
Efficiency Optimizations for Interpolating Subqueries

Marc-Allen Cartright and James Allan
CIIR

Dept. of Computer Science
Univ. of Massachusetts

Amherst, MA 01003
{irmarc,allan}@cs.umass.edu

ABSTRACT

A large class of queries can be viewed as linear combina-
tions of smaller subqueries. Additionally, many situations
arise when part or all of one subquery has been preprocessed
or has cached information, while another subquery requires
full processing. This type of query is common, for exam-
ple, in relevance feedback settings where the original query
has been run to produce a set of expansion terms, but the
expansion terms still need to be processed. We investigate
mechanisms to reduce the time needed to process queries of
this nature.

We use RM3, a variant of the Relevance Model scoring
algorithm, as our instantiation of this arrangement. We ex-
amine the different scenarios that can arise when we have
access to the internal structure of each subquery. Given
this additional information, we investigate methods to uti-
lize this information, reducing processing costs substantially.
Depending on the amount of accessibility we have into the
subqueries, we can reduce processing costs over 80% without
affecting the score of the final results.

Categories and Subject Descriptors: H.3.3 Information
Search and Retrieval: Relevance Feedback, Retrieval Models

General Terms: Algorithms, Performance

Keywords: query optimization, pseudo-relevance feedback,
query modeling

1. INTRODUCTION
Recent research in information retrieval has recognized the

utility of structure in queries [14, 12, 7, 8, 3, 9]. In addition
to multiple researchers recognizing this characteristic, var-
ious organizations have leaded efforts towards researching
the use of structure in queries, such as INEX1 and TREC’s
Entity Track2. Assuming that queries have some structure
has become the expectation in retrieval; therefore structure
must be expected in query optimization. Towards this end,

1http://www.inex.otago.ac.nz/
2http://ilps.science.uva.nl/trec-entity/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM ’11

Copyright 2011 ACM Unknown ...$10.00.

we look to improve query processing on a recurring pattern
in information retrieval models: linear combinations.

Linear combinations of scores lie at the heart of many well-
known models in information retrieval. The class of proba-
bilistic models contains, or easily translates to, linear combi-
nations of unigrams or n-grams. The Language Model [13] is
technically a ranking based on joint probability of the query
terms q1q2 . . . qk = Q occurring in document D; however in
order to avoid underflow the scores produced are the sum
of the log-probabilities: Score(Q, D) =

P

q∈Q
log P (q|D).

A term-order aware extension to the Language Model, the
Sequential Dependence Model, uses the weighted geomet-
ric mean to combine the unigram, ordered, and unordered
components of a given query [12]. When we take the log-
arithm of these quantities, the entire equation again re-
duces to a series of sums over log-probabilities. The Rel-
evance Model [10], after generating the estimates for the
likelihood of a term w coming from relevance model R, de-
noted P (w|R), is a linear combination of log-probabilties as
well:

P

w∈V
P (w|R) log P (w|D). Likewise, the binary inde-

pendence models, most famously the BM25 model [15], are
also linear combinations of term weights.

If we look to vector space models, we can observe a similar
phenomenon. The standard cosine similarity scoring func-
tion takes the inner product of D and Q — which in turn is a
sum of products between the two vectors [17]. The Rocchio
algorithm for relevance feedback [16] creates an interpola-
tion between the components of each query term:

q
′
j = α · qj + β ·

1

‖R‖

X

Di∈R

dij − γ ·
1

‖R̄‖

X

Di∈R̄

dij

These new weights are then used to provide a “more com-
plete” vector representation of the information need. In im-
plementation, the score consists of calculating the dot prod-
uct, as before. There are numerous other examples of estab-
lished models that operate as linear combinations of various
components, and linear combination is often one of the first
methods tried when adding new information into existing
models.

The major contribution of this work is to provide op-
timization mechanisms to interpolating subquery compo-
nents, depending on what we can assume about the sub-
queries. Given the increasing use of structure in retrieval,
optimization algorithms should operate on queries as struc-
tured objects. We focus our efforts on linear combinations
as they are a basic structure used throughout the field.

2. RELATED WORK
Query processing optimization has been a constant activ-

ity in information retrieval since the field’s inception. Many
strategies have been developed for various models, provid-
ing different guarantees. While we cannot cover the entire
history of optimization in IR, some prior work has more di-
rectly influenced the work here.

The use of an inference network as a retrieval model was
introduced by Turtle in Croft in the early 1990s [22, 23].
Their analyses showed that a significant number of exist-
ing retrieval models at the time could be efficiently repre-
sented in the inference network framework, a form of di-
rected graphical model, making it capable of representing a
wide range of retrieval models. This framework is the inspi-
ration for the graphic representation of queries used here,
which affords us an efficient way to manipulate the query
structure.

Turtle and Flood developed the Maxscore optimization
for early-termination in both document-at-a-time (daat) and
score-at-a-time (saat) query evaluation strategies. Follow-
ing on this work, Strohman et al. combined the “topdocs”
caching method of Brown [6] with Turtle and Flood’s Maxs-
core algorithm, producing a hybrid algorithm that outper-
formed both prior techniques [21]. We make use of this
version of the algorithm several times here.

In work focusing on saat index organization, Anh and Mof-
fat extended the work of pruned query evaluation to impact-
sorted indexes [2]. The document scores are first binned and
truncated to integers, allowing for better compression and
faster query evaluation. They then use an algorithm to limit
the size of the accumulator table during scoring. They main-
tain a top candidate list in addition to the accumulator ta-
ble, and use score bounds to determine when they can stop
adding candidates, as well as stop tallying scores. Their
paper also provides an excellent overview of index models
and optimization strategies to date. Our approach here is
not directly comparable to their work, as we study a dif-
ferent index organization, however several of our algorithms
would work in conjunction with optimizations designed for
saat-organized indexes.

Research in the area of query expansion includes Biller-
beck and Zobel, who conduct several rounds of experiments
examining the use of auxiliary data structures for improving
the efficiency of query expansion [5, 4]. They discovered that
using short summaries of documents significantly reduced
the time needed to analyze the documents used for feedback,
which they considered to be the largest bottleneck during
automatic expansion. In contrast, our concern is not with
generating the expansion query - the techniques shown here
are applied after such generation. In theory we could use
any method we liked to generate the expansion terms. The
methods described by Billerbeck and Zobel should smoothly
integrate with the merging techniques shown here, although
experiments to prove this hypothesis are beyond the scope
of this work.

Cartright et al. first look into the problem of specifically
optimizing the Relevance Model [11]. They considered a
document-document similarity matrix to serve as the of-
fline store for supplemental data. They then tried to reduce
the size of this matrix in order to improve its scalability
to larger scale collections. Their results indicate that both
static (i.e., index time) and dynamic (i.e., query time) prun-
ing techniques have potential to dramatically reduce the size

Collection # docs terms unique terms
(106’s) (106’s) (103’s)

AQUAINT 1.0 484 892
GOV2 25.2 2,552 62,433
ClueWeb-B 50.2 39,834 468,380

Table 1: Statistics on the collections used in exper-
iments.

of the matrix with minor negative impact on the effective-
ness of the original Relevance Model. Their approach at-
tempted to directly optimize retrieval scores via document-
document similarity rather than manipulating the structure
of the query components, as we do here.

3. APPROACH
In this section we describe the different algorithms we test

in our experiments. We begin with data, software, and eval-
uation in order to provide context necessary for the remain-
ing discussion in this section.

3.1 Data and Software
We conduct our experiments on three collections, as shown

in Table 1. The AQUAINT collection refers to the dataset
and 50 queries from the TREC 2005 Robust Track. GOV2
uses the dataset and 150 automatic run queries from the
Adhoc task of the TREC 2006 Terabyte Track. Clue-B refers
to the ClueWeb Category B sub-collection and 50 queries
used in the Adhoc task of the TREC 2009 Web Track.

We conduct all retrieval experiments using the Galago
search engine3. We generate all on-disk data structures,
such as the indexes and the topdocs lists [21] described in
later sections, using the TupleFlow distributed processing
framework [19].

3.2 Evaluation
Our primary concern is improving query processing time.

We perform two separate kinds of evaluation to measure the
effect on processing time. First, we record the number of
times we call Score on a term scoring node, which is the
only construct in our model that directly iterates over data
stored on the disk. Since the optimizations described here
focus on reducing this factor, we get an upper bound of
how effective these algorithms can be in reducing processing
load. Second, we record the actual elapsed time of each
query to determine the improvement in processing time in a
live system. We use the first evaluation as the focus of our
initial analysis of the algorithms, and we discuss the second
type of evaluation in Section 4.4.2.

Some techniques presented here guarantee that if a doc-
ument appears in R, the final ranked list, the score is the
same as the unoptimized version. We call an algorithm with
this property score-accurate to rank k. Prior work has re-
ferred to a similar property, rank-safe up to k, meaning the
ranks of documents up to rank k are unchanged from the
original ranking function [24]. As defined, these two prop-
erties are unrelated: an algorithm may exhibit the score-

accurate property, but not the rank-safe property, and vice-
versa. This occurs, for example, when an algorithm only
fully scores a subset of the entire candidate list. A document

3http://galagosearch.org

in the original R may not be scored by the algorithm, there-
fore is not in the new R, however all documents appearing
in the new R have been scored correctly. The Rewind al-
gorithm, described in Section 3.4.2, behaves in this fashion.
For the remainder of this work, we assume r is the number
of documents requested, so we abbreviate score-accurate to

rank r to score-accurate, and rank-safe up to r to rank-safe.
In the cases where an optimization is score-accurate and

rank-safe, we do not report the effect on retrieval effective-
ness. Otherwise, we report Mean Average Precision (MAP)
as implemented by the trec_eval program4. In calculating
the statistical significance between score count samples, we
use a paired randomization test, as described by Smucker et
al. [18]. When determining statistical significance of the real
time measurements, we use a standard randomization test
to maintain tractability. In both cases we set our sample
size to 106.

3.3 Representation
We choose to focus on the RM3 scoring function [1] as our

exemplar scoring model for this work, for several reasons: 1)
previous research has shown it to be effective in practice [1];
2) it interpolates only two subquery components, making
it a canonical case for our study; and 3) the internals of
both subqueries also have simple structure, affording easy
manipulation.

RM3 is a variant of the Relevance Model that interpolates
the Language Model [13] and Relevance Model [10] scores for
a given query Q and document D:

ScoreRM3(Q, D) = λScoreLM (Q, D)+(1−λ)ScoreRM (Q, D)

Clearly if λ ∈ {0, 1}, then we can simply drop the zero-
weighted subquery, and only evaluate the remaining sub-
query. However in cases where 0 < λ < 1, both subqueries
matter, and we must evaluate both. We focus on this latter
case.

Typical implementations of RM3, such as the implemen-
tation in Indri [20], construct an interpolated query after an
initial round of retrieval and submit the entire revised query
for scoring. The algorithms described here are applied af-
ter the expansion terms have been selected. Instead of re-
submitting the revised query, including the initial query as
a subquery, we intervene to leverage structure in this ex-
panded query in order to improve performance.

Given the point of intervention, we slightly recast the for-
mula above to specify the components involved. The original
query we label P , which is the processed subquery at this
point. The expansion terms we label U , the unprocessed
part of the query. Therefore we reformulate the RM3 scor-
ing function to reflect this:

ScoreRM3(Q, D) = λScoreLM (P, D)+(1−λ)ScoreRM (U, D)

Note that in order to create U , the system must have gen-
erated an initial ranked list based solely on P ; we call that
list RP . We allow the system to access this initial ranked
list during processing.

In order to organize the remaining discussion, we rep-
resent the query structure as a network of interconnected
nodes, similar to an Inference Network [22]. As an example,
suppose P is the query hydrogen energy, and we construct
U using 3 expansion terms, science, nuclear, and research.

4http://trec.nist.gov

Assume that each term comes with an associated weight.
We label the associated weights as follows: the ith term in
subquery P has associated weight pi, likewise the jth term
in subquery U has associated weight uj . Let π(t, D) and
υ(t, D) represent the scoring functions of a single term given
a document D and term t for subqueries P and U , respec-
tively. Mathematically, the score of a document D for this
query is:

Score(Q, D) = λScoreLM (P, D) + (1− λ)ScoreRM (U, D)

= λ(p1π(hydrogen, D) + p2π(energy, D))

+ (1− λ)(u1υ(science, D) + u2υ(nuclear, D)

+ u3υ(research, D))

(1)

In choosing RM3 as our scoring function, π and υ are in
fact the same term scoring function: the log of the smoothed
term likelihood of t in D.

The graphical representation of this query is shown in
Figure 1. The construction provides us with a clean way of
expressing the query visually. The nodes at the bottom of
the tree are term scoring nodes - they represent the scoring
functions π and υ in Equation 1. The nodes up the tree
are all combining nodes - they combine the incoming scores
according to the weights along the incoming edges. In our
case, all combining nodes represent a weighted sum over the
contributed scores. Assuming N is a combining node, N̂

denotes all nodes directly under node N , excluding N . In
implementation, the term scoring nodes act as iterators over
the posting list of the given term, and the combining nodes
act as meta-iterators that ensure the scoring over documents
proceeds correctly.

The processing model uses document-at-a-time process-
ing, meaning each document is scored in its entirety before
another document is scored. Under this model, we construct
the network once, and iterate over all documents, having
each term scoring node score each document (a term scor-
ing must produce a score for any document), combine the
scores, then move to the next document. We assume all
iterators are capable of the following functions: 1) score a
given document, 2) tell the document id that the iterator
is currently on in the posting list, 3) reset to the beginning
of its posting list, and 4) move to/past a particular docu-
ment id in its posting list5. Combining nodes simply pass
the command forward to all nodes under them. For exam-
ple, the statement ‘We reset P . . . ’ means that the term
scoring iterators under P are all reset to the beginning of
their respective posting lists.

During description and analysis of the algorithms, we will
also consider the set of documents that appear in the posting
list of a given term. We denote this as ∆(N), where N is
a node in the network. If N is a combining node, then
∆(N) =

S

M∈N̂
∆(M).

3.3.1 Visibility

Given the graphical representation of a query, we now
assume that we have varying amounts of information about
each combining node that we can leverage. We define an
additional property over the combining nodes, known as its

5All posting lists are sorted in increasing document id order,
therefore this function can be easily implemented as a less-
than conditional.

3.4.1 Fusion

Fusion is the first, and simplest, of the algorithms we
present. The intuition behind this algorithm is simple: RM3
scores using both P and U . Instead, Fusion only makes use
of whatever RP provides, and ignore P . The pseudocode
for Fusion is shown below. We assume RP and RU act
as maps from the documents returned to their scores, for
notational convenience. The algorithm begins by evaluating
U , producing ranked list RU (lines 1-4). To guarantee that
every document receives some kind of score, we establish
lower bounds for each list (lines 5 and 6). These bounds
acts as the default score for any document not explicitly in
the corresponding list. We then take the linear interpolation
of RP and RU using parameter λ (lines 7-14). Finally, we
return the highest-scoring r items from this merge (lines 15-
19).

Fusion(RP , U, λ, r)

1 RU ←New-Queue
2 foreach d ∈ ∆(U)
3 Insert(RU , 〈d,Score(U, d)〉)
4 Trim(RU , r)
5 minP ← mind∈RP

RP [d]
6 minU ← mind∈RU

RU [d]
7 A← New-Map()
8 foreach d ∈ RP

9 A[d]← λRP [d] + (1− λ)minU

10 foreach d ∈ RU

11 if d ∈ A

12 A[d]← A[d] + (1− λ)(RU [d]−minU)
13 else
14 A[d]← λminP + (1− λ)RU [d]
15 R← New-Queue()
16 foreach d ∈ A

17 Insert(R, 〈d, A[d]〉)
18 Trim(R, r)
19 return (R)

The Fusion algorithm is simple, requires no further disk-
accesses after evaluation, and two linear passes through RP

and RU , which are typically much smaller than the number
of documents evaluated to produce the corresponding lists.
Note that the only time we call the Score function is at
the beginning, when we populate RU (line 3). We do not
score any document against P , whereas the standard RM3
algorithm would. This is where we receive the gain in effi-
ciency over RM3. This method also has the advantage that
it can be applied across virtually all scoring and processing
strategies, as long as the final scores can be combined inde-
pendently of each other (i.e. the final score of a document
does not rely on any other score in the same list).

Fusion is neither score-accurate nor rank-safe: a docu-
ment that does not appear in RP will not receive the cor-
rect score - instead it will receive the lowest available score
in RP . This in turn can cause a change in the ordering of
documents in R. Consequently all documents not in RP are
overestimated if they appear in RU . The converse is true as
well. Also, the ability of this method to reduce the number
of accesses is limited – as the number of expansion terms
grows, the percent of processing that Fusion will save rela-
tive to processing the whole query will decrease.

3.4.2 Rewind

In an effort to improve correctness among the final scores,
we present another algorithm, which caches RP and makes
use of the scores in it when possible; otherwise we use P to
score the document. We call this algorithm Rewind, since
we rewind P , and use it to score documents as requested by
U . The pseudocode for Rewind is shown below.

Rewind(P, RP , U, λ, r)

1 Reset(P)
2 R ← NewQueue()
3 foreach d ∈ ∆(U)
4 if d ∈ RP

5 score← λRP [d] + (1− λ)Score(U, d)
6 Insert(R, 〈d, score〉)
7 else
8 MoveTo(P, d)
9 score← λScore(P, d) + (1− λ)Score(U, d)

10 Insert(R, 〈d, score〉)
11 Trim(R, r)
12 return R

The Rewind algorithm is not as efficient as Fusion; in ad-
dition to calling Score with node U , it also will frequently
call Score using node P (line 9). However iteration is di-
rected by U (line 3), so Rewind still makes less Score calls
than the original RM3 algorithm.

Rewind is a score-accurate algorithm but it is not rank-
safe. Consider the set ∆(P)−∆(U). These are documents
in the posting list(s) of P that are not in U . They will never
be considered as candidates, therefore they will never receive
a score, and have no chance of making it into R, the final
ranked list. Therefore, all of the scores returned in R are
correct, however some documents that should be in R may
be omitted.

3.5 A(P) and Ā(U)

We now assume that P is accessible, therefore we have
access to its internal structure. The first modification we
make is to replace P with P M , its Maxscore equivalent,
to improve evaluation over P ’s subtree. However we can go
even further, and incorporate U directly into P M ’s subtree.
We do not need access to U to do this; we only need to take
care to properly adjust the weight of U when we add it. We
call this algorithm Max-Plus.

3.5.1 Max-Plus

Our plan is to add P to the subtree of UM . However we
must take care to properly adjust the weights when adding
P . Fortunately, we have access to the weights associated
with P̂ M as well as λ, our interpolation weight between the
two components. Using these we can derive the appropri-
ate weight for U . Let WU be the desired weighting for U ,
WP M =

P

i=|P M | pi, W = WP M + WU and by definition

λ + (1− λ) = 1. We know the ratios of λ : 1 and WP M : W

are equivalent:

λ

1
=

WP M

W
→ λ =

WP M

W
, implying that

λW = WP M →W =
WP M

λ

AQUAINT RM3 RM3+ Rewind Fusion Warmup Max-Plus-U Max-Plus Max-Flat

Default 8515351 -4.4✝ -5.1 -23.6 -50.6 -68.3 -7.1✝ -85.3

r = 1000 8515351 -4.4✝ -5.2 -23.6 -26.6 -64.6 -7.1✝ -79.1

τ = 100 104815675 -1.6✝ -0.04 -2.5 -5.4 -46.8 -1.5✝ -61.9

λ = 0.2 8515351 -3.0✝ -5.1 -23.6 -66.5 -73.1 -2.7✝ -80.0
λ = 0.8 8515351 -86.5 -5.1 -23.6 -32.0 -69.4 -92.3 -87.6

GOV2 RM3 RM3+ Rewind Fusion Warmup Max-Plus-U Max-Plus Max-Flat
Default 193233121 -7.2 -7.0 -29.1 -63.3 -56.5 -9.0 -88.2

r = 1000 193233121 -0.6✝ -7.0 -29.1 -40.2 -53.4 -9.0 -82.1
τ = 100 2351713435 -2.8 -0.022 -3.3 -15.7 -50.8 -2.9 -75.2
λ = 0.2 193233121 -2.4 -7.0 -29.1 -76.4 -74.7 -1.5 -78.0
λ = 0.8 193233121 -86.7 -7.0 -29.1 -41.1 -54.5 -94.2 -87.6

CLUE-B RM3 RM3+ Rewind Fusion Warmup Max-Plus-U Max-Plus Max-Flat
Default 400366062 -23.7 -10.4 -26.5 -63.2 -58.0 -27.1 -90.7
r = 1000 400366062 -23.7 -10.5 -26.5 -42.1 -57.0 -27.1 -90.7
τ = 100 4428706966 -11.6 -2.5 -2.5 -14.7 -58.3 -14.8 -81.2
λ = 0.2 400366062 -13.3 -10.5 -26.5 -73.9 -81.2 -8.5 -87.6
λ = 0.8 400366062 -68.9 -10.5 -26.5 -44.7 -58.1 -90.6 -93.6

Table 2: Results over AQUAINT, GOV2, and ClueWeb-B, using 36, 150, and 50 queries, respectively. The ✝

indicates a change that is not statistically significant. The number in the RM3 column is the number of score
requests under the unmodified algorithm. The numbers in the remaining columns are the percent change
relative to the the unmodified RM3 model. We calculate this as −(A − B)/A, where A is RM3 and B is the
algorithm in question.

use of Maxscore (RM3+), for comparison. In the graphical
representation, we accomplish this by replacing node Q with
QM , therefore we use the Maxscore algorithm directly on
nodes P and U .

The results from the three datasets look largely equiva-
lent, suggesting that the methods described here will retain
their ability to improve over the baseline as the collection
size increases. Both RM3+ and MaxPlus seem to generally
perform better on the Clueweb-B dataset; analysis of this
phenomenon reveals that the proportion of queries actively
optimized (i.e. pruned) is much higher in Clueweb-B (> 45%
in both cases) than in the other two collections (< 23%).
This in turn produces a larger impact on the average score
count.

Method Default τ = 100 r = 1000 λ = 0.2 λ = 0.8
Baseline 0.0827 0.0827 0.1565 0.0827 0.0827
RM3 0.1153 0.1177 0.1984 0.1000 0.0991
Fusion 0.0978 0.1096 0.1888 0.0911 0.0912
Rewind 0.1153 0.1177 0.1945 0.1000 0.0993
Warmup 0.0824 0.0958 0.1678 0.0777 0.0793

Table 3: MAP results over the AQUAINT collec-
tion. Only methods that are non-safe are shown.
The baseline method is the query-likelihood model,
shown for comparison.

4.1 Ā(P) and Ā(U)

The behavior between the Rewind and Fusion algorithms
is consistent between the two collections; Fusion provides
a significant decrease in the number of scores requested,
while Rewind only reduces the evaluation cost by less than
10%. However we must also consider MAP scores for these
algorithms. Table 3 shows the MAP scores produced by

the non-safe6 algorithms across the different parameter set-
tings. Generally, the Fusion algorithm only provides a
relatively small increase in performance over the baseline
method (Language Model), and only in the case of r = 1000
does the performance of Fusion approach that of RM3.

Conversely, Rewind seems to stay true to the original
scoring model, except in two cases. When r = 1000, the
score is slightly lower than RM3. Analysis of the mean pre-
cision at different ranks shows identical precision scores until
past rank 200. When λ = 0.8, the score is slightly higher
than RM3, most likely due to the increased weight on U .
Hence, more relevant documents would come from U , which
are all correctly scored using Rewind.

When τ = 100, we also see an interesting result. The im-
provement from Rewind is minimal (> 1%), however the
result is statistically significant. RM3+ produces a larger
improvement, but it is not significant. Further analysis re-
vealed that RM3+ only improved over RM3 in a few cases,
but these cases drastically pulled down the average score
count. In contrast, Rewind consistently outperformed RM3
on every query, but only by a small amount. In this case,
the significance test indicates one outcome, while the effect
size indicates the opposite outcome.

4.1.1 Fusing Larger Lists

Given the results above, we wonder if increasing the num-
ber of results from just U would improve results. We have
no control over RP , however we can instruct U to return a
larger list of documents that we could use in merging. We
run a few experiments to observe this behavior (Table 4).
We do not show the average number of scores requested, as
they are the same across all runs. We express the increase as
a percentage of the original list, i.e. a value of 10 indicates

6Non-safe indicates an algorithm lacks either the rank-safe
or the score-accurate property.

that we request 1.1r (10% more) documents to be scored,
where r is the original list size.

% More 0 10 25 50 100
MAP 0.0978 0.0977 0.0984 0.0986 0.0983

Table 4: Changes in MAP when varying the number
of results requested from U .

The results suggest that increasing the size of the list re-
turned from U can provide some minor benefits, but only
up to a point. The decrease when we double the size of the
list indicates that around that point we stop adding useful
documents to the merging procedure, and that the overes-
timated score from P for those documents introduces noise
in R.

4.1.2 Maxscore Under the Hood

While we have no control over the internals of either sub-
query in this configuration, we examine how Fusion and
Rewind may interact with Maxscore. To test this effect,
we replace P and U with their Maxscore version where
appropriate. In Fusion, we apply it to U , and in Rewind,
we apply it over the cached P and U . The results over
the default parameter set are shown in Table 5. We can
immediately see a large improvement in efficiency over the
baseline methods. This indicates that Fusion and Rewind
can combine with Maxscore to improve other using either
technique alone. We leave further analysis as future work.

Method # Scores % Chg. Orig

RM3 8143117.5 0.0 -4.4
Fusion 1791606.1 -78.0 -72.4
Rewind 2352511.6 -71.1 -77.8

Table 5: Results over the AQUAINT collection, now
using the Maxscore optimization. The rightmost
column indicates the change over the same method
without the optimization.

4.2 A(P) and Ā(U)

The Max-Plus algorithm is the only algorithm tested for
this scenario. Under the default and r = 1000 parameter set-
tings, Max-Plus provides a consistent minor improvement
over the original algorithm. The differences are not statisti-
cally significant in the AQUAINT collection, however they
are for GOV2. If the number of feedback terms is increased,
the effectiveness of the algorithm decreases, which we expect
— we have no control over U , therefore if its organization
changes, it will have an effect on Max-Plus.

The most interesting result comes when λ = 0.8. Both
RM3+ and Max-Plus perform exceptionally well. Further
inspection reveals that in both cases, the bias towards P

allowed for massive pruning during query processing. The
only documents that have a chance to enter the candidate
list are documents that contain components from P ; specif-
ically, the entire subquery. Therefore the only documents
that are even considered are in ∆(P). The main differ-
ence between these algorithms is that Max-Plus directly
integrates U into its early-termination algorithm, whereas
RM3-Maxscore can only interact with the nodes opaquely.
We believe this allows the Max-Plus algorithm to converge

to a stable threshold more rapidly, resulting in the increase
in performance over RM3-Maxscore.

4.3 Ā(P) and A(U)

We now look to the performance of Warmup and Max-
Plus-U. Both algorithms provide substantial improvements
over the original RM3 algorithm. As anticipated, Warmup
consistently outperforms the Fusion algorithm in efficiency,
where we do not pre-set the candidate list for the U node.
However if we consider effectiveness (Table 3), we see that
in fact Warmup performs worse than Fusion in all cases,
and in some cases performs worse than the baseline method.

In contrast, the Max-Plus-U method appears to consis-
tently provide substantial gains in efficiency, while main-
taining score correctness. The only noticeable drop in per-
formance for the Max-Plus-U algorithm comes from in-
creasing the number of feedback terms (τ = 100), which is
consistent with the behavior of the other algorithms. How-
ever unlike several of the other algorithms, Max-Plus-U
appears to be more robust to the parameter change.

4.4 A(P) and A(U)

Clearly, having access to both sub-nodes allows the most
effective optimization of the entire set. The Max-Flat pro-
cedure consistently shaves off over 80% of the scoring re-
quests, except when we increase the number of feedback
terms by a factor of 10. Even under such conditions, Max-
Flat still cuts over half of the scoring requests. Deeper
analysis of this model shows that like Max-Plus and Max-
Plus-U, having all of the term nodes managed by one Maxs-
core node allows for the fastest stabilization of the thresh-
old scores. The only case where this is not true is when
λ = 0.8, where P has so much weight that it largely over-
whelms the contributions of U , allowing Max-Plus and
RM3+ to perform on par with Max-Flat.

4.4.1 Modifying the Scoring Order

In the original Maxscore algorithm, the term scoring
nodes are ordered according to the estimated lengths of their
posting lists, the intuition being that if pruning occurs by
the nodes processed first during a scoring pass, then moving
the shortest posting lists to the front should minimize the
number of documents considered. However our model has
scoring nodes scaled by weights. Not only must we consider
weights now, but as we rescale the weights of the nodes man-
aged by the algorithm, as we do in the Max-* algorithms,
we often have the situation that some subset of the nodes
have weights orders of magnitude larger than the others.

Considering these new factors, we explore the possibility
of ordering by weight to increase pruning further. We reason
as follows: If the pruning decision is contingent on the heav-
ily weighted nodes, then if we order by length of the posting
lists, this weight imbalance is ignored. Hence we tend to
prune wherever we hit these heavily weighted nodes, no mat-
ter where they fall in the scoring order. Ordering by weight
pushes these nodes to the front of the scoring list, removing
the wasted effort of scoring nodes that do not trigger prun-
ing. We test this hypothesis on the Max-Flat algorithm,
and call it Max-Flat-W. Results are shown in Table 6 for
different values of λ, and for τ = 100.

Surprisingly, ordering by weight is only effective when
λ = 0.8 or when τ = 100. This indicates that the weight
imbalance between the subquery components must be quite

Method Max-Flat Max-Flat-W % Chg
λ = 0.2 1876666.2 3430090.9 +82.3
λ = 0.5 1248424.9 1795394.2 +43.8
λ = 0.8 1053798.0 615244.3 -41.6
τ = 100 39932114.8 37111540.1 -7.1

Table 6: Comparing list length and weight ordering
for the Max-Flat algorithm.

high for it to be effective. Worse performance of Max-Flat-
W when λ = 0.2 supports this hypothesis. This weight
brings the individual component weights closer to unifor-
mity, reducing the importance of ordering the scoring list
by weight.

4.4.2 Effect on Wall-Clock Time

We now examine changes in performance based on system
time measurements. We perform 5 runs of the GOV2 col-
lection, with the queries permuted randomly in each run to
lessen any dependence on query order. We record the time
to execute each query for each method, making a total of
750 samples for each algorithm. The system used is a non-
dedicated cluster of 32 nodes, each node having 2 Xeon 3.2
GHz cores with 4Gb of RAM and having access to a shared
disk-server, where the index resides. Therefore a single run
executes on a single core in this cluster. To compute statisti-
cal significance between algorithms, we use a randomization
test of 1 million samples with the sample mean as the suf-
ficient statistic. We also determine what percentage of the
queries shows some “positive effect” relative to unmodified
RM3. Let A be the algorithm in question. If the value for
A is less than 90% of the value for RM3 for a particular
measure (either score count or real time), we consider that
to be a positive effect. For example, a value of 10 in the
table indicates that 10% of the queries (75 of 750) had that
measure reduced by at least 10% compared to RM3. Ta-
ble 7 shows the mean runtimes of the samples, the percent
change from RM3, and percentage of queries affected when
measuring via score count and real time.

Based on the results from Table 7, the algorithms seem to
fall into 3 distinct groups. The strongest of these is Max-
Flat, and to a slightly lesser degree, Max-Plus-U, which
seem to consistently reduce both the score count and the
system time by a significant amount. Their average impact
is high, and they cover a high percentage of the queries. The
next group includes the Warmup and Fusion algorithms.
They also have a consistent impact, but their average impact
is less pronounced. The final group, consisting of RM3+,
Rewind, and Max-Plus, have average runtimes are greater
than the unmodified RM3, but they still register at least
a 10% measurement improvement for some number of the
queries tested. Further analysis of this last group shows that
when the algorithms work, they have a significant impact
on both measurements, often resulting in reductions over
40%. However, as the table shows, these algorithms do not
“trigger” very often, and the added logic used to continually
check for a pruning opportunity results in a notable increase
in execution time.

5. DISCUSSION AND CONCLUSION
We have shown that it is possible to greatly improve the

efficiency of queries represented by a linear combination of

Method Mean Time Pct Chg Pct. Affected
RM3 134.8 0 Score Time

Max-Flat 19.4 -85.6✦ 100.0 100.0

Max-Plus-U 68.6 -49.1✦ 87.3 86.1

Fusion 129.3 -4.1✦ 98.7 41.9

Warmup 119.4 -11.4✦ 100.0 60.4

RM3+ 245.9 +82.4 12.0 7.1
Rewind 139.9 +3.7 20.0 44.9
Max-Plus 230.7 +71.1 22.0 13.7

Table 7: Statistics over 750 queries run over GOV2.
Mean times are in seconds. The ✦ indicates statis-
tical significance at p ≤ 0.02. The Score and Time
columns report the percentage of queries that expe-
rienced at least a 10% drop in the given measure-
ment.

subqueries, a common mechanism for integrating partial
scores in information retrieval. Our results show that when
the two subqueries are inaccessible, our options for safe opti-
mization are limited, but there are several courses of action
we can take that typically have little negative effect on the
accuracy of results. When we have access to the internal
structures, we can manipulate the query structure further,
providing greater efficiency gains while making stronger cor-
rectness guarantees. Under the correct conditions, we can
reduce the scoring cost by over 50%, and in many cases by
over 80%, while not affecting the ranking results at all.

Several phenomena here require further study to fully ex-
plain. All of the algorithms presented here appear to be
sensitive to τ , therefore, determining the underlying cause
of this sensitivity will give us even further insight into the
interaction between the subquery components. Given the
emergent behaviors shown by the algorithms, understand-
ing what properties of the algorithms cause such behavior
would help to predict the interactions between optimiza-
tions, queries, and collections.

Although several algorithms described provide substantial
gains in efficiency, our experiments also raise new interesting
questions to pursue. A simple observation from the results
suggests that for different values of λ, different algorithms
afford the greatest reduction in cost. Query analysis may
enable us to choose which algorithm to use based on the
value of λ, thereby leveraging the best possible optimization
available. Also, the real-time analysis here shows that if we
can cheaply predict whether a certain optimization will acti-
vate on a given query, we may be able to avoid unnecessary
overhead by not trying to optimize the query in the first
place.

The above results show how we can reduce the processing
cost of the RM3 algorithm. However demonstrating the ef-
fectiveness of these algorithms when applied to RM3 implies
their utility with other retrieval models as well. RM3 serves
as an archetype of interpolated subqueries: many other re-
trieval models share structure similar RM3, therefore the
algorithms developed here will easily transfer to those in-
stances with little effort. Furthermore, we can look to apply
these algorithms to even more diverse query types. Con-
sider, for example, an n-gram index, where these mecha-
nisms could significantly impact the processing time of scan-
ning the term-level posting lists by making use of the stored
n-grams. Recent research has made use of n-gram posting

lists [8, 7], therefore we can consider the pre-calculated n-
gram posting list as the subquery containing information,
and the rest of the query (the unigrams) as not. We may
encounter subqueries that must be evaluated against differ-
ent indexes, such as in desktop search as described by Kim
and Croft [9] or graph-based data, such as citation analysis
information. One subquery may apply to the graph data,
whereas the other applies to textual information. Other ap-
plications include temporal information, precalculated statis-
tics for document or collection-level data, and geolocation
information.

In the context of web search, the optimizations discussed
here would most likely not impact the head queries that are
heavily cached and optimized for performance. However tail
queries could benefit greatly, as the use of psuedo-relevance
feedback can still improve retrieval performance for such
queries. The results here indicate that we can apply pseudo-
relevance feedback, among other expansion techniques, to
improve ranked results without suffering from high over-
head.

In the past it was sufficient to investigate optimizations
for queries that were simply bags of words - therefore one
could assume that each component in the query represented
a single iterator over a posting list. However with the ad-
vent of structured queries that are now being applied over
increasingly larger and larger sets of data, the need to re-
spect this additional structure while designing optimizations
for query processing has become evident. We believe this re-
search moves towards addressing this need, and we intend
to continue this line of research to provide even greater im-
provements for structured query processing.

6. ACKNOWLEDGEMENTS
This work was supported in part by the Center for Intelli-

gent Information Retrieval and in part by NSF grant #IIS-
0910884. Any opinions, findings and conclusions or recom-
mendations expressed in this material are the author(s) and
do not necessarily reflect those of the sponsor.

7. REFERENCES
[1] N. Abdul-jaleel, J. Allan, W. B. Croft, O. Diaz, L. Larkey,

X. Li, D. Metzler, M. D. Smucker, T. Strohman, H. Turtle,
and C. Wade. Umass at trec 2004: Notebook. In TREC
2004, pages 657–670, 2004.

[2] V. N. Anh and A. Moffat. Pruned query evaluation using
pre-computed impacts. In Proceedings of the 29th annual
international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’06, pages
372–379, New York, NY, USA, 2006. ACM.

[3] M. Bendersky and W. B. Croft. Discovering key concepts in
verbose queries. In Proceedings of the 31st annual
international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’08, pages
491–498, New York, NY, USA, 2008. ACM.

[4] B. Billerbeck and J. Zobel. Techniques for efficient query
expansion. 2004.

[5] B. Billerbeck and J. Zobel. Efficient query expansion with
auxiliary data structures. Inf. Syst., 31:573–584, November
2006.

[6] E. W. Brown. Fast evaluation of structured queries for
information retrieval. In Proceedings of the 18th annual
international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’95, pages
30–38, New York, NY, USA, 1995. ACM.

[7] Hao Yan, Shuming Shi, Fan Zhang, Torsten Suel, and
Ji-Rong Wen. Efficient term proximity search with

term-pair indexes. In Proceedings of the Nineteenth
International Conference on Information and Knowledge
Management, pages 39–45, Toronto, Ontario, Canada,
October 2010. ACM, ACM.

[8] S. Huston, A. Moffat, and W. B. Croft. Efficient indexing
of repeated n-grams. In Fourth ACM International
Conference on Web Search and Data Mining, 2011.

[9] J. Kim and W. B. Croft. Retrieval experiments using
pseudo-desktop collections. In Proceedings of the 18th ACM
conference on Information and knowledge management,
CIKM ’09, pages 1297–1306, New York, NY, USA, 2009.
ACM.

[10] V. Lavrenko and W. B. Croft. Relevance based language
models. In Proceedings of the 24th annual international
ACM SIGIR conference on Research and development in
information retrieval, SIGIR ’01, pages 120–127, New York,
NY, USA, 2001. ACM.

[11] Marc-Allen Cartright, James Allan, Victor Lavrenko, and
Andrew McGregor. Fast query expansion using
approximations of relevance models. In Proceedings of the
Nineteenth International Conference on Information and
Knowledge Management, pages 1573–1576, Toronto,
Ontario, Canada, October 2010. ACM, ACM.

[12] D. Metzler and W. B. Croft. A markov random field model
for term dependencies. In Proceedings of the 28th annual
international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’05, pages
472–479, New York, NY, USA, 2005. ACM.

[13] J. M. Ponte and W. B. Croft. A language modeling
approach to information retrieval. In Proceedings of the
21st annual international ACM SIGIR conference on
Research and development in information retrieval, SIGIR
’98, pages 275–281, New York, NY, USA, 1998. ACM.

[14] S. Robertson, H. Zaragoza, and M. Taylor. Simple bm25
extension to multiple weighted fields. In Proceedings of the
thirteenth ACM international conference on Information
and knowledge management, CIKM ’04, pages 42–49, New
York, NY, USA, 2004. ACM.

[15] S. E. Robertson and S. Walker. Some simple effective
approximations to the 2-poisson model for probabilistic
weighted retrieval. In Proceedings of the 17th annual
international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’94, pages
232–241, New York, NY, USA, 1994. Springer-Verlag New
York, Inc.

[16] J. Rocchio. Relevance feedback in information retrieval. In
G. Salton, editor, The SMART retrieval system:
Experiments in automatic document processing, pages
313–323. Prentice-Hall, Englewood Cliffs, NJ, 1971.

[17] G. Salton, A. Wong, and C. S. Yang. A vector space model
for automatic indexing. Commun. ACM, 18:613–620,
November 1975.

[18] M. D. Smucker, J. Allan, and B. Carterette. A comparison
of statistical significance tests for information retrieval
evaluation. In Proceedings of the sixteenth ACM conference
on Conference on information and knowledge management,
CIKM ’07, pages 623–632, New York, NY, USA, 2007.
ACM.

[19] T. Strohman. Efficient Processing of Complex Features for
Information Retrieval. Ph.D. dissertation, University of
Massachusetts Amherst, December 2007.

[20] T. Strohman, D. Metzler, H. Turtle, and W. B. Croft.
Indri: a language-model based search engine for complex
queries. Technical report, in Proceedings of the
International Conference on Intelligent Analysis, 2005.

[21] T. Strohman, H. Turtle, and W. B. Croft. Optimization
strategies for complex queries. In Proceedings of the 28th
annual international ACM SIGIR conference on Research
and development in information retrieval, SIGIR ’05, pages
219–225, New York, NY, USA, 2005. ACM.

[22] H. Turtle and W. B. Croft. Inference networks for
document retrieval. In Proceedings of the 13th annual

international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’90, pages
1–24, New York, NY, USA, 1990. ACM.

[23] H. Turtle and W. B. Croft. Evaluation of an inference
network-based retrieval model. ACM Trans. Inf. Syst.,
9:187–222, July 1991.

[24] H. Turtle and J. Flood. Query evaluation: strategies and
optimizations. Inf. Process. Manage., 31:831–850,
November 1995.

