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ABSTRACT 

Traditional bag-of-words information retrieval models use 

aggregated term statistics to measure the relevance of documents, 

making it difficult to detect non-relevant documents that contain 

many query terms by chance or in the wrong context.  In-depth 

document analysis is needed to filter out these deceptive 

documents. In this paper, we hypothesize that truly relevant 

documents have relevant sentences in predictable patterns. Our 

experimental results show that we can successfully identify and 

exploit these patterns to significantly improve retrieval precision 

at top ranks. 
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1. INTRODUCTION   

To achieve high precision retrieval, filtering out highly ranked 

non-relevant documents is crucial. These documents look relevant 

in traditional bag-of-words models because they contain many 

query terms like relevant documents.  In this paper, we show these 

deceptive, non-relevant documents can be successfully identified 

and demoted by analyzing the change of relevance scores at the 

sentence level. We especially focus on the strength and the 

position of the relevant sentences in the document.  

To analyze the spatial distribution of relevant sentences in a 

document, we plot relevance scores of sentences versus their 

locations in the document as shown in Figure 1. We call this 

graph a relevance-flow graph. The locations of peaks show 

positions of relevant sentences, and the height of peaks represent 

the strength of relevance. From the graph, we extract a set of 

features that can capture various aspect of the graph. Using 

training data sampled from the TREC collection we learn a 

probabilistic model that can distinguish relevance-flow patterns 

from relevant documents. Top documents returned by the baseline 

search engine are re-ranked solely using the classifier scores. Our 

evaluation result shows that this approach significantly improves 

precision, especially at top ranks. 

There have been efforts to analyze the distributional patterns of 

query terms to measure term proximity scores [4]. However, as far 

as we know, there has been little attempt to infer document 

relevance based on sentence-level relevance analysis. In this paper, 

we show this kind of approach is promising. 

2. RELEVANCE-FLOW GRAPH  

To measure relevance scores of sentences, we use normalized 

query likelihood scores as estimates. The query likelihood score is 

the probability of query Q given the Dirichlet-smoothed unigram 

language model of a sentence S, i.e. P(Q|S) [1]. For a query, we 

compute the query likelihood scores for all sentences in the top N 

documents returned from the baseline search engine. Then, each 

score is normalized by,   

scorenormalized=(score–scoremin)/(scoremax–scoremin) where scoremax 

and scoremin are the maximum and the minimum relevance scores 

across the top N documents. We call the normalized query 

likelihood score the relevance level. If the relevance level of a 

sentence is greater than 0.5, then we call the sentence a peak. A 

sentence at the peak can be considered as an estimate for a 

relevant sentence. In addition, positions of sentences are also 

normalized for comparison across different documents: 0 for the 

first sentence and 1 for the last sentence.  

The relevance-flow graph visually shows the fluctuation of 

relevance level inside of the document. This graph is often useful 

to understand why one document is more relevant than the other. 

For example, Figure 1 shows relevance-flow graphs of a relevant 

document (Figure 1(a)) and a non-relevant document (Figure 1(b)) 

for a given query. Both documents have similar log likelihood 

scores from the baseline search engine. Figure 1(a) has an early 

peak followed by a few smaller peaks while Figure 1(b) has many 

smaller peaks at the end of the document.  Intuitively, having an 

early peak is a good sign because many writers put key sentences 

at the beginning of their articles [5]. A high peak can be also 

considered as a positive sign because high peaks mean that the 

majority of query terms appear in the sentence, that is, the 

proximity among query terms is well-preserved. Our retrieval 

system can successfully identify these differences and demote the 

non-relevant document in Figure 1(b). Exploiting these 

observations is impossible in traditional bag-of-words retrieval 

models.  

3. INFERRING DOCUMENT RELEVANCE 

We learn a statistical model which is able to predict the 

relevance of a document from the relevance-flow graph of the 

document. The logistic regression model is used with the 

following six features extracted from the graphs.  

Mean and Variance of Relevance Level (F1.1 and F1.2) 

The arithmetic mean of relevance levels shows how relevant a 

document is at large. This can also be interpreted as COMBAVG 

in rank fusion [2]. High variance values imply many peaks and 

valleys in the graph. 
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Peak to Sentence Ratio (F2) 

To investigate relations between the number of peaks and 

relevance, we use (#peak / #sentence) as a feature. 

The first peak position (F3) 

If a document is relevant, then relevant sentences often appear in 

the beginning of the document. Troy et al. exploited this property 

and reported improved retrieval performance [5]. Xue and Zhou 

used this property for text classification tasks [6]. We use the 

position of the first peak in a document as a feature. 

Mean and Variance of peak positions (F4.1 and F4.2) 

The mean of peak positions roughly shows where relevant 

sentences appear. The variance shows how relevant sentences are 

spatially distributed in a document.  

Table 1. Feature Weights 

F1.1 F1.2 F2 F3 F4.1 F4.2

0.68 14.03 -2.04 -1.64 0.92 -0.88

Table 1 shows learned weights for the features. Not surprisingly, 

the mean of relevance levels (F1.1) has a small weight. Since all 

documents in the initial search result are competitive under the 

bag-of-words model, the relevance level itself is no longer 

discriminative. On the other hand, the variance of the relevance 

levels (F1.2) has the largest weight. This shows that relevant 

documents are likely to contain a few highly relevant sentences 

rather than many medium or low relevance level sentences. The 

peak to sentence ratio (F2) also shows a similar aspect. F2 has a 

negative relation to relevance. That is, fewer peaks are preferred. 

This may sound strange. However, because we know that most 

top ranked documents have similar query likelihood scores, this 

can be interpreted as a few “high” peaks are preferred to many 

“low” peaks. Therefore, the larger weights of F1.2 and F2 imply 

importance of term proximity. There is a negative relationship 

between the first peak position (F3) and relevance. In other words, 

the early appearance of a relevant sentence is preferred as 

expected. Both the mean (F4.1) and the variance (F4.2) of the 

peak positions have little impact and removing these features did 

not hurt our re-ranking performance. Overall, F1.2 is the most 

important feature. F2 and F3 are also useful.  

4. EXPERIMENT AND RESULTS 

For evaluation, we used the AP collection and title queries of 

topics 51-200 in the TREC corpora. We split the queries by query-

id mod 3, i.e. queries whose id mod 3 = 0 or 1 into a training set 

(100 queries) and the others into a test set (50 queries). As 

preparation for plotting relevance-flow graphs, each document 

was segmented into sentences using the MXTerminator [3]. 

We retrieved the top 15 documents for each query using the bag-

of-words model implemented in the Indri1 search engine, where 

                                                                 

1 http://www.lemurproject.org/indri/ 

the unigram language model was used with the Dirichlet 

smoothing parameter µdoc=3600, which produced the best retrieval 

performance. Unigram “sentence” language models for relevance-

flow graphs are smoothed with the collection language model 

(Dirichlet smoothing parameter µsentence=300).  

Table 2. Retrieval performance. A superscript * indicates a 

statistically significant improvement on the initial result. (sign 

test with  p-value < 0.05) 

 P@1 P@5 

Initial result 0.380 0.336 

Re-ranked result 0.480 (+26%)* 0.396 (+18%)*

We re-ranked the initial search result according to predicted 

relevance. Since our purpose is to achieve high precision in the 

top results, we use precision at 1 (P@1) and precision at 5 (P@5) 

as evaluation metrics. Table 2 shows the retrieval performance. 

The re-ranked results show statistically significant improvements 

over the initial result for both metrics.  

5. CONCLUSION AND FUTURE WORK 

In this paper, we demonstrated that analyzing spatial distribution 

patterns of relevant sentences has major potential to improve 

precision of retrieval systems.  This work is just the first step of 

our efforts to understand document relevance via relevance 

analysis at the sentence level. We plan to explore different 

methods to create relevance-flow graphs and more descriptive 

features that can capture various aspects from the graphs. Finally, 

we will investigate new scoring functions which can seamlessly 

combine traditional document-level scores with scores based on 

our sentence-level analysis.   
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Figure 1. Relevance-flow graph examples.  


