3.11)

The original anchor text of P0 is not used in Equation 3.2 for calculating RALM.

Note that different from the experiments in §3.3.4, in the retrieval experiments

(§3.4.3) we use the estimated probability of every anchor term instead of the top-20
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most important terms discovered by different approaches to update the document lan-

guage model in each retrieval method. In addition, here we do not consider baselines

using anchor text generated by the keyword based approaches described in §3.3.3.

The reason is that the content-generated anchor text already exists in the web page

thus will have almost the same retrieval performance as the QL baseline since no

additional information is brought into web pages to match query words.

3.4.2 Query-side Implicit information Discovery for Retrieval

Following the general perspective from Figure 1.1, we further consider using a

semi-structured approach in Figure 3.2(b) (in the introduction of this chapter) to

handle the implicit anchor text information for this IR challenge. The basic idea of

this approach is to add structure to the original unstructured web query and then

utilize the semi-structured approach described in Chapter 2 to discover the implicit

information in the query fields for retrieval.

Formally, we view queries as well as web pages as semi-structured records con-

taining two fields: Content (denoted by wc) and Associated Anchor Text (denoted by

wa). Then given a query q, we first generate a semi-structured query q = {wc,wa}

by duplicating the query string in both fields, i.e. wc = wa = q. We assume that

both fields are incomplete and then use the Structured Relevance Models (SRM)

approach (described in §2.3) to estimate plausible implicit query field values. The

whole web collection W (pages and their associated anchor text) are used as training

data. Specifically, we calculate a set of relevance models {Rc(⋅), Ra(⋅)} for q, where

the relevance model Ri(w) specifies how plausible it is that the word w would occur

in the field i of q given the observed q = {wc,wa}, i.e.

Ri(w) = P (w∘wi∣q) = P (w∘wi∣wc,wa), i ∈ {c, a}, w∈Vi, (3.12)
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where w∘wi denotes appending word w to the string wi and Vi denotes the vocabulary

of the field i. Using the training web page records w′ and Equation 3.12, Ri(w) can

be further calculated by:

Ri(w) =
∑

w′∈W

p(w∣w′
i)× P (w′∣q), i ∈ {c, a}, w∈Vi. (3.13)

To calculate the posterior probability P (w′∣q) in Equation 3.13, we use the following

equations:

P (w′∣q) ∝ P (q∣w′) ∗ P (w′),

P (q∣w′) = P (wc∣w
′
c) ∗ P (wa∣w

′
a)

(3.14)

where P (w′) is assumed to be a uniform distribution. In this way, the SRM {Rc(⋅), Ra(⋅)}

for q can be computed. In practice, for efficiency we do not need to use all records

w′ ∈ W to calculate Ri(w) in Equation 3.13; instead, we use q’s top-k most similar

records (the records that have the top-k largest posteriors P (w′∣q)) because P (w′∣q)

is small for other records. k is a small number to be tuned by using training queries.

Once we have computed the SRM, we can interpolate it with the original query

language model to obtain a better SRM for retrieval:

R′
i(w) = � ∗ (p(w∣wi)) + (1− �) ∗Ri(w), i ∈ {c, a}, w∈Vi, (3.15)

which is in spirit the same as the approach called Relevance Model 3 (Diaz and

Metzler 2006). The parameter � allows us to vary the impact of the original query

language model on the updated SRM and is tuned by using training queries. Now

we can rank web page records w′ ∈ W by their similarity to the updated SRM. As

described in §2.5.1, we use weighted cross-entropy (Lafferty and Zhai 2001) to

measure the similarity between records by:

H(R′
c,a;w

′
c,a) =

∑

i∈(c,a)

�i

∑

w∈Vi

R′
i(w) log p(w∣w

′
i) (3.16)
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The outer summation goes over every field of interest, while the inner extends over

all the words in the vocabulary of each field i. Meta-parameters �i allow us to vary

the importance of different fields in the final ranking and are tuned by using training

queries. This retrieval approach is denoted as SRM in the experiments.

In addition, we can also use the query likelihood P (q∣w′) in Equation 3.14 for

directly ranking retrieved web pages without discovering implicit anchor text infor-

mation. This is a structured version of query likelihood retrieval baseline described

at the beginning of §3.4.1; thus, we call it S-QL in the experiments. In this method,

similar to the QL baseline, we employ Dirichlet smoothing for each record field when

computing P (q∣w′); different from QL, we tune a different Dirichlet parameter (�c

and �a) for each field. Essentially, S-QL is the first round retrieval in the SRM re-

trieval method. In practice, in order to adjust the contribution of each field in the

final ranking of S-QL, we modify the calculation of the P (q∣w′) in Equation 3.14 by

adding some meta-parameters �c and �a:

P (q∣w′) = P (wc∣w
′
c)

�c ∗ P (wa∣w
′
a)

�a, (3.17)

where the roles of �c and �a are in spirit similar to that of �i in Equation 3.16 and

tuned by using training queries.

3.4.3 IR Experiments

We use the TREC named-page finding tasks in the Terabyte Tracks (Büttcher

et al. 2006; Clarke et al. 2005) to evaluate the performance of different retrieval

methods described in previous sections. The objective of the named page (NP) finding

task is to find a particular page in the GOV2 collection, given a topic that describes

it. We use the NP topics and their relevance judgments for our experiments. In this

experiment, we use Porter stemmer and do not remove stopwords when indexing the

GOV2 collection.
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For each NP query, we first use the simple query likelihood approach to run the

query against the GOV2 collection and obtain the QL baseline. After that we em-

ploy the five retrieval methods (described in §3.4.1) that use web pages’ discovered

implicit anchor text for the task. We use the reranking approach, which uses each

retrieval method to rerank the top-100 web pages returned by QL. Next, we employ

two retrieval methods (S-QL and SRM in §3.4.2) that do query-side implicit field

information discovery for the task. After we obtain retrieval results from different

methods, the results (web page ranked lists) are evaluated by two TREC measure-

ments previously used for this task (Clarke et al. 2005): MRR which is the mean

reciprocal rank of the first correct answer and the %Top10 which is the proportion

of queries for which a correct answer was found in the first 10 search results.

We use the TREC 2005 NP topics (NP601-872) for training and the TREC 2006

NP topics (NP901-1081) for testing. For the QL baseline, we tune the Dirichlet

parameter � = 500 to achieve the highest MRR on the training set and obtain QL’s

top-100 web pages for reranking. Then we fix � = 500 to calculate the smoothed

document model component p(w∣P ) in the five retrieval methods in §3.4.1, but tune

the mixture parameters � and � for them to achieve the highest MRRs with the

training queries. For the RALM and ORG-RALM method in these five methods, the

parameter m of RALM is also tuned. For the S-QL baseline, we tune the Dirichlet

parameters �c = 500, �a = 50 for the Content field and Associated Anchor Text

field respectively, and also meta-parameters �c, �a to achieve the highest MRR on

the training set. Then these Dirichlet parameters are fixed in the S-QL to compute

the posterior probabilities used for building relevance models in the SRM method.

For SRM, we also tune the interpolation parameter � in Equation 3.15 and the field

weights �i in Equation 3.16 to achieve the highest MRR on the training set. Finally,

we fix the tuned parameters of different methods and test them on the test queries.
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MRR %Top10 Opt. Param.
QL 0.3132 49.7

Query-side anchor text discovery:
S-QL 0.3588‡ 58.0 �c = 0.95, �a = 0.05
SRM 0.3592‡ 58.0 �c = 0.95, �a = 0.05, � = 0.99,

top-50 docs and top-50 terms in each field

Webpage-side anchor text discovery:
ORG 0.3696‡ 57.5 � = 0.95

Link-based approaches:
AUX 0.3187 50.8 � = 0.99

ORG-AUX 0.3711‡ 57.5 � = 0.95, � = 0.99
Content-based approaches:

RALM 0.3388‡ 53.6 m = 20, � = 0.95
ORG-RALM 0.3975△‡ 59.7 �, � = 0.95, m = 20

Table 3.9. Retrieval performance of different approaches with TREC 2006 NP
queries. The △ indicates statistically significant improvement over MRRs of ORG and
ORG-AUX and SRM. The ‡ indicates statistically significant improvement over MRRs
of QL and AUX. All the statistical tests are based on one-sided t-test (p < 0.05).

Figure 3.5. The difference of the reciprocal ranks (RR) between ORG-RALM and
ORG on each individual NP topic. Above the x-axis reflect queries where ORG-
RALM out-performs ORG. Y-axis denotes the actual difference, computed using
(ORG-RALM’s RR minus ORG’s RR) of each NP finding query. All the differences
are sorted then depicted to show the IR performance difference of two approaches.
Among 181 queries, ORG-RALM outperforms ORG on 39 queries, performs the same
as ORG on 126 queries and worse than ORG on 16 queries.
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Figure 3.6. The difference of the reciprocal ranks (RR) between ORG-RALM and
SRM on each individual NP topic. Above the x-axis reflect queries where ORG-
RALM out-performs SRM. Y-axis denotes the difference, computed using (ORG-
RALM’s RR minus SRM’s RR) of each NP finding query. All the differences are sorted
then depicted to show the IR performance difference of two approaches. Among 181
queries, ORG-RALM outperforms SRM on 43 queries, performs the same as SRM on
115 queries and worse than SRM on 23 queries.

Table 3.9 shows the retrieval performance of different methods on the test queries

and the tuned parameters in each method. Figure 3.5 and 3.6 further show the

difference of the reciprocal ranks (RR) between ORG-RALM and ORG, as well as

between ORG-RALM and SRM, on each individual NP finding query, respectively.

We have the following main observations:

1. S-QL performs similarly to ORG, which uses the original anchor text of web

pages and the document smoothing approach, but statistically significantly

worse than ORG-RALM, which uses both the original anchor text and the

discovered anchor text information for document smoothing. It is not a sur-

prise S-QL performs similarly to ORG because they both only use the observed

anchor text information for search.

2. SRM performs similarly to ORG but statistically significantly worse than ORG-

RALM. ORG-RALM performs differently from SRM on 66 queries (36.5% of

all 181 test queries), where ORG-RALM outperforms SRM on 43 of them. One
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plausible reason of the relative inferior performance of SRM (compared with

ORG-RALM) is that most queries in this search task are navigational queries

and it is known that query expansion using pseudo-relevance feedback may hurt

the search performance of this type of queries (Croft et al. 2010, p.283).

3. S-QL performs statistically significantly better than QL and AUX but slightly

worse than ORG. This indicates that for this search task, the mixture-model

based document smoothing approach of using anchor text for search performs

a little more effectively than the semi-structured approach that combines query

likelihood scores from different fields. One plausible reason is that both fields use

language that has no huge difference, thus using structure information for this

search task performs not as effectively as the approach of mixing information in

different fields together. Nevertheless, both S-QL and ORG achieve statistical

better performance than QL and AUX by using original anchor text information

for search.

4. ORG-RALM performs statistically significantly better than ORG. The perfor-

mance of 55 queries (30.4% of all 181 test queries) has been changed where

ORG-RALM improves ORG on 39 queries. This indicates that the implicit

anchor terms discovered by RALM provides additional information not in the

original anchor text so that combining them can further improve the average

retrieval performance.

5. ORG-RALM and RALM perform statistically significantly better than ORG-

AUX and AUX, respectively. This indicates that, in the GOV2 collection,

anchor text information discovered by the content based approach helps retrieval

more effectively than the link based approach that uses auxiliary anchor text.

In Table 3.9, we also observe that the auxiliary anchor text helps the performance

very little in this task. There are two plausible reasons: first, TREC NP queries are
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short queries and Metzler et al.(2009) observed that auxiliary anchor text does not

help or even hurts the performance of short navigational web queries; second, the

anchor text sparsity problem is serious on the GOV2, thus a very small percentage

of pages can collect auxiliary anchor text (as shown in Table 3.1) to benefit the

search task. However, even when serious anchor text sparsity exists and queries are

short, the content based approach still helps improve retrieval effectiveness. When

comparing RALM’s performance with results of 11 participants in TREC 2006 NP

finding tasks (Büttcher et al. 2006), ORG-RALM’s result can be ranked at 6tℎ and

beats all the runs that only use anchor text and page content for the task, except

one that uses a complex machine learning approach and both unigram and bigram

document features (Cen et al. 2006). We expect the content based approach can

enhance the retrieval performance of general web search engines where there is a large

portion of short navigational queries.

3.5 Conclusions

In this chapter, we employed our general perspective of discovering implicit in-

formation for search in Figure 1.1 (in Chapter 1) to address the anchor text sparsity

problem in web search. We presented and compared webpage-side and query-side

approaches of discovering implicit anchor text information for web search.

For the webpage-side approach (depicted in Figure 3.2(a)), we proposed a language

modeling based method that uses web content similarity for discovering plausible

anchor text. This content based method computes a relevant anchor text language

model (called RALM) from a web page’s similar pages’ original anchor text for the

anchor text discovery. Compared with a link based approach (Metzler et al.

2009), this content based approach has no specific link structure requirements on

the web page of interest. We designed experiments with two TREC web corpora

to evaluate the relative quality of the discovered anchor terms by three different
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approaches: the link based approach, the RALM approach, and the keyword based

approach. Experiments on the simulated web pages with no observed anchor text

showed that the RALM approach can effectively discover hidden original anchor text

and performed statistically significantly better than the two link based method on

both collections.

For the query-side approach (depicted in Figure 3.2(b)), we presented how we

adapt the Structured Relevance Model and use similar semi-structured records’ infor-

mation to discover plausible implicit query field values for search. The basic procedure

is: add some structure to an unstructured query, view both queries and web pages as

semi-structured records, build SRM based on the observed incomplete query fields,

and then search web page records that are similar to the built SRM.

We evaluated retrieval performance of the two approaches (webpage-side and

query-side) above and the link based approach (Metzler et al. 2009) with the

TREC named page finding task. The results showed that for this search task, the

webpage-side approach that discovers web pages’ plausible anchor text and uses it

to smooth document language model performed more effectively than the query-side

approach that discovers implicit anchor text information in the query fields and uses

extended query to retrieve similar records. Moreover, the content based approach

helped retrieval more than the link based approach in this task; RALM can effectively

discover information indicated by the observed original anchor text and further im-

proved the retrieval performance. RALM can help improving retrieval effectiveness

for short navigational queries even when serious anchor text sparsity exists. This

makes RALM a promising technique for improving general web search engines. In

future work, it is worthwhile to explore how well RALM can help long informational

web queries.
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CHAPTER 4

DISCOVERING MISSING CLICK-THROUGH
INFORMATION IN QUERY LOGS FOR WEB SEARCH

4.1 Introduction

In this chapter, we address another problem that exists in a web search scenario

where the web query log information is used to help improving retrieval performance

of web search engines. We start with a detailed description of this research issue.

In a simplified web search scenario, a web user issues a query to a web search

engine and obtains a ranked list of search results. Then the user reads the returned

results, and may or may not click some of them to find his or her desired information.

After that, the user may issue new queries to find more information on the same topic

or start to explore new search topics. Typically, web search engines will record all the

above interactions between web searchers and the engines in web query logs, which can

be used later to improve the search engines’ retrieval performance. Table 4.1 shows

some example query log records in the Microsoft Live Search 2006 search query log

excerpt (MS-QLOG)1. In this table, each row is a query log record that contains some

important information about a user click-through event for a user-issued query. For

each record, the second column (or field) shows the query content; the third column

shows when the click event happened; the fourth column shows the URL of the clicked

web page in this event; the fifth column shows the clicked URL’s position on the URL

rank list in the search result page returned by the search engine; the first column is

a unique id for the click events that were triggered by a web searcher after he or she

1http://blogs.msdn.com/livesearch/archive/2006/06/02/614486.aspx
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QueryID Query Time URL Pos.

dc3a05b1576a4a8a newhaven register 2006-05-03 http://www.royahakakian.com 8
08:26:27 /newsletter/NewHavenRegister.html

e13801b853444f56 newhaven register 2006-05-09 http://001forever.proboards42.com 1
07:55:54 /index.cgi?action=register

8fbc6612038a466a stories on mars 2006-05-18 http://www.steampunk.com 7
16:08:43 /sfch/bibliographies/mars.html

5851612ed93b4733 raymond 2006-05-20 http://www.steampunk.com 5
z. gallum 03:08:46 /sfch/bibliographies/mars.html

5851612ed93b4733 raymond 2006-05-20 http://zzmaster.best.vwh.net 4
z. gallum 03:09:37 /SF/amazing_aa.html

fbd8e52e4ca64b3e newhaven 2006-05-22 http://www.royahakakian.com 3
register classifieds 05:39:03 /newsletter/NewHavenRegister.html

Table 4.1. Some query log records from the Microsoft Live Search 2006 search query
log excerpt.

issued the same query to the search engine. Note that typically the web queries that

do not lead to any click-through events are also recorded in web query logs. In that

case, in MS-QLOG both the clicked URL and its position field are empty and the

time-stamp field records the time when the query was issued.

Click-through data provide very useful information for web search and play im-

portant roles in designing and improving web search engines. In one aspect, the

user click-through information in web query logs reveals each web searcher’s im-

plicit preference information on the returned search results for each query. Thus,

the click-through data have been used to derive labeled training data (i.e., prefer-

ence order labels between web pages for a given query) for optimizing web ranking

functions used by web search engines (Joachims 2002; Radlinski and Joachims

2007; Carterette and Jones 2007); the user clicks have also been directly used

as relevance indicators of the clicked web pages to generate evaluation data for com-

paring the retrieval performance of different web search methods (Bendersky and

Croft 2009). In another aspect, the click-through data also contain users’ collective

web search information that is very useful for extracting effective web page ranking

features to enhance ranking models of web search engines (Xue et al. 2004; Burges
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et al. 2005; Agichtein et al. 2006; Gao et al. 2009). For example, Gao et al. (2009)

demonstrated that two pieces of click-through information of a web page – the num-

ber of queries leading to the clicks on the page and the number of unique words in

these click-associated queries – are especially helpful to improve the retrieval effec-

tiveness of an artificial-neural-network based web ranking model called LambdaRank

(Burges et al. 2006).

However, click-through data usually suffer from a data sparseness problem where

large volume of queries have few or no associated clicks (Craswell and Szummer

2007; Gao et al. 2009). This problem may be caused by two related user click

behaviors. One is that users may only click a very limited number of pages for

a query so that the clicks are not complete; the other one is that users may just

browse the returned snippets to fetch some useful information while not clicking any

results even they are relevant. Gao et al. (2009) referred to these two situations

as the incomplete click problem and the missing click problem, respectively. The

incomplete/missing click problems greatly limit the possibility and reliability of using

click-through features for web search tasks. For example, with incomplete clicks,

click-through features may not be reliably computed with the limited number of

available query-page click pairs; with no clicks, click-through features cannot even

be extracted. To overcome click-through sparseness, Craswell and Szummer (2007)

first extracted queries and their clicked URLs in a query log to build a query-URL

bipartite click graph and then proposed a random walk algorithm on the graph to find

plausible clicks between queries and web image URLs. We use the queries and their

clicked web page URLs in Table 4.1 to illustrate their approach in Figure 4.1. The

queries/URLs that have the same content are assigned with the same query/URL

node ID, as shown in Table 4.2. The built query-URL click graph is shown in Figure

4.1(a). Their approach utilized the rank walk algorithm to discover plausibly closely

related query and URL nodes, which are not directly linked but reachable on the

96



Query Node ID Query URL Node ID URL

q1 newhaven register d1 http://www.royahakakian.com

/newsletter/NewHavenRegister.html

q1 newhaven register d2 http://001forever.proboards42.com

/index.cgi?action=register

q2 stories on mars d3 http://www.steampunk.com

/sfch/bibliographies/mars.html

q3 raymond d3 http://www.steampunk.com

z. gallum /sfch/bibliographies/mars.html

q3 raymond d4 http://zzmaster.best.vwh.net

z. gallum /SF/amazing_aa.html

q4 newhaven d1 http://www.royahakakian.com

register classifieds /newsletter/NewHavenRegister.html

Table 4.2. The correspondence between the query/URL nodes in Figure 4.1 and the
queries/URLs in Table 4.1

click graph. Using their approach, two plausible missing links (depicted as dashed

lines in Figure 4.1(b) ) are discovered for the original click graph in Figure 4.1(a).

The intuition behind the random walk approach is that the semantic relation exists

among different queries that led to the clicks on the same page and among different

pages that are clicked due to the same user-issued query; thus, the transitions of the

semantic relation on the click graph can be used to discover plausible clicks between

queries and URLs.

The random walk approach can only partially alleviate the click-through sparse-

ness problem because it requires specific link structures in the bipartite click graph to

discover new clicks. For example, URLs (web pages) that have not yet received any

clicks in the search history can never be associated with any previously issued queries

in the query logs, even though the queries and the pages may have close semantic

relation. Therefore, the expanded click-through features still suffer from the incom-

plete/missing click problems, where only a limited number of query-URL click pairs

are available for feature extraction even after the bipartite click graph is enriched

using the random walk algorithm. To address this issue, Gao et al. (2009) considered

an alternative approach to compute click-through features from sparse click-through
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Figure 4.1. An illustration example of building a query-URL click graph from Table
4.1 and using random walk approach to discover plausible missing clicks: (a) the
original built click graph; (b) the link-enriched click graph after applying rank walk
algorithm on the original one.

data. They introduced a Good-Turing estimator (Good 1953) based discounting

method to smooth click-through features of web pages, so that web pages that do

not receive any click can have very small non-zero click-through features computed

by discounting the average of the click-through features of all web pages that receive

exactly one click. Intuitively, their approach follows the smoothing approach of com-

puting out-of-vocabulary (OOV) words’ probabilities in statistical language models

to compute missing click-through features for web pages. They demonstrated that

using smoothed click-through features to learn ranking models performed statistically

significantly better than not doing smoothing on three web search datasets, includ-

ing two large-scale Microsoft proprietary query logs, three web query sets and their

human-labeled relevance judgment.

Notice that although OOV words in unseen documents and missing clicks of web

pages can be both viewed as events unseen in training data and thus handled in a

similar way, there is some important difference between two different unseen events.

That is, we usually know little semantic information about the OOV word while we

normally have already crawled the content of the web pages that have not received
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clicks yet. However, Gao et al.’s approach described above does not use any semantic

information in the web page content, thus pages that have completely different con-

tent but no clicks will obtain the same smoothed click-through feature value. This

is counter-intuitive and makes many smoothed features less useful for ranking. In-

deed, in their experiments, Gao et al. (2009) found that using the click-through

features extracted from a web page’s click-associated queries’ content (called query-

dependent features by them because these features depend on the content of the query

strings), their smoothing approach helped little for improving retrieval performance;

in contrast, using two smoothed click-through features (the number of click-associated

queries of a page and the number of words in these queries) that contain little semantic

information (called query-independent features by them) consistently and effectively

improved retrieval performance in different web search tasks2.

To overcome the weakness of both Gao et al.’s smoothing approach and Craswell

and Szummer’s random walk approach (2007), we propose to utilize the content sim-

ilarity between web pages to address the click-through sparseness problem. Different

from the Good-Turing estimator based smoothing approach, our content based ap-

proach is able to discover language modeling based click-through features that can

properly convey semantic information in the web page content. Different from the

random walk approach, we do not need the specific click graph structure to discover

incomplete/missing clicks for web pages, thus can reduce the click-through sparseness

further.

Our content based approach is shown in Figure 4.2(a) (also shown in Figure 1.5 in

Chapter 1). We hypothesize that web pages that are similar in content may be clicked

by web searchers issuing similar queries due to the semantic relation between queries

and the web page content of their clicked URLs. Under this assumption, we develop

2One plausible reason is that these two features imply the popularity of each web page.
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Figure 4.2. The specific perspective of discovering missing click-through features
for web search: (a) using similar web pages for discovering additional click-associated
queries; (b) finding similar page-query pairs to reconstruct better queries for search.

a language modeling based technique for discovering a target web page’s plausible

click-associated queries by using the queries that led to the clicks on pages similar to

the target page. Then the discovered features are used for retrieval. Because we are

also interested in the query-side discovery approach for addressing the click-through

sparseness problem, we consider an approach depicted in Figure 4.2(b). This approach

adds structure to an unstructured web query and attempts to directly discover the

implicit information in the query fields by using the Structured Relevance Model

(SRM) approach described in Chapter 2; then the expanded semi-structured query is

used for retrieval.

Because we are particularly interested in different ways of using sparse click-

through data for improving web search, we further consider an approach that com-

bines the advantages of both the click graph based random walk approach and our

proposed content based approach. In this approach, we first discover plausible links
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in the click graph using the random walk approach, then employ our content based

approach to discover click-through query language features for web pages using the

enriched click graph.

We design evaluation experiments with the MS-QLOG dataset (briefly mentioned

at the beginning of this chapter and further described in later sections) and two

different sets of ad hoc web search tasks: (1) the ones in the TREC 2004-2005 Terabyte

Tracks (Clarke et al. 2005; Clarke et al. 2004) and (2) the ones in the TREC

2009-2010 Web Tracks (Clarke et al. 2009; Koolen and Kamps 2010)3. Three

retrieval approaches, including our content based approach, the query-side discovery

approach and the approach of combining click graph and web content information for

search, are evaluated.

The remaining parts of this chapter will be organized as follows. We begin by

reviewing related work in §4.2. Next, in §4.3, we describe three webpage-side ap-

proaches of discovering missing click-through information for web pages with few or

no clicks. After that, in §4.4 we present how to incorporate the discovered informa-

tion into retrieval models for helping search. In §4.4.1, we present language modeling

based retrieval models that utilize web pages’ discovered click-associated query lan-

guage models for improving search performance; then we formally describe the SRM

based query-side approach of discovering implicit click-through features for search

in §4.4.2. In §4.4.3 we design experiments to compare the retrieval performance of

different approaches. We conclude in §4.5.

4.2 Related Work

Previous research has demonstrated the data sparseness problem in click-through

data, including the incomplete click problem and the missing click problem, when

3http://plg.uwaterloo.ca/ t̃recweb/2010.html
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leveraging web query logs for helping different web search tasks (Craswell and

Szummer 2007; Agichtein et al. 2006; Radlinski and Joachims 2007; Xue et al.

2004; Li et al. 2008; Seo et al. 2011). However, there is relatively little work di-

rectly handling click-through sparseness for web search itself. As mentioned in §4.1,

Craswell and Szummer (2007) proposed a random walk algorithm on the query-URL

bipartite click graph to find plausible clicks; Gao et al. (2009) proposed a discounting

method inspired by the Good-Turing estimator (Good 1953) to smooth click-through

features for web pages that have received no clicks, in order to improve web search

results. Gao et al. (2009) also considered combining Craswell and Szummer’s ran-

dom walk approach with their click-smoothing approach to achieve better retrieval

performance. Here we also directly address the click-through sparseness problem.

Different from previous work, we propose using web content similarity to discover

click-through features for search. We also combine our content based approach with

the random walk approach to further reduce click-through sparseness and improve

retrieval performance. Radlinski et al. (2007) considered the missing click problem

caused by a search engine’s ranking bias and proposed an active learning approach

to collect more click-through data by adjusting the search engine’s returned rank list.

Unlike their work, our approach computes plausible click-through features for web

documents off-line and involves no human labeling efforts, thus can save online pro-

cessing time. Recently, Seo et al. (2011) proposed applying spectral graph analysis

on the web content similarity graph to smooth click counts in the web query logs and

then using the smoothed counts for improving search. Our approach is similar to their

approach in terms of using web content similarity to address click-through sparseness;

however, we specifically focus on discovering missing semantic click-through features

for helping search.

Our approach is related to other similarity based techniques, such as cluster-

based smoothing from the language modeling framework (Kurland and Lee 2004;
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Kurland and Lee 2006; Liu and Croft 2004; Tao et al. 2006), except we focus

on enriching web pages’ semantic click-through features for web search by using their

similar pages’ click-associated queries. We further consider combining web content

similarity and click graph information to improve web search. We notice that Li et

al. (2008) also considered combining web content and click graph information for

mitigating the click-through sparseness they experienced when classifying web search

intents of queries in web query logs.

As mentioned in §4.1, there is significant research work on using click-through

data in the query log for enhancing web search performance. Some research consid-

ered using query-URL click-through pairs to derive labeled training pairs for learn-

ing web page ranking functions (Joachims 2002; Radlinski and Joachims 2007;

Carterette and Jones 2007); other research focused on directly extracting click-

through features and incorporating them into ranking models for web search (Xue

et al. 2004; Burges et al. 2005; Agichtein et al. 2006; Gao et al. 2009). The

incomplete/missing click problems present major challenges for both approaches of

using click-through data for web search. Our research on discovering additional click-

through features can benefit the latter research direction in particular.

Similar to our approach for discovering plausible anchor text for web pages in

Chapter 3, we use a content-based, contextual translation approach to discover plau-

sible click-through features for pages with no clicks from their similar pages’ click-

through features. Moreover, by viewing click-associated queries as a special semi-

structured textual field of a web page and treating web queries as semi-structured

short web pages, we adapt the Structured Relevance Model approach (Lavrenko

et al. 2007), described in Chapter 2, for a query-side discovery for the click-through

challenge addressed in this chapter.
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4.3 Discovering Missing Click-through Information for Web

Pages

We first describe two different approaches of discovering plausible click-through

information for web pages with few or no clicks in web query logs. We then present

one way to combine the two approaches to further reduce click-through sparseness.

In our research, we are particularly interested in obtaining click-through features that

can convey some semantic information of the target web page for search; therefore, we

focus on discovering each web page’s plausible (but missing) click-associated queries

(i.e., queries that may lead to the clicks on the target page). We start with describing

the random walk approach that uses co-click information in the click graph to discover

plausible missing clicks (Craswell and Szummer 2007; Gao et al. 2009).

4.3.1 Finding More Click-associated Queries through Random Walk on

Click Graph

In the introduction (§4.1), we described how to build a query-URL bipartite click

graph from a web query log and briefly introduced the procedure of employing the

random walk approach to discover plausible clicks between query nodes and URL

nodes. Intuitively, the random walk approach assumes that there exists some semantic

relation among different queries that led to the clicks on the same page and among

different pages that are clicked due to the same user-issued query. This assumption

can be used for discovering new plausible clicks between queries and URLs.

Formally, assume that the bipartite click graph G =< Q,U,E > is constructed

from a set of query nodes Q = {q1. . .qm}, a set of web page URL nodes U = {u1. . .un}

and the edges E between the query nodes and the URL nodes. (qi, uj) ∈ E is an

edge in G when qi leads to at least one click on uj, and w(qi, uj) represents the click

count associated with the edge (qi, uj). We can normalize the w(qi, uj) to obtain the
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transition probability p(uj∣qi) on the click graph between a query qi and each of its

clicked web page uj by:

p(uj∣qi) =
w(qi, uj)

∑

k∈{1...n},(qi,uk)∈E
w(qi, uk)

, (4.1)

and also the transition probability p(qi∣uj) between a page uj and each of its click-

associated queries qi by:

p(qi∣uj) =
w(qi, uj)

∑

k∈{1...m},(qk,uj)∈E
w(qk, uj)

. (4.2)

We can use the above transition probabilities p(uj∣qi), p(qi∣uj), i ∈ {1. . .m}, j ∈

{1. . .n} to compute the probability p(2t)(qj ∣qi) of one query, qi, transitioning to an-

other, qj , on the click graph in 2t steps by the following iterative equations:

p(2t)(qj∣qi) =
∑

k∈{1...n},(qj ,uk)∈E
[p(qj∣uk)p

(2t−1)(uk∣qi)], t ≥ 1;

p(2t−1)(uj∣qi) =
∑

k∈{1...m},(qk,uj)∈E
[p(uj∣qk)p

(2t−2)(qk∣qi)], t > 1;

p(1)(uj∣qi) = p(uj∣qi), i ∈ {1...m}, j ∈ {1...n}.

(4.3)

We can see that longer transition steps can discover transitions to additional

queries for a target query qi while the discovered semantic relation between them

becomes weaker and noisier. Thus for effectiveness and efficiency, we follow Gao et

al.(2009) to set t = 1 in our experiments. In order to reduce noise, we follow their

approach and require that the discovered transitions for the target query qi should

satisfy p(2)(qj ∣qi) > �, where � is a controlling parameter and tuned empirically on

training data for different tasks4.

4In Gao et al.(2009)’s original experiments, they only kept up to 8 similar queries that satisfy
p(2)(qj ∣qi) > � for each query qi for efficiency. We do not apply this additional restriction, because
the MS-QLOG dataset contains much less queries/URLs click pairs than their data.

105



After discovering related queries for each query using the random walk approach,

Gao et al.(2009) expanded each web page’s click-associated queries with the discovered

related queries. In this way, they can link web pages with more queries that may be

semantically related to the content of the pages so that the incomplete click problem is

partially mitigated. Then they used the enriched representation of the click-associated

queries of each page to extract useful click-through features to improve web search

performance. Table 4.3 shows some summary statistics of the original query-URL

bipartite click graph and the enriched click graphs by the random walk approach

when we use the click pairs in the MS-QLOG dataset to build the click graph. The

first four rows in Table 4.3 show some summary statistics of the original click graph

built from MS-QLOG, indicating that the click-through information is very sparse

even for the clicked pages 5 – on average, each web page only received 2.5 clicks and

has about 1.4 unique click-associated queries, and each query only leads to about 3.5

clicks. The last five rows show the number of click edges in each enriched graph by

the random walk approach using different noise filtering parameter values, indicating

that incomplete click problem can be partially mitigated: on average, the number

of the unique click-associated queries of each web page has been raised to 6.5 when

� = 0.001, and 3.2 when � = 0.01 and 8 most similar queries were used (as in Gao

et al.’s experiments (2009)), respectively.

4.3.2 Discovering Missing Click-associated Queries through Finding Sim-

ilar Pages

Notice that the random walk approach needs specific click graph structure to

discover plausible missing clicks: it cannot handle web pages with no clicks. Therefore,

we propose to use our content based approach to discover plausible click-associated

5MS-QLOG does not contain the URLs that were not clicked by the users; thus we have no
information about the pages with no clicks from MS-QLOG.
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# click pairs #unique queries #unique URLs
(query nodes) (URL nodes)

12,251,067 3,545,174 4,971,990

# unique click edges in the graph
original counts 6,853,498

enriched by random walk(t = 1)
� = 0 (no noise filtering) 42,999,932

� = 0.001 32,240,647
� = 0.005 24,365,787
� = 0.01 20,265,365

� = 0.01 and 8 most similar queries 16,041,102
Table 4.3. Some summary statistics about the original click graph built from the
click events in the MS-QLOG dataset and the edge counts of the enriched graphs by
the random walk approach with different noise filtering parameters.

queries for a web page. Intuitively, our approach assumes that web pages that are

similar in content may receive clicks from web searchers issuing similar queries (due to

the semantic relation among similar pages as well as pages and their click-associated

queries). Under this assumption, we aim to discover a query language model for

each page, in order to obtain effective missing semantic click-through features to help

search.

Our approach adapts the content based approach of discovering anchor text (§3.3.2)

to handle missing click-through query information here. In the anchor text discovery

task there, we first view the content of web pages as their anchor text’s descriptive

context and utilize the contextual translation approach (Wang and Zhai 2008)

to measure the semantic relation between the anchor text associated with different

pages. Given any page Pi and a target page P0, the semantic relation between their

associated anchor text Ai and A0 is measured by the contextual translation probabil-

ity t(Ai∣A0), computed from the Kullback-Leibler divergence (KL-div) between the

document language models of Pi and P0. Then we can use t(Ai∣A0) to compute a

relevant anchor text language model p(w∣A0) for a target page P0 to discover P0’s

plausible implicit anchor terms by:
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p(w∣A0) =
∑

Ai∈A
p(w∣Ai)× t(Ai∣A0), (4.4)

where A denotes the complete anchor text space of all pages and p(w∣Ai) is a multi-

nomial distribution of anchor terms (w) over the vocabulary VA.

Similarly, here we first view each page Pi’s content as the descriptive context of

the page’s click-associated queries Qi and use Pi’s document language model, pi =

{p(w∣Pi)}, as Qi’s contextual language model, which is also computed by applying

Dirichlet smoothing on the original un-smoothed document language model:

p(w∣Pi) =
NPi

NPi
+ �

pML(w∣Pi) +
�

NPi
+ �

p(w∣C), (4.5)

where pML(w∣Pi) is the maximum likelihood (ML) estimate of observing a word w

in the page, p(w∣C) is w’s probability in the collection C, NPi
is the length of Pi’s

content and � is the Dirichlet smoothing parameter.

Then given any page Pi and a target page P0, we measure the semantic relation

between their click associated queries Qi and Q0 by their contextual translation prob-

ability t(Qi∣Q0), computed from the KL-div Div(⋅∣∣⋅) between their contextual models

p0 and pi:

t(Qi∣Q0) =
exp(−Div(p0∣∣pi))

∑

i
exp(−Div(p0∣∣pi))

∝
∏

w
p(w∣Pi)

p(w∣P0). (4.6)

The end of Equation 4.6 is the likelihood of generating Q0’s context P0 from the

smoothed language model of Qi’s context Pi, being normalized by Q0’s context length.

After that, for each given target page P0, we calculate a relevant (click-associated)

query language model (RQLM) p(w∣Q0) to discover P0’s plausible click-associated

query terms by:

p(w∣Q0) =
∑

Qi∈Q
p(w∣Qi)× t(Qi∣Q0), (4.7)

where Qi denotes all the queries that may lead to the clicks on Pi but may be in-

complete or missing, Q denotes the complete textual space of the click-associated

108



queries of all pages, p(w∣Qi) is a multinomial distribution of query terms (w) over the

click-associated query language vocabulary VQ.

To compute the RQLM p(w∣Q0) in Equation 4.7, we use each page Pi’s click-

associated queries originally observed in the query log to estimate a query language

model pobs(w∣Qi) to approximate p(w∣Qi), which would ideally be estimated from

some unknown complete set of Pi’s all plausible click-associated queries in the query

log6. In practice, for effectiveness and efficiency we compute the RQLM of the target

page P0 using the click-associated queries of P0’s top-k most similar pages in the

query log. This choice is due to two reasons: (1) t(Qi∣Q0) is very small for other

pages thus has less impact on the RQLM; (2) increasing k can increase the number

of query samples for better estimating RQLM but also may introduce more noise to

degrade the quality of the estimated RQLM. We tune k’s value on the training data

for each different retrieval task.

4.3.3 Combining Random Walk Approach and Finding Similar Approach

We can use both the random walk approach (in §4.3.1) and our content based

approach (in §4.3.2) to further reduce the click-through sparseness and obtain better

semantic click-through features for search. Here we present one language modeling

based way to combine the advantages of two approaches.

We first employ the random walk approach to enrich the original bipartite click

graph and discover more click-associated queries for each page. Then we estimate

a query language model p(w∣Qaug) for each web page from the new added click-

associated queries, which we call augmented queries, of the page. We also estimate

a query language model p(w∣Qorig) for each page from the click-associated queries

originally observed in the query log, which has not been enriched by the random

6We will use this fact in §4.3.3 to combine the random walk approach and the content based
approach for discovering missing click-through features.
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walk approach. Next, we employ the mixture model approach (Nallapati et al.

2003; Ogilvie and Callan 2003) to combine two query language models p(w∣Qorig)

and p(w∣Qaug), and compute a better smoothed query language model p̃(w∣Q) by:

p̃(w∣Q) = 
p(w∣Qorig) + (1− 
)p(w∣Qaug), (4.8)

where 
 is a meta-parameter to control the mixture weight (or prior probability)

of each component and be tuned on training data for different tasks. Then we use

the updated query language model p̃(w∣Q) of each page to better approximate the

p(w∣Qi) in Equation 4.7 so that we can better estimate the RQLM p(w∣Q0) of each

page P0 to help retrieval.

We now describe how we use discovered click-through features to help search.

4.4 Using Information Discovered from Query Logs for Web

Search

Similar to how we leverage different discovered anchor text information for re-

trieval (in §3.4), we consider two alternative retrieval approaches shown in Figure

4.2(a) and (b) (in the introduction of this chapter). The webpage-side approach (in

Figure 4.2(a)) utilizes discovered semantic click-through features of web pages for re-

ranking them. The query-side approach (in Figure 4.2(b)) constructs semi-structured

records to use semantic click-through features and then employs the Structured Rel-

evance Models approach (in §2.5.1) for search. For the convenience of discussing

different retrieval models and baselines, we start by briefly describing the data and

methodology we used for evaluating different approaches.

Mainly due to privacy and security concerns, there are very limited publicly avail-

able web query log data even for academic research purpose. In our experiments,

we use the Microsoft Live Search 2006 search query log excerpt (MS-QLOG), which
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has been used in some previous query log study (Bendersky and Croft 2008b;

Wang and Zhai 2008; Bendersky and Croft 2009). We have briefly described

this dataset in the introduction of this chapter. MS-QLOG contains click-through

information of 12,251,068 click-through events and also information of 14,921,286 ad-

ditional user-issued web queries that received no clicks, both sampled from the query

log of Microsoft’s web search engine during 05/01/2006 to 05/31/2006. We only use

the click-through records in this dataset for our experiments.

For our retrieval experiments, we use the queries and the corresponding human-

labeled relevance judgments in two TREC web search tasks. The first one consists of

the ad hoc web search tasks in the TREC 2004-2005 Terabyte Tracks (Clarke et al.

2005; Clarke et al. 2004) and the second one consists of the ad hoc web search tasks

in the TREC 2009 Web Track (Clarke et al. 2009; Koolen and Kamps 2010)

and the TREC 2010 Web Track7. The search was performed on the GOV2 collection

(a standard TREC web collection crawled from government web sites during early

2004) in the first retrieval task, and on the category B subset of the ClueWeb09

Dataset8 (another standard TREC web collection recently crawled from the Web

during 01/06/2009 to 02/27/2009) in the second retrieval task, respectively. These

are the same corpora but different tasks used in Chapter 3.

Because our approach depends on web page content similarity, we crawl the web

content of all the clicked URLs in the MS-QLOG dataset and use the crawled pages

and their click-associated queries in MS-QLOG as the training web pages depicted

in the bottom external boxes of Figure 4.2(a) and (b) (in the introduction of this

chapter). The GOV2 collection and the TREC category B subset of the ClueWeb09

web collection, known as the ClueWeb09-T09B dataset, are used as the searched

target web collections depicted in the upper-right external boxes of Figure 4.2(a) and

7http://plg.uwaterloo.ca/ t̃recweb/2010.html

8http://boston.lti.cs.cmu.edu/Data/clueweb09/
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(b). Each ClueWeb09 page or GOV2 page can be viewed as a page with no click

information9 thus both the training web pages and the searched items encounter the

click-through sparseness problem. More details about the data and methodology used

for evaluating the retrieval performance of different approaches will be described later

(in §4.4.3).

Next, we describe our retrieval models, then discuss the experimental results in

§4.4.3.

4.4.1 Document Smoothing Based Retrieval Models

The first baseline is the same as the query likelihood baseline described in §3.4.1

(which describes retrieval models using anchor text information). This baseline does

not use any click-through features and ranks each web page P for a query Q by the

likelihood of the page P ’s document language model p(w∣P ) generating the query Q:

p(Q∣P ) =
∏

w∈Q

p(w∣P ). (4.9)

Again we use Dirichlet smoothing to compute the document language model p(w∣P )

used in the above equation and denote this query likelihood baseline QL here. We

tune the Dirichlet parameter � in Equation 4.5 for QL to achieve the best retrieval

performance for different tasks. Note that � is fixed to 2500 when computing the

document models of the crawled clicked URLs in MS-QLOG for estimating RQLMs

(relevant click-associated query language models described in §4.3.2) for different

tasks.

We also follow the mixture model approach (Nallapati et al. 2003; Ogilvie and

Callan 2003) to use the discovered click-through query language model features to

help search. After we estimate the RQLM p(w∣Q0) for each page, we mix a web page

9Some previous research showed that there is very small overlap between the clicked URLs in
MS-QLOG and the GOV2 collection (Bendersky and Croft 2009).
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P ’s document language model p(w∣P ) with the RQLM to obtain a better document

language model p̃(w∣P ) by:

p̃(w∣P ) = �p(w∣P ) + (1− �)p(w∣Q0), (4.10)

where p(w∣P ) is the original smoothed document model in the QL baseline and � is

the meta-parameter controlling the mixture weights of the component distributions.

Then we use the updated document language model p̃(w∣P ) to replace p(w∣P ) in

Equation 4.9 for retrieval.

We have described three different approaches of discovering plausible missing click-

through features in §4.3. In our experiments, because the searched items are the

ClueWeb09 or GOV2 web pages with no click information, only using the random

walk approach cannot discover any click-associated queries for them to help search.

Therefore, we only consider using our content based approach and the combination

approach (in §4.3.3) for retrieval. In the combination approach, we first discover

plausible links in the click graph of the MS-QLOG dataset by the random walk

approach and then use the enriched click graph to estimate better RQLMs for the

ClueWeb09 or GOV2 pages by our content based approach. We denote the retrieval

baseline that uses RQLMs from the content based approach to update document

models for search asRQLM, and the baseline that uses RQLMs from the combination

approach for search as RW+RQLM in later discussions.

4.4.2 Query-side Implicit information Discovery for Search

Similar to the query-side approach of discovering anchor text for search, we employ

a semi-structured query-side approach in Figure 4.2(b) (in the introduction of this

chapter) to address the missing/incomplete click problem. We build a semi-structured

query from each query in the ad hoc web search tasks and then utilize the Structured
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Relevance Models (SRM) based retrieval approach to discover implicit query field

values for retrieval.

Formally, we view each web page as a semi-structured record containing two fields:

(1) the Page Content field (denoted by wp) which contains the original page con-

tent and (2) the Query Content field (denoted by wq) which contains all the click-

associated queries of the page in the web query log. Then for each unstructured

query q, we generate a semi-structured query q = {wp,wq} that has the same semi-

structure as the web page record by duplicating the query string in both fields, i.e.

wp = wq = q. We assume that both fields are incomplete and then use the SRM ap-

proach to estimate plausible implicit field values in q based on the observed {wp,wq}.

We use our crawled pages of the clicked URLs in MS-QLOG and their click-associated

queries in MS-QLOG to form the training semi-structured record collection W.

We then use the same procedure described in §3.4.2 (which discussed the query-

side retrieval model of discovering anchor text for search) and the training collection

to calculate the SRM {Rp(⋅), Rq(⋅)} for q, where each relevance model Ri(w) specifies

how plausible it is the word w would occur in the field i (i ∈ {p, q}) of q given the

observed q = {wp,wq}.

In the process of computing the SRM for q, we use the following equation to

compute the posterior probability P (w′∣q) of generating q from the training web

page records w′ ∈ W:

P (w′∣q) ∝ P (q∣w′) ∗ P (w′),

P (q∣w′) = P (wp∣w
′
p)

�p ∗ P (wq∣w
′
q)

�q ,
(4.11)

where the meta-parameters �p and �q are used to control the impact of each field

on the posterior probability and tuned with the training queries. In addition, when

computing P (wi∣w
′
i), i ∈ {p, q} in Equation 4.11, we perform smoothing in each field
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and fix the Dirichlet smoothing parameters �p = 50, �q = 1 for the Page Content and

Query Content fields, respectively. 10

Again, for efficiency and effectiveness we use q’s top-k most similar records in-

stead of all records w′ ∈ W to calculate Ri(w). We tune the value of k with the

training queries. Because the click information is completely missing in each of our

two searched target collections W ′′ (ClueWeb09-T09B and GOV2), the Query Con-

tent field is empty there. Therefore, we only use the relevance model Rp(w) of the

estimated SRM in the Page Content field to search each target collection. We inter-

polate it with the original query language model to obtain a better relevance model

for retrieval:

R′
p(w) = � ∗ (p(w∣wp)) + (1− �) ∗Rp(w), (4.12)

where � is used to control the impact of the original query language model on the

updated relevance model and tuned with the training queries. Then the searched web

page records w′′ ∈ W ′′ are ranked by their similarity to R′
p(w):

H(R′
p;w

′′
p) =

∑

w∈Vp

R′
p(w) log p(w∣w

′′
p). (4.13)

We denote this retrieval baseline as SRM in the experiments.

4.4.3 IR Experiments

4.4.3.1 Data and Methodology

We have described the GOV2 collection, the ClueWeb09 collection and its TREC

category B subset (ClueWeb09-T09B) earlier and also in §3.3.4.1 where we designed

experiments with these collections to examine the quality of the discovered anchor

10When we used some sampled queries in the MS-QLOG to search their clicked URLs in our
crawled training web collection, we found that using these smoothing parameters can achieve the
best retrieval performance, if the user click is directly used as the relevance indicator of the web
page. Note that this way can only obtain very sparse, biased and incomplete relevance judgments,
so we do not use it for designing retrieval experiments for evaluation.
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terms by different approaches. Here we use GOV2 and ClueWeb09-T09B as the

searched target collection in the first and second retrieval task, respectively. We use

the Indri Search Engine11 to index each collection by removing a standard list of 418

INQUERY (Broglio et al. 1993) stopwords and applying the Krovetz stemmer.

For the first retrieval task, we use 50 ad hoc query topics (TREC topic id:701-

750,title-only) and their relevance judgments in the TREC 2004 Terabyte Track

(Clarke et al. 2004) for training and 50 ad hoc query topics (TREC topic id:751-

800,title-only) and their relevance judgments in the TREC 2005 Terabyte Tracks

(Clarke et al. 2005) for testing. On average, there are about 210 judged relevant

web pages per query in this retrieval task. For the second retrieval task, we use 50

ad hoc query topics (title-only) and their relevance judgments in the TREC 2009

Web Track (Clarke et al. 2009; Koolen and Kamps 2010) for training and the

query topics (title-only) in the TREC 2010 Web Track for testing. On average, there

are about 72 judged relevant web pages per query in this retrieval task. Moreover,

the original ad hoc web search task in the TREC 2010 Web Track was performed

on the whole ClueWeb09 collection; in contrast, here our searched target collection

is ClueWeb09-T09B, a subset of ClueWeb09, thus we only use the human-labeled

relevant pages in ClueWeb09-T09B for evaluation.

We crawled the web pages of the clicked URLs in the MS-QLOG during June

2010. We use these pages and their click-associated queries in the MS-QLOG as

the training data for our experiments. Originally there are 4,971,990 unique clicked

URLs in this query log, as shown in Table 4.3; we successfully crawled 3,031,348

HTML pages of the clicked URLs and indexed them using the Indri Search Engine.

After removing 418 INQUERY stopwords and applying Krovetz stemmer, the indexed

collection, which we call MS-QLOG-Web, contains about 21.5 million unique words

11http://www.lemurproject.org/indri/
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and 4.1 billion word postings. These pages are then used for discovering missing

click-through features for the GOV2 or ClueWeb09 pages. We also preprocessed the

queries in the MS-QLOG using the same set of stopwords and stemming procedure.

To evaluate the retrieval performance of the different approaches, we calculate

typical IR evaluation measurements including Mean Average Precision (MAP) and

Precision at the top k-th rank position (P@k), which have been used in the IR ex-

periments in the previous chapters. We also compute some IR measurements that

use the graded relevance judgment information, including the Normalized Discounted

Cumulative Gain (NDCG) and NDCG at position k (NDCG@k) (Järvelin and

Kekäläinen 2002; Vassilvitskii and Brill 2006). For the TREC 2010 Web Track

queries, the relevance score is an integer between [-2,3] with the most relevant page

having score 3 and the most irrelevant page having score -2, because the TREC com-

munity began to provide a 6-level scale relevance judgment12 for each query; for other

query sets, relevance score is an integer between [0,2] with the most relevant page

getting score 2. For the performance on the TREC 2009 Web Track queries, we also

report two additional measurements: statMAP and MPC(30), which were used by

the TREC community for that track (Clarke et al. 2009) and computed by the

evaluation tool statAP MQ eval v3.pl 13 provided by the TREC community; thus, we

can compare our results with other researchers’ published results on the same query

set. Intuitively, both statMAP and MPC(30) measurements are used for addressing

the incomplete judgment issue (i.e. there may exist some relevant pages that have not

got the chance to be judged; treating them as non-relevant pages may underestimate

the actual IR performance): statMAP is a statistical version of the MAP measure-

ment and MPC(30) is a statistical version of the measurement P@30 (Aslam and

Pavlu 2007; Carterette et al. 2006).

12http://plg.uwaterloo.ca/ t̃recweb/2010.html

13It is downloadable at: http://trec.nist.gov/data/web09.html
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In each retrieval task, we first tune the Dirichlet smoothing parameter � in Equa-

tion 4.5 to obtain the best QL baseline that can achieve the highest MAP with train-

ing queries on each searched target collection (GOV2 or ClueWeb09-T09B). Then for

both the RQLM baseline (using our content based approach) and the RW+RQLM

baseline (using the combination approach), we employ the reranking approach, where

we use the updated document language model by each approach to recompute the

query likelihood scores of the top-1000 web pages returned by the QL baseline for

each query and then rerank the pages. For the RQLM baseline, we tune these two

parameters: the number (k) of the top-k similar pages whose click-associated queries

are used to compute the RQLM and the mixture weight � in Equation 4.10. For the

RW+RQLM baseline, we tune two additional parameters: the transition probability

threshold � (discussed in §4.3.1) and the query language model updating weight 


in Equation 4.8. For the SRM baseline, as described in §4.4.2, we tune the number

of the similar pages (k) used to build SRM, the number of terms (N) in each field

of the built SRM for retrieval, the meta-parameters � in Equation 4.12 and �p, �q in

Equation 4.11. In each retrieval task, we tune the parameters of different approaches

with the training queries, and then test the performance of different approaches with

the tuned parameters on the test queries.

4.4.3.2 Results

Table 4.4 and 4.5 show the retrieval performance of different approaches with the

training and testing queries, respectively, in the first retrieval task. Table 4.6 and 4.7

show the retrieval performance of different approaches with the training and testing

queries, respectively, in the second retrieval task. Table 4.4 and 4.6 also show the cor-

responding tuned parameters of each approach in the first and second retrieval task,

respectively. In addition, Figure 4.3 and 4.4 show the difference of the average preci-

sions (AP) between RW+RQLM and QL, as well as between RW+RQLM and SRM,
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MAP P@10 P@30 NDCG@1 NDCG Optimal Param.
QL 0.2617 0.5102 0.4694 0.3741 0.4829 � = 1000

Query-side missing click-through feature discovery:
SRM 0.2777‡ 0.5551‡ 0.5020‡ 0.4150 0.4945 k = 10, N = 50

� = 0.3, �p = 0.99
�q = 0.01

Webpage-side missing click-through feature discovery:
RQLM 0.2688 0.5388‡ 0.4796 0.4422† 0.4927‡ k = 100, � = 0.95
RW+RQLM 0.2691† 0.5347‡ 0.4823† 0.4490‡ 0.4933‡ k = 100, � = 0.95

� = 0.01, 
 = 0.6
Table 4.4. Retrieval performance and tuned parameters of different approaches on
TREC 2004 Terabyte Track ad hoc queries (the training queries). The ‡ and † indicate
statistically significant improvement over of the QL baseline based on one-sided t-test
with p < 0.05 and p < 0.1,respectively.

MAP P@10 P@30 NDCG@1 NDCG
QL 0.3043 0.5560 0.4980 0.4667 0.5475
Query-side missing click-through feature discovery:
SRM 0.3110 0.5700 0.5060 0.4400 0.5502
Webpage-side missing click-through feature discovery:
RQLM 0.3161‡ 0.5960‡ 0.5120 0.5133† 0.5601‡

RW+RQLM 0.3132† 0.5840‡ 0.5067 0.4800 0.5579‡

Table 4.5. Retrieval performance of different approaches on TREC 2005 Terabyte
Track ad hoc queries (the test queries). The ‡ and † indicate statistically significant
improvement over of the QL baseline based on one-sided t-test with p < 0.05 and
p < 0.1,respectively.

MAP P@10 P@30 statMAP MPC(30) Optimal Param.

QL 0.1951 0.3408 0.3354 0.1732 0.3636 � = 1000

Query-side missing click-through feature discovery:

SRM 0.2258‡ 0.4388‡ 0.3959‡ 0.2069 0.4661 k = 5, N = 100
� = 0.4, �p = 0.01
�q = 0.99

Webpage-side missing click-through feature discovery:

RQLM 0.2107‡ 0.3714† 0.3694‡ 0.1916 0.4215 k = 25, � = 0.9

RW+RQLM 0.2123‡ 0.3796‡ 0.3728‡ 0.1908 0.4359 k = 25, � = 0.9
� = 0.01, 
 = 0.5

Table 4.6. Retrieval performance and tuned parameters of different approaches on
TREC 2009Web Track queries (the training queries). The ‡ and † indicate statistically
significant improvement over of the QL baseline based on one-sided t-test with p <
0.05 and p < 0.1,respectively.
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MAP P@10 P@30 NDCG@1 NDCG
QL 0.1761 0.2292 0.2451 0.0714 0.3347
Query-side missing click-through feature discovery:
SRM 0.1808 0.2354 0.2556 0.0595 0.3264
Webpage-side missing click-through feature discovery:
RQLM 0.1925‡ 0.2646† 0.2708† 0.1339‡ 0.3509‡

RW+RQLM 0.1995‡ 0.2688‡ 0.2715† 0.1339‡ 0.3526‡

Table 4.7. Retrieval performance of different approaches on TREC 2010 Web
Track queries (the test queries). The ‡ and † indicate statistically significant im-
provement over of the QL baseline based on one-sided t-test with p < 0.05 and
p < 0.1,respectively.

statMAP MPC(30)
QL 0.1442 0.3079
Anchor 0.0567 0.5558
Mix 0.1643 0.4812

UDWAxQEWeb 0.1999 0.5010
uogTrdphCEwP 0.2072 0.4966
ICTNETADRun4 0.1746 0.4368

Table 4.8. Retrieval performance of some published results on TREC 2009 Web
Track ad hoc queries from other TREC participants. Results in 2nd-4th rows ap-
peared in published work on using anchor text for web search. Results in 5th-7th
rows are top3 best official submissions for this search task in the TREC 2009 Web
Track among the TREC participants.
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Figure 4.3. The difference of the average precisions (AP) between RW+RQLM
and QL on each individual test query from TREC 2005 Terabyte Track. Above
the x-axis reflect queries where RW+RQLM out-performs QL. Y-axis denotes the
difference, computed using (RW+RQLM’s AP minus QL’s AP) of each test query.
All the differences are sorted then depicted to show the IR performance difference of
two approaches. Among 50 queries, RW+RQLM outperforms QL on 34 queries and
performs worse than QL on 16 queries.

Figure 4.4. The difference of the average precisions (AP) between RW+RQLM
and SRM on each individual test query from TREC 2005 Terabyte Track. Above
the x-axis reflect queries where RW+RQLM out-performs SRM. Y-axis denotes the
difference, computed using (RW+RQLM’s AP minus SRM’s AP) of each test query.
All the differences are sorted then depicted to show the IR performance difference
of two approaches. Among 50 queries, RW+RQLM outperforms SRM on 22 queries
and performs worse than SRM on 28 queries.
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Figure 4.5. The difference of the average precisions (AP) between RW+RQLM and
QL on each individual test query from TREC 2010 Web Track. Above the x-axis
reflect queries where RW+RQLM out-performs QL. Y-axis denotes the difference,
computed using (RW+RQLM’s AP minus QL’s AP) of each test query. All the
differences are sorted then depicted to show the IR performance difference of two
approaches. Among 48 queries (two queries were finally abandoned by the TREC
committee because they did not get enough time to judge relevant documents for
them.), RW+RQLM outperforms QL on 31 queries, performs the same as QL on 2
queries and worse than QL on 15 queries.

Figure 4.6. The difference of the average precisions (AP) between RW+RQLM and
SRM on each individual test query from TREC 2010 Web Track. Above the x-axis
reflect queries where RW+RQLM out-performs SRM. Y-axis denotes the difference,
computed using (RW+RQLM’s AP minus SRM’s AP) of each test query. All the
differences are sorted then depicted to show the IR performance difference of two ap-
proaches. Among 48 queries, RW+RQLM outperforms SRM on 26 queries, performs
the same as SRM on 2 queries and worse than SRM on 20 queries.
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on each individual test query from TREC 2005 Terabyte Track, respectively. Figure

4.5 and 4.6 show the difference of the average precisions (AP) between RW+RQLM

and QL, as well as between RW+RQLM and SRM, on each individual test query

from TREC 2010 Web Track, respectively.

We can see from these tables and figures that using the semantic click-through fea-

tures discovered by different approaches can help to improve web search performance,

although performance is affected in different degree by the choice of their model pa-

rameters across different query sets. We have the following main observations:

1. Using click-through features extracted from the MS-QLOG benefits web search

tasks on the ClueWeb09 data more than the ones on the GOV2 data. This is

not surprising because the TREC retrieval tasks on the ClueWeb09 data are,

in nature, more similar to real-world web search tasks as those recorded in MS-

QLOG: (1) the ClueWeb09 dataset were crawled from the general web while the

GOV2 collection was crawled only from government web sites; (2) the queries

in the TREC Web Tracks were created to closely simulate the real world web

search scenarios, while the queries in the TREC Terabyte Tracks were created

to target government web pages in order to have some relevant pages in the

GOV2 data, so may be different from the recorded web queries in MS-QLOG.

2. On the test query sets in two retrieval tasks and the training query set in the

ClueWeb09 retrieval task, both RQLM and RW+RQLM performed statistically

significantly better than QL in terms of MAP and P@10. In the first retrieval

task on the GOV2 collection and the second retrieval task on the ClueWeb

data, RW+RQLM outperformed QL on 34 queries (68% of 50 test queries) and

31 queries (62% of 48 test queries), respectively. This demonstrates that using

click-through query language model features discovered by our content based

approach for web pages with no clicks can improve the web search performance

significantly. This also indicates that our content based approach can some-
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what alleviate the click-through sparseness problem. In addition, RW+RQLM

performed slightly better than RQLM on the training query sets in both re-

trieval tasks and the test query set in the ClueWeb09 retrieval task, indicating

that the combination of our content based approach and the click-graph based

random walk approach can further reduce click-through sparseness and refine

the discovered click-through features for improving search.

3. The query-side information discovery approach (SRM) achieved the best per-

formance on the training query sets in both retrieval tasks. In addition, SRM

outperformed RW+RQLM on 28 test queries (56%) in the first retrieval task

on the GOV2 collection, although it only outperformed RW+RQLM on 20 test

queries (43.5% of the 46 queries where the performance of SRM and RW+RQLM

differed) in the second retrieval task on the ClueWeb data. This shows that

when the model parameters are carefully tuned, the SRM approach can dis-

cover implicit query language information to improve the search effectiveness.

�p = 0.99, �q = 0.01 in the first retrieval task implies that the extended query

field content mainly comes from the content of the MS-QLOG-Web pages that

have the highest likelihoods of generating the original query. This situation is

similar to the typical relevance model approach (Lavrenko and Croft 2001)

except that the training collection and the searched collection are different. In

contrast, �p = 0.01, �q = 0.99 in the second retrieval task implies that the ex-

tended query field content mainly determined by each query’s similar queries in

the query log and their corresponding clicked pages’ content, and that the query

log information is more helpful for the second retrieval task on the ClueWeb09

data. However, we observe that on the test queries SRM achieved very little

improvement over the QL baseline with the tuned model parameters on the

training queries. We will do more analysis on this issue in §4.4.3.3 to investi-

gate some possible causes, such as how sensitive the performance of SRM for
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the web search tasks is to the change of its model parameters on different query

sets.

To make sure that our demonstration of the effectiveness of using discovered miss-

ing semantic click-through features for general web search is not compromised by a

weak QL baseline, we show in Table 4.8 some previous results on the TREC 2009

Web Track ad hoc search task from some participants (Koolen and Kamps 2010).

The 2nd-4th rows of the table show Koolen and Kamps’s results on the same retrieval

task when they examined the potential of using existing anchor text in large scale web

corpora for helping search. One major difference between their QL baseline and ours

is that they used linear smoothing approach while we use Dirichlet smoothing which

usually performs better than linear smoothing. Comparing Table 4.8 with our results

in Table 4.6, we can observe that our baseline performs better than all of Koolen

and Kamps’s three methods in terms of statMAP. The 5th-7th rows of Table 4.8

show the top3 best official TREC submissions for the same retrieval task from other

participants. Comparing these top-performing TREC submissions with our results,

we can see that our three retrieval approaches that use click-through query language

information discovered from the web query log achieve similar performance to them.

To summarize, our content based approach can effectively discover missing click-

through features for web pages with no clicks to help improving retrieval performance.

Combining our approach with the random walk approach can further improve the

quality of the discovered features from click-through data that have sparseness prob-

lem thus further help search. The query-side implicit information discovery approach

performs very well on some query sets but not so well on other query sets, depend-

ing on whether effective SRMs can be built from the training web pages to better

represent information need underlying the queries.
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4.4.3.3 More Analysis

We are concerned about how sensitive different approaches’ performance is to

the change of their retrieval model parameters. Specifically, for our content based

approach (RQLM) and the combination approach (RW+RQLM), we are interested

in how many similar pages of each page are needed in order to build RQLMs that

can improve retrieval performance the most and how changing this number will affect

the retrieval performance. For the combination approach, we are further interested in

the impact of using the augmented queries discovered by the random walk approach

for helping search. For the SRM based approach, we are concerned with the impact

of different number of feedback pages used to build the SRM and the mixture weight

between the original query language and the built SRM on this approach’s retrieval

performance.

As discussed in the previous section, the ad hoc web search tasks on the ClueWeb09-

T09B collection in our second retrieval task better simulate the real-world web search

scenarios; therefore, we use this task to investigate the impact of different model

parameters of different approaches on their search performance.

Figure 4.7(a) and (b) depict the model parameter selection’s impact for RQLM

on the training/testing queries in this retrieval task, respectively, where we fix � =

0.9 while varying k. Figure 4.8(a) and (b) depict the model parameter selection’s

impact for RW+RQLM on the training/testing queries, respectively, where we fix

� = 0.01, � = 0.9 while varying 
 and k. Figure 4.9(a) and (b) depict the model

parameter selection’s impact for SRM on the training/testing queries, respectively,

where we fix �p = 0.01, �q = 0.99, N = 100 while varying � and k.

From Figure 4.7 and 4.8, we have the following major observations on the two

web-side implicit information discovery approaches:

1. Using click-associated queries from about 25 ∼ 35 most similar pages to build

RQLM for each page can achieve near optimal retrieval performance on both
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(a) training
 (b) testing


Figure 4.7. The impact of choosing different number (k) of most similar pages on
RQLM’s retrieval effectiveness. (a) The impact on performance with our training
queries; (b) the impact on performance with our test queries.

training/test query sets. Increasing k beyond 35 brings little additional benefit

to (or even hurt) the retrieval performance, and only changes the performance

very slowly. This property means that in real-world use, for efficiency we need

only index click-through information from a small number of similar pages of

each page for both approaches, without sacrificing their retrieval effectiveness.

2. Using augmented queries discovered by the random walk approach from the click

graph can slightly help the retrieval effectiveness. The mixture weight 
’s value

can be selected between 0.4 ∼ 0.6 across different query sets and the change of

this value among this range has little impact on the retrieval performance of

RW+RQLM. This also indicates that click-through features from the augmented

queries discovered by the random walk approach are at least as useful as the

click-through features from the original click-associated queries for search.

Figure 4.9 shows that the retrieval performance of the SRM based approach mainly

depends on whether the training web page collection (which is MS-QLOG-Web here)

contains web pages whose content can be useful for discovering implicit field informa-

tion in the query for searching the target web collection (which is ClueWeb09-T09B
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(a) training
 (b) testing


Figure 4.8. The impact of choosing different number (k) of most similar pages
and mixture weight 
 (between the original click-associated query language model
and the language model from the augmented queries discovered by the random walk
approach) on RW+RQLM ’s retrieval effectiveness. (a) The impact on performance
with our training queries; (b) the impact on performance with our test queries.

(a) training
 (b) testing


Figure 4.9. The impact of choosing different number (k) of retrieved pages to build
SRM and mixture weight � (between the built SRM and the original query language
model) on SRM’s retrieval effectiveness. (a) The impact on performance with our
training queries; (b) the impact on performance with our test queries.
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here). For the training queries, using only top-5 feedback pages for extending the

Page Content field of each query can achieve very good performance (even better

than the RW+RQLM approach); in contrast, for the test queries, the performance

improvement over the QL baseline is very little and achieved by using more feedback

pages for building SRM. Furthermore, the choice of the mixture weight � also affects

SRM’s retrieval performance significantly, both within the same query set and across

different query sets. The choice of the best � indicates the quality of the built SRM

for different query sets: the higher quality is the SRM, the smaller � and less infor-

mation from the original query language model are needed to reconstruct query fields

for search. To summarize, compared with our content based approach and the com-

bination approach, the SRM based approach’s retrieval performance is more sensitive

to the selection of the model parameters across different query sets for this retrieval

task.

4.5 Conclusions

In this chapter, we employed our general perspective of discovering implicit infor-

mation for search in Figure 1.1 (in Chapter 1) to address the click-through data

sparseness issue when using web query logs for search. We presented and com-

pared webpage-side and query-side approaches of discovering plausible semantic click-

through features from web query logs for web search.

For the webpage-side approach (in Figure 4.2(a)), we proposed a language mod-

eling based method that uses web content similarity for discovering plausible click-

through features for web pages with no or few clicks. Similar to our approach of

discovering anchor text in Chapter 3, here we computed a relevant (click-associated)

query language model, called RQLM, from the click-associated queries of the similar

pages of a web page in the web query log for discovering the page’s plausible (but miss-

ing) click-through features. Compared with the random walk approach (Craswell
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and Szummer 2007), the RQLM approach does not need to use specific click graph

structure to discover semantically related queries for pages thus can handle the pages

with no clicks and further mitigate click-through sparseness. Compared with the

Good-Turing based smoothing approach (Gao et al. 2009), our approach can dis-

cover different semantic click-through features for web pages having different content

and no clicks in the query log. Moreover, we presented a combination approach that

takes advantage of both the random walk approach and our content based approach

to further reduce click-through sparseness and improve the quality of discovered click-

through features for search. We then described how we use discovered information

for web search by using the mixture model (Nallapati et al. 2003; Ogilvie and

Callan 2003) in the language modeling retrieval framework.

For the query-side approach (in Figure 4.2(b)), we presented how we adapted the

Structured Relevance Model (SRM) for this task where we used the click-through

information in the web query log to discover plausible semi-structured query field

information for search. The basic procedure is similar to our query-side approach of

handling anchor text information in §3.4.2 – adding some structure to an unstructured

query, viewing both queries and web pages as semi-structured records and using the

SRM approach for search – except that the training web pages and the searched target

here are different web collections.

We evaluated the retrieval performance of the above two approaches (webpage-

side and query-side) with two different sets of ad hoc web search tasks. The first one

consisted of the retrieval tasks in the TREC 2004-2005 Terabyte Tracks performed on

the GOV2 collection and the second one consisted of the retrieval tasks in the TREC

2009-2010 Web Tracks performed on the ClueWeb09-T09B collection. The results on

both sets of web search tasks showed that discovering click-through features for web

pages with no clicks can help to improve the web search performance statistically

significantly, compared with the retrieval baseline that does not use this information.
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The webpage-side discovery approaches, including RQLM and the combination ap-

proach (RW+RQLM), for this IR challenge performed robustly across different query

sets while the query-side discovery approach’s retrieval performance was more sensi-

tive to the selection of the model parameters on different query sets. In addition, the

click-through features discovered by the random walk approach complemented those

discovered by our content approach for helping search and the combination approach

performed slightly better than the content-only approach on three of the four query

sets in our experiments.

There are several interesting directions of future work. It seems worthwhile to

explore using the discovered semantic click-through features beyond the language

modeling based retrieval framework. For example, we can use those features in the

learning-to-rank retrieval approach (Burges et al. 2005), so that different approaches

described here may be combined with the Good-Turing based smoothing approach

(Gao et al. 2009) to achieve better retrieval performance. Moreover, here we only ex-

plored using the contextual translation probability p(Pi∣P0) between web pages to dis-

cover useful missing semantic click-through features. However, theoretically, we can

also use this probability to compute an expected feature E(fP0
) =

∑

fPi
∈ℱ

fPi
× p(Pi∣P0)

for any feature of a page P0, using the same click-through feature fPi
of P0’s similar

pages Pi. In this way, we can compute an expected feature value that can incorporate

web content similarity information to help search. Similar to Gao et al.’s approach,

this approach also aims to smooth the click-through features for web pages with no

clicks, but leverages the web content similarity during the smoothing. We would like

to explore the utility of these smoothed click-through features for retrieval.
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CHAPTER 5

DISCOVERING IMPLICIT GEOGRAPHIC

INFORMATION IN WEB QUERIES

5.1 Introduction

In this chapter we address an implicit information discovery challenge where a

user searches for information associated with a particular geographic location (city

in our case) but omits the location name when formulating the query. For example,

when the user issues the query “eiffel tower tour”, he or she probably wants travel

information around Paris, France. Our goal is to detect such queries and predict

the plausible city missing in them (e.g. Paris, France in the above query example).

Again, we address the information discovery issue here using the general perspective

of discovering implicit information for IR in Figure 1.1. We start with a detailed

description of the background of this research issue.

Previous research has shown that more than 13% of web queries contain explicit

geographic (referred to as “geo” for simplicity) information (Jones et al. 2008;

Sanderson and Kohler 2004; Welch and Cho 2008). Identifying geo infor-

mation in user queries can be used for different retrieval tasks: we can personalize

retrieval results based on the geo information in the query and improve a user’s

search experience; we can also provide better advertisement matching and deliver

more information about the goods and services in some specific geographic areas to

the potentially interested users. Previous research has demonstrated how to improve

retrieval performance for a query by incorporating related geo information when this

information explicitly appears in the query or is known beforehand (Andrade and

Silva 2006; Yu and Cai 2007; Jones et al. 2008).
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However, recent research has found that only about 50% of queries with geo in-

tent – i.e., queries where the users expected the results to be contained within some

geographic radius – had explicit geo location names (Welch and Cho 2008). For

example, many users input the query “space needle”, expecting the search engine to

automatically detect their intent to find relevant travel information in Seattle. There-

fore, identifying implicit geo intent and accurately determining location information

is important and necessary for any retrieval model that leverages geo information.

We expect that in handheld devices like cell-phones, the percentage of queries with

implicit geo intent will be much higher. For convenience, we refer to geo intent queries

as geo queries in the rest of this chapter.

In our research, we consider detecting implicit geo queries and discovering their

plausible geo information at a fine grained city level. Previous research has shown that

a large portion (84%) of explicit geo queries contain city level information (Jones

et al. 2008), which implies that users often have a city level granularity in mind when

issuing geo queries. We therefore believe that finding implicit city level information

can greatly help satisfy users’ specific geo information needs, e.g. a user who searches

for “macy’s parade hotel rooms” can receive a variety of information about hotels

in New York City. For the convenience of description, we consider that an explicit

geo query consists of (a) a location part : that explicitly helps identify the location

and (b) a non-location part. For example, in the query “pizza in 95054”, the term

“95054” is the location part and the remaining terms, the non-location part1.

We hypothesize that implicit geo queries may be similar in content to the non-

location part of explicit geo queries and that the city level information in the implicit

geo queries corresponds to the location part of their similar explicit geo queries.

1The word “in” will be removed from the non-location part of geo queries as a stopword after
the data preprocessing steps described later in §5.3.
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Figure 5.1. The specific perspective of discovering implicit city information in
location-specific web queries

Under this assumption, we develop language modeling based techniques for implicit

geo detection and missing city level geo information prediction.

Figure 5.1 illustrates our approach. Specifically, we build query language models

for different cities (called city language models or CLMs) from the non-location part of

the training explicit geo queries. Then we calculate the posterior of each city language

model generating the observed query string (non-location part of the query), and

then utilize the posteriors to detect implicit geo search intent and predict plausible

city information for a query. As we mentioned in §1.5, because previous research

has explored how to incorporate explicit geo information of queries into retrieval

models (Andrade and Silva 2006; Yu and Cai 2007; Jones et al. 2008), here we

only consider finding implicit geo queries and their plausible missing city-level geo

information. Accordingly, we show the retrieval part in Figure 5.1 with the dashed

line.

In order to be able to accurately train language models for thousands of different

cities, we utilize a large sample from a months’ worth of web search logs from a major

search engine (Yahoo!) which contains more than 2.8 billion search instances. We
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also use this Yahoo! query log sample to design experiments and generate simulated

implicit geo queries to evaluate the performance of our approach.

The remaining parts of this chapter will be organized as follows. We begin by

reviewing related work in §5.2. Next, in §5.3, we describe how we build city language

models for implicit geo search intent detection and missing city information predic-

tion. Then we describe the experimental setup, present and discuss the evaluation

results in §5.4. We conclude in §5.5.

5.2 Related Work

Although considerable work has been done on how to utilize geographic informa-

tion in meta data for IR (Gey et al. 2005; Gey et al. 2006; Mandl et al. 2007;

Mandl et al. 2008; Purves and Jones 2007), research on automatically detect-

ing and understanding users’ geo search intent in web search has just started. In

2007, the GeoCLEF (Cross-Language Geographical Information Retrieval in Cross-

Language Evaluation Forum) workshop began a geo query parsing and classification

track (Mandl et al. 2007), which required participants to not only extract location

and non-location information of explicit geo queries but also required them to classify

the non-location part into three predefined sub-categories: informational (e.g. news,

blogs), yellow pages (e.g. restaurants, hospitals) and maps (e.g. rivers, mountains).

Different from the research focus in this workshop, our work aims at detecting users’

implicit geo intent in the queries. Welch and Cho’s pilot study (2008) shows that

features extracted from non-location parts of explicit geo queries can help discrimi-

nate queries that have geo intent from those that don’t. Different from their work, we

utilize more complex language modeling features for not only detecting users’ implicit

geo intent but also discovering the plausible (but missing) location information from

the query content.
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Raghavan et al. (2004) built language models from the contextual language around

different name entities (e.g. person, location, organization, etc) in a TREC corpus,

and utilized these entity language models for linking, clustering and classifying dif-

ferent entities. Pasca (2007) utilized different contextual language patterns in the

search logs to extract different types of name entities. These works demonstrated

the effectiveness of using contextual features for categorizing entities. In our work,

we build language models for geo location entities from large scale web search logs,

and investigate whether more complex contextual features can help discover users’

implicit geo search intent and the related missing locations.

Besides using web search logs, some research considers mining both top web search

results and web search logs to disambiguate whether a query that contains a geo

location name implies geo intent or not – e.g. determining whether the query “New

York Style cheesecake” is a geo query (Wang et al. 2005) . This work complements

our approach to better understand users’ implicit specific geo intent.

Our research on discovering and analyzing implicit geo search intent has also been

described in one published paper (Yi et al. 2009).

5.3 Detecting Implicit Geo Intent and Predicting Implicit

City Information

We formally describe how we build city-level query language models (city language

models or CLMs) from web query logs for the implicit geo search analysis in this

section. For the convenience of discussing our approach, we start by briefly describing

how we obtain the training data (queries that contain explicit city information),

which correspond to the information in the bottom box shown in Figure 5.1 (in the

introduction of this chapter).

First, for each query Q in the web search log, we correct possible spelling errors

and remove any stopwords present in the INQUERY (Broglio et al. 1993) stopword
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list2. We do not apply stemming on the queries because previous research showed that

stemming has little impact on implicit geo intent detection while removing stopwords

has significant positive impact (Welch and Cho 2008).

Then we utilize a geo location analysis tool (Jones et al. 2008; Riise et al. 2003)

to identify every possible explicit city-level geo query Qcg. This tool utilizes both

context-dependent (e.g. ‘in’,‘at’) and context-independent features to find possible

location parts in a query, and maps these location parts to a large global location

databases containing zip-codes, cities, counties, states, countries etc. This tool cal-

culates a confidence score in the range (0,1) for each location candidate identified in

the query based on the confidence of whether the candidate is indeed a geo location,

and outputs all the possible locations and confidence scores. In our research we only

consider location candidates whose confidence scores exceed 0.5.3

In the above way, we obtain explicit city level geo queries Qcg from query logs and

decompose each of them as (Qc, Qnc), where Qc and Qnc denote the location/city and

non-location part respectively. Next, we build a CLM for each city by using all the

identified non-location portions (Qnc) of the queries that have the same city name in

their location part Qc.

5.3.1 City Language Models

City names often have strong co-occurrence statistics with terms or phrases like

‘map’, ‘hotel’, ‘hospital’ and so on in the query logs. Therefore, analyzing the language

used in the non-city parts (Qnc) that co-occur with a certain city name in the location

part (Qc) can possibly help discover missing city information in an implicit geo query.

2We remove ‘ff’, ‘first’, ‘stave’ and ‘staves’ from the original version and use the remaining 414
stopwords.

3To limit our scope we only consider U.S. city locations.
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To build language models for each city, we go beyond the “bag of words” approach

used in entity language models built by Raghavan et al. (2004) and instead follow a

bigram language model approach. The reason is that bigram information can be very

important to infer implicit geo intent from phrases. For example, the words ‘times’

and ‘square’ individually may not imply geo intent, but the phrase ‘times square’

has a high possibility of being related to New York City. We do not build trigram

language models because trigrams in web queries are much sparser than bigrams,

making trigram language models not as robust as bigram language models. In the

typical bigram language modeling approach, the probability of a string is expressed

as the product of the probabilities of the words that compose the string, where the

probability of each word is conditioned on the identity of the previous word (Chen

and Goodman 1996); therefore, given a query Q = w1 ⋅ ⋅ ⋅wn, we have:

P (Q) = P (w1)
n
∏

i=2

P (wi∣w
i−1
1 ) ≈ P (w1)

n
∏

i=2

P (wi∣wi−1), (5.1)

where wj
i denotes the string wi ⋅ ⋅ ⋅wj. Then, for each city Ck, we build bigram

language models from the non-location portions (Qnc) of all the explicit geo queries

(Qcg) that have the location portion (Qc) identified as the city Ck. In this way, we can

calculate the probability P (Q∣Ck) of a query Q generated from a city Ck’s language

model by:

P (Q∣Ck) = P (w1∣Ck)
n
∏

i=2

P (wi∣w
i−1
1 , Ck) ≈ P (w1∣Ck)

n
∏

i=2

P (wi∣wi−1, Ck). (5.2)

Researchers have proposed a broad range of smoothing techniques that adjust

the maximum likelihood estimation (MLE) of parameters to solve the zero-frequency

problem in language modeling, and thereby produce more accurate estimations and

predictions. Many thorough comparison studies of different smoothing techniques

can be found in the literature (Chen and Goodman 1996; Zhai and Lafferty

2001b). Different smoothing techniques can have significantly different results. In this

study, for the estimation of bigram probability, we employ a state-of-the-art smooth-
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q =“Disney world ticket” q =“Harvard University”

City Name P (Ci∣Q) City Name P (Ci∣Q)

Orlando 0.98011 Cambridge 0.63545
Kissimmee 0.01386 Princeton 0.05360
Anaheim 0.00240 Longwood 0.05334

New Castle 0.00135 Boston 0.01979
San Antonio 0.00044 Tuskegee 0.01719

Table 5.1. Top-5 cities and the city generation posteriors for two sample queries.

ing technique (method B in Chen and Goodman’s study(1996)), which combines two

intuitions from Dirichlet smoothing and Good-Turing smoothing:

P (wi∣wi−1, Ck) =
#(wi

i−1, Ck) + �P (wi∣Ck)

#(wi−1, Ck) + �
,� = � × ∣VCk

∣, (5.3)

where #(wj
i , Ck) and #(wi, Ck) denotes the frequency counts of the string wj

i and

character wi (respectively) in the non-city parts (Qnc) related to the city Ck, ∣VCk
∣

denotes the vocabulary size of the words that appear in the city Ck’s language model,

� is the Dirichlet smoothing parameter, � is a constant to control the degree of

smoothing for different cities that have different vocabulary sizes. For the unigram

probability P (wi∣Ck) in equation 5.3, we employ standard Dirichlet smoothing:

P (wi∣Ck) =
#(wi, Ck) + 
P (wi∣C∙)

#(w∙, Ck) + 

=

#(wi, Ck) + 
#(wi, C∙)/#(w∙, C∙)

#(w∙, Ck) + 

, (5.4)

where w∙ denotes all the words and C∙ denotes all the cities, e.g. #(w∙, Ck) denotes

the counts of all the words appearing in the non-location parts of geo-intent queries

(Qnc) related to the city Ck and #(w∙, C∙) denotes the counts of all the words co-

occurring with all the cities. 
 is the Dirichlet smoothing parameter.

To predict the city information relevant to an implicit geo query Q, we calculate

the posterior probability of each query Q generated from a city Ci by:

P (Ci∣Q) ∝ P (Ci)P (Q∣Ci), (5.5)
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where we set the prior P (Ci) to be a uniform distribution, i.e. the posterior calculation

will be only affected by the city generation probability P (Q∣Ci), and not be biased

towards those cities that appear most frequently in the query logs. After calculating

all the posteriors, we can sort them to discover the most probable cities that each

implicit geo query Q may be generated from. Table 5.1 shows the top-5 cities and

the corresponding posteriors calculated by our CLMs, trained in experiments, for

two sample queries: “Disney world ticket” and “Harvard University”. ‘New Castle’

appears in the top cities related to the first query because of its ambiguous meaning

– the geo analysis tool we used fails to determine whether it means a new palace in

Disney or the city named ‘New Castle’.

Later in §5.4, we present how we design experiments to evaluate the above ap-

proach to predict plausible city information for a large set of synthetic implicit geo

queries.

5.3.2 Detecting Implicit Geo Intent with Geo Language Features

In order to use a rich set of geo information related language features for detecting

implicit geo queries, we consider a discriminative machine learning approach, i.e. we

train a discriminative classifier that uses geo language features to classify each query

into two categories: with geo search intent and without.

The posteriors (P (Ci∣Q)) of city language models generating queries, described in

the previous section (§5.3.1), are useful as features to detect implicit city level geo in-

tent. We use them as part of the geo language features for building the discriminative

classifier. In addition, we extract a set of geo information features directly related

to the n-grams that occur in the non-city parts (Qnc) of explicit geo queries (Qcg)

for building the classifier. Intuitively, the n-grams in the Qnc of Qcg can help detect

users’ implicit geo intent, e.g. the queries “golden gate bridge” or “fishermen’s wharf”

may imply that users are interested in information about San Francisco. Thus, we
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view each unigram, bigram and trigram in the non-location portions (Qnc) of all the

explicit geo queries (Qcg) as a Geo Information Unit (GIU) that can help discover

users’ implicit geo intent, and extract statistics in the training data for each informa-

tion unit. Then given any new input query Q, we find all the GIUs in this query and

utilize them to generate a wide range of features for implicit geo intent detection.

For each n-gram GIU wi+n−1
i = wi ⋅ ⋅ ⋅wi+n−1 appearing in the non-location part

(Qnc) of all geo-intent queries (Qcg), we calculate the following GIU features:

∙ The frequency count of wi+n−1
i in the set of queries, Qnc, from all cities C∙, denoted

as #(wi+n−1
i , C∙), and the MLE probability (Pg(w

i+n−1
i )) of wi+n−1

i appearing in

the n-grams of all the queries, Qnc : Pg(w
i+n−1
i ) = #(wi+n−1

i , C∙)/#g(ngrams),

where #g(ngrams) denotes the number of n-grams in the set of all Qnc.

∙ The frequency of wi+n−1
i in all queries (including both geo and non-geo intent),

denoted as #(wi+n−1
i ), and the MLE probability of wi+n−1

i appearing in the n-

grams of all the queries: P (wi+n−1
i ) = #(wi+n−1

i )/#(ngrams), where #(ngrams)

denotes the number of n-grams in all the queries.

∙ The pair-wise mutual information (PMI) score (Van Rijsbergen 1979) between

wi+n−1
i and all city locations C∙: PMI(wi+n−1

i , C∙) =
P (wi+n−1

i
,C∙)

P (wi+n−1

i
)P (C∙)

=
Pg(w

i+n−1

i
)

P (wi+n−1

i
)
.

∙ The number of cities that co-occur with wi+n−1
i .

∙ The MLE probability P (wi+n−1
i ∣Ck) of wi+n−1

i appearing in the n-grams of Qnc

that co-occur with city Ck, calculated by: P (wi+n−1
i ∣Ck) =

#(wi+n−1

i
,Ck)

#Ck
(ngrams)

, where

#Ck
(ngrams) denotes the number of n-grams in the Qnc that co-occur with city

Ck.

∙ Given the MLE probability P (wi+n−1
i ∣Ck) we calculate the posterior: P (Ck∣w

i+n−1
i ) ∝

P (Ck)P (wi+n−1
i ∣Ck), where we assume P (Ck) is a uniform distribution. Then we
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find the city Cm that has the maximum posterior to generate wi+n−1
i , and use

P (Cm∣w
i+n−1
i ) and the frequency counts #(wi+n−1

i , Cm) as two more GIU features.

∙ To measure the skewness of the posteriors {P (Ck∣w
i+n−1
i ), k = 1, ⋅ ⋅ ⋅ , N(wi+n−1

i )},

where N(wi+n−1
i ) denotes the number of cities that co-occur with the GIU, wi+n−1

i ,

we calculate the K-L divergence between the posteriors and a uniform distribution

U(wi+n−1
i ) = 1/N(wi+n−1

i ) and is computed by the following formula:
N(wi+n−1

i
)

∑

k=1
P (Ck∣w

i+n−1
i ) log

P (Ck ∣w
i+n−1

i
)

1/N(wi+n−1

i
)
.

After calculating the above features for each GIU, given a new query Q, we extract

all the GIUs in it and then utilize the features of these GIUs to form a high dimensional

sparse feature vector for representing this query. These feature vectors are then used

as input for training the discriminative classifier to detect users’ implicit geo search

intent.

5.4 Evaluation Experiments

We consider two implicit geo search intent analysis tasks: (Task I) detecting

whether a query containing no explicit geo information has geo intent and (Task II)

discovering plausible missing city information in implicit geo queries. We design two

set of experiments to evaluate the performance of our proposed CLMs for Task I and

the posteriors from the CLMs and the additional geo-related language features (GIU

features) for Task II. Next in §5.4.1, we briefly describe the query log data we used

to generate the evaluation data in the experiments. Then we describe, in §5.4.2 and

§5.4.3, how we generated labeled data, the classifiers we used and some preliminary

results, in Task I and II, respectively.

5.4.1 Overview of Data

We utilize a large industrial-scale real-world web search log from Yahoo! for this

study. The training set is a subset of the Yahoo! web search log during May, 2008. It
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City Name Frequency in Frequency in
geo sub training set geo sub testing set

New York 3794960 3865216
Los Angeles 3207062 3228888
Chicago 2275231 2397036
Houston 1929131 1926341
Las Vegas 1755695 1794026

Table 5.2. Statistics of top-5 most frequent cities in two geo query subsets.

contains about 2.13 billion rows of search instance records covering about 1.44 billion

queries and related information, e.g. users’ IP and the clicked URLs. The testing set

is randomly sampled from the Yahoo! web search log during June, 2008 and contains

about 2.10 billion rows of search instance records covering about 1.42 billion queries

and related information. We applied an explicit geo information analysis tool (Jones

et al. 2008; Riise et al. 2003) on both the training and the testing sets to identify

each explicit geo query that contains a U.S. city location. In this way, about 96.2M

U.S. city level geo queries are identified in the training set and extracted to form a

geo training subset, and about 96.7M U.S. city level geo queries are identified in the

testing set and extracted to form a geo testing subset. We find 1614 distinct cities

in the two geo query subsets. Table 5.2 shows the 5 most frequent cities in the geo

training/testing subset, respectively.

We build bi-gram language models for each city by using the non-location parts

Qnc of all the explicit geo queries Qcg = (Qc, Qnc) in the geo training subset. Then

given any implicit geo query Q, we can calculate a set of city generation posteriors

P (Ci∣Q) from the extracted language models of each city Ci. We then use the poste-

riors as part of the geo related language features for building the classifier to detect

implicit geo intent. In experiments we use the 10 largest posteriors of each query as

features for simplicity and noise reduction.

We also utilize all of the original training set and the geo training subset to extract

additional n-gram GIU features (described in §5.3.2) for all the unigrams, bigrams
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and trigrams that appear in the non-location parts (Qnc) in the geo training subset.

These features are also used for building the geo intent detection classifier.

5.4.2 Discovering Implicit Geo Intent in Queries

We use the URLs that have been frequently clicked for a query to automatically

generate geo/non-geo intent labels for queries, for saving human-labeling efforts. For

example, if many users repeatedly clicked the URL local.yahoo.com for a query, it

has a high probability of having geo intent.

To find URLs that reliably imply users’ geo intents, we consider only the domain

name (DN) of the URL. We collect 100 DNs that are most frequently clicked for

queries in the geo training subset to form the set DN1. We also collect 100 DNs that

are most frequently clicked from the other queries that are not in the geo training

subset but in the whole training set, into another set DN2. Then we obtain the DN

sets DN+ and DN− for labeling queries that may/may not have geo intent by:

DN+ = DN1∖DN2, DN− = DN2∖DN1.

Some DNs that are intuitively useful for labeling users’ geo intent and appear in both

DN1 and DN2 end up being excluded from both DN+ and DN−. On analysis we

found a few possible reasons for this. For example, in the above process, the clicked

URLs of possible implicit geo queries or larger regional level (state/country) geo

queries are counted in DN2. Similarly, the clicked URLs of some ambiguous queries

where the explicit geo location analysis tool (Riise et al. 2003) falsely identifies city

names are counted in DN1. Therefore we introduce weak supervision into this domain

name selection process by putting three useful DNs back to DN+ and two back to

DN−:

DN+ = DN+ ∪ {www.citysearch.com,

www.yellowpages.com, local.yahoo.com}

DN− = DN− ∪ {en.wikipedia.org, answers.yahoo.com}
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DN+ DN−

www.local.com search-desc.ebay.com

travel.yahoo.com www.youtube.com

www.tripadvisor.com www.amazon.com

www.yellowbook.com www.myspace.com

www.city-data.com www.nextag.com

Table 5.3. Some DNs in DN+ or DN−

In this way, we obtain 67 DNs in DN+ and 64 DNs in DN− respectively. Some

example DNs from the two sets are shown in Table 5.3.

For any query in the geo training subset, if it has a clicked DN in DN+, we label

the query as a positive sample. For any query that is in the training set but not the

geo training subset, if it has a clicked DN in DN−, we label the query as a negative

sample or non-geo intent query. We remove duplicates that have the same query

terms and domain names. After that, we obtain 7.5M positive and 57.8M negative

samples. We then use the location portion (Qc) of the positive samples as the labels

and the non-location portion (Qnc) as the implicit geo queries. Note that this way of

generating implicit geo queries is artificial and the generated ones may have different

properties from the truly implicit geo queries. For example, the non-location part

‘map’ of an explicit geo query ‘new york city map’ is not a normal implicit geo query

issued by the web user. Nevertheless, many synthetic implicit geo queries have similar

properties as the truly ones (e.g. “space needle” instead of “space needle seattle” may

be issued by the web searcher), and this approach enables us to avoid the prohibitively

expensive human-labeling procedure of obtaining large amounts of real implicit geo

queries from millions of queries in web query logs for evaluation.

Next, we randomly sample 20,000 simulated implicit geo queries and 20,000 non-

geo queries to obtain 40,000 queries in the training subset I. For evaluation, we gen-

erate two testing subsets: testing subset I-1 and testing subset I-2 from the original

testing set in two ways.
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The first method is to follow the same above procedure: labeling positive samples

only from queries in the geo testing subset that have clicked DNs in DN+ and extract-

ing Qnc as the implicit geo queries; labeling negative samples only from queries not

in the geo testing subset that have clicked DNs in DN−. In this way, we obtain 8.0M

implicit geo queries and 58.1M non-geo queries. Then we randomly sample 80,000

queries (half positive, half negative) as the testing subset I-1.

The second method differs from the first in how it finds the positive samples and

creates the implicit geo queries. In this method, we directly label both positive and

negative samples from the original whole testing set by only checking whether they

have clicked DNs in DN+ or DN− and without considering whether or not they are

in the geo testing subset. We use the explicit geo location analysis tool (Riise et al.

2003) to find and remove all the possible location portions (place names, zip-codes

etc) in the positive and negative samples. Then we remove the duplicates. In this way,

we obtain 31.3M positive samples and 53.2M negative samples. Then we randomly

sample 80,000 queries (half positive, half negative) as the testing subset I-2. Note that

classifying testing subset I-2 is more representative of the true query log, and possibly

harder, because positive samples are directly obtained from the original testing set

instead of only from the geo testing subset. Testing subset I-2 may contain some real

implicit geo queries instead of only the queries (Qnc) from explicit geo queries as in

testing subset I-1.

We use our geo language model features and geo-related language features to

train a state-of-the-art classification technique called Support Vector Machines (SVM)

(Chang and Lin 2006) for this learning task. We employed a linear kernel (SVM-

Linear) as well as a non-linear RBF gaussian kernel (SVM-RBF). Training SVM-linear

typically takes much less time than training SVM-RBF, while SVM-RBF usually

performs better when the original input feature space is low dimensional.
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Testing subset I-1 Testing subset I-2
P R Acc P R Acc

SVM-linear 99.9% 66.0% 83.0% 99.9% 48.8% 74.4%
SVM-RBF 98.5% 62.8% 80.9% 97.8% 48.0% 73.5%

Table 5.4. Performances of discovering users’ implicit city level geo intent on the
testing subset I-1 and I-2 by using SVM. Precision, Recall and Accuracy are denoted
by P, R and Acc, respectively.

For each labeled query sample, we calculate the geo language model features –

top-10 city generation posteriors and the GIU features – then combine them for

classification. We separately scale each feature dimension to be in the range [0,1] for

all the samples, and train the classifier based with the data in the training subset I.

We employ 5-fold cross validation to select the model parameters that achieve the

highest average accuracy. Then we test the optimized classifier on both the testing

subset I-1 and I-2.

Performance is evaluated by using the typical precision, recall and accuracy met-

rics: precision measures the percentage of true positive samples (true geo queries) in

the queries labeled by the classifier to be positive (have geo intent); recall measures

the fraction of the true positive samples detected by the classifier in all the true pos-

itive samples; accuracy measures the percentage of the correct labels, including both

positive and negative ones, in the test set. In this task, low precision will hurt users’

search experience more than low recall or low accuracy. Thus a classifier for this task

in a practical system should have high precision and reasonably good accuracy and

recall.

The evaluation results are shown in Table 5.4. Results on both testing sets show

that using our proposed geo language features, including the city language model

based features and GIU features, to train discriminative classifier can effectively detect

implicit geo search intents in the queries with high precision and reasonably good

accuracy and recall. For the harder classification task on the testing subset I-2 which

better simulates real-life implicit geo queries, our approach can still achieve very high
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precision, which is important for users’ satisfaction, although the recall and accuracy

rates drop noticeably.

As we know, the same web query can be issued by different users at different time.

Thus the web log samples from two different months may have considerable amount

of the identical queries. We do an overlap analysis in order to better understand

our evaluation results. We find that in the 96.7M geo testing subset (from the June

sample), about 67% of the queries have appeared in the geo training subset (from the

May sample). There are 28.9M and 29.2M distinct queries (Qnc) in the geo training

and testing subset, respectively. We find about 48.06% of these distinct queries (Qnc)

of the geo testing subset have appeared in the geo training subset. The overlap also

reveals that many geo language patterns found in old web query logs can be reused

because many geo queries appear repeatedly. This process of splitting the training

and test sets by time is a common procedure in domains where the data occurs as

a time series 4. In addition, there are plenty of new geo-queries, revealing that our

models can generalize well for new queries as well.

5.4.3 Predicting Implicit City Information in Geo Queries

In this task we aim to predict plausible city information for the implicit geo queries

which may contain certain entity that is in some way specific to some particular

city. Such “localized entities” may be hotels, local TV and radio channels, local

newspapers, universities, schools, people names like doctors, sports teams and so on.

Basically if a location (city level) can be pinpointed to some item mentioned in the

query, then we say this query is location-specific. Examples of a location specific

query and corresponding locations are shown in Table 5.5.

4http://projects.ldc.upenn.edu/TDT/
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Location-specific query location
airport check metro airport Detroit
woodfield mall jobs schaumburg
utah herald journal classified ads Logan
wkrn news 2 Nashville
motel near knotts berry farm california Buena Park

Table 5.5. Example of correct predictions of the city name for a location specific
query

5.4.3.1 Label Generation

We evaluate our CLMs for retrieving cities in location-specific queries in this

experiment. One important property of location-specific queries is that although

explicit geo information is missing, one may still accurately discover the exact location

(city level) in the user’s mind. For example, “Liberty Statue” or “Disney fl” can be

viewed as location-specific queries, which are highly likely to be related to New York

or Orlando respectively. Our low-cost training method utilizes the non-city part (Qnc)

of explicit geo queries as simulated implicit geo queries, and tries to discover plausible

location-specific queries from them. This approach has another advantage that the

city part (Qc) can be used as the ground truth city label for automatic evaluation.

It is extremely expensive to hire human editors to examine over hundred million

implicit geo-queries (Qnc) with their city labels (Qc) and identify all the possible

location-specific queries to create training and testing data. Therefore, we utilize

the following weakly supervised approach combined with the CLMs for this discovery

task, and then sample outputs of the CLMs on the testing data for human evaluation.

Our weakly supervised approach involves designing a few ad hoc rules to find the

GIUs that may come from location-specific queries. For example, we require that the

maximum city generation posterior –P (Cm∣w
i+n−1
i ) – be larger than a threshold, t1,

and the corresponding maximum frequency count, #(wi+n−1
i , Cm), be larger than a

threshold t2; as another example of our rules, we either require that wi+n−1
i appear

in less than a threshold, t3, number of cities or its overall counts in the geo queries
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divided by the number of city: #(wi+n−1
i , C∙)/#(∣C∙∣) is larger than a threshold

t4. These rules are constructed by considering the characteristics of the GIU features

that location-specific queries may have, and the thresholds are set by looking through

the GIUs (wi+n−1
i ) and their GIU feature values in the training data. We leave the

question of how to automatically generate these rules for future work. In this way,

from the geo training subset we obtain 1022 unigram GIUs, 4374 bigram GIUs and

3765 trigram GIUs that may come from location-specific queries. We then select

queries which contain any of these GIUs in the geo training/testing subsets. In this way

we form training subset II/testing subset II, each of which contains about 1.06M and

1.05M simulated distinct possible location-specific queries (distinct Qnc) respectively.

We use these automatically generated training and testing subsets to tune parameters

for our task. We now describe how to utilize CLMs to further discover cities for

location-specific queries from these two subsets.

5.4.3.2 City Language Models for Retrieving Candidate locations

Discovering likely related cities for location-specific queries can be viewed as a chal-

lenging multi-category classification task, in which there are 1614 different categories

(city labels). Given a query (Q) which has implicit geo-intent and is location-specific,

we calculate the city generation posterior P (Ck∣Q) of each city Ck by using the CLM

and equation 5.5. Then we sort these posteriors and get the corresponding ranked

list of cities. We check whether the maximum posterior P (Cm∣Q) is larger than a

threshold ta: if yes, Cm is suggested as a candidate location for the location specific

query Q. Next, we discuss how to tune ta with the training subset II.

We utilize the city part (Qc) as the ground truth city label for each query (remem-

ber that the implicit geo-query, Q, is the non-city part, Qnc, of a query in the logs),

and calculate precision and recall metrics to evaluate the CLM’s performance and

tune ta. Specifically, given a query Q, we retrieve a set of cities {Ck∣P (Ck∣Q) > ta}.
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Figure 5.2. Precision/Recall curve on training subset II for location-specific query
discovery.

When the ground truth city label (Qcm) is the same as the city (Cm) that has the

largest value of P (Cm∣Q) > ta, we count that as a right decision made by the CLM

in the counter N1; but if Cm is different from its ground truth city label Qcm , we

count that as a wrong decision by the CLM, using the counter N2. We then calculate

the precision P , and recall R by P = N1

N1+N2
and R = N1+N2

N
, where N denotes the

number of queries in the training subset II. Intuitively, P measures the percentage

of exactly right location suggestions for the suggested good location-specific queries,

and R measures the percentage of suggested good location-specific queries in all the

possible location-specific queries.

Figure 5.2 shows the precision/recall curve with different ta values on the training

subset II. It can be observed that by choosing ta = 0.7 we can maintain reasonably

high precision (P = 92%) while the recall (R = 84.4%) does not drop too much. We

follow the same procedure to apply CLM on testing subset II where ta = 0.7 achieves

precision of 88%, and recall of 74%.

To further evaluate the quality of the ranked list of cities sorted by P (Cm∣Q) ,

for each query (Qnc) that is a location-specific query, we also compute an IR style

measure called Mean Reciprocal Rank (MRR), which is the average of the reciprocal

of the ranks of the correct answers to the queries in the testing data: MRR =
∑

Q

1
r(Q)

,

where r(Q) denotes the rank position of the ground truth city label (Qc) of the

location specific query, Q. The higher the MRR, the closer the correct answer’s rank
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position is to the top. When the correct label (Qc) is at rank 1 for all location-specific

queries (Q), theMRR = 1. By setting ta = 0.7, we have anMRR of 0.951 on training

subset II and MRR of 0.929 on testing subset II. These high MRRs imply that for

location-specific queries, the true city labels appear nearly at the top of the suggested

city rank list.

The above promising results, especially the high precision and MRR, show that

CLMs can effectively suggest good location-specific queries and discover missing city

labels. Nevertheless, our rules to discover possible location-specific queries are noisy

and the automatic evaluation using (Qc) as the ground truth city label is not very ac-

curate. Therefore, we design human evaluation experiments to investigate the CLMs’

performance by asking human editors to examine the quality of some sampled sim-

ulated location-specific queries and their city labels. Due to the high cost of human

labeling, our human evaluation experiments are carried on a small set of randomly

sampled queries.

5.4.3.3 Human Evaluation

We sampled a random set of queries from testing subset II, such that for each

of these queries there existed at least one city, C, that was predicted such that

P (C∣Q) > ta = 0.7, to obtain a set of 669 queries and 679 city predictions (10 queries

have 2 predictions, the remaining have one). After giving a detailed explanation of the

task, we asked our annotators two questions: (1) if the selected query was a location

specific query and (2) if the predicted location was correct. Judges were asked to

mark “Yes” or “No” in response to these questions. Eleven judges judged at least 80

predictions each and 240 predictions were judged by 2 annotators. Annotators were

allowed to mark a ‘?’ for either of the two questions. They were also allowed to use

a search engine of their choice to better understand the meaning of their query. All
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but two of the annotators worked in the area of information retrieval. The annotators

were a mix of native and non-native speakers of English.

The inter-annotator agreement on our task was very high (84.5% on question (1)

and 73% on question (2)). The disagreement on question (2) was often for ambiguous

queries like “insider tv show cbs”, where one annotator considered our prediction

of “hollywood” as a location to be correct, since that is the location of the CBS

studios. Similarly the query “city of angels tv.com” was a source of confusion, since

the location in the show is Los Angeles, but the show itself is a national television

show.

Of the queries that were marked location specific the accuracy of predicting a

location was 84.5% 5, providing further confidence to support the rough evaluation

of the previous section. However, only half of the queries of the sampled 679 were

marked as location specific. Some of the error may be attributed to the explicit

geo queries, obtained by using the explicit geo information analysis tool (Jones

et al. 2008; Riise et al. 2003), but the remaining was due to the ad-hoc rules used

for generating the data-sets used for parameter tuning. A cleaner location-specific

query set or better rules may help improve the accuracy of prediction significantly.

Nevertheless even this noisy data set can be used to train parameters with very high

accuracy as we have seen.

5.5 Conclusion

In this chapter, we addressed an implicit information discovery challenge in web

search: detecting implicit geo search intent and predicting the plausible city infor-

mation related to them. Figure 5.1 (in the introduction of this chapter) depicts our

approach. Our basic hypothesis is that implicit geo queries may be similar in content

5When we had two judgments for a query we arbitrarily selected one.
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to the non-location part of explicit geo queries and that the plausible missing city

level information than can be inferred from the implicit geo queries corresponds to

the location part of their similar explicit geo queries.

We extracted geo language features at fine levels of granularity from large scale

web search logs for this implicit information discovery challenge. We built bigram

city level geo language models from web query logs so that we can calculate a query’s

city generation posteriors to discover its plausible geo information. In addition, we

presented a rich set of geo language features through analyzing geo information units

at the city level for detecting implicit geo search intent.

We used a large-scale Yahoo! web query log sample to design experiments for two

implicit geo search intent analysis tasks: (1) detecting whether a query containing

no explicit geo information nonetheless has geo intent and (2) discovering plausible

city information in implicit geo queries. For each task, we designed a learning task

for evaluating the performance, and then used minimum human-labeling effort to

supervise the data and label generation to automatically obtain large-scale synthetic

learning samples for training and testing. We leveraged click-through data as a sur-

rogate for human labels. Experimental results demonstrated the effectiveness of our

approach. In the first task of detecting users’ implicit city level geo intent, the clas-

sifier achieved very high precision (more than 90%) and reasonably good accuracy

(more than 74%) on the synthetic data. In the second task of retrieving cities in

location-specific queries, the performance of city language models is very promising –

CLMs achieved high precision (88%), recall (74%) and MRR (0.929) for discovering

ground truth city label (Qc) of the simulated location specific query Q. Further hu-

man evaluation results showed CLMs achieved high accuracy (84.5%) of predicting

city labels for location-specific queries.

We point out that in most cases, except when creating the testing subset I-2

(in §5.4.2) dataset, we used the non-location parts of explicit geo queries to simulate
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implicit geo queries issued by users, in order to obtain large-scale evaluation data with

no human labeling effort. We did not conduct the much more expensive experiment

of asking human annotators to directly label real city-level implicit geo queries from

huge volumes of queries in the web query log. Thus, we expect the performance of

our approach to degrade when applying it on real data. Indeed, on the testing subset

I-2 dataset obtained in a weakly supervised way in the first learning task, we observed

some degradation of recall using our approach while the precision degraded very little.

There are several research directions that are worth exploring in future work.

First, by human-labeling experiments in §5.4.3.3, we found that using weakly su-

pervised ad hoc rules for discovering possible location-specific queries is noisy. To

save human-labeling effort and also obtain more accurate location-specific query set

to generate more accurate CLMs, we can explore active learning approaches (Tong

and Koller 2000), through which we can select a relatively small number of samples

for human judgment and automatically learn better rules to get clean location-specific

query candidates. Second, we can consider building our models at a zip-code level to

disambiguate between locations that have the same name. Third, we can incorporate

our city language models into retrieval models for improving search performance or

use the geo intent analysis results for helping to provide better query suggestions.
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CHAPTER 6

CONCLUSION

In Chapter 2 to Chapter 5, we presented how we use our general perspective

(Figure 1.1) to discover and use implicit information for different real-world IR chal-

lenges. We have introduced two complementary language modeling based approaches

that naturally emerge from Figure 1.1 and applied them to different search tasks.

The first approach is to (a) design probabilistic generative language models to

infer plausible (but missing) information for the observed queries and then (b) search

plausibly relevant items that can match the original and/or the new discovered infor-

mation in the queries. We discussed and evaluated this approach for each of the four

IR challenges in Chapters 2 through 5.

The second approach is to use a contextual language translation approach to infer

plausible implicit information for a small set of items (retrieved using the original

queries) from the items’ observed part. We then rerank the items based on both the

original and the discovered information, in order to push the highly relevant ones up

to the top of the ranked list. We used this approach for discovering anchor text and

click-through information in Chapter 3 and Chapter 4, respectively. In the web search

tasks in these two chapters, the discovered information of data shares vocabulary with

the original textual data and is similar in nature to the unstructured queries. Thus,

the discovered and the original textual information can be mixed together for better

matching across varied representations of the same or similar information needs of

the searchers.
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6.1 Query Side vs. Searched-item Side

We first compare the complexity and the assumptions of the models used by two

complementary approaches. These issues directly affect retrieval performance: for ex-

ample, the model complexity affects the generalization of each approach’s parameters

(tuned on the training queries) for handling new queries. We discuss the efficiency of

the two approaches in §6.1.2.

6.1.1 Comparisons of Model Complexity and Assumptions

Consider using the query-side and the searched-item-side (referred to as item-

side later for simplicity) approaches for discovering anchor text. In the query-side

approach (§3.4.2), we need to train 9 model parameters:

∙ the Dirichlet parameter �c; the meta-parameter �c (in Equation 3.17), which

weights the contribution of the observed field values for collecting similar web

page records in the training corpus; and the meta-parameter �c (in Equation

3.16), which weights the contribution of the extended query field for the final

ranking – three parameters for the Content field;

∙ the same set of parameters �a, �a and �a for the Associated Anchor Text field;

∙ the mixture weight � (in Equation 3.15) that controls the relative portions of the

original query language model and the discovered Structured Relevance Model

(SRM) to extend the query;

∙ the number (k) of the most similar training web page records used to build SRM

for the query and the maximum number (N) of the top ranked field values in

each field used for computing the final ranking score (by Equation 3.16).

In contrast, in the item-side approach (§3.4.1), we have only 3 model parameters:

∙ the mixture weights � and � (in Equation 3.11) that control the relative con-

tributions of a web page’s content (in an alternative view, the Content field),
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the page’s original anchor text (or the Associated Anchor Text field) and the

inferred relevant anchor text language model (RALM) of the page to the final

document likelihood ranking score of the page;

∙ the number (k) of the most similar training pages whose original anchor text

are used for computing the RALM for a page.

From the above example, we can see that in a general case where we need to handle

m different implicit data aspects for retrieval, the query-side approach needs to train

3(m+ 1) + 3 parameters (m+ 1 comes from m data aspects plus the original textual

content of the data), while the item-side approach needs to train 2m+ 1 parameters

(2m mixture weights and the number k described above). For example, if we want

to add both the original anchor text and the auxiliary anchor text information for

the task (m = 2), we need to train 12 parameters for the former approach but only

5 parameters for the latter. Therefore, the query-side approach is more prone to

over-fitting than the item-side approach; i.e. the tuned parameters of the query-

side approach may perform very well on the training queries while poorly on the

unseen test queries. Not surprisingly, in our experiments of discovering click-through

information (§4.4.3), the query-side approach (SRM) achieved the best performance

on the training queries but performed worse than the web-page side approaches on

the test queries in both of two ad hoc web search tasks.

Nevertheless, by using a more complex model, the query-side approach can lever-

age the dependencies of the field values (e.g. words or other discrete attribute values)

within and across different fields for retrieval (as discussed in §2.3.2.2); thus it can

effectively handle the situation where different fields (or aspects) have little overlap-

ping or completely different vocabulary. In contrast, the item-side approach assumes

that the discovered information of the data uses language similar to the data and

the queries themselves, so that the language modeling based mixture models can be

used during the retrieval process. When this assumption does not hold, the item-side
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approach can fail. Furthermore, the query-side approach relies on the training corpus

to discover implicit query field values and does not use the re-ranking scheme as the

item-side approach; thus, the query-side approach can work in the situation where

the straightforward approach to match query terms to the searched items fails, while

the item-side approach can not. For example:

∙ In the resume/job record matching task (§2.5.4), running the description of a

job as a query against the flattened resume collections finds hardly any matched

resumes on the top-1000 positions of the returned resume ranklist, due to the

large vocabulary gap between two different types of records. Thus, the mixture

model approach used by the item-side approach does not work for this task

because of this vocabulary gap. In addition, due to the poor quality of the

top-ranked resumes, the re-ranking scheme used in the item-side approach has

little hope to improve the search results. In contrast, the query-side approach

(the SRM based approach) achieves reasonable performance, which brought one

relevant resume to the top-5 positions of the returned ranklist, by discovering

related resume words for the query job record and using them to search similar

ones.

∙ In the NSDL record searching task (§2.5.2), because the audience and subject

fields of all records in the searched collection (the test collection) are forced to

be hidden, matching query fields against fields of the target records will yield

no relevant results. Thus the re-ranking scheme used in the item-side approach

again does not work for this task.

The query-side approach is related to typical query expansion techniques, e.g.

relevance models (Lavrenko and Croft 2001), and utilizes the observed query

field values for inferring plausible values for missing fields. Differently, the item-side

approach is related to typical document expansion techniques, e.g. clustering-based
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document smoothing techniques (Kurland and Lee 2004; Kurland and Lee 2006;

Liu and Croft 2004; Tao et al. 2006), and utilizes the observed textual data of the

searched items for inferring implicit information. Because the users’ queries usually

only contain very limited information – users tend to use short phrases or an incom-

plete sentence to describe their information need – the inferred implicit information

by the query-side approach often contains irrelevant noisy values from training cor-

pora, which can divert the search focus and degrade the search performance. This

issue is known as the topic-drifting problem in typical query expansion approaches.

In contrast, the item-side approach uses rich textual data of the search-items to more

reliably infer implicit information, and only leverages the discovered information for

smoothing; thus, this approach is more resistant to irrelevant noise from the training

corpora and to the topic-drifting problem. For example:

∙ In the web search task of using anchor text information for finding named pages

(§3.4.3), the query-side approach cannot further improve the search performance

of the approach that uses each page’s observed anchor text for smoothing; how-

ever, the item-side approach improves the performance statistically significantly

by using discovered plausible anchor terms to smooth language models of pages.

∙ In the task of using click-through information discovered from web query logs

for helping search the ClueWeb09 collection (§4.4.3), for the training queries,

the query-side approach effectively discovers the words that may appear in those

relevant pages. The discovered words mainly come from the clicked web pages of

the web-query-log queries that are similar to the user query.1 However, for the

test queries, the clicked web pages of their similar web-query-log queries may

1Note that the tuned �q = 0.99, which measures the relative contribution of the observed Query

Content field to the posterior used to build the SRM for both Query Content and Page Content

fields, i.e. Page Content missing field values are mostly inferred from the pages that have click
associated-queries very similar to the user query.
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contain a lot of irrelevant information, which prevents the query-side approach

from gaining significant improvement of retrieval performance. In contrast, the

item-side approach is less likely to be affected by irrelevant noise in the training

data: it can still improve the baseline retrieval performance by using more

similar pages’ click-associated queries to build the RQLM for each page.

Again, we point out that both anchor text and click-associated queries in the web

query logs satisfy the additional assumption of the item-side approach: the discovered

information of data has partially overlapping vocabulary with the web pages and user

queries so that it can be used to smooth language models of pages and bridge the

vocabulary gap between the user queries and their relevant pages.

To summarize, compared with the item-side approach, the query-side approach

has the following advantages: (1) it can better handle retrieval scenarios where the

implicit information of the searched-items uses very different language than the orig-

inal texts of those items; (2) it can find relevant items that cannot be discovered by

only using the original query, by extending the query to cover every aspect of searched

items for satisfying users’ information need. Compared with the query-side approach,

the item-side approach uses a less complex model, so that it is less prone to over-

fitting and performs well for unseen queries. Its retrieval performance is also more

resistant to irrelevant noise in the discovered information, because (1) the searched

items contain rich contextual information to infer its implicit information and (2) the

discovered information is only used to smooth the original texts of the searched items

during the retrieval process. Nevertheless, the item-side approach requires that the

implicit data aspects share some vocabulary with the searched items and the queries;

in addition, for efficiency it uses a reranking scheme which only considers the top

ranked items returned by using the original query. Both issues limit the usage of the

item-side approach.
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6.1.2 Efficiency

Now we discuss the computational cost of the two approaches. Again, we use the

example of discovering anchor text for web search.

For a given query q, the query-side approach needs to first find similar training

web page records to discover missing query field values for both the Content and the

Associated Anchor Text fields (denoted as field c and a, respectively). Assume that

the original query contains nq words, each word occurs dfavg,i times on average in the

field i ∈ c, a of all the training records. It takes about O(nq ⋅ dfavg,c + nq ⋅ dfavg,a)

time to compute the ranking scores of the returned records using the inverted list

index, and O(dfavg,c ⋅ ln(dfavg,c)) time to compute the sorted rank list – anchor text is

very sparse in the collection, so we ignore dfavg,a, which is usually much smaller than

dfavg,c. To compute the Structured Relevance Models (SRM) for the query from top

k most similar records, we need to iterate through all the field values in each field

of each returned record. Assume that the average length of the field i ∈ c, a of the

training records is lavg,i, the cost of computing SRM is O(k ⋅ (lavg,c + lavg,a)) and the

cost of sorting the values in each field of the SRM to obtain the top-N most plausible

field values for the second round search is O(k ⋅ (lavg,c + lavg,a) ⋅ ln(k ⋅ (lavg,c + lavg,a))).

Therefore, the computational cost of the first stage of the query-side approach is

about:

C1(q) = O(nq ⋅ (dfavg,c + dfavg,a)) +O(dfavg,cln(dfavg,c))+

O([1 + ln(k ⋅ (lavg,c + lavg,a))] ⋅ [(lavg,c + lavg,a)k]),
(6.1)

where O(dfavg,cln(dfavg,c)) often occupies the major portion of the computing time

because some words may appear in large amounts of records, which will then need to

be sorted.

Similar to typical query expansion techniques, the second stage of the query-side

approach – using SRM to search relevant records – is much more computationally

expensive than its first stage, due to the long extended query. The union of the
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inverted lists of all the values in this long query usually covers most records in the

search-target collection. Therefore, assume that the search-target collection contains

Mtarget records, sorting the ranking scores for these records takes C2 = O(Mtarget ⋅

ln(Mtarget)) time, which is the major computational cost of the second stage. As

discussed in the previous section, each field of the SRM has at most N values, so

there is an additional relatively small cost O(N ⋅ (dfavg,c + dfavg,a)) of computing the

ranking scores of all the records.

Note that the query-side approach needs to receive the query q first before starting

all the above computation; therefore, it has high online computational cost. How to

reduce the online computational cost of query expansion techniques while preserving

their retrieval effectiveness has been recently explored (Lavrenko and Allan 2006;

Cartright et al. 2010). Their approach (called fast relevance models) designs a spe-

cial scheme to obtain the ranking scores of documents for the new “expanded” query

without actually doing query expansion, so that the sorting cost C2 can be greatly

reduced because much less documents will be re-scored and re-ranked. Nevertheless,

their special scheme needs to pre-compute the cross-entropy of all document pairs in

the search-target collection before receiving queries, and thus incurs highly expensive

offline computational cost.

Now we discuss the computational cost of the second approach – the item-side

approach – using the same example of discovering anchor text for web search. This

approach first retrieves a small set of web pages using the original query q. Assume

that q contains nq words and each word occurs dfavg times on average in search-target

collection. This first stage takes O(nq ⋅ dfavg) time to use the inverted list index to

compute the ranking scores for the web pages, and then takes O(dfavg ⋅ ln(dfavg)) time

to sort the pages to get the top-K ranked ones. Thus the total computational cost of

this stage is C3(q) = O(nq ⋅ dfavg) +O(dfavg ⋅ ln(dfavg)).
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Then the item-side approach discovers anchor text for each of the K web pages

in the retrieved small set and re-ranks them. To compute the RALM for each page,

we need to find its top-k most similar pages in the training collection. Assume the

training collection contains Mtrain pages, when using each page as a long query to

run again the training collection to find its most similar ones, this approach takes

C4 = O(K ⋅ [Mtrain ⋅ ln(Mtrain)]) +O(K ⋅ [lavg ⋅ dfavg]) time to find most similar pages

for all K pages (lavg is the average length of pages). The analysis of computing C4 is

similar to that of computing the cost for the second stage of the query-side approach:

each of the K queries is long, so that its returned ranking score list covers almost

all the Mtrain training pages and needs to be sorted in O(Mtrain ⋅ ln(Mtrain)) time;

O(lavg ⋅dfavg) is the additional cost to compute the ranking score list for each page. In

the end, all the RALMs can be computed in O(K ⋅ k ⋅ lavg) time, and the scores of K

pages can be quickly updated in O(nq ⋅K) time and re-ranked in O(K ⋅ ln(K)) time.

Thus the total computational cost of the second stage of the item-side approach is:

C5(q) = C4 +O(K ⋅ k ⋅ lavg) +O(nq ⋅K) +O(K ⋅ ln(K)), (6.2)

where C4 occupies the major portion of C5(q). C4 is highly expensive even for a

typical setting of ad hoc search tasks where the set of pages to be reranked has the

size K = 1000.

Note that finding a web page’s similar pages and computing a RALM for the page

can both be done offline (before queries are received); thus the item-side approach

has highly expensive offline computational cost. The online computational cost of

this approach is very small:

C6(q) = C3(q) +O(nq ⋅K) +O(K ⋅ ln(K)). (6.3)
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As shown in our previous experiments, compared with the size of the training collec-

tion (Mtrain) we only need find relatively very small (k << Mtrain) number of most

similar pages for each page in order to compute RALM 2. To do this, we can keep

a k-element max-priority queue for each page to store its top-k most similar pages,

thus avoid the expensive sorting in the offline computation. The computational cost

of updating all pages’ queues when adding a new page into the training collection is

O(Mtrain ⋅ [ln(k) + 1]). Recently, many advanced techniques have been proposed to

address the issue of fast searching similar documents, such as the Locality-Sensitive

Hashing (LSH) technique (Andoni and Indyk 2006), which uses hash techniques

to map similar documents into a tight Hamming ball centered around the binary

code of the query document, and the Self-Taught Semantic Hashing (STH) technique

(Zhang et al. 2010), which uses both hash techniques and supervised learning meth-

ods to compute a more compact binary code for each document than the LSH while

also mapping similar documents into similar codes as the LSH. These techniques may

be used to further reduce the offline computational cost of building RALMs in the

item-side approach.

To summarize, the query-side approach has high online computational cost, which

mostly comes from the second round of searching that uses long extended queries.

This cost depends on the size Mtarget of the search-target collection. In contrast, the

item-side approach has very low online computational cost, but it has very expensive

offline computational cost that mostly comes from finding top-k most similar items

for each item. This offline cost depends on the size Mtrain of the training collection

instead of the search-target collection, and may be greatly reduced by employing

2In the technique of fast relevance models (Lavrenko and Allan 2006; Cartright et al. 2010),
the number of most similar documents of each document needed is also small in practice; therefore,
the discussions here also apply for that technique.
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some advanced semantic hashing techniques, which use special hash functions to map

similar items to similar hash codes.

6.2 Contributions

1. We presented a general perspective for discovering plausible implicit information

in large amounts of data in the context of IR (Chapter 1). This perspective

leverages an intuitive assumption that data similar in some aspects are often

similar in other aspects.

2. Within our general perspective, we formally developed two complementary lan-

guage modeling based techniques for effectively discovering implicit information

in large-scale real-world textual data for retrieval purposes: (1) the query-side

approach (called Structured Relevance Models or SRM) which uses probabilistic

generative models based on language models to discover implicit information for

queries (§2.3); and (2) the item-side approach which builds contextual language

models and employs a contextual translation approach to discover implicit in-

formation for the searched items (§3.3.2 and §4.3.2).

3. We presented how to handle empty/incomplete fields when searching semi-

structured document collections, based on the query-side approach (Chapter

2).

4. Using the National Science Digital Library (NSDL) dataset, we designed ex-

periments to empirically show that SRM (query-side) can effectively discover

implicit field values in large-scale semi-structured data for synthetic missing

field records (§2.4).

5. We demonstrated the effectiveness of using SRM for two real-world semi-structur-

ed records search tasks: (1) searching the NSDL collection (§2.5.2); and (2)
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matching semi-structured job and resumes records in a large scale online job/resume

collection (§2.5.4).

6. We presented how to handle the sparse anchor text issue for web search, us-

ing our two complementary approaches – the query-side approach (SRM) and

the item-side approach (called relevant anchor text language model or RALM)

(Chapter 3). The RALM technique overcomes anchor text sparsity by discov-

ering a web page’s plausible anchor text from its similar web pages’ associated

anchor text.

7. We designed experiments with two large-scale TREC web corpora (GOV2 and

ClueWeb09) to demonstrate that RALM can effectively discover plausible an-

chor text for web pages with few or no in-links (§3.3). We used TREC named-

page finding tasks to show that using discovered anchor text can further improve

web search performance (§3.4).

8. We presented how to handle the missing/incomplete click issue when using click-

through data in web query logs. We employed the query-side approach (SRM)

and the item-side approach, called relevant (click-associated) query language

model or RQLM, for addressing click-through sparseness (Chapter 4). We fur-

ther presented how to combine RQLM with a Markov random walk approach on

the click graph to further reduce click-through sparseness and improve search

performance (§4.3.3).

9. Using a publicly available query log sample (Microsoft Live Search 2006 Query

Log Excerpt) and two sets of TREC ad hoc web search tasks (TREC Terabyte

Track 2005-2006 and Web Track 2009-2010), we demonstrated that our two

approaches (SRM and RQLM) are effective (§4.4).
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10. We presented how to detect web queries’ underlying geo search intent and dis-

cover corresponding plausible city information, using the query-side approach

(Chapter 5). We built city language models (or CLMs) for each city from the

non-location part of web queries that explicitly contain the same city, and used

the CLMs for implicit geo search analysis (§5.3).

11. We generated a large set of synthetic implicit city-level geo queries using a large-

scale query log sample from the Yahoo! search engine. Then we demonstrated

the effectiveness of our CLMs based approaches for predicting implicit cities for

these queries (§5.4).

12. We compared the strengths and weaknesses of the query-side and the item-side

approaches of discovering implicit information (§6.1). We discussed and sum-

marized their model complexity (§6.1.1) and computational efficiency (§6.1.2).

6.3 Lessons Learned

We now summarize lessons learned from our work:

1. When implicit information of data (queries and searched items) provides help-

ful information for specific search tasks but is very sparse, using our discovery

approaches can help to alleviate the data sparseness problem of leveraging this

information for search. The data sparseness issue is common when the informa-

tion is manually generated by the users, such as the user click information in the

web query logs, user tag information in some collective filtering system, user-

input online semi-structured forms, human-generated anchor text, etc. Discov-

ering implicit information of data can help to reduce the semantic gap between

queries and the searched-items and improve the retrieval effectiveness of IR

systems. When the implicit information can help to identify searchers’ specific

information need or intents such as geo search intent and job-finding search in-
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tent, discovering the information can help to personalize the search results and

improve users’ search experience.

2. When different languages are used in different implicit data aspects and/or in

the original descriptions of the data, the query-side discovery approach should

be used instead of the item-side approach. For example, the item-side approach

does not work for the resume/job matching task because of the vocabulary

gap, while the query-side approach can achieve reasonably good performance

(§2.5.4).

3. When the original query fails to retrieve a large portion of relevant items (i.e.

it has very low recall), the query-side approach should be used instead of the

item-side approach. For example, the query-side approach works for the NSDL

search task where the user-specified semi-structured query fields are completely

missing in the search-target collection (§2.5.2).

4. When the original query can retrieve a reasonable number of relevant items

to satisfy users’ information need (i.e. it has reasonable recall), the item-side

approach is a better choice because it is less prone to over-fitting and more

resistant to irrelevant noise in the training collection. For example, when dis-

covering plausible click-through queries for helping web search, the item-side

approach performed well on both training and test queries (§4.4).

5. When the search task is sensitive to the topic-drifting issue and the original

query can achieve reasonably good recall, the item-side approach is a better

choice than the query-side approach. For example, when discovering web pages’

anchor text for helping the named-page finding tasks, the item-side approach

performed significantly better than other alternative approaches (§3.4).
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6. Similar to typical query expansion techniques, the query-side approach has high

online computational cost, which mostly depends on the size of the search-target

collection and the number of query terms in the extended queries. Similar to

typical document expansion techniques, the item-side approach has very low

online computational cost, but it has very expensive offline cost that mostly

comes from finding top-k similar items for each item (§6.1.2). It is possible that

this cost can be greatly reduced by employing fast similarity search techniques

such as semantic hashing techniques.

7. Our general perspective focuses on using textual similarity among data for dis-

covering implicit information. However, when alternative information (e.g. web

hyperlink graph and query-URL click graph) is available for inferring semantic

relation among data, it can be combined with our approach for more accurately

discovering implicit information for helping search (§3.3.1 and §4.3.1).

6.4 Future Work

In this section, we conclude the thesis by discussing three avenues of future work.

6.4.1 Combining Query Side and Searched-item Side Approaches

Previous research has shown that combining typical query expansion approach and

document expansion approach can further improve the search performance, although

the additional gain is very little and sometimes not statistically significant (Wei

and Croft 2006; Yi and Allan 2009). We want to investigate whether combining

information discovered for both the query-side and the item-side can further improve

search performance.

The typical combination approach first uses document expansion techniques to

get a better ranked list of documents for a given query, and then uses the top ranked

documents to compute a plausibly better relevance model for query expansion and
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re-retrieval (Wei and Croft 2006; Yi and Allan 2009). In this approach, the

reason for doing document expansion first and then query expansion instead of the

opposite way is to reduce the risk of topic-drifting from using both the expanded

query and the expanded documents simultaneously to compute document ranking

scores, while leveraging some advantages of both approaches. For some of our search

scenarios where the original query can achieve reasonably good recall, we can follow

the similar combination approach: first discover implicit information for the searched

items and obtaining a better ranked list of them; then discover implicit information

for queries using the top ranked items, extend the queries and perform another round

of search.

However, as we discussed in §6.1.1, in some of our search scenarios, the original

query may have very low recall due to the different languages in different aspects of

data so that the current item-side approach is not applicable. In these situations,

we need to first use the query-side approach to achieve a reasonable recall. Then

we can adjust the item-side approach in the following way to rerank the top ranked

items obtained by the query-side approach. That is, we do not use the mixture

approach after discovering different implicit data aspects for the search items since

these aspects may use very different languages. Instead, we can use the sum of the

cross-entropy scores (which can be computed by Equation 2.9 in §2.5.1) between

the extended queries and each extended aspect of the searched items for reranking

them. Note that this approach is subject to more risk of topic-drifting. We need

to do experiments to empirically evaluate whether it can achieve better retrieval

performance (e.g. improving MAP or high precision region of the ranked list) by

reranking.
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6.4.2 Beyond “Bags of Words”

A significant amount of research has shown the great effectiveness of using word

proximity information (e.g. concepts, phrases, n-grams and words that occur to-

gether in short distance in articles) in the queries and searched items for search,

especially web search (Metzler and Croft 2005; Metzler and Croft 2007;

Bendersky et al. 2009). A natural extension of our information discovery approach

is to incorporate word proximity information. In Chapter 5, we showed that bigram

query language models can be used to effectively analyze web searchers’ fine-grained

city-level geo search intent. Here, we outline how to incorporate more word proxim-

ity information into our general perspective for discovering implicit information for

retrieval.

For the query-side approach, we can borrow ideas from the Markov Random Field

(MRF) based Latent Concept Expansion technique (Metzler and Croft 2007) to

discover plausible latent concepts that can more accurately represent users’ informa-

tion need for each incomplete/missing query field from the query’s similar records in

the training collection. Then we can use the original query and the discovered latent

concepts together to search the target collection again to find more relevant records.

More formally speaking, given an m field semi-structured query q = q1. . .qm and

a semi-structured record w = w1. . .wm in the training collection Ctn, assume that

1. funi(qi,wi) is a unigram feature aggregation function between the ith field of q

and w, e.g., the sum of the log-likelihood of query terms in qi appearing in the

wi;

2. fprox(qi,wi) is the proximity feature aggregation function between the ith field

of q and w, e.g., the sum of the log-likelihood of bigrams in qi appearing in the

wi;
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3. funi(qi) is a query-determined unigram aggregation function, e.g. the sum of

the log-likelihood of query terms in qi appearing in Ctn;

4. fprox(qi) is a query-determined proximity feature aggregation function and f(wi)

is a document-determined feature function, e.g. log of wi’s prior.

Then the MRF-based query likelihood score (Metzler and Croft 2005) between

q and w can be computed by:

P (q,w) = 1
Z
exp[�uni

∑

i
�ifuni(qi,wi) + �prox

∑

i
�ifprox(qi,wi)+

�′
uni

∑

i
�ifuni(qi) + �′

prox

∑

i
�ifprox(qi) + �W

∑

i
�if(wi)],

(6.4)

where Z is a normalizing constant; �uni, �prox, �
′
uni, �′

prox and �W are weights for

corresponding feature functions; �i is the meta-parameter to control the contribution

of the ith field to the likelihood; f(wi) is usually set to be 0, i.e. the priors of each

field in each record appears uniformly.

After using P (q,w) to find a small set of similar training records (ℛq or pseudo-

relevant records) for the query q, we can discover a set of k plausible latent concepts

Ei = {ei,j : j = 1...k} for the ith field of q by computing the latent concept expansion

likelihood (Metzler and Croft 2007):

P (ei,j∣q) ∝
∑

w∈ℛq

P (q,w) exp[�proxfprox(ei,j,wi) + �′
proxfprox(ei,j)], (6.5)

and selecting the k latent concepts Ei = {ei,j} that have the highest {P (ei,j∣q)}.

After we incorporate all the discovered Eis into the original query q, we can use the

extended query to do a second round retrieval, where the ranking scores are computed

again using Equation 6.4.

For the item-side approach, we may stick to use the KL-divergence between the

unigram document language models of the searched items to compute their similarity,
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since those document language models can usually be accurately estimated due to the

rich textual content of the searched items. Or we may add word proximity information

to calculate the content similarity by viewing an item’s content as a long query and

then use the above Equation 6.4 to calculate query likelihood based content similarity

(here the searched item only contains one field – its textual content). Then we can

transform the computed similarity to a valid contextual translation probability and

discover plausible latent concepts for the extra data aspect of each target item D0.

Assume that each item Di’s extra aspect is denoted as EXi and the target item D0’s

extra aspect is denoted as EX0, similar to Equation 6.5, we can compute an expansion

likelihood for each latent concept ej given D0
3:

P (ej∣D0) ∝
∑

EXi

t(EXi, EX0) exp[�proxfprox(ej, EXi) + �′
proxfprox(ej)], (6.6)

where t(EXi, EX0) is the contextual translation probability from EX0 to EXi, �prox,

�′
prox, fprox(⋅, ⋅) and fprox(⋅) have similar meanings as in Equation 6.5 and 6.4. Then

we can incorporate the latent concept expansion likelihood Ei = {P (ej∣Di)} of each

item Di into the feature functions between the query q and Di, and then rerank items

by:

P (q,Di) ∝ exp[�unifuni(q,Di, Ei) + �proxfprox(q,Di, Ei)+

�′
unifuni(q) + �′

proxfprox(q)],
(6.7)

where funi(q,Di, Ei) can be computed by the mixture model approach, i.e., each query

term’s generation likelihood used in this feature function is computed by the mixture

of the term’s original document likelihood in Di and its latent concept expansion

likelihood in Ei; and fprox(q,Di, Ei) can be computed similarly by the mixture model

approach.

3To be consistent with our previous discussions for this approach, we assume the query q and also
the searched items’ latent concepts are unstructured, thus we use non-bolded characters to denote
them.
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Therefore, for both the query-side and the item-side approaches, we can explore

using the above MRF-based language modeling techniques to incorporate word prox-

imity for more accurate implicit information discovery and more effective retrieval.

6.4.3 Beyond Language Modeling Based Retrieval

When additional implicit information of data needs to be leveraged for search, the

number of the model parameters in both approaches from our general perspective will

increase linearly as discussed in §6.1.1. With the linear increase of model complexity,

the training cost of finding the optimal parameter setting to achieve the best retrieval

performance grows exponentially when we use the brute-force way of grid-searching

parameter ranges, yet the trained models becomes more prone to over-fitting. The

situation will become even worse if we want to incorporate word proximity information

into our general perspective as discussed in the previous section, because many more

parameters have been introduced to handle latent word proximity information for

each extra aspect of data.

Furthermore, there exist many IR scenarios where we want to leverage discov-

ered non-language-modeling based information for further improving retrieval perfor-

mance. For example, as mentioned in Chapter 4, we may want to use two effective

click-through features (Gao et al. 2009): (1) the number of click-associated queries of

a page in the click graph enriched by the Markov Random walk method and (2) the

number of words in these queries, for improving web search. For another example, we

may want to explore the utility of the smoothed non-semantic click-through features

of a page (discussed at the end of Chapter 4) for web search.

To address the above issues, we consider employing machine learning techniques

based retrieval approaches, known as learning-to-rank (Joachims 2002; Burges

et al. 2005; Burges et al. 2006), to use greatly varied discovered information as a large

variety of ranking features for improving search effectiveness. Generally speaking,
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learning-to-rank techniques automatically learn some ranking functions4, which can

directly compute the preference order of each pair of documents or a list of documents

for a given query, from training data (which include training queries and their related

preference orders of document pairs or lists). This automatic learning procedure

relies on optimizing certain ranking performance measurements, such as minimizing

some ranking cost functions that are determined by the targeted preference order of

documents in the training data. For example, in a learning-to-rank technique called

RankNet (Burges et al. 2005), the ranking cost is a sigmoid output combined with

the cross entropy cost on pairs of documents: if document i is to be ranked higher

than document j, then the ranking cost is:

Ci,j = −1(si − sj) + log(1 + esi−sj), (6.8)

where si and sj are the scores of document i and j, respectively, output from an

artificial neural network used in RankNet.

Learning-to-rank retrieval techniques can effectively incorporate intrinsically dif-

ferent data features into a unified machine learning process for ranking. They have

been used for combining different features for different search tasks as well as finding

effective ranking features for those tasks5. In future, we also want to use these tech-

niques to analyze the relative utility of information discovered by different approaches

for search so that we can select to discover most useful implicit information to achieve

both effectiveness and efficiency.

4The complexity of the ranking function is determined by the number of features used and the
model structure of the function. For example, SVM-rank (Joachims 2002) often uses thousands of
features and linear/non-linear kernel function for ranking; RankNet uses thousands of features and
3 level non-linear artificial neural network for ranking (Burges et al. 2005). The training cost is
very expensive, which involves of human-labeling cost and the offline computational cost determined
by the size of training samples and the complexity of the ranking function. The online testing cost
is small.

5The retrieval performance of these techniques also greatly relies on the quality of labeled training
data besides the models and features used for ranking.
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