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Abstract. Predicting performance of queries has many useful applica-
tions like automatic query reformulation and automatic spell correction.
However, accurate and effective performance prediction on the Web is
a challenge. In particular, measures such as Clarity, that work well on
homogeneous TREC like collections are not as effective on the Web. In
this paper, we develop an effective and efficient approach for online per-
formance prediction on the Web. We propose use of retrieval scores, and
aggregates of the rank-time features used by the document-ranking algo-
rithm to train regressors for query performance prediction. For a set of
more than 12,000 queries sampled from the query logs of a major search
engine, our approach achieves a linear correlation of 0.78 with DCG,
and 0.52 with NDCG. Analysis of the prediction effectiveness shows that
(i) hard queries are easier to identify while easy queries are harder to
identify, (ii) NDCG, a non-linear effectiveness measure, is much harder
to predict than DCG, and (iii) long queries’ performance prediction is
easier than prediction for short queries.

1 Introduction

Query performance prediction has been the focus of numerous research efforts
in the past. Its importance is evidenced by its various applications. For exam-
ple, Yom-Tov et al. [18] used query performance prediction to detect queries
for which no relevant content exists in the document collection. Additionally,
they used it to perform selective query expansion and merging of results in a
distributed information retrieval system. Kumaran and Carvalho [14] choose be-
tween reduced versions of long queries using query performance predictors to
improve retrieval effectiveness.

However, effective performance prediction techniques like Clarity [6], Coher-
ence [13], and stability of the ranking [20], are computationally expensive as they
involve post-processing of the search results. Further, these techniques focused
on small and specialized environments like TREC collections, and are not as
effective when applied to Web search [11].

In this paper, we propose a new query performance prediction technique that
can be seamlessly incorporated into a web search engine’s architecture (Sec-
tion 3). Unlike previous post-retrieval techniques that use features computed by
analyzing the top results returned by the query, our technique instead uses fea-
tures readily available to the search engine’s ranker: those that are used to rank
documents in the first place. We perform a large-scale evaluation of query qual-
ity prediction on a set of 12,185 queries sampled from the query logs of a major
search engine. The results (Section 5) show that our proposed technique performs
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better than Clarity, a state-of-the-art baseline, achieving a linear correlation of
0.78 with DCG and 0.52 with NDCG.

Typically, prediction techniques are evaluated using a single metric such as
linear correlation or root mean squared error(RMSE) of the predictions. As we
will elaborate in Section 6, these measures conceal how prediction accuracies
vary for different queries – ranging from hard queries with useless results to easy

queries with perfect results. Understanding distribution of prediction errors is
critical from an application standpoint. For example, identifying hard queries
is more important for automatic query reformulations whereas, identifying easy
queries is more important for query expansion. In addition to evaluation using
single metrics, we also analyze the effectiveness of our prediction technique at
different effectiveness regions i.e., the effectiveness for finding hard and easy

queries.
The extended analysis of results that we present in Section 6 yields further

insights into the problem of predicting query performance. Interesting findings
include, predicting hard queries is easy and finding easy queries is hard, NDCG
prediction is harder than DCG prediction, and longer queries’ performance is
easier to predict compared to shorter queries.

The main contributions of this paper include:

– A novel, highly accurate, and efficient technique suitable for online query
performance prediction.

– Web-scale prediction and evaluation on a large sample of real user queries.
– Analysis of prediction effectiveness that emphasize the need to optimize tech-

niques for particular applications, rather than for general metrics such as
RMSE or linear correlation.

2 Related Work

Pre-retrieval [10], [9] and post-retrieval measures [6], [13] have been proposed to
predict query performance. While pre-retrieval techniques are more efficient than
post-retrieval techniques, they are not as accurate. Post-retrieval techniques on
the other hand, rely on analyzing the content of search results and are usually
more accurate but less efficient. In contrast, our post-retrieval approach is both
effective and efficient because we use rank-time features that are designed to
capture document relevance.

Pre-retrieval. Pre-retrieval techniques do not analyze the search results.
Instead, they use collection statistics of query terms such as inverse document
frequency, collection term frequency, and variance of term weights, to predict
query performance [12], [2], [19]. Avoiding retrieval and analysis of the search
results improves prediction efficiency but it also limits prediction effectiveness,
as the quality of the search results depends heavily on the retrieval algorithm.

Post-retrieval. Post-retrieval techniques retrieve search results for the given
query, and then extract and analyze their contents to detect properties that
indicate high performance. One of the most effective post-retrieval measure is
Clarity. Clarity measures the divergence of the document language models from
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the background collection model [6]. Larger divergences indicate higher query
performance. Clarity based measures work effectively on homogenous TREC
collections but they are not as effective on Web collections [20], [11].

Other post-retrieval measures include, coherence of the search results [13],
agreement between the top results of the full query and the top results of its sub-
queries [18], and distribution of topic labels on search results [5]. In contrast, our
approach does not depend on effective estimation of language models, similarity
between result sets, or a labeling of Web documents.

Web Search. Zhou and Croft [21], highlight the diversity of Web queries,
and search results as key challenges in predicting performance in Web search
environments. To address these challenges they propose, weighted information
gain, query feedback, and a rank sensitivity based measure. Hauff et al. [11],
propose Improved Clarity, a measure that dynamically chooses the number of
documents and the terms used for computing Clarity to address challenges on
the Web. Both techniques demonstrate improved performance on the TREC1

GOV2 collection. However, in the former case, conducting multiple retrievals
and analyzing content of the retrieved documents is infeasible due to the small
latencies tolerated on the Web, typically in the order of milliseconds. In the latter
case, the estimation of language models can be less effective due to the diversity
of Web search results and the relatively high proportion of off-topic information
even in top ranked documents.

Retrieval score-based features have been used to predict query performance
with mixed success [16],[17]. In particular, Grivolla et al. [8], show that mean,
max and range of retrieval scores corresponding to the top ranked documents
correlate well with average precision and can be used effectively to classify queries
as easy or hard, on a collection of 50 TREC queries. We extend the retrieval score-
based features to include measures that capture variance and include features
that are used by the retrieval algorithm itself. Also, to the best of our knowledge,
this is the first large scale evaluation and analysis of performance prediction on
real Web queries.

3 Performance Prediction Overview

In this section, we describe our query performance prediction framework.

Performance Measures. We use discounted cumulative gain (DCG) and
normalized discounted cumulative gain (NDCG) to measure query performance.

DCG@k is the discounted cumulative gain at rank k calculated as
∑k

r=1
2l(r)

−1
log(1+r) ,

i.e., the sum of gains 2l(r)−1 at each rank r, discounted by an increasing function
of the rank - log(1 + r). NDCG@k calculated as 1

Z
× DCG@k, normalizes the

DCG@k by Z, which is defined as the best discounted gain at k that an optimal
retrieval can achieve. Both DCG and NDCG are well suited for evaluating Web
search engines as they can handle multiple levels of relevance.

1 http://trec.nist.gov
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Ranking Algorithm. We use LambdaRank [3], a machine learning algo-
rithm that is well suited for learning to rank documents on the Web. Ranking
models for the Web use a large number of features which makes it infeasible
to directly optimize for retrieval metrics such as NDCG. Instead, LambdaRank
computes smooth approximations to gradients of the retrieval metrics and this
indirect optimization has been empirically shown to find the local optimum for
the model parameters [7].

Intuition. Our approach is based on two observations. First, the Lamb-
daRank scores of the top ranked documents are good estimators of retrieval effec-
tiveness. Second, LambdaRank, combines query dependent, and query-independent
document features that are designed to capture relevance. Query performance is
intimately related to these feature values. Therefore, we use the retrieval scores
and features used by LambdaRank for prediction.

However, retrieval scores for different queries may not be directly comparable.
Using statistical aggregates of the scores helps to overcome this issue to some
extent. In addition, statistical aggregates such as maximum, mean, and standard
deviation capture different aspects of the quality of search results. For example,
for queries with low performance, the retrieval scores tend to have low mean and
high variance.

Query
Retrieval 

Algorithm 

d1:f11,..,f1n,r1

d2:f21,...,f2n,r2

dk: fk1,...,fkn,rk

Aggregator max_r, mean_r,..., max_f1,mean_f1,..., max_f2,mean_f2,...

Regressor

Predicted 

Performance

Fig. 1. Query Performance Prediction Framework.

Framework. Figure 1 gives a pictorial representation of our prediction
framework. Given a query and a ranking algorithm (LambdaRank in this case),
our learning approach is as follows. First, we use the ranking algorithm to score
documents and rank them. For the top K ranked documents, we compute statis-
tical aggregates such as mean, max, standard deviation, variance, and coefficient
of dispersion for both the retrieval scores, and the retrieval features. Then, we
use these aggregated features and the individual retrieval scores to train a regres-
sion model for predicting the target metric. We consider both linear and Random
Forest-based non-linear regressors [15]. The linear regressors are trained to find
feature weights which minimize RMSE of the predictions. The Random Forest
regressors grow multiple regression trees by randomly sampling a subset of fea-
tures from which the most informative feature is added to the tree iteratively.
The regression trees are non-linear regressors themselves and hence, can capture
non-linear relationships between the features and the predicted metric.
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4 Experiments

We conduct experiments to predict DCG@52 and NDCG@5, on a collection of
12,185 queries that were sampled from the query logs of a major web search
engine. For each query in this collection, we create feature vectors as follows.
First, we use LambdaRank to assign scores and rank documents3. Our imple-
mentation uses several retrieval features such as BM25F-based features, click-
based features, query length, and other query independent features such as static
rank. For each of these retrieval features we create statistical aggregates. Next,
we select the top 100 aggregates that have the highest linear correlation with the
target metric on a set of training queries. We refer to these features as regression
features henceforth. Finally, we create a query performance prediction dataset
by associating with each query, the performance metric, DCG@5 or NDCG@5
and the regression features. Using this dataset, we conduct 3-fold cross-validation
experiments to train linear as well as non-linear regressors based on the Random
Forest algorithm4.

We considered Clarity [6], which has been shown to be a competitive tech-
nique for query performance prediction, as an experimental baseline. Our imple-
mentation of Clarity uses a query model built from the top 100 results returned
by the search engine. We build the query models from query-biased snippets
rather than from the entire text of the documents. In addition to being effi-
cient, it also helps create good quality query models by focusing on the relevant
portion of the web pages and automatically filtering out layout information and
advertisements. When compared to the features we use, clarity achieves very low
correlation for both DCG and NDCG, as shown in Table 1. Therefore, we do
not consider Clarity as a feature for further experiments.

Table 1. Correlation: Average, Best and Worst correspond to the average feature
correlation, the highest and lowest correlation of the features used in our approach.

Clarity Average Best Worst

DCG 0.16 0.57 0.70 0.20
NDCG 0.09 0.27 0.50 0.17

5 Results

Table 2 shows the prediction accuracy in terms of linear correlation and root
mean squared error (RMSE) for our approach. We can see that both predicted
DCG and predicted NDCG values achieve a high linear correlation and low
RMSE. Also, NDCG prediction is much harder as indicated by the low corre-
lation and higher RMSE values. This is mainly because NDCG is a non-linear
metric that is computed based on the actual number of relevant documents that
exist in the collection. This information cannot be estimated based on the fea-
tures of the top ranked documents alone. Finally, in terms of correlation and
RMSE, there is little difference in prediction effectiveness between simple linear
regression and the non-linear random forest based regression.

2 We normalize DCG@5 by a constant(=perfect DCG@5) to scale values to (0,1).
3 We use an entirely different data set to train LambdaRank parameters.
4 We used the randomForest package available from R with default parameters.



6 No Author Given

Table 2. Prediction Effectiveness for DCG and NDCG

Method
DCG NDCG

Correlation RMSE Correlation RMSE

Linear 0.78 0.13 0.50 0.23
Random Forest 0.79 0.13 0.52 0.22

The scatter plot in Figure 2(a) illustrate a strong correlation between the
predicted and actual DCG values for one fold of the data. Figure 2(b) shows
predicted NDCG values which are not as strongly correlated with the actual
values. For DCG, when the predicted values are less than 0.2, the actual values
are also less than 0.2 in most cases. On the other hand, when the predicted values
are greater than 0.4 the actual values are more spread out. This suggests, DCG
prediction is more precise for hard queries than for average, and easy queries.
Similarly, NDCG prediction is highly precise when predicted values are below
0.3. However, prediction effectiveness degrades quickly when predicted values are
greater than 0.4. Thus, for both DCG and NDCG, the high linear correlation
and low RMSE values mask the rather poor effectiveness at the extremes.
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Fig. 2. Linear Regression: Prediction versus Target Metrics for Test fold 1.

Feature Importance. We inspect the features used for the DCG and NDCG
regression. Note that the features selected for DCG and NDCG can be differ-
ent. We consider three subsets: features based on 1) LambdaRank scores, 2)
Click -based features, and 3) BM25F -based features. Table 3 shows the predic-

Table 3. Prediction Effectiveness of different feature groups.

Group
DCG NDCG

Correlation RMSE Correlation RMSE

LambdaRank 0.75 0.14 0.50 0.22
Click 0.78 0.13 0.41 0.24
BM25F 0.71 0.14 0.38 0.24

All 0.78 0.13 0.50 0.23

tion effectiveness of the different feature groups for linear regression. For DCG,



Predicting Query Performance on the Web 7

all feature groups achieve high correlation while for NDCG, click and BM25F
features are substantially lower compared to the combined features. Also, rela-
tive feature importance differs for DCG and NDCG. For instance, click features
are more important for predicting DCG than LambdaRank features while, the
relationship is reversed for NDCG. Click features are strong predictors of user
preference [1],[4], and it is no surprise that they correlate well with DCG. How-
ever, NDCG being a non-linear metric, is harder to predict with click-based fea-
tures alone. We hypothesize that since LambdaRank combines several features
including click features and is trained to optimize for NDCG, the LambdaRank-
based features turn out to be better predictors than click features. It is also
interesting to note that the click features for DCG and LambdaRank features
for NDCG are as effective as all the features combined. This suggests that more
careful feature selection can reduce the run-time computations while retaining
prediction effectiveness.

6 Analysis

In this section, we further analyze of the effectiveness of our prediction tech-
niques. Unless otherwise stated, all analyses are based on the linear regression
using the top 100 highly correlated features.
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Fig. 3. Distribution of DCG and NDCG prediction errors.

Distribution of Errors. The distribution of DCG prediction errors is con-
centrated around zero as shown in Figure 3(a). In fact, around 80% of the errors
are within 0.2 of the actual values. However, the errors span a relatively high
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range of values compared to the true distribution of DCG, shown in Figure 3(b).
Figures 3(d) and (e) show corresponding distributions for NDCG. Nearly 80%
of the errors are within 0.4 of the actual values. NDCG errors are more spread
out compared to DCG errors because NDCG prediction is harder. Also, NDCG
values are more evenly distributed, thus increasing the range of possible errors.

Figure 3(c) shows that 1) most of the prediction errors are small for hard
queries and 2) errors increase for easy queries. For example, for queries with
DCG< 0.1 most errors are less than 0.1 but for queries with DCG> 0.5, most
errors are above 0.4. On the other hand, NDCG errors are higher at both ex-
tremes, as shown in Figure 3(f). The distribution of errors show that despite the
high values for the average metrics, prediction effectiveness for hard and easy

queries needs further improvement.

Effectiveness Regions. Even though metrics such as linear correlation and
RMSE are useful for training and evaluation, from an application standpoint
these average metrics are not adequate. For example, reliable identification of
easy queries is useful for selective application of pseudo-relevance feedback [2]
whereas, reliable identification of hard queries is more useful for enabling query
reformulations. In order to highlight prediction effectiveness for different types of
queries, we formulate two tasks: 1) Identifying hard queries - queries whose target
metric is below a specified threshold, and 2) Identifying easy queries - queries
whose target metric is above a specified threshold. Using standard precision and
recall metrics, we can then focus on the type of queries that are most useful for
the application of interest.
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Fig. 4. Prediction accuracy at different effectiveness regions: Precision, Recall and
Class Ratio for identifying (a) Hard queries - queries whose actual DCGs are less than
a specified threshold (x - axis), and (b) Easy queries - queries whose actual DCGs are
greater than a specified threshold (x - axis).

Figure 4(a) shows precision and recall values for the task of identifying hard
queries for varying thresholds. Hard queries are identified with high precision but
with low recall. For example, for the task of predicting queries with DCG≤ 0.08,
the precision is nearly 80% but the recall is less than 50%. Further, as the
threshold increases, the task becomes progressively easier, and consequently,
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both precision and recall improve. For finding easy queries, precision is much
lower for finding the most easy queries. Note that in Figure 4(b) as threshold
increases, the task becomes progressively harder. Nonetheless, precision drops
more dramatically i.e., it is much harder to identify easy queries reliably.

Sampling. Figures 4(a) and 4(b) show that the recall curve closely follows
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Fig. 5. Impact of Sampling on Linear Regression.

the class ratio – the ratio of positive to negative instances. Less than 10% of
the queries have DCG> 0.5 and less than 10% of the queries have DCG< 0.04.
Consequently, more queries in the middle region are correctly identified, since
the regression focuses on minimizing RMSE, an average metric. This suggests
that improving the sample ratio of the extremes i.e., the hard and easy queries,
can improve their prediction accuracies. To illustrate the benefits of sampling,
we consider two sampling strategies: (a) over sampling of extremes - queries with
DCG< 0.03 or DCG> 0.5 and (b) under sampling of middle region - those with
DCG between 0.03 and 0.5.

As shown in Figure 5, both over sampling of the extremes and the under
sampling of middle region lead to improved recall with only a small loss in
precision, for the task of identifying hard queries. For example, over sampling
extremes leads to a nearly 10% absolute increase in recall with less than 3%
absolute loss in precision for finding queries with DCG< 0.08. We see a similar
trend for identifying easy queries. Although not reported here, corresponding
NDCG sampling experiments did not show any improvements.

Linear vs. Non-Linear Regression. Figures 6(a)-6(d) compare the ef-
fectiveness of linear and non-linear regressions. For both DCG and NDCG pre-
diction, using a non-linear regressor improves prediction accuracies. Specifically,
easy queries prediction improves dramatically, with a relatively small loss in pre-
cision for hard queries prediction. We found that some regression features are
not monotonically related to the target metrics. In particular, NDCG features
that are positively correlated for hard queries (with NDCG < 0.3) are actually
negatively correlated for the easy queries (with NDCG > 0.7). We hypothesize
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Fig. 6. Linear versus Non-linear prediction.

that the random forest regression is better able to handle this non-linearity in
feature correlation and hence the improved performance for easy queries.

Query Length. Predicting performance for long queries is easier than for
shorter queries. Figure 7(a) shows a box plot of the distribution of DCG predic-
tion errors for queries of different lengths (number of words). As query length
increases the range of DCG prediction errors decreases5. This is mainly because
query length is an important feature in our regression. Query length has a strong
negative correlation with retrieval effectiveness, i.e., retrieval is less effective for
longer queries compared to shorter keyword queries, as shown in Figure 7(b).
For NDCG, Figure 7(c) shows that prediction errors do not decrease for longer
queries. This is because as shown in Figure 7(d) the range of NDCG values
for long queries is much larger than the range of DCG values, even though the
average NDCG values decrease as query length increases.

7 Conclusions

In this paper, we describe an effective and efficient Web query performance pre-
diction technique that uses retrieval scores and retrieval features. Our approach

5 The number of queries decrease for increasing query lengths but we note that more
than 10% of the queries have length 5 or more.
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Fig. 7. DCG and NDCG prediction errors distribution for queries of different lengths.

outperforms traditional measures such as Clarity. Prediction effectiveness varies
significantly for different types of queries and specifically, prediction for queries
with very high or very low performance is hard. Single metrics such as linear
correlation and RMSE do not adequately capture this variance. We propose eval-
uation of prediction techniques using classification tasks that reflect applications
of performance prediction. Our classification based evaluation reveals that ad-
justing query distributions using sampling improves prediction at the extremes
and using non-linear regressors improves prediction of easy queries.
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