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Abstract

Most learning algorithms for factor graphs

require complete inference over the dataset

or an instance before making an update to

the parameters. SampleRank is a rank-based

learning framework that alleviates this prob-

lem by updating the parameters during in-

ference. Most semi-supervised learning al-

gorithms also rely on the complete infer-

ence, i.e. calculating expectations or MAP

configurations. We extend the SampleRank

framework to the semi-supervised learning,

avoiding these inference bottlenecks. Dif-

ferent approaches for incorporating unlabeled

data and prior knowledge into this frame-

work are explored. We evaluated our method

on a standard information extraction dataset.

Our approach outperforms the supervised

method significantly and matches the result

of the competing semi-supervised learning ap-

proach.

1 Introduction

Most supervised learning algorithms for factor

graphs require full inference over the dataset

(e.g. conditional loglikelihood) or an instance (e.g.

Collin’s perceptron) before parameter updates can

be made. Often this is the main computational bot-

tleneck during training.

SampleRank (Rohanimanesh et al., 2009) is a

rank-based learning framework that alleviates this

problem by performing parameter updates within in-

ference. Every pair of samples generated during in-

ference is ranked according to the model and the

ground truth, and the parameters are updated when

the rankings disagree. SampleRank has enabled ef-

ficient learning for massive information extraction

tasks (Culotta et al., 2007; Singh et al., 2009).

The problem of requiring a complete inference

iteration before the parameters are updates also

exists in the semi-supervised learning scenario,

where the situation is worse compared to super-

vised learning, as the inference has to be ap-

plied to the large unlabeled dataset. Most semi-

supervised learning algorithms are designed to ad-

dress many machine learning tasks and rely on

marginals (GE: (Mann and McCallum, 2008)) or

MAP assignments (CODL: (Chang et al., 2007))

which are extremely cheap for many of these tasks

(such as classification and regression). However,

marginal and MAP inference is often intractable for

the factor graphs used for information extraction.

This work employs the fast rank-based learn-

ing algorithm for semi-supervised learning on fac-

tor graphs to avoid the inference bottleneck. We

demonstrate how SampleRank naturally extends to

semi-supervised learning by generalizing the notion

of rank constraints to include both preference ex-

pressed as the labeled data, and preference of the

model designer when the labels are not available.

This allows us to perform SampleRank as is, with-

out sacrificing its scalability, which is necessary for

future large scale applications of semi-supervised

learning.

We applied our method to a standard information

extraction dataset used for semi-supervised learning.

Empirically we demonstrate improvements over the

supervised model, and closely match the results of

a more complex competing semi-supervised learner,



while running significantly faster.

2 Background

A factor graph G defines a probability distribution

over assignments y to a set of output variables, con-

ditioned on input variables x. A factor Ψi computes

the inner product between the vector of sufficient

statistics f(xi,yi) and parameters Θ. Let Z(x) be

the data-dependent partition function used for nor-

malization. The conditional probability distribution

defined by the factor graph is:

p(y|x,Θ) =
1

Z(x)

∏

Ψi∈G

eΘ·f(xi,yi) (1)

2.1 Rank-Based Learning

Most learning methods need to calculate the model

expectations (Lafferty et al., 2001) or the MAP con-

figuration (Collins, 2002) before making an update

to the parameters. This step of inference is usually

the bottleneck for learning, even when performed

approximately.

SampleRank (Rohanimanesh et al., 2009) is a

rank-based learning framework that alleviates this

problem by performing parameter updates within

MCMC inference. Every pair of consectutive sam-

ples in the MCMC chain is ranked according to

the model and the ground truth, and the parame-

ters are updated when the rankings disagree. This

allows the learner to acquire more supervision per

instance, and has led to efficient training for mod-

els in which inference are expensive and generally

intractable (Singh et al., 2009).

SampleRank considers two ranking functions: (1)

the unnormalized conditional probability (model

ranking), and (2) a truth function F(y) (objective

ranking) which is defined as −L(y,yL), the nega-

tive loss between the possible assignment y and the

true assignment yL. One such truth function is to-

kenwise accuracy with respect to some labeled data,

another could be the F1-measure.

In order to learn parameters for which model

rankings are consistent with objective rankings,

SampleRank performs the following update at each

step of the MCMC chain. Given two samples ya and

yb, let α be the learning rate, and ∆ = f(xi,y
a
i ) −

f(xi,y
b
i ), the weights are changed as follows:

Θ← Θ+











α∆ if
p(ya|x)
p(yb|x)

< 1 & F(ya) > F(yb)

−α∆ if
p(ya|x)
p(yb|x)

> 1 & F(ya) < F(yb)

0 otherwise

Calculating these rankings does not require infer-

ence.

Note that it has recently been incorporated as part

of the imperatively-defined factor graphs (IDFs) in

the FACTORIE toolkit (McCallum et al., 2009).

3 Semi-Supervised Rank-Based Learning

To apply SampleRank to the semi-supervised set-

ting, we need to specify the truth function F over

both labeled and unlabeled data. For labeled data

YL, we can use the true labels, however these are

not available for unlabeled data YU . Inspired by

semi-supervised learning framework, there are sev-

eral different ways of defining the truth function

FU : YU → ℜ over unlabeled data.

3.1 Self-Training

Self-training, which uses predictions as truth, fits di-

rectly into our SampleRank framework. After per-

forming SampleRank on training data (using FL),

MAP inference is performed on the unlabeled data.

The prediction ŷU is used as the ground truth for

the unlabeled data. Thus the self-training objective

function Fs over the unlabeled data can be defined

as Fs(y) = −L(y, ŷU ).

3.2 Encoding Constraints

Recent research on constraint-driven semi-

supervised learning uses various constraints to

specify external domain knowledge (Chang et al.,

2007; Mann and McCallum, 2008; Bellare et al.,

2009). These methods thus integrate labeled data,

unlabeled data, and constraints into one unified

framework.

For example, a constraint on a token may capture

its preference for a particular label, i.e. token “NY”

prefers being labeled as “location” with high con-

fidence. If a labeling satisfies this constraint, the

constraint-based objective function should score it

higher than a labeling that violates this constraint.

We can encode constraints directly into the objec-

tive function FU . Let a constraint i be specified as



〈pi, ci〉, where ci(y) denotes whether assignment y

satisfies the constraint i (+1), violates it (−1), or the

constraint does not apply (0), and pi is the strength

associated with the constraint. Then,

Fc(y) =
∑

i

pici(y) (2)

3.3 Incorporating Model Predictions

When objective function Fc is used, every change

to unlabeled data is ranked only according to the

constraints, and thus the model will attempt to sat-

isfy all the constraints. To allow soft constraints, the

model’s current state has to be taken into account.

One option for representing the model prediction

is to use the self-training objective function Fs. A

new objective function that combines self-training

with constraints can be defined as:

Fsc(y) = Fs(y) + λsFc(y) (3)

= −L(y, ŷU ) + λs

∑

i

pici(y)

This objective function has several limitations.

First, self-training involves a complete inference

step to obtain ŷU . Second, the predictions are from

an older model, which may be obsolete. Instead, we

propose another objective function that incorporates

the model score directly into the objective function,

i.e.

Fmc(y) = log p(y|x,Θ) + logZ(x) + λmFc(y)

=
∑

Ψi

Θ · f(xi,yi) + λm

∑

i

pici(y) (4)

In both objective functions Fsc and Fmc, λ con-

trols the relative contribution of the constraints to

the objective function. With higher λ, SampleR-

ank will make updates that never try to violates con-

straints, while with low λ, SampleRank trusts the

model more. The λm corresponds directly to one

used in (Chang et al., 2007).

4 Related Work

In this section we compare our framework with pre-

viously proposed methods.

Chang et al. propose constraint-driven learning

(CODL)(Chang et al., 2007). It can be interpreted

as a variation of the self-training algorithm with con-

straints, where training data is picked based on the

model’s prediction and the constraints. By directly

incorporating the model score and the constraints (as

in Equation 4) we avoid the expensive “Top-K” in-

ference step in CODL.

Generalized expectation (GE) criterion (Mann

and McCallum, 2008) and Alternating Projections

(AP) (Bellare et al., 2009) express preferences

by specifying constraints on feature expectations,

which require expensive inference. Even though AP

introduces an online version, it still involves full

inference over each instance. Furthermore, these

methods are restricted by the features of the model,

while our approach can use arbitrary constraints on

the factor graph.

(Li, 2009) incorporates prior knowledge into con-

ditional random fields using virtual evidence. Our

constraints are not encoded as variables in the factor

graph, allowing more expressivity.

5 Experiments

We carried out experiments on the Cora citation

dataset. The task is to segment each citation into dif-

ferent fields, such as “author”, “title”. We use 300

instances as training data, 100 instances as develop-

ment data, and 100 instances as test data. We select

some instances from the training data as labeled in-

stances, and the remaining data as unlabeled. We use

the same token constraints as (Chang et al., 2007).

We use the objective functions defined in Sec-

tion 3.3, specifically self-training (Self:Fs), di-

rect constraints (Cons:Fc), the combination of the

two (Self+Cons:Fsc) and combination of the model

score and the constraints (Model+Cons:Fmc). We

set α = 1.0, λs = 10, and λm = 0.0001.

Average token accuracy for 5 runs is reported and

compared with CODL in Table 1. We also report

supervised results from (Chang et al., 2007), and

by SampleRank. All of our methods demonstrate

vast improvement over the supervised method for

smaller training sizes, but this difference reduces

as the training size increases. When the complete

training data is used, additional unlabeled data hurt

our performance. This is not observed in CODL

as it uses more unlabeled data, which may also

explain their slightly higher accuracy. Note that



Method 5 10 15 20 25 300

Sup. (CODL) 55.1 64.6 68.7 70.1 72.7 86.1

SampleRank 66.5 74.6 75.6 77.6 79.5 90.7

CODL 71 76.7 79.4 79.4 82 88.2

Self 67.6 75.1 75.8 78.6 80.4 88

Cons 67.2 75.3 77.5 78.6 79.4 88.3

Self+Cons 71.3 77 77.5 79.5 81.1 87.4

Model+Cons 69.8 75.4 75.7 79.3 79.3 90.6

Table 1: Tokenwise Accuracy: for different methods as we vary the size of the labeled data

Self+Cons performs better than Self or Cons indi-

vidually. Model+Cons also performs competitively,

and may potentially outperform other methods with

a different λm.

Self training took 90 minutes to run on average,

while Self+Cons and Model+Cons took 100 min-

utes. Since the Cons method skips the inference step

over unlabeled data, it took only 30 minutes to run.

As the size of the factor graphs and unlabeled data

set grows, this saving will become more significant.

6 Conclusion

This work extends the rank-based learning frame-

work to semi-supervised learning. By integrating

these two paradigms, the computational efficiency

provided by parameter updates within inference is

retained while utilizing unlabeled data and prior

knowledge. We apply our method to a real-word

information extraction dataset, and demonstrate sig-

nificant accuracy and time improvements.

In future we will investigate the framework futher.

This work only explored linear-chain based models,

however we feel that the method can benefit more

for large complex factor graphs such as those used

for joint inference over multiple extraction tasks.

Additionally, various sensitivity, convergence and

robustness properties of the method need to be an-

alyzed.
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