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Abstract

Implementations of topic models typically use symmetric Dirichlet priors with
fixed concentration parameters, with the implicit assumption that such “smoothing
parameters” have little practical effect. In this paper, we explore several classes
of structured priors for topic models. We find that an asymmetric Dirichlet prior
over the document–topic distributions has substantial advantages over a symmet-
ric prior, while an asymmetric prior over the topic–word distributions provides no
real benefit. Approximation of this prior structure through simple, efficient hy-
perparameter optimization steps is sufficient to achieve these performance gains.
The prior structure we advocate substantially increases the robustness of topic
models to variations in the number of topics and to the highly skewed word fre-
quency distributions common in natural language. Since this prior structure can be
implemented using efficient algorithms that add negligible cost beyond standard
inference techniques, we recommend it as a new standard for topic modeling.

1 Introduction

Topic models such as latent Dirichlet allocation (LDA) [3] have been recognized as useful tools for
analyzing large, unstructured collections of documents. There is a significant body of work apply-
ing LDA to an wide variety of tasks including analysis of news articles [14], study of the history of
scientific ideas [2, 9], topic-based search interfaces1 and navigation tools for digital libraries [12].
In practice, users of topic models are typically faced with two immediate problems: First, extremely
common words tend to dominate all topics. Second, there is relatively little guidance available on
how to set T , the number of topics, or studies regarding the effects of using a suboptimal setting
for T . Standard practice is to remove “stop words” before modeling using a manually constructed,
corpus-specific stop word list and to optimize T by either analyzing probabilities of held-out doc-
uments or resorting to a more complicated nonparametric model. Additionally, there has been rel-
atively little work in the machine learning literature on the structure of the prior distributions used
in LDA: most researchers simply use symmetric Dirichlet priors with heuristically set concentration
parameters. Asuncion et al. [1] recently advocated inferring the concentration parameters of these
symmetric Dirichlets from data, but to date there has been no rigorous scientific study of the priors
used in LDA—from the choice of prior (symmetric versus asymmetric Dirichlets) to the treatment
of hyperparameters (optimize versus integrate out)—and the effects of these modeling choices on
the probability of held-out documents and, more importantly, the quality of inferred topics. In this
paper, we demonstrate that practical implementation issues (handling stop words, setting the number
of topics) and theoretical issues involving the structure of Dirichlet priors are intimately related.

We start by exploring the effects of classes of hierarchically structured Dirichlet priors over the
document–topic distributions and topic–word distributions in LDA. Using MCMC simulations, we
find that using an asymmetric, hierarchical Dirichlet prior over the document–topic distributions and

1http://rexa.info/
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a symmetric Dirichlet prior over the topic–word distributions results in significantly better model
performance, measured both in terms of the probability of held-out documents and in the quality
of inferred topics. Although this hierarchical Bayesian treatment of LDA produces good results,
it is computationally intensive. We therefore demonstrate that optimizing the hyperparameters of
asymmetric, nonhierarchical Dirichlets as part of an iterative inference algorithm results in similar
performance to the full Bayesian model while adding negligible computational cost beyond standard
inference techniques. Finally, we show that using optimized Dirichlet hyperparameters results in
dramatically improved consistency in topic usage as T is increased. By decreasing the sensitivity
of the model to the number of topics, hyperparameter optimization results in robust, data-driven
models with substantially less model complexity and computational cost than nonparametric models.
Since the priors we advocate (an asymmetric Dirichlet over the document–topic distributions and a
symmetric Dirichlet over the topic–word distributions) have significant modeling benefits and can
be implemented using highly efficient algorithms, we recommend them as a new standard for LDA.

2 Latent Dirichlet Allocation

LDA is a generative topic model for documents W = {w(1),w(2), . . . ,w(D)}. A “topic” t is a
discrete distribution over words with probability vector φt. A Dirichlet prior is placed over Φ =
{φ1, . . .φT }. In almost all previous work on LDA, this prior is assumed to be symmetric (i.e., the
base measure is fixed to a uniform distribution over words) with concentration parameter β:

P (Φ) =
∏

t Dir (φt; βu) =
∏

t

Γ(β)
∏

w Γ( β
W

)

∏

w φ
β

W
−1

w|t δ
(
∑

w φw|t − 1
)

. (1)

Each document, indexed by d, has a document-specific distribution over topics θd. The prior over
Θ= {θ1, . . .θD} is also assumed to be a symmetric Dirichlet, this time with concentration param-

eter α. The tokens in every document w(d) = {w
(d)
n }Nd

n=1 are associated with corresponding topic

assignments z(d) = {z
(d)
n }Nd

n=1, drawn i.i.d. from the document-specific distribution over topics,
while the tokens are drawn i.i.d. from the topics’ distributions over words Φ = {φ1, . . . ,φT }:

P (z(d) |θd) =
∏

n θ
z
(d)
n |d

and P (w(d) |z(d), Φ) =
∏

n φ
w

(d)
n |z

(d)
n

. (2)

Dirichlet–multinomial conjugacy allows Θ and Φ to be marginalized out.

For real-world data, documents W are observed, while the corresponding topic assignments Z are
unobserved. Variational methods [3, 16] and MCMC methods [7] are both effective at inferring the
latent topic assignments Z . Asuncion et al. [1] demonstrated that the choice of inference method
has negligible effect on the probability of held-out documents or inferred topics. We use MCMC
methods throughout this paper—specifically Gibbs sampling [5]—since the internal structure of
hierarchical Dirichlet priors are typically inferred using a Gibbs sampling algorithm, which can be
easily interleaved with Gibbs updates for Z given W . The latter is accomplished by sequentially

resampling each topic assignment z
(d)
n from its conditional posterior given W , αu, βu and Z\d,n

(the current topic assignments for all tokens other than the token at position n in document d):

P (z(d)
n |W,Z\d,n, αu, βu) ∝ P (w(d)

n | z(d)
n ,W\d,n,Z\d,n, βu) P (z(d)

n | Z\d,n, αu)

∝
N

\d,n

w
(d)
n |z

(d)
n

+ β
W

N
\d,n

z
(d)
n

+ β

N
\d,n

z
(d)
n |d

+ α
T

Nd − 1 + α
, (3)

where sub- or super-script “\d, n” denotes a quantity excluding data from position n in document d.

3 Priors for LDA

The previous section outlined LDA as it is most commonly used—namely with symmetric Dirich-
let priors over Θ and Φ with fixed concentration parameters α and β, respectively. The simplest
way to vary this choice of prior for either Θ or Φ is to infer the relevant concentration parameter
from data, either by computing a MAP estimate [1] or by using an MCMC algorithm such as slice
sampling [13]. A broad Gamma distribution is an appropriate choice of prior for both α and β.
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Figure 1: (a)-(e): LDA with (a) symmetric Dirichlet priors over Θ and Φ, (b) a symmetric Dirichlet prior over
Θ and an asymmetric Dirichlet prior over Φ, (d) an asymmetric Dirichlet prior over Θ and a symmetric Dirichlet

prior over Φ, (e) asymmetric Dirichlet priors over Θ and Φ. (c) Generating {z
(d)
n }4

n=1 = (t, t′, t, t) from the

asymmetric, predictive distribution for document d; (f) generating {z
(d)
n }4

n=1 = (t, t′, t, t) and {z
(d′)
n }4

n=1 =
(t′, t′, t′, t′) from the asymmetric, hierarchical predictive distributions for documents d and d′, respectively.

Alternatively, the uniform base measures in the Dirichlet priors over Θ and Φ can be replaced with
nonuniform base measures m and n, respectively. Throughout this section we use the prior over Θ
as a running example, however the same construction and arguments also apply to the prior over Φ.
In section 3.1, we describe the effects on the document-specific conditional posterior distributions,
or predictive distributions, of replacing u with a fixed asymmetric (i.e., nonuniform) base measure
m. In section 3.2, we then treat m as unknown, and take a fully Bayesian approach, giving m a
Dirichlet prior (with a uniform base measure and concentration parameter α′) and integrating it out.

3.1 Asymmetric Dirichlet Priors

If Θ is given an asymmetric Dirichlet prior with concentration parameter α and an known (nonuni-
form) base measure m, the predictive probability of topic t occurring in document d given Z is

P (z
(d)
Nd+1 = t | Z, αm) =

∫

dθd P (t |θd) P (θd | Z, αm) =
Nt|d + αmt

Nd + α
. (4)

If topic t does not occur in z(d), then Nt|d will be zero, and the probability of generating z
(d)
Nd+1 = t

will be mt. In other words, under an asymmetric prior, Nt|d is smoothed with a topic-specific
quantity αmt. Consequently, different topics can be a priori more or less probable in all documents.

One way of describing the process of generating from (4) is to say that generating a topic assignment

z
(d)
n is equivalent to setting the value of z

(d)
n to the the value of some document-specific draw from

m. While this interpretation provides little benefit in the case of fixed m, it is useful for describing
the effects of marginalizing over m on the predictive distributions (see section 3.2). Figure 1c

depicts the process of drawing {z
(d)
n }4

n=1 using this interpretation. When drawing z
(d)
1 , there are no

existing document-specific draws from m, so a new draw γ1 must be generated, and z
(d)
1 assigned

the value of this draw (t in figure 1c). Next, z
(d)
2 is drawn by either selecting γ1, with probability

proportional to the number of topic assignments that have been previously “matched” to γ1, or a
new draw from m, with probability proportional to α. In figure 1c, a new draw is selected, so γ2 is

drawn from m and z
(d)
2 assigned its value, in this case t′. The next topic assignment is drawn in the

same way: existing draws γ1 and γ2 are selected with probabilities proportional to the numbers of
topic assignments to which they have previously been matched, while with probability proportional

to α, z
(d)
3 is matched to a new draw from m. In figure 1c, γ1 is selected and z

(d)
3 is assigned the

value of γ1. In general, the probability of a new topic assignment being assigned the value of an

existing document-specific draw γi from m is proportional to N
(i)
d , the number of topic assignments
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previously matched to γi. The predictive probability of topic t in document d is therefore

P (z
(d)
Nd+1 = t | Z, αm) =

∑I

i=1 N
(i)
d δ (γi − t) + αmt

Nd + α
, (5)

where I is the current number of draws from m for document d. Since every topic assignment is

matched to a draw from m,
∑I

i=1 N
(i)
d δ (γi − t) = Nt|d. Consequently, (4) and (5) are equivalent.

3.2 Integrating out m

In practice, the base measure m is not fixed a priori and must therefore be treated as an unknown
quantity. We take a fully Bayesian approach, and give m a symmetric Dirichlet prior with concentra-
tion parameter α′ (as shown in figures 1d and 1e). This prior over m induces a hierarchical Dirichlet
prior over Θ. Furthermore, Dirichlet–multinomial conjugacy then allows m to be integrated out.

Giving m a symmetric Dirichlet prior and integrating it out has the effect of replacing m in (5) with
a “global” Pólya conditional distribution, shared by the document-specific predictive distributions.
Figure 1f depicts the process of drawing eight topic assignments—four for document d and four
for document d′. As before, when a topic assignment is drawn from the predictive distribution
for document d, it is assigned the value of an existing (document-specific) internal draw γi with
probability proportional to the number of topic assignments previously matched to that draw, and to
the value of a new draw γi′ with probability proportional to α. However, since m has been integrated
out, the new draw must be obtained from the “global” distribution. At this level, γi′ treated as if
it were a topic assignment, and assigned the value of an existing global draw γj with probability
proportional to the number of document-level draws previously matched to γj , and to a new global
draw, from u, with probability proportional to α′. Since the internal draws at the document level are
treated as topic assignments the global level, there is a path from every topic assignment to u, via
the internal draws. The predictive probability of topic t in document d given Z is now

P (z
(d)
Nd+1 = t | Z, α, α′u) =

∫

dm P (z
(d)
Nd+1 = t | Z, αm) P (m | Z, α′u)

=

Nt|d + α
N̂t + α′

T
∑

t N̂t + α′

Nd + α
, (6)

where I and J are the current numbers of document-level and global internal draws, respectively,

Nt|d =
∑I

i=1 N
(i)
d δ (γi − t) as before and N̂t =

∑J

j=1 N (j) δ (γj − t). The quantity N (j) is the

total number of document-level internal draws matched to global internal draw γj . Since some topic

assignments will be matched to existing document-level draws,
∑

d δ (Nt|d > 0) ≤ N̂t ≤ Nt,

where
∑

d δ (Nt|d > 0) is the number of unique documents in Z in which topic t occurs.

An important property of (6) is that if concentration parameter α′ is large relative to
∑

t N̂t, then

counts N̂t and
∑

t N̂t are effectively ignored. In other words, as α′ → ∞ the hierarchical, asym-
metric Dirichlet prior approaches a symmetric Dirichlet prior with concentration parameter α.

For any given Z for real-world documents W , the internal draws and the paths from Z to u are
unknown. Only the value of each topic assignment is known, and hence Nt|d for each topic t and
document d. In order to compute the conditional posterior distribution for each topic assignment

(needed to resample Z) it is necessary to infer N̂t for each topic t. These values can be inferred by
Gibbs sampling the paths from Z to u [4, 15]. Resampling the paths from Z to u can be interleaved

with resampling Z itself. Removing z
(d)
n = t from the model prior to resampling its value consists

of decrementing Nt|d and removing its current path to u. Similarly, adding a newly sampled value

z
(d)
n = t′ into the model consists of incrementing Nt′|d and sampling a new path from z

(d)
n to u.

4 Comparing Priors for LDA

To investigate the effects of the priors over Θ and Φ, we compared the four combinations of sym-
metric and asymmetric Dirichlets shown in figure 1: symmetric priors over both Θ and Φ (denoted
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Figure 2: (a) log P (W,Z |Ω) (patent abstracts) for SS, SA, AS and AS, computed every 20 iterations and
averaged over 5 Gibbs sampling runs. AS (red) and AA (black) perform similarly and converge to higher
values of log P (W,Z |Ω) than SS (blue) and SA (green). (b) Histograms of 4000 (iterations 1000-5000)
concentration parameter values for AA (patent abstracts). Note the log scale for β′: the prior over Φ approaches
a symmetric Dirichlet, making AA equivalent to AS. (c) log P (W,Z |Ω) for all three data sets at T = 50. AS
is consistently better than SS. SA is poor (not shown). AA is capable of matching AS, but does not always.

Data set D N̄d N W Stop

Patent abstracts 1016 101.87 103499 6068 yes
20 Newsgroups 540 148.17 80012 14492 no

NYT articles 1768 270.06 477465 41961 no

Table 1: Data set statistics. D is the number of documents, N̄d is the mean document length, N is the number
of tokens, W is the vocabulary size. “Stop” indicates whether stop words were present (yes) or not (no).

SS), a symmetric prior over Θ and an asymmetric prior over Φ (denoted SA), an asymmetric prior
over Θ and a symmetric prior over Φ (denoted AS), and asymmetric priors over both Θ and Φ (de-
noted AA). Each combination was used to model three collections of documents: patent abstracts
about carbon nanotechnology, New York Times articles, and 20 Newsgroups postings. Due to the
computationally intensive nature of the fully Bayesian inference procedure, only a subset of each
collection was used (see table 1). In order to stress each combination of priors with respect to skewed
distributions over word frequencies, stop words were not removed from the patent abstracts.

The four models (SS, SA, AS, AA) were implemented in Java, with integrated-out base measures,
where appropriate. Each model was run with T ∈ {25, 50, 75, 100} for five runs of 5000 Gibbs
sampling iterations, using different random initializations. The concentration parameters for each
model (denoted by Ω) were given broad Gamma priors and inferred using slice sampling [13].
During inference, log P (W,Z |Ω) was recorded every twenty iterations. These values, averaged
over the five runs for T = 50, are shown in figure 2a. (Results for other values of T are similar.)
There are two distinct patterns: models with an asymmetric prior over Θ (AS and AA; red and
black, respectively) perform very similarly, while models with a symmetric prior over Θ (SS and
SA; blue and green, respectively) also perform similarly, with significantly worse performance than
AS and AA. Results for all three data sets are summarized in figure 2c, with the log probability
divided by the number of tokens in the collection. SA performs extremely poorly on NYT and 20
Newsgroups, and is not therefore shown. AS consistently achieves better likelihood than SS. The
fully asymmetric model, AA, is inconsistent, matching AS on the patents and 20 Newsgroups but
doing poorly on NYT. This is most likely due to the fact that although AA can match AS, it has
many more degrees of freedom and therefore a much larger space of possibilities to explore.

We also calculated the probability of held-out documents using the “left-to-right” evaluation method
described by Wallach et al. [17]. These results are shown in figure 3a, and exhibit a similar pattern
to the results in figure 2a—the best-performing models are those with an asymmetric priors over Θ.

We can gain intuition about the similarity between AS and AA by examining the values of the sam-

pled concentration parameters. As explained in section 3.2, as α′ or β′ grows large relative to
∑

t N̂t

or
∑

w N̂w, an asymmetric Dirichlet prior approaches a symmetric Dirichlet with concentration pa-
rameter α or β. Histograms of 4000 concentration parameter values (from iterations 1000-4000)
from the five Gibbs runs of AA with T = 50 are shown in figure 2b. The values for α, α′ and β
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Figure 3: (a) Log probability of held-out documents (patent abstracts). These results mirror those in figure 2a.
AS (red) and AA (black) again perform similarly, while SS (blue) and SA (green) are also similar, but exhibit
much worse performance. (b) αmt values and the most probable words for topics obtained with T = 50. For
each model, topics were ranked according to usage and the topics at ranks 1, 5, 10, 20 and 30 are shown. AS
and AA are robust to skewed word frequency distributions and tend to sequester stop words in their own topics.

are all relatively small, while the values for β′ are extremely large, with a median around exp 30. In
other words, given the values of β′, the prior over Φ is effectively a symmetric prior over Φ with con-
centration parameter β. These results demonstrate that even when the model can use an asymmetric
prior over Φ, a symmetric prior gives better performance. We therefore advocate using model AS.

It is worth noting the robustness of AS to stop words. Unlike SS and SA, AS effectively sequesters
stop words in a small number of more frequently used topics. The remaining topics are relatively
unaffected by stop words. Creating corpus-specific stop word lists is seen as an unpleasant but nec-
essary chore in topic modeling. Also, for many specialized corpora, once standard stop words have
been removed, there are still other words that occur with very high probability, such as “model,”
“data,” and “results” in machine learning literature, but are not technically stop words. If LDA
cannot handle such words in an appropriate fashion then they must be treated as stop words and re-
moved, despite the fact that they play meaningful semantic roles. The robustness of AS to stop words
has implications for HMM-LDA [8] which models stop words using a hidden Markov model and
“content” words using LDA, at considerable computational cost. AS achieves the same robustness
to stop words much more efficiently. Although there is empirical evidence that topic models that
use asymmetric Dirichlet priors with optimized hyperparameters, such as Pachinko allocation [10]
and Wallach’s topic-based language model [18], are robust to the presence of extremely common
words, these studies did not establish whether the robustness was a function of a more complicated
model structure or if careful consideration of hyperparameters alone was sufficient. We demonstrate
that AS is capable of learning meaningful topics even with no stop word removal. For efficiency,
we do not necessarily advocate doing away with stop word lists entirely, but we argue that using
an asymmetric prior over Θ allows practitioners to use a standard, conservative list of determiners,
prepositions and conjunctions that is applicable to any document collection in a given language,
rather than hand-curated corpus-specific lists that risk removing common but meaningful terms.

5 Efficiency: Optimizing rather than Integrating Out

Inference in the full Bayesian formulation of AS is expensive because of the additional complexity
in sampling the paths from Z to u and maintaining hierarchical data structures. It is possible to
retain the theoretical and practical advantages of using AS without sacrificing the advantages of
simple, efficient models by directly optimizing m, rather than integrating it out. The concentration
parameters α and β may also be optimized (along with m for α and by itself for β). In this section,
we therefore compare the fully Bayesian version of AS with optimized AS, using SS as a baseline.

Wallach [19] compared several methods for jointly the maximum likelihood concentration parameter
and asymmetric base measure for a Dirichlet–multinomial model. We use the most efficient of
these methods. The advantage of optimizing m is considerable: although it is likely that further
optimizations would reduce the difference, 5000 Gibbs sampling iterations (including sampling α,
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Patents NYT 20 NG

ASO -6.65 ± 0.04 -9.24 ± 0.01 -8.27 ± 0.01
AS -6.62 ± 0.03 -9.23 ± 0.01 -8.28 ± 0.01
SS -6.91 ± 0.01 -9.26 ± 0.01 -8.31 ± 0.01

25 50 75 100

ASO -6.18 -6.12 -6.12 -6.08
AS -6.15 -6.13 -6.11 -6.10
SS -6.18 -6.18 -6.16 -6.13

Table 2: log P (W,Z |Ω) / N for T = 50 (left) and log P (W test |W,Z, Ω) / N test for varying values of T
(right) for the patent abstracts. AS and ASO (optimized hyperparameters) consistently outperform SS except
for ASO with T = 25. Differences between AS and ASO are inconsistent and within standard deviations.

ASO AS SS

ASO 4.37 ± 0.08 4.34 ± 0.09 5.43 ± 0.05
AS — 4.18 ± 0.09 5.39 ± 0.06
SS — — 5.93 ± 0.03

ASO AS SS

ASO 3.36 ± 0.03 3.43 ± 0.05 3.50 ± 0.07
AS — 3.36 ± 0.02 3.56 ± 0.07
SS — — 3.49 ± 0.04

Table 3: Average VI distances between multiple runs of each model with T = 50 on (left) patent abstracts and
(right) 20 newsgroups. ASO partitions are approximately as similar to AS partitions as they are to other ASO
partitions. ASO and AS partitions are both are further from SS partitions, which tend to be more dispersed.

α′ and β) for the patent abstracts using fully Bayesian AS with T = 25 took over four hours, while
5000 Gibbs sampling iterations (including hyperparameter optimization) took under 30 minutes.

In order to establish that optimizing m is a good approximation to integrating it out, we computed
log P (W,Z |Ω) and the log probability of held-out documents for fully Bayesian AS, optimized
AS (denoted ASO) and as a baseline SS (see table 2). AS and ASO consistently outperformed SS,
except for ASO when T = 25. Since twenty-five is a very small number of topics, this is not a cause
for concern. Differences between AS and ASO are inconsistent and within standard deviations.
From a point of view of log probabilities, ASO therefore provides a good approximation to AS.

We can also compare topic assignments. Any set of topic assignments can be thought of as partition
of the corresponding tokens into T topics. In order to measure similarity between two sets of topic
assignments Z and Z ′ for W , we can compute the distance between these partitions using variation
of information (VI) [11, 6] (see suppl. mat. for a definition of VI for topic models). VI has several
attractive properties: it is a proper distance metric, it is invariant to permutations of the topic labels,
and it can be computed in O (N + TT ′) time, i.e., time that is linear in the number of tokens and
the product of the numbers of topics in Z and Z ′. For each model (AS, ASO and SS), we calculated
the average VI distance between all 10 unique pairs of topic assignments from the 5 Gibbs runs for
that model, giving a measure of within-model consistency. We also calculated the between-model
VI distance for each pair of models, averaged over all 25 unique pairs of topic assignments for that
pair. Table 3 indicates that ASO partitions are approximately as similar to AS partitions as they are
to other ASO partitions. ASO and AS partitions are both further away from SS partitions, which
tend to be more dispersed. These results confirm that ASO is indeed a good approximation to AS.

6 Effect on Selecting the Number of Topics

Selecting the number of topics T is one of the most problematic modeling choices in finite topic
modeling. Not only is there no clear method for choosing T (other than evaluating the probability of
held-out data for various values of T ), but degree to which LDA is robust to a poor setting of T is not
well-understood. Although nonparametric models provide an alternative, they lose the substantial
computational efficiency advantages of finite models. We explore whether the combination of priors
advocated in the previous sections (model AS) can improve the stability of LDA to different values of
T , while retaining the static memory management and simple inference algorithms of finite models.

Ideally, if LDA has sufficient topics to model W well, the assignments of tokens to topics should be
relatively invariant to an increase in T—i.e., the additional topics should be seldom used. For exam-
ple, if ten topics is sufficient to accurately model the data, then increasing the number of topics to
twenty shouldn’t significantly affect inferred topic assignments. If this is the case, then using large
T should not have a significant impact on either Z or the speed of inference, especially as recently-
introduced sparse sampling methods allow models with large T to be trained efficiently [20]. Fig-
ure 4a shows the average VI distance between topic assignments (for the patent abstracts) inferred
by models with T = 25 and models with T ∈ {50, 75, 100}. AS and AA, the bottom two lines, are
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Figure 4: (a) Topic consistency measured by average VI distance from models with T = 25. As T increases,
AS (red) and AA (black) produce Zs that stay significantly closer to those obtained with T = 25 than SA
(green) and SS (blue). (b) Assignments of tokens (patent abstracts) allocated to the largest topic in a 25 topic
model, as T increases. For AS, the topic is relatively intact, even at T = 100: 80% of tokens assigned to the
topic at T = 25 are assigned to seven topics. For SS, the topic has been subdivided across many more topics.

much more stable (smaller average VI distances) than SS and SA at 50 topics and remain so as T
increases: even at 100 topics, AS has a smaller VI distance to a 25 topic model than SS at 50 topics.
Figure 4b provides intuition for this difference: for AS, the tokens assigned to the largest topic at
T = 25 remain within a small number of topics as T is increased, while for SS, topic usage is more
uniform and increasing T causes the tokens to be divided among many more topics. These results
suggest that for AS, new topics effectively “nibble away” at existing topics, rather than splitting
them more uniformly. We therefore argue that the risk of using too many topics is lower than the
risk of using too few, and that practitioners should be comfortable using larger values of T .

7 Discussion

The previous sections demonstrated that AS results in the best performance over AA, SA and SS,
measured in several ways. However, it is worth examining why this combination of priors results
in superior performance. The primary assumption underlying topic modeling is that a topic should
capture semantically-related word co-occurrences. Topics must also be distinct in order to convey
information: knowing only a few co-occurring words should be sufficient to resolve semantic ambi-
guities. A priori, we therefore do not expect that a particular topic’s distribution over words will be
like that of any other topic. An asymmetric prior over Φ is therefore a bad idea: the base measure
will reflect corpus-wide word usage statistics, and a priori, all topics will exhibit those statistics too.
A symmetric prior over Φ only makes a prior statement (determined by the concentration param-
eter β) about whether topics will have more sparse or more uniform distributions over words, so
the topics are free to be as distinct and specialized as is necessary. However, it is still necessary to
account for power-law word usage. A natural way of doing this is to expect that certain groups of
words will occur more frequently than others in every document in a given corpus. For example, the
words “model,” “data,” and “algorithm” are likely to appear in every paper published in a machine
learning conference. These assumptions lead naturally to the combination of priors that we have
empirically identified as superior: an asymmetric Dirichlet prior over Θ that serves to share com-
monalities across documents and a symmetric Dirichlet prior over Φ that serves to avoid conflicts
between topics. Since these priors can be implemented using efficient algorithms that add negligible
cost beyond standard inference techniques, we recommend them as a new standard for LDA.
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1 Conditional Posterior Probabilities for LDA

With symmetric Dirichlet priors over Θ={θ1, . . .θD} and Φ={φ1, . . .φT }, the conditional poste-
rior probability, or predictive probability, of topic t occurring in document d given the corresponding

topic assignments Z = {z(d)}D
d=1 for a corpus of documents W = {w(d)}D

d=1 is as follows:

P (z
(d)
Nd+1 = t | Z, αu) =

∫

dθd P (t |θd) P (θd | Z, αu) =
Nt|d + α

T

Nd + α
, (1)

where topic t occurs Nt|d times in z(d) of length Nd =
∑

t Nt|d. In other words, the conditional
posterior distribution over topics for document d is a Pólya conditional distribution.

The conditional posterior distribution over words for topic t is also a Pólya conditional distribution.

2 Joint Distributions for LDA

With symmetric priors, the joint distribution over topic assignments Z for documents W is

P (Z |αu) =
∏

d

∏

n P (z(d)
n | Z<d,n, αu)

=
∏

d

∏

n

N
<d,n

z
(d)
n |d

+ α
T

N
<d,n
d + α

=
∏

d

Γ(α)

Γ(Nd + α)

∏

t

Γ(Nt|d + α
T

)

Γ( α
T

)
, (2)

where “< d, n” denotes a quantity involving data from documents 1, . . . , d and, for document d,
positions 1, . . . , n − 1 only. In other words, the joint distribution over Z is a Pólya distribution.

The joint distribution over W given Z is also a Pólya distribution.

3 Variation of Information for Topic Models

The similarity between two sets of topic assignments Z and Z ′ for documents W can be measured
using variation of information, introduced by Meilă [2] and recently used by Goldwater and Griffiths
in the context of text processing [1]. Given two sets of topic assignments Z and Z ′ for some W (with
T and T ′ topics, respectively), computing the variation of information between Z and Z ′, denoted
VI (Z,Z ′), requires three distributions: P (z) over the T topics in Z , proportional to {Nt}

T
t=1 for

Z; P (z′) over the T ′ topics in Z ′, proportional to {Nt′}
T ′

t′=1 for Z ′; and P (z, z′), proportional to
the number of tokens assigned to topic t in Z and topic t′ in Z ′. VI (Z,Z ′) is then

VI (Z,Z ′) = H(z) + H(z′) − 2I(z, z′)

= H(z | z′) + H(z′ | z), (3)

1



where H(·) denotes the entropy of a random variable and I(· , ·) denotes the mutual information be-
tween two random variables. If two sets of topic assignments Z and Z ′ are identical, then VI (Z,Z ′)
will be zero. The higher the value of VI (Z,Z ′), the greater the dissimilarity between Z and Z ′.
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