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Abstract
It is widely assumed that people tend to gather in groups of shared interests, where
such interests drive friendships and vice versa. Thanks to online social networking
platforms, information about a users’s friends as well the items he is interested
in are available, but represent only an incomplete picture. We study probabilistic
network topic models that distill common shared interests of friends from this data.
So far, a popular choice is based on the mixed-membership stochastic blockmodel
which draws inference on the absence of edges. In this paper we give theoretic
and empirical evidence that absence of friendship does not refer to difference in
taste. Rather, we present the shared taste model which is agnostic towards absent
edges. The model’s success over blockmodels is demonstrated on data sets from
LibraryThing, Zune Social, and CiteSeer.
The shared taste model has many practical applications such as improving con-
tent subscription, visualizing the structure of contacts, or connecting people who
otherwise would not have someone to share their interests with.

1 Introduction

Many online community platforms, such as Facebook, LibraryThing, Zune Social, last.fm, flickr,
and CiteULike, store data about users, friend relationships between users, and items users interact
with. Depending on the usage scenario, items may be status updates, books, songs, pictures, or
scientific publications, respectively. It is widely assumed that people tend to gather in groups of
shared interests, where such interests drive friendships and friendships drive interests.

Community platforms typically allow users to subscribe to items of their friends. This functionality
may be unsatisfactory if the friend has diverse interests (e.g., likes rock and jazz), of which only
some are shared with the subscribing user (who likes jazz and classical music). In this example, the
common taste is jazz. The user will be frustrated if too many non-matching items are suggested. For
instance, the user would expect to hear jazz and might be annoyed by rock songs. Re-weighting the
friend’s item list to match the common taste will improve the user experience. Unfortunately, users
do not explicitly state the shared taste of each friendship.

This work focuses on unsupervised inference of shared tastes T given a content-enriched social
network. A shared taste captures a common interest of two users. We use the terms taste, interest,
and topic synonymously.

Definition (Content-enriched social network) (N,E, C,V): Let nodes n ∈ N in the social
network refer to users and let edges E refer to online friendships between users. The edges are
inherently undirected but can also be interpreted as bidirectional if required. In addition, each node is
associated with a set of items C(n) from a common item vocabulary V, e.g., tags or songs.

Problem: Given the content-enriched social network as input data, the goal is to learn a set of
shared topics T that explain the common interests of the friends based on their item interaction and
friendships with other users.
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Recently, extensions of latent Dirichlet allocation [1] have been applied to different kinds of network
data and studied in a broad range of prediction problems. For instance, the author topic model [2]
is designed for a setting where one item set is shared among several nodes. Cohn, Hofman, and
Erosheva et al. [3, 4] suggest models that identify groups of nodes sharing items and friends, but do
not model topics shared via an edge. Mei et al. [5] discriminatively learn a topic model with a graph
Laplacian as a regularizer, assuming that connected users should have the same topics, aiming at a
scenario where the graph clusters into coherent components.

A popular choice for combining topic models with observed graph structure is the mixed-membership
stochastic blockmodel [6]. Stochastic blockmodels associate each node with a topic mixture and
explain the presence and absence of edges from the compatibility of topics. Pairwise Link-LDA [7]
and the relational topic model [8] extend blockmodels to model node contents C together with the
network structure (N,E).

The citation influence model [9] explains contents of nodes by borrowing topics of adjacent nodes,
yielding topic mixtures that are influenced by several nodes simultaneously. Originally it was designed
for directed acyclic graphs. In this paper we transfer it to undirected graphs with cycles for the
identification of shared tastes.

The first main contribution of this work is the shared taste model1 which associates each friendship
with a topic mixture from which both nodes’ contents are explained. It models the undirected graph
without resorting to node duplication as required for the citation influence model. As in social
networks most edges are absent because the users did not get to know each other, the shared taste
model is agnostic towards absent edges. Thereby it is in contrast to blockmodels which treats absence
of edges as evidence for incompatibility of the nodes.

The second main contribution is to study these differences theoretically and empirically. The goal is
to identify which model assumptions are crucial to learn shared tastes from online social network
data. Correctly inferred shared tastes will give rise to successful predictors for social interaction.
For instance, shared tastes will correlate with membership in special interest groups. On data from
a music platform, inferring shared tastes allows us to predict music a user will listen to in the near
future, as inspired by his friends. Further the tastes correlate with music a user recommends to his
friend. Such social interactions are held out from training and used for evaluation purposes only.

Outline. Section 2 introduces the shared taste model. After revising the citation influence model
and stochastic blockmodel briefly, we discuss their application to the new task of identifying shared
tastes. Section 3 reports on experimental results on data sets from LibraryThing, Zune Social, and
CiteSeer. Concluding remarks and suggestions for practitioners are given in Section 4.

2 Topic Models for Content Enriched Social Networks

Latent Dirichlet allocation (LDA) [1] is a probabilistic model to distill topics from a corpus of text
documents. The underlying assumption is that repeated co-occurrence of items across different
collections C(n1), C(n2), ...C(n|N|) is a strong indicator for these items to be grouped in one topic t.

Applying latent Dirichlet allocation on content-enriched network data reveals tastes of users that are
shared across the network. A post hoc heuristic can identify which topics are shared by two users,
but the model does not exploit the friendship information to learn more suitable topics.

In the following, we study extensions to latent Dirichlet allocation which incorporate friendship
information into the LDA model to learn better shared topics.

2.1 Shared Taste Model

The main idea is that each friendship potentially has shared interests, where the shared tastes are
captured by a topic mixture λ. Via shared interests, the friends inspire a user to interact with items.
Items are therefore explained by the topic mixtures of the respective friendships. The model allows for
different friends having varying influence on the item interactions, some may even have no influence
at all. Degree of influence is modeled by a multinomial parameter ψ ranging over the user’s friends.

1Extended abstracts on this model were published as work in progress in [10, 11]. The work is part of the
first author’s PhD thesis.
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Figure 1: Models in directed factor graph notation [12] with dashed boxed indicating gates [13].

Algorithm 1 Generative process of the shared taste model with own topics. Leaving out lines marked
with * yields the plain shared taste model depicted in Figure 1a.
1 for all topics t ∈ T do
2 draw item distribution φt ∼ Dirichlet(αφ)
3 for all undirected edges {u, f} ∈ E do
4 draw shared topic mixture λ{u,f} ∼ Dirichlet(αλ).
5 for all nodes u ∈ N do
6 draw friend mixture ψu ∼ Dirichlet(αψ) ranging over friends of u.
7* draw own topic mixture Ωu ∼ Dirichlet(αΩ).
8* draw coin εu ∼ Beta(aε, bε).
9 for all items xu,i ∈ C(u) do
10* draw decision eu,i ∼ Bernoulli(εu).
11* if eu,i = true then
12* draw topic tu,i ∼ Multinomial(Ωu) from own topics.
13* else
14 draw friend fu,i ∼ Multinomial(ψu).
15 draw topic tu,i ∼ Multinomial(λ{u,fu,i}) from shared taste.
16 draw item xu,i ∼ Multinomial(φtu,i) from the topic’s item distribution.

The full generative process is given in Algorithm 1 (omitting lines with *); the corresponding directed
factor graph is given in Figure 1a. A topic mixture θ for each user can be derived from friendship-wise
topic mixtures λ by integrating out the graph structure and letting θu = ψuλ.

During model estimation, configurations for hidden variables achieve high likelihood where items of
two friends are associated with the same topic. The more items fit, the higher the friend’s probability
mass in the multinomial distribution ψ (cf. Algorithm 1, lines 6 and 14). It is a priori unknown
which items of u’s and f ’s content are to be explained by the shared interest. This introduces mutual
dependency on estimation of shared topic mixtures λ and the friend mixtures ψ.

We assume that unconnected users do not influence each other’s content, but similar tastes may
develop independently. Therefore we devise the model to be agnostic towards absent edges: Topics
of unconnected users are statistically independent, it is not assumed that they should be different.

Shared taste model with own topics. The shared taste model assumes that all items are inspired
by friends. As users may develop tastes independently from friends, we extend the model as follows:
The model gets the freedom to choose whether to explain an item via shared tastes (ψuλ) or by the
user’s own topic mixture Ωu. The choice is modeled by a coin trial e. The resulting process is given
in Algorithm 1. This is inspired by the “innovation topic mixture” introduced in [9].
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The own topics Ωu represents interests of a user that are not matched by his current friends. We
might find new friends for him that cover these unmatched interests. In the example of Figure 2a, we
might find new friends for the isolated “Poetry Fool” member in the far right.

2.2 Citation Influence Model for Social Networks

The citation influence model [9] was originally introduced to model citation networks, which are
directed and acyclic. It explains documents in their roles of cited and citing publications. The authors
suggest modeling cited publications as in latent Dirichlet allocation, while citing publications are
explained by reusing topics associated with any of the publication it cites. The generative process for
shared tastes is depicted in Figure 1b, we study the full model with the extension to innovation topic
mixtures. As publications can take on both roles at the same time, the authors suggest to duplicate
nodes in the citation graph to yield a bipartite graph with edges pointing from citing to cited nodes.

We transfer the model to social networks data, where graphs are undirected and contain loops and
cliques (cf. supplementary material). We use the same trick of bipartite duplication: every node is
represented by two copies: one for the active role of a user, and one for the passive role of a friend.
The copy of the active role is associated with a distribution over friends ψ, the copy of the passive
role is associated with a topic mixture λ. During model estimation, the topic mixture λ is estimated
from all items of the user itself as well as items of all connected users. Intuitively, the topic mixture λ
resembles the topics that describe the social role that the user plays within his friendship network, or
the reason why people want to be friends with him. This is in contrast to latent Dirichlet allocation,
where the topic mixture describes the items of the user in isolation.

Citation influence model versus shared taste model Both the shared taste and the citation influ-
ence model build on the same fundamental assumptions:

• Nodes in the network use topics from/across edges, preferring some neighbors over others.
• Absent edges do not reflect incompatible topics.

The differences are of subtle nature: The citation influence model uses topic mixtures for nodes
together with its neighborhood. This will encourage topics of a broad nature. The shared taste
model associates topic mixtures with edges. Each topic mixture represents the pair-wise interaction
only. Thus, topics will be suitable for representing fine-grained aspects of sharing. A technical
improvement is that shared taste model does not require duplication of any contents.

2.3 Stochastic Blockmodel

Many models for graph data are based on the stochastic blockmodel [14, 6, 15, 16], of which we
focus on its mixed-membership variant. The model builds on the assumption that data can be
explained by a set of communties. Nodes are members of communities, where this membership is
of varying strength modeled by θ. Edges are formed between nodes of compatible communities.
During inference, the observation of an edge is treated as evidence that the nodes are members of
compatible communities. But not observing an edge is treated as evidence that the nodes are members
of incompatible communities.

Stochastic blockmodels take absence of evidence as evidence for incompatibility. This assumption
is valid in fully observed networks. We claim that this assumption is heavily violated in data from
social networking platforms, where the set of friendships is incomplete.

Airoldi et al. [6] suggest to fix the model with an extension that corrects for rarity of interactions. For
each absent edge, a coin trial r ∼ ρ decides whether the absence is due to incompatibility (r = false)
or due to rarity of interactions and therefore does not effect the estimation (r = true).

Stochastic blockmodels for content-enriched networks. In order to use stochastic blockmodels
to learn shared tastes from text content as well as graph structure, we follow on the approach taken
by Nallapati et al. [7] in the Pairwise Link-LDA model. Here each community is associated with a
distribution over items (in analogy to φ in LDA); each node is associated with a topic mixture θ that
governs his community memberships and topics in his items.

We include the correction for rarity of interactions into Pairwise Link-LDA to arrive at the generative
process (see supplement and Figure 1c). Since the task is focussed on shared tastes of friends we let
the prior on compatibility η within a community ηt1=t2 be higher than across communities ηt1 6=t2 .
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Figure 2: Statistics of the LibraryThing data set.

Blockmodel versus shared taste model The shared taste model and the stochastic blockmodels
only share the underlying topic model, but employ it in a different way: The shared taste model
associates edges with topic mixtures to capture shared tastes. The stochastic blockmodel associates a
user with topic mixtures governing his items only. Further, friendship information is incorporated
differently. The shared taste model models sharing of topics via edges. The stochastic blockmodel
rather draws inference on topical compatibility of the users. But the key difference is that:

• Stochastic blockmodel treats absent edges as evidence for incompatibility.
• Shared taste model (and citation influence model) are agnostic towards absent edges.

Rarity of interactions is intrinsically addressed by the shared taste model—therefore not requiring
correction for absent edges.

3 Experimental Evaluation

The models are evaluated on social network data from LibraryThing, Zune social, and citation
data from CiteSeer. We empirically compare the three models with various extensions and latent
Dirichlet allocation. Generative processes and implementation details for all methods are given in the
supplementary material.

As LDA does not learn from the given network structure, any improvement gained by network topic
models over LDA is due to the ability to exploit the network structure. To judge how much an
underlying topic model contributes to the solution, we further study heuristic predictors.

All models and reference methods are implemented using Infer.NET [17] with variational message
passing [18] as an inference algorithm. The resulting inference algorithm’s memory consumption
scales to reasonably sized graphs of several hundred nodes (each having content lists of thousands of
items) even for the deeply nested models under study. This is sufficient for the motivated applications,
which focus on supporting a particular user in predicting interaction with his friends.

Since labeled data for tuning is hard to get in a real application, we identify sensible choices of very
weak prior parameters from literature and by inspection on a held out data set. We use uninformative
Dirichlet priors for friend distribution and own topic mixtures αψ = 1 and αΩ = 1. For topic
mixtures and item distributions we use recommendations from literature [6, 9, 19, 2] for sparse
Dirichlets αθ = αλ = 0.1, αφ = 0.01 [9, 19]. Encouraging topic sharing over own topics by factor
ten we set aε = 5.0 (own tastes), bε = 45.0 (shared tastes). For the blockmodels, we encourage
links within each topic by using aη = 8, bη = 2 on the diagonal (average within topic compatibility
ηt1=t2 = 0.8) and aη = 2, bη = 8 otherwise (on average across topic compatibility is ηt1 6=t2 = 0.2,
following our impression from Figure 2a); we model rarity of interactions with a vague Beta prior
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Figure 3: The shared taste model and with own topics (top) find better topics than the stochastic
blockmodel (bottom) on data from LibraryThing. Group-topic correlations ρt,g (Black/+: positive
correlation; blue: negative correlation; white: uncorrelated.) Tag clouds according to φt(x) with
manually annotated headers.

aρ = 3.25, bρ = 1.25 which on average explains only 25% of absent edges by the blockmodel rather
than rarity of interactions.

3.1 LibraryThing

LibraryThing2 is a social networking platform centered around books. Users organize their virtual
libraries using tags. The platform hosts user groups, providing a group-wise discussion forum and
suggested reads centered around a common subject. We study whether the models can incorporate
friend relationships and tags to learn topics that are well suited to explain social interaction. We eval-
uate the quality of topics by whether they correlate with membership in user groups, an information
that is held out from training.

Data set. We choose a subgraph of |N| = 194 users and a tag vocabulary V of size 748. The
resulting friendship graph (N,E) is given in Figure 2a. For evaluation purposes only we select a held
out ground truth of 10 user groups (listed in Figure 2b). In Figure 2a members of three user groups
are highlighted, bold edges indicate friendships inside these three groups. The picture tells that the
input data does not factor into graph clusters that follow the interest groups—violating an assumption
often made in related work. However Figure 2a confirms that the data contains friendships with
shared interests, which is the basic underlying assumption of the shared taste model.

The data set statistics indicate that some groups attract the same users. For instance, nearly all
members of the “Purely Programming” group are also in “Science Fiction Fans”. For that reason

2http://www.librarything.com
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Figure 4: Prediction performance on held out interactions in ROC-AUC (higher is better).

these groups are not distinguishable from the graph structure alone. A successful model should
distinguish these two groups based on the tag content. The correlation in group membership is
visualized in Figure 2b.

As we are interested in finding the original ten user groups, we set the number of different topics |T |
to 10.

Evaluation methods. We expect inferred topics to represent groups. We evaluate this by the Pearson
correlation ρt,g between the predicted topics t ∈ T and the true held out membership in groups g
across all users. The correlation matrix ρ of all topics versus all groups are given in Figures 3a for the
shared taste model and in Figure 3c for the stochastic blockmodel. Strong pro- and anticorrelation
indicates good performance; no correlation (white) indicates bad performance. A strong diagonal
would be ideal, but we do not expect to find a perfect match between unsupervised topics and a held
out ground truth. Rather, we count one or two strong positive correlations per row as a success.

As it is difficult to compare correlation matrices of different models, we summarize them in one
scalar number that represents the consistency of group-topic correlation across users: How well does
weighting the topic mixture with the Pearson correlation coefficient resemble a user’s true group
membership? Results are given as averaged ROC-AUC values in Figure 4a. The standard error bars
are given for reference, but as difficulty of predictions vary widely for all models (e.g., for Shared
Taste model IQR=[0.55,0.9]) we test for significance with paired t-tests (α = 5%).

Further, items which are discriminative for each topic are visualized as tag clouds in Figures 3b, and
3d to qualitatively study the inferred topics.

Results. The shared taste and the citation influence model have the most consistent pro- and
anticorrelation patterns in Figure 4a. The correlation matrix for the shared taste model in Figure 3a
revealed that seven groups have strong positive correlation with one or two topics, demonstrating
their success in identifying held out interests. This happened for six groups with the citation influence
model. Both models are successful in distinguishing the related groups “Purely Programming” from
“Science Fiction Fans” by content. Refering to the tag clouds in Figure 3b, topic t6 gathers computer
terms and topic t7 science fiction terms.

In contrast, the performance of stochastic blockmodel approaches in Figure 4a are worse. In fact, they
are similar to the performance of latent Dirichlet allocation, which ignores graph structure. Inspecting
the compatibilities η and tag clouds in Figure 3d demonstrates the diminished performance, that even
correcting for rarity of interactions did not overcome. Confer to the supplementary material for more
details.

3.2 Zune Social

Microsoft’s portable music player Zune comes with access to the platform Zune Social. The platform
allows users to interact with other users, for instance by recommending songs to friends, and to
synchronize the player for offline use. We selected a connected subgraph with |N| = 100 users and
vocabulary V of 1000 artists in playlists of one month. New artists of held out songs a user u listened
to in the following month are predicted using the user’s topic mixture. Further, new artists user u

7
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recommends to his friend f are predicted using the shared topic mixture λ{u,f}. Both rankings are
evaluated by ROC-AUC versus held out data of true interactions. To evaluate generalization ability
beyond overfitting, test items that were already included in the training set of the user are omitted
from the evaluation. For comparison we include a reference method that uses predefined genres
instead of estimated topics as a gold standard; genre information is held out from the models.

Results. The results are summarized in Figure 4b. For more results confer to the supplement
material.

We verified that both latent Dirichlet allocation and the shared taste model with own topics iden-
tify topics that correlate well with genres. Both distinguish rock music from hiphop, soul, and
contemporary R&B and identify a further cluster on electronic music.

In Figure 4b, the shared taste model predicts future items best. However, most models do not
reliably outperform each other and meeting the gold standard for several topics. Only the stochastic
blockmodels performs significantly worse, even worse than LDA.

All models fail to predict recommendations between users, i.e. AUC < 0.6, where to our surprise
exploiting the genre information yields even worse performance. One speculative explanation for the
results is that Zune users in our data do not socially interact with respect to common topic or genre. If
this is the case, the edges do not inform us about the shared taste and the models’ main assumptions
are violated.

3.3 CiteSeer

The citation influence model was designed for unsupervised prediction of influences from cited
publications on the citing publication. The authors use training data from CiteSeer and a held out
set of manually labeled influences [9]. We repeat this experiment to study the performance of the
shared taste model with reference to the citation influence topic model using the estimated friend
distribution ψ as a measure of influence.

Results. The results are presented in Figure 4c. Although comparable to the citation influence topic
model for |T | > 16, the shared taste model with own topics gives improved performance on low
topic dimensions. However, the plain variant of the shared taste model performs significantly worse,
demonstrating the benefits of the “own topics” variation.

4 Conclusions

This paper introduces the shared taste model, a new generative model for inferring shared tastes in
social networks with contents. We also apply the citation influence model to this new task. Both
models are grounded on similar assumptions, but shared taste model avoids content duplication.
Different variations of both models are studied in relation to a topic model based on the stochastic
mixed-membership blockmodel, which is quite similar to the Pairwise Link-LDA model [7]. The
stochastic blockmodel takes absent edges as evidence of incompatibility—an assumption that is
violated by data form online social networks. The empirical study confirms this issue. The poor
results raise concerns whether models that treat unobserved edges as absent edges are appropriate for
data from online social networks.

In contrast, the more successful models are agnostic towards absent edges. Both the shared taste model
and the citation influence model incorporate the same basic intuition: small groups of connected
users share a topic mixture, where each user participates in multiple groups with varying degree.

In most cases, the prediction performance improves when models have the flexibility to explain
some items by own topics or own items. In all experiments, the extra freedom never led to degraded
performance. Modeling the “own topics” for each user captures interests that are not well matched by
current friends—and the model can help with finding new friends to cover unmatched interests.

With the widespread use of social media, the Internet is becoming one large social network where ties
such as friendships, one-way subscriptions, and web-page visits are formed according to common
interests. With this increased use, an abundance of content is generated every day, and thus infor-
mation overload is a major issue in our society. Inference of shared tastes allow us to measure the
interestingness for a user and will help him to focus on information he is ultimately interested in.
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