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Abstract

We develop a semi-supervised learning
method that constrains the posterior distri-
bution of latent variables under a genera-
tive model to satisfy a rich set of feature ex-
pectation constraints estimated with labeled
data. This approach encourages the genera-
tive model to discover latent structure that
is relevant to a prediction task. We esti-
mate parameters with a coordinate ascent al-
gorithm, one step of which involves training
a discriminative log-linear model with an em-
bedded generative model. This hybrid model
can be used for test time prediction. Un-
like other high-performance semi-supervised
methods, the proposed algorithm converges
to a stationary point of a single objective
function, and affords additional flexibility, for
example to use different latent and output
spaces. We conduct experiments on three se-
quence labeling tasks, achieving the best re-
ported results on two of them, and showing
promising results on CoNLL03 NER.

1. Introduction

Semi-supervised learning aims to leverage unlabeled
data to improve parameter estimation. Generative
probabilistic models can easily incorporate unlabeled
data into parameter estimation by maximizing the
marginal log-likelihood (Nigam et al., 2006). However,
if the generative model is misspecified, unlabeled data
may degrade performance on the task of interest (Coz-
man & Cohen, 2006).

Discriminative methods can be advantageous because
they do not expend effort modeling input variables and
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allow the inclusion of features that would violate gen-
erative model independence assumptions. However,
unlabeled data has no effect on the conditional log-
likelihood, so discriminative semi-supervised learning
typically relies on additional regularization (Grand-
valet & Bengio, 2006).

There has been interest in combining the advantages
of generative and discriminative learning. Multi-
conditional learning (MCL) (McCallum et al., 2006)
and the approach of Lasserre at al. (2006) aim
to interpolate between generative and discriminative
parameter estimation. Additionally, several high-
performance semi-supervised learning methods involve
using generative models as features in a discrimina-
tive model (Koo et al., 2008), with the most successful
methods additionally encouraging generative models
to learn latent structure that is relevant for the task
of interest (Suzuki & Isozaki, 2008).

Concurrently there has been interest in semi-
supervised learning with side constraints (Mann & Mc-
Callum, 2008; Chang et al., 2007; Bellare et al., 2009;
Liang et al., 2009; Ganchev et al., 2009).

In this paper we propose a new method for semi-
supervised learning that combines the two approaches
and can be written as a single objective function. The
method uses a rich set of discriminative expectation
constraints estimated with labeled data to guide gen-
erative model estimation. Parameters are estimated
with a coordinate ascent algorithm in which one step
consists of estimating the parameters of a discrimina-
tive log-linear model with a generative model embed-
ded in its potential functions. This hybrid model can
be used for test time prediction. Because the gener-
ative model is coupled with the task through expec-
tation constraints, the method affords the flexibility
to use a generative model whose latent variables are
different than the task output variables. For example,
using multiple latent states per label may allow the
generative model to discover label sub-structure.
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Unlike the methods of Ando and Zhang (2005) and
Suzuki and Isozaki (2008), the approach can be writ-
ten as a single objective function, and the optimization
algorithm converges to a stationary point of a penal-
ized marginal log-likelihood under a generative model.

We apply this method to sequence labeling with a hid-
den Markov model (HMM) as the generative model.
We present experimental results on three information
extraction tasks: Cora research paper reference infor-
mation extraction, Apartment listing information ex-
traction, and CoNLL 2003 named entity recognition
(NER). We attain, to the best of our knowledge, the
best reported results on Cora and Apartments. In ini-
tial experiments on CoNLL03, we improve by as much
as 3.0% F1 over a fully supervised CRF (a 19.7% rela-
tive error reduction). Finally, we show that increasing
the number of HMM latent variables encourages the
discovery of semantically coherent label sub-structure.

2. Approach

In this section we describe our approach to semi-
supervised learning in detail. We first review the Al-
ternating Projections (AP) framework (Bellare et al.,
2009) (or equivalently the Posterior Regularization
(PR) framework (Ganchev et al., 2009)). We then
describe a novel application of this framework to en-
courage generative models to discover relevant latent
representations using a large and rich set of feature
expectation constraints estimated with labeled data.

2.1. Constraining Generative Models

Suppose we have a generative model p(x, z; θ) of input
variables x and latent variables z with parameters θ.
Given an empirical distribution over input variables
p̃(x), we can estimate parameters θ to maximize the
marginal log-likelihood of the data

LM (θ) = Ep̃(x)[log
∑

z

p(x, z; θ)]+log p(θ),

where p(θ) is a prior on parameters. Although LM (θ)
is not convex, the EM algorithm (Dempster et al.,
1977) optimizes a lower bound on LM (θ) and, with reg-
ularity assumptions, converges to a stationary point.

Despite the simplicity of semi-supervised1 learning
with generative models, and some empirical suc-
cess (Nigam et al., 2006), it is known that generative
semi-supervised learning may degrade performance if
the model is misspecified (Cozman & Cohen, 2006).

1In the semi-supervised case, some z are observed. We
keep all z unobserved in our exposition because all super-
vision of p will come through the expectation constraints.

There has been recent interest in semi-supervised
supervised learning with the aide of side con-
straints (Mann & McCallum, 2008; Chang et al., 2007;
Liang et al., 2009; Ganchev et al., 2009). These meth-
ods can be used to address model misspecification by
penalizing model parameter settings that do not re-
spect the intended meaning of latent variables. That
is, rather than maximizing LM (θ), we instead estimate
generative model parameters θ by maximizing the fol-
lowing objective function

G(θ) = LM (θ) − U
(

Ep̃(x)[Ep(z|x;θ)[f(x, z)]]
)

,

where U is a convex potential function that evaluates
expectations of constraint features f under p(z|x; θ).
This is a generalized expectation (GE) parameter esti-
mation objective function (Mann & McCallum, 2008).
Unfortunately, GE parameter estimation in structured
output models typically requires computing marginal
distributions over more variables than participate in
model factors. Because our goal is large-scale semi-
supervised learning, we seek a more efficient solution.

Following Bellare et al. (2009), we introduce an auxil-
iary distribution q and compute a variational approx-
imation to G(θ)

O(θ, q) = LM (θ) − Ep̃(x)[D(q(z|x) || p(z|x; θ))] − U(q),

where U(q) = U
(

Ep̃(x)[Eq(z|x)[f(x, z)]]
)

and D is the
KL-divergence. In this paper, we assume we have a
vector of target expectations b for constraint features
f , and penalize the ℓ22 distance between the model and
target expectations, weighted by σ2

U(q) =
σ2

2
||b − Ep̃(x)[Eq(z|x)[f(x, z)]]||22.

We perform block coordinate ascent on O(θ, q). The
resulting algorithm can be equivalently viewed as a
modified version of EM (Ganchev et al., 2009), or as
alternating between two convex projections (Bellare
et al., 2009). The steps are:

Information projection (modified E-step):

The likelihood term LM (θ) is constant with respect to
q, so we need to solve

qt+1 = argmin
q

Ep̃(x)[D(q(z|x) || p(z|x; θt))] + U(q)

This is a generalized maximum entropy prob-
lem (Dudik, 2007). The dual of this problem is

λt+1 = argmax
λ

λ · b − Ep̃(x)[log Zλ,θt(x)] −
1

2σ2
||λ||22,
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where log Zλ,θt(x) is the log-partition function

log Zλ,θt(x) =
∑

z

exp(λ · f(x, z) + log p(z|x; θt)).

Consequently, q has an exponential family form

qt+1(z|x, θt;λ) ∝ exp
(

λ · f(x, z) + log p(z|x; θt)
)

.

When b comes from a labeled sample, the informa-
tion projection is equivalent to maximizing the condi-
tional log-likelihood under qt+1(z|x, θt; λ) with ℓ22 reg-
ularization. Note that log Zλ,θt(x) can be computed
efficiently as long as inference in the model implied by
f is tractable and p and f factorize in the same way.

Moment projection (M-step):

The potential U(q) is constant with respect to θ, so we
need to solve

θt+1 = argmax
θ

LM (θ) − Ep̃(x)[D(qt+1(z|x) || p(z|x; θ))]

= argmax
θ

Ep̃(x)[Eqt+1(z|x)[log p(x, z; θ)]] + log p(θ)

This step is equivalent to the M-Step in EM, but with
the distribution over latent variables provided by qt+1,
rather than pt. If p is a simple directed graphical model
such as an HMM, this has a closed-form solution.

Note that O(θ, q) is a lower bound on the marginal log-
likelihood of the generative model LM (θ). Intuitively,
O(θ, q) can be viewed as a penalized marginal log-
likelihood. Although O(θ, q) is not convex, each pro-
jection step is convex, and each step increases O(θ, q).
With regularity assumptions, this algorithm converges
to a stationary point of O(θ, q) (Ganchev et al., 2009).

2.2. Constraints

Most previous applications of methods for semi-
supervised learning with constraints (Mann & McCal-
lum, 2008; Chang et al., 2007; Ganchev et al., 2009;
Liang et al., 2009) used a small number of constraints.
In contrast, we use a large and rich set of constraint
feature functions f . Specifically, we define f as the
same set of features we would use when specifying the
parameterization of a discriminative log-linear model
or conditional random field (CRF) (Lafferty et al.,
2001). Because f specifies the structure of the dual
form of q, here q is a feature-rich CRF that is capable
of making accurate predictions in the absence of p.

We next need to estimate target expectations b for
the constraint features. In previous applications of
methods for semi-supervised learning with constraints,
target expectations were typically estimated using a
combination of prior knowledge and simple heuristics.

In this paper, we use labeled data to estimate tar-
get expectations b. Importantly, note that in order
to address generative model misspecification we need
to constrain the posterior distributions for both la-
beled and unlabeled examples, as otherwise q(z|x) =
p(z|x; θ) for unlabeled x. Consequently, we need to
estimate target expectations b that are appropriate
for both labeled and unlabeled data. We propose two
target expectation estimation methods.

labeled sample expectations: The simplest
method for estimating b is to use the labeled sample
expectations bl = Ep̃l(x,z)[f(x, z)], where p̃l(x, z) is the
empirical distribution over labeled data.

supervised model expectations: An alternative es-
timation method is to use the dual parametric form of
a supervised model q(z|x;λsup) (estimated with only
the labeled sample expectations and p̃l(x)) to “fill-in”
expectations for unlabeled examples:

λsup = argmax
λ

λ · bl − Ep̃l(x)[log Zλ(x)] −
1

2σ2
||λ||22

bsup =
nl

nl + nu

bl +
nu

nl + nu

Ep̃u(x)[Eq(z|x;λsup)[f(x, z)]],

where nl and nu are the number of labeled and unla-
beled examples, respectively. Note that this estima-
tion is only performed once, and afterwards bsup is
fixed while optimizing O(θ, q).

Note that bl (and consequently bsup) may be noisy.
Although bl approaches the true expectation vector
as the size of the labeled sample increases, when data
is sparse (i.e. in NLP problems) a very large labeled
sample may be required to obtain accurate expecta-
tion estimates. Note also that there may be no q that
exactly satisfies the labeled sample expectation con-
straints, while there is a q that exactly satisfies the
supervised model expectation constraints. In theory
these are not problems, as U does not require the con-
straints to be matched exactly.

In practice, we find learning with estimated expecta-
tions to be challenging. To illustrate this, we com-
pare simple ℓ22-regularized maximum entropy estima-
tion (without the generative model p) using bl and
bsup with 350 labeled and 5,000 unlabeled examples
from the first split of the Cora data set (see Section
5.1). Using bl yields test F1 of 61.0%, whereas purely-
supervised estimation gives 90.8% F1. Using bsup per-
forms much better, yielding 90.3% F1, though this is
still worse than supervised.

To alleviate issues with noisy target expectations, we
down-weight unlabeled data by modifying the empiri-
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cal distribution p̃(x) with hyper-parameter γ.

p̃(x; γ) =
nlp̃l(x) + γnup̃u(x)

nl + γnu

.

Note that γ is also used in the estimation of bsup.

Using unlabeled data weighting, maximum entropy
estimation with bl matches but does not outper-
form supervised estimation, yielding F1 of 90.8% with
γ ≤ 0.0001. In contrast, with unlabeled data weight
γ = 0.1 maximum entropy estimation with bsup im-
proves over supervised estimation, giving 91.1% F1.
This trend holds across multiple data sets. We al-
ways obtain better performance with bsup than with
bl, whether the resulting constraints are used in maxi-
mum entropy estimation or in estimation with O(θ, q).

We additionally experimented with several methods
to improve either the estimation of bl or learning with
bl. In an earlier version of this work, we were able to
obtain better results by first initializing parameters to
λsup and then performing five steps of optimization.
However, we prefer not to use this solution because it
does not follow from the objective function. Simple
changes to the estimation problem such as putting a
hard constraint on the norm of the parameter vector
and penalizing constraint violations with a different
norm fail to improve the above results with bl.

Note that supervised model expectation estimation can
be viewed as one step of self-training, which justifies
why it works with appropriate γ. We conjecture that
using labeled sample expectations performs worse be-
cause there is no guarantee that q labels the labeled
data correctly as U(q) decreases, unless γ is very small.

We plan to explore improved methods for estimation
of and with b in future work. Two promising direc-
tions are smoothing bl and using different regulariza-
tion weights for each constraint. For the remainder of
this paper, however, we estimate b with the supervised
model expectations method. We also use unlabeled
data weighting as described above. The complete ob-
jective function is then O(θ, q) with p̃(x; γ) substituted
for p̃(x), and bsup substituted for b. In experiments
we tune γ using cross-validation.

2.3. Latent Variables and Labels

Thus far we have described both the generative
p(x, z; θ) and auxiliary q(z|x) models as modeling la-
tent variables z. We now additionally introduce label
variables, denoted by y, which are the variables we
would like to predict. We make a distinction between
the two because the latent and label spaces, denoted
Z and Y , may be different. The correspondence be-

tween labels and latent variables is encoded using the
constraint features f and the structure of the genera-
tive model. In this paper we define the correspondence
between latent variables and labels using either one-
to-one or many-to-one maps φ : Z → Y . For example,
three latent variables may map to one particular label.
This setup, described in detail in Section 4, allows the
generative model to discover label sub-structure.

2.4. Test Time Inference

There are several ways to use the learned (θ, q) for
inference at test time.

• Generative: Use the generative model posterior
p(y|x; θ) for test time inference.

• Gen./Discr.: Use the parametric form of the fi-
nal auxiliary distribution q(y|x, θ;λ) for test time
inference.

• Transductive Gen./Discr.: Re-estimate q and b
at test time using the learned p(y,x; θ).

• Generative as features: Use p(y,x; θ) to generate
features for a downstream discriminative model.

In this paper, we use the Generative and Gen./Discr.
methods. Transductive Gen./Discr. may provide bet-
ter performance, but is less desirable because it re-
quires re-training at test time. In future work, we plan
to explore Generative as features, as this would allow
the discriminative model to control the contribution of
the generative model through parameter estimation.

2.5. Discussion

Intuitively, this method works by combining the
strengths of generative and discriminative learning.
The generative model p(x, z; θ) benefits from q be-
cause we expect q’s posterior distributions to be more
accurate than p(z|x; θ). Consequently, we expect this
method to outperform maximum likelihood estimation
of p(x, z; θ) with EM.

Next, note that q only has parameters for features
observed in the labeled data, whereas the generative
model also includes parameters for features that only
occur in unlabeled data. Therefore, the generative
model posteriors p(z|x; θ) help q to address sparsity.

Finally, we note that the way in which the generative
model probabilities are incorporated into q, essentially
as features without parameters, results in an interest-
ing parameter estimation problem. Although we do
not expect p to match the accuracy of q, we expect
p to be accurate for particularly “easy” examples or
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some subset of the latent variables Z. In these cases,
q does not need to expend much modeling effort, as
the constraints may be close to being satisfied with the
generative posteriors alone. In contrast, the generative
model will also make many mistakes, and q will need
to compensate for these mistakes in order to satisfy
the constraints. Consequently, q will spend most of its
modeling effort on the more difficult examples or la-
tent variables. The fact that the discriminative model
does not waste effort modeling the “easy” labels may
be beneficial in the same way that not wasting effort
modeling input variables is considered beneficial.

3. Related Work

The proposed method is an application of the Alternat-
ing Projections (AP) (Bellare et al., 2009) or Posterior
Regularization (PR) (Ganchev et al., 2009) framework
for learning with expectation constraints. Ganchev
et al. (2009) show that PR can be viewed as an ap-
proximation to the measurements framework (Liang
et al., 2009) and is more efficient than Generalized
Expectation estimation (Mann & McCallum, 2008).
Constraint-driven Learning (Chang et al., 2007) can
be viewed as a “hard” approximation to PR. Unlike
prior work with these methods, in this paper we use
a large and rich set of feature expectation constraints
that are estimated using available labeled data.

The AP method is closely related to the work of
Suzuki and Isozaki (2008), but has some important
advantages. The JESS-CM method augments CRF
potential functions with features of the log proba-
bility of output variables under a generative model,
f(x, yi, yi+1) = log p(yi, yi+1|x; θ). The iterative
learning algorithm first re-estimates CRF parameters
by maximizing the log-likelihood of the labeled data.
Next, the generative models are re-estimated using un-
labeled data with Maximum Discriminant Functions
sum (MDF) estimation. MDF is used in place of
marginal likelihood to ensure generative model pre-
dictions are relevant to the task. MDF estimates θ by
maximizing Ep̃(x)[

∑

y
exp(λ · f(x,y, θ))] with an EM-

like algorithm. This method achieves impressive em-
pirical results on natural language processing tasks.
Recall that our approach can be written as a sin-
gle objective function, and our optimization converges
to a stationary point of the penalized marginal log-
likelihood. In contrast, the JESS-CM method consists
of two separate objective functions (maximum likeli-
hood and MDF), and there is no guarantee that alter-
nating between the two objective functions will lead
to convergence. Additionally, the JESS-CM method
assumes that the output spaces of the generative and

discriminative models are the same. We provide addi-
tional comparison with this method in Section 5.3.

Ando and Zhang (2005) propose a semi-supervised
learning method that also uses unlabeled data and dis-
criminative information to generate new features for
supervised learning. The first step of the algorithm is
Alternating Structure Optimization (ASO). ASO uses
the parameter vectors of auxiliary problem models to
find a “predictive” low-dimensional feature representa-
tion. This representation is then used to generate ad-
ditional features for a discriminative model. As with
JESS-CM, the complete approach cannot be written
as a single objective function, and several extensions
are required to attain impressive empirical results.

The multi-view learning framework of Ganchev et
al. (2009) uses expectation constraints to encourage
models of multiple views of the data to agree. In
this paper, we make no multi-view assumption, as
there is overlap between the generative and discrim-
inative model feature sets. Ignoring this issue, our
method is also distinct from an application of the
multi-view framework with generative and discrimina-
tive views. With our method, the generative model
posterior probabilities appear directly in the potential
functions of the discriminative auxiliary model during
parameter estimation, in contrast to assisting in label-
ing unlabeled data for discriminative model parameter
estimation. We believe that forcing the discriminative
model to compensate for the mistakes of the generative
model is beneficial, as discussed in Section 2.5.

Quadrianto et al. (2009) propose a transductive learn-
ing algorithm that encourages the model to have sim-
ilar training and testing data feature expectations. In
future work, we could use a similar formulation to con-
strain the posterior distributions for unlabeled data,
rather than estimating target expectations directly.

This method also has advantages over previously pro-
posed generative / discriminative hybrid methods.
Unlike multi-conditional learning (McCallum et al.,
2006), we may choose different generative and dis-
criminative models. Unlike the method of Lasserre et
al. (2006), our constraints make statements about ex-
pectations, rather than statements about parameters,
which can be difficult to interpret.

Although we may avoid misspecification by designing
a better model, finding the correct generative model
is infeasible for most problems. An especially diffi-
cult part of generative model design is modeling cor-
relations between input features. With the proposed
method, we may avoid this using a rich set of expec-
tation constraints on overlapping features.
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4. Application to Sequence Labeling

In this paper we apply our approach to sequence la-
beling. The generative model p(x, z; θ) is a standard
first-order HMM. The constraint features f specify a
first-order CRF, i.e. each f considers two labels and
the input f(x, yi, yi+1). The potential function U is

U(q) =
∣

∣

∣

∣b − Ep̃(x;γ)[Eq(z|x)[f(x, φ(z))]]
∣

∣

∣

∣

2

2
,

where φ is either a one-to-one or many-to-one map
between latent variables and labels. We leave learning
the appropriate number of latent states to future work
and simply provide each label with a constant number
of associated latent states. Note that increasing the
number of latent states by a factor of n increases the
time for inference by a factor of n2. However, the
inference steps are straightforwardly parallelizable.

5. Experiments

We conduct experiments on Cora research paper infor-
mation extraction, Apartment listing information ex-
traction, and Named-Entity Recognition (NER).

HMM baseline setup: We use m latent variables per
label, as described in Section 4. We denote an HMM
with m latent variables per label HMMm. We estimate
parameters with the EM algorithm, using available la-
beled data. In EM experiments with HMMm such that
m > 1, we incorporate labeled instances by running a
constrained forward-backward algorithm that requires
the latent variable z at each position to be one that
maps to the label z : φ(z) = yi. HMM states emit low-
ercase words for NER, and mixed case words for Cora
and Apartments. We use a symmetric Dirichlet prior
to smooth HMM emission and transition multinomi-
als. Finally, we weight the contribution of unlabeled
data in the M-step with γ. The Dirichlet prior pa-
rameter α and unlabeled data weight γ are selected
using 5-fold cross-validation for Cora and Apartments
experiments, and using a development set for NER.

CRF baseline setup: We estimate CRF parame-
ters with supervised maximum likelihood (ML) and
semi-supervised self-training (ST) methods. We use a
Gaussian prior on parameters with variance σ2 and,
for ST, weight the unlabeled data with a parameter γ.
We select γ and σ2 using five-fold cross-validation.

AP setup: We setup HMMs and tune α, σ2, and the
unlabeled data weight γ as described above.

5.1. Cora Experiments

The Cora data set consists of research paper refer-
ences, and the task is perform segmentation using 14

BibTeX-like labels such as author and booktitle. We use
up to 350 references as labeled data, 150 references
for the test set, and 5,000 unlabeled references. The
results are averaged over 5 random 80:20 splits.

Table 1 displays the results, evaluated using F1. Note
that HMM1-CRF AP and HMM2-CRF AP always
outperform CRF ML and CRF ST, and HMM1 AP
and HMM2 AP always outperform HMMs estimated
using EM. In summary, the AP method provides both
more accurate generative and discriminative models.

Note that in several cases HMM2 AP outperforms
HMM1 AP while CRF-HMM1 AP outperforms CRF-
HMM2 AP. We performed detailed error analysis to
understand this phenomenon. We find that in gen-
eral, the posterior distributions provided by HMM2
are more peaked than HMM1, meaning that the log
probabilities that appear in q’s potential functions
have more influence. Because the HMMs provide lower
accuracy than discriminative methods, the overall ef-
fect is a decrease in accuracy. A method to address
this might involve adding a temperature on the HMM
probabilities in the objective function.

In all experiments HMM2 outperforms HMM1. We
have found that HMMs with more latent variables are
often able to discover coherent label sub-structure. To
best illustrate this point, we conduct an additional ex-
periment using HMM4 AP. Figure 1 depicts discovered
label sub-structure for the author and title labels. The
figure shows the 10 most probable words emitted from
each latent variable state, as well as high probability
transitions among each label’s latent variable states.

Finally, we note that Peng and McCallum (2004) at-
tained 91.5% F1 with a supervised CRF. CRF-HMM1
AP gives 92.6% F1, which to the best of our knowledge
is the best reported result on this task.

5.2. Apartments Experiments

The Apartments task is to segment Craigslist apart-
ment listings with 11 labels such as rent, features, and
neighborhood. This data has been used by several
researchers (Chang et al., 2007; Mann & McCallum,
2008; Liang et al., 2009) to evaluate methods for learn-
ing with constraints from prior knowledge. We applied
AP to this data with HMM1, 100 labeled listings, and
1000 unlabeled listings, and obtained 83.0% token ac-
curacy, as shown in Table 2. To the best of our knowl-
edge, this is the best reported result for this task. All
previous methods listed in Table 2 use additional re-
sources, namely prior knowledge constraints and extra
distributional similarity features, in addition to unla-
beled data. In contrast, we use only unlabeled data.
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Table 3. Early CoNLL03 NER F1 results. We achieve large
improvements over a supervised CRF with a simpler exper-
imental setup than state-of-the-art methods.

method dev test
CRF ML 89.7 84.8
HMM1-CRF AP (17M) 92.4 (+2.7) 87.7 (+2.9)
HMM2-CRF AP (17M) 92.3 (+2.6) 87.8 (+3.0)
(AZ05) ASO (27M) 93.2 89.3
(SI08) CRF Max F1 91.7 86.4
(SI08) JESS-CM (27M) 93.7 (+2.0) 89.4 (+3.0)
(SI08) JESS-CM (1G) 94.5 (+2.8) 89.9 (+3.5)

straints estimated with labeled data. We attained
state-of-the-art results on two information extraction
tasks, and promising results on NER. Future direc-
tions include pursuing state-of-the-art results on NER
and other tasks, and further exploring methods for es-
timating, re-estimating, and learning with constraints.
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