
Integrating INQUERY with an RDBMSto Support Text RetrievalVasanthakumar S. R.,�James P. Callan, and W. Bruce CroftDepartment of Computer ScienceUniversity of Massachusetts, Amherst, MA 01003, USAvasant@cs.umass.eduAbstractInformation is a combination of structured data and unstructured data. Traditionally, relationaldatabase management systems (RDBMS) have been designed to handle structured data. IRsystems can handle text (unstructured data) very well but are not designed to handle structureddata. With present day information being a combination of structured and unstructured data,there is an increasing demand for an IR-DBMS system that incorporates features of both IR andDBMSs. We discuss a framework that incorporates powerful text retrieval in relational databasemanagement systems. An extended SQL with probabilistic operators for text retrieval is de�ned.This paper also discusses an implementation of the probabilistic operators in SQL.1 IntroductionThe state of the art is that much information, especially multi-media, is represented as a combination ofboth structured and unstructured data. Structured data comprises data types like integer, real, �xed-length string; unstructured data comprises text, images, audio etc. Structured data has been e�cientlystored and retrieved using relational database management systems (RDBMS). Text, an unstructuredcomponent of information, has been traditionally stored and retrieved using Information Retrieval (IR)systems. RDBMSs use exact matching to retrieve data. while IR systems use approximate matching.IR systems are not suitable for structured data and RDBMSs are not suitable for unstructured data.RDBMSs have the additional advantage of addressing the issues of concurrency, recovery, security andintegrity, while most IR systems don't. The gap between structured and unstructured components indata has been recently narrowed (e.g., medical information systems, pharmaceutical systems) and hasdemanded a system that incorporates the features of both RDB and IR systems.Our goal is to add powerful text retrieval capabilities to an RDBMS using the relational frameworkand SQL. Regular boolean operators are used on the non-text attributes and probabilistic operatorsCopyright 1996 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this ma-terial for advertising or promotional purposes or for creating new collective works for resale or redistribution to serversor lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.Bulletin of the IEEE Computer Society Technical Committee on Data Engineering�This research was supported in part by Center for Intelligent Information Retrievaland Digital Equiment Corporation. 24

are used on the text attributes. The probabilistic answers are converted into boolean values and latercombined with the results of the non-text component of the query. The �nal result set is ranked onthe probability (belief) that a record is relevant to the text query.We have an existing information retrieval system INQUERY [2]. We are experimenting on imple-menting the same retrieval strategy in a relational database management system, DEC Rdb. Such animplementation will add powerful text retrieval capabilities to an RDBMS, facilitating the constructionof IR systems that have all the features we get from an RDBMS (concurrency, recovery, etc.) [1]. Thispaper discusses the issues, our experiences and status.2 Integrating IR and RDBM SystemsIntegrating IR and RDBMS could be viewed at di�erent levels:� a loosely-coupled IR/RDBMS system, and� a tightly-coupled IR/RDBMS system.2.1 Loosely-coupled IR/RDBM systemA loosely-coupled IR/RDBMS system can be viewed in di�erent ways:� IR system as an application of RDBMS,� A Hybrid of IR and RDBM systems, and� Using RDBMS for storing IR data structures.2.1.1 IR System as an Application of RDBMSWe could build an IR system as a RDB application without any major modi�cation to the existingRDBMS [6]. These applications are based on \exact matching", and query evaluation is \boolean" innature. Probabilistic evaluation of queries is very e�ective for text retrieval . Blair [1] uses the conceptof probability for ranking the records. The inability of such systems to handle fuzzy queries results inan IR system with poor retrieval performance (low precision and recall). Also, IR data structures tendto vary in size greatly, and thus the application would be ine�cient.2.1.2 A Hybrid ApproachA hybrid IR/DB system utilizes both an IR and DB system. An embedded full integration is proposedby Gu et al. [5]. This approach proposes the use of two distinct systems, an IR system (INQUERY) andRDBMS (Sybase). The inverted lists for the text �elds in the RDBMS tables are stored in INQUERY.An extended SQL (ESQL) is proposed which has both boolean and IR operations. A form-based IRinterface is provided for the end users and the user's intention is interpreted into a program describedby a query language called ESQL which is an extension of SQL. The ESQL program is then translatedto a standard SQL program and an INQUERY query by a parser and interpreter . The INQUERYquery is sent to ProcINQUERY - an INQUERY version which can be invoked as a procedure, andoutput the information about ranked textual data into Sybase. The SQL query is then sent to Sybasewhich searches the corresponding data based on the outputs of the ProcINQUERY. The disadvantagesof such an approach are that we use two di�erent systems, and we lack exibility in combining IR andboolean parts of the query. This motivates us to develop an RDBMS system which does not make use25

of any IR system, but instead, stores all the IR data structures in the RDBMS and implements all theIR operators in SQL itself. Section 3 explains our approach to achieve the above mentioned goal.2.1.3 Using RDBMS for storing IR data structuresInformation retrieval systems index unstructured text into an inverted index or inverted �le [8]. Foreach term a separate index is constructed that stores the record identi�ers, or document identi�ers,for all the records containing that term. With an inverted index, the record set corresponding to agiven query formulation is easily determined. The identi�ers for all retrieved items can be obtainedby extracting from the inverted index the list of record identi�ers corresponding to each query termand combining these record identi�ers appropriately. For supporting probabilistic retrieval the termstatistics are also stored along with record identi�ers. In order to support complex query operators likephrase or proximity , the locations of each occurrence of the term in a record are also stored (proximityinformation). The number of tuples of an inverted �le is huge when compared to the number ofdocuments or records they represent. Thus the number of tuples in an inverted �le will be the numberof unique terms in the documents times the average number of terms in a document. As stated byBlair [1], any discussion of database management system implementation must address the controversialissue of processing speed. Traditional beliefs tend to hold that relational systems trade exibility ofquery and database structuring for reduced processing speeds. In order to overcome this bottleneck,we sacri�ced some exibility and reduced the number of tuples to the number of unique terms in thecollection or documents database. The term statistics and the proximity information are stored in abinary object or blob. We used the INQUERY information retrieval system and DEC Rdb RDBMS forthis experiment. The following paragraphs discuss the lessons learned from this implementation.Rdb was used to store all of INQUERY's �le-based data structures (inverted �le, db �le, and termdictionary). The inverted list �le contained term ids and their inverted lists. The db �le containeddocument indices necessary for providing user interface functions in the API. In this implementation,Rdb did not know the internal structure of the inverted list and the db �le. The encoded invertedlist and db �le information was stored in Rdb as blobs. An SQL-based interface was used betweenINQUERY and Rdb. There was an overhead in this implementation for INQUERY to decode theblob and extract the required information. Other than the query language, all the other features likeconcurrency control, recovery, etc. , (refer Section 1) of an RDBMS were exploited without sacri�cingperformance during document indexing and query evaluation.2.1.4 Results of Blob ImplementationThe results from the blob implementation are compared with the key�le implementation of INQUERYin Table 2. Key�le is a B-tree package which is used in INQUERY to store all its data structures.The experiments were done on a DEC Alpha running OpenVMS with 80 Mbytes of main memory.DEC Rdb V 6.0 was used. Several test databases with di�erent characteristics were used to analyzethe performance of the key�le and Rdb versions of INQUERY. Table 1 shows the characteristics of thetest databases used. Table 2 shows that the elapsed time of the Rdb version is in the same order ofmagnitude as that of the key�le version and we get all the advantages of using an RDBMS.2.2 Tightly-coupled IR/RDBM systemDi�erent approaches have been proposed for a tighter integration of IR and RDBM systems [4, 7, 1, 9].All these methods suggest implementing a new system incorporating the proposed theories. Schek etal. [9] propose an extension to the relational model allowing Non First Normal Form (NF2) relations.They propose extensions to relational algebra with emphasis on new \nest" and \unnest" operations,26

Table 1: Characteristics of test databasesAttribute Databasecacm arman wsj89Raw data 3 Mbytes 10 Mbytes 39 MbytesNumber of documents 3204 628 12380Number of unique words 5942 31838 68058Total number of words 383182 907668 5451898Number of transactions 112599 388066 2606670Number of queries 50 50 50Average number of words per query 7 94 94Table 2: Resources used by INQUERY v1.6 on di�erent test collectionsCollectionPerformance Metric cacm arman wsj89Key�le Rdb Key�le Rdb Key�le RdbBu�ered I/O count 98 154 124 226 125 233Peak working set size 4896 31072 6496 32120 17616 40960Direct I/O count 345 406 1813 937 12595 3544Peak page �le size 19040 81760 20656 85072 329286 106496Page faults 314 3174 424 4239 1193 21704Charge CPU time (seconds) 9 12 20 66 111 163Elapsed time (seconds) 15 22 40 85 221 246which transform between �rst normal form relations and NF2 ones. This allows the attribute domainsto be sets and sets of sets, suitable for IR (e.g., list of words as a single attribute).Fuhr [4] proposes a probabilistic relational model which combines relational algebra with proba-bilistic retrieval. He proposes a special join operator implementing probabilistic retrieval. This modelretrieves not only documents but also any kind of objects. Further, probabilistic retrieval provides im-plicit ranking of these objects. Fuhr argues that with independence assumptions, the relational modelis a special case of this probabilistic relational model.The above approaches demand a new design of the DBMS. This is expensive and would satisfy onlyIR requirements. Instead we propose a method in which the probabilistic retrieval can be done in theexisting relational framework and also suggest ways to implement special join operations using SQL.Section 3 explains how IR data structures can be stored in an RDBMS so that SQL can be used onthem to support probabilistic operators and special joins.3 Adding Retrieval Capabilities to RDBMSThe twomain issues that must be addressed in order to add IR capabilities to an RDBMS are the storageof IR data structures and query language support for IR operators. We observe from Section 2.1.3 thatthe blob implementation to store IR data structures in RDBMS is quite e�ective. Since our frameworkproposes to implement IR operators using SQL, we have a requirement that the data structures be27

accessible through SQL, obviously a table. If IR data structures are stored as regular tables, then itleads to poor data storage and retrieval performance.. To solve this problem, Cooperative indexing[3] can be used for e�cient storage and retrieval. In this approach, the IR components of the systemde�ne what is extracted from documents (text attributes) along with the related index structure, andthe database system provides e�cient access to the index. The cooperative index can be accessed, likeany regular table, through SQL. Our main focus here is to provide support for IR operators in thequery language and a method to evaluate such complex queries.3.1 Retrieval ModelOur text retrieval framework is based upon a type of Bayes net called a document retrieval inferencenetwork [10, 2] (which is used in INQUERY). The inference net has two components i.e., the documentnetwork and the query network. The document network represents the content of the text and thequery network represents the need for information. This framework creates a document network for thetext attributes, creates a query network for the text component of the query, and uses the network toretrieve records that satisfy the text query. The result from the text and the non-text query componentsare combined to obtain the �nal result.The document network is created automatically by mapping text attribute onto content represen-tation nodes, and storing the nodes in an inverted �le for e�cient retrieval. For each term a separateindex is constructed that stores the record identi�ers, term statistics and term position information forall the records identi�ed by the term. This information is stored in a relational table, say INV LIST(TERM, DOC ID, TF, MAX TF, PROX), where TF is the term frequency, MAX TF is the maximumterm frequency and PROX is the position information.3.2 Extending SQL to Support IR OperatorsText retrieval is based on partial matching and inference and thus returns scores (beliefs) as answers.These beliefs represent the relevance of a particular document (record) to the query. The traditionalSQL operators are not suitable for handling beliefs since SQL operators are boolean in nature. Thus,additional text handling operators need to be added to SQL, as well as methods to combine the resultsfrom such operators with the traditional boolean operators. An extended SQL (ESQL) is de�ned asfollows to support text retrieval. The ESQL will have a non-text component and a text component.The non-text component uses the regular WHERE conditions and operators of SQL. The followingprobabilistic operators [10, 2] are supported in the text component:PAND: Probabilistic (\fuzzy") and of the terms in the scope of the operator.POR: Probabilistic or of the terms in the scope of the operator.PNOT: Probabilistic negation of the term in the scope of the operator.PSUM: Value is the mean of the beliefs in the arguments.PWSUM: Value is the mean of the weighted beliefs in the arguments.Here it is assumed that all the probabilistic operators are localized to a subtree of an ESQL query. Anexample ESQL query on a table DOCUMENTS (DOC ID, DATE PUBLISHED, AUTHOR, TEXT)to get records about \operating system design" and published after \04/30/90" will be:Example 1: 28

PAND

POR

DESIGNSYSTEM

OPERATING

7 0.6

5 0.6

6 0.5

SCORE

2 0.6

4 0.7

DOC_ID

SCORE

6 0.5

3 0.4

1 0.5

5 0.6

DOC_ID

SCORE

2 0.8

3 0.82

4 0.82

5 0.8

6 0.7

7 0.76

8 0.76

9 0.82

DOC_ID

PAND

POR

DESIGNSYSTEM

OPERATING

SCORE

1 0.2

2 0.32

3 0.328

4 0.482

5 0.32

6 0.35

7 0.34

8 0.34

9 0.328

DOC_ID

SCORE

2 0.5

3 0.7

5 0.8

8 0.6

9 0.7

DOC_ID

(a)

(b)Figure 1: (a) Text query tree (b) Belief lists at di�erent nodesSELECT DOC_IDFROM DOCUMENTSWHERE DATE_PUBLISHED > '04/30/1990'AND TEXT_QUERY(TEXT CONTAINS 'operating'PAND (TEXT CONTAINS 'systems'POR TEXT CONTAINS 'design'));The query tree for the text component of the query in Example 1 is shown in Figure 1(a).3.3 Query EvaluationAn ESQL parser is used to divide the query into text and non-text components. The non-text compo-nent is evaluated using regular SQL statements. The text component is evaluated using SQL statementswith external functions. External functions are used to support IR operators. The result set from suchan evaluation has record identi�ers and belief scores. The result set is sorted in the descending orderof belief scores. A threshold is applied to the result set for the text component. The threshold can beeither the top n records or records greater than a speci�c threshold (say 0.4). Finally, the result setfrom the non-text component is used as a �lter to generate the �nal result set.A query network is created from the text component of the user query. In this section we show howthe text component of the query can be evaluated using SQL and later combined with the non-textcomponent. The query evaluation can be term-at-a-time or record-at-a-time.3.4 Term-at-a-Time ProcessingIn term-at-a-time processing, each node in the query tree is evaluated for all documents or records. Weevaluate the tree bottom up, as follows. 29

SCORE

2 0.8

3 0.82

4 0.82

5 0.8

6 0.7

7 0.76

8 0.76

9 0.82

DOC_ID

2 0.6 0.5

5 0.6 0.5

3 0.4 0.7

4 0.7 0.4

6 0.5 0.4

7 0.6 0.4

8 0.4 0.6

9 0.4 0.7

b1

POR (b1, b2)

1 - (1 - b1)(1 - b2)

b2DOC_ID

2 0.6 0.5

3 NULL 0.7

4 0.7 NULL

5 0.6 0.5

6 0.5 NULL

7 0.6 NULL

8 NULL 0.6

9 NULL 0.7

b1 b2DOC_ID

7 0.6

5 0.6

6 0.5

b1 b2DOC_ID

SCORE

2 0.6

4 0.7 FULL

OUTER

JOIN

DOC_ID SCORE

2 0.5

3 0.7

5 0.8

8 0.6

9 0.7

DOC_ID

2 0.6 0.5

3 NULL 0.7

4 0.7 NULL

5 0.6 0.5

6 0.5 NULL

7 0.6 NULL

8 NULL 0.6

9 NULL 0.7

NULL -> 0.4Figure 2: Special Join operation3.4.1 Generating belief lists at the leaf nodesBelief lists are generated for each leaf node. A belief list is a list of record identi�ers and associatedbelief values at a given node, as well as default beliefs and weights. Node belief scores are calculated[10, 2] and normalized using the statistics stored in the inverted list (INV LIST table). Belief lists caneasily be generated from INV LIST in SQL. External functions [12] are used to calculate the beliefscores. The belief lists at the leaf nodes for Example 1 are shown in Figure 1(b).3.4.2 Evaluating probabilistic operatorsThe probabilistic operators in the query tree are evaluated with a bottom-up strategy. Each operatoris evaluated by executing a special join operation (di�erent for di�erent operators) on the belief listsof its children. A special join is achieved in two steps:� A full outer join [12] of the two belief lists of the children is done, replacing all the NULLs witha default belief value, such as 0.4.� Combine the two belief values for each record using the formula for each operator [10]:1. POR: 1� (1� b1)(1� b2)2. PAND: b1 � b23. PNOT: 1� b14. PSUM: � b1+b22 �5. PWSUM: � (w1b1+w2b2)ww1+w2 � where w1 and w2 are weight associated with the child nodes.This is also implemented using external functions.The output of the special join is again another belief list. By evaluating all the nodes, bottom-up,we will �nally have a belief list at the root, which is a list of record identi�ers and belief values. Thespecial join operation for POR node in Example 1 is shown in Figure 2.30

3.4.3 Generating the �nal result setThe non-text component of the ESQL query is later applied as a �lter on the result set of the previousstep to obtain the �nal result set. The belief values in the belief list are used to rank order the resultset. The ORDER BY clause in SQL can be used to rank order the records. The number of records inthe result set is restricted by either using a threshold on the belief value or by using the top n records.If threshold is used, then a WHERE clause like BEL > 0.3 can be used, where BEL is the belief for thisdocument. If the top n strategy is used, then a condition like LIMIT TO n ROWS can be used.The SQL statement for evaluating the text component of the ESQL query of Example 1 is as follows:SELECT DOC_ID, (1 - (COALESCE(T1.B1, 0.4) * COALESCE(T2.B2, 0.4)))FROM ((SELECT DOC_ID, BEL(TF, MAX_TF, DOC_FREQ)FROM INV_LISTWHERE TERM = 'system') AS T1 (DOC_ID, B1)FULL OUTER JOIN(SELECT DOC_ID, BEL(TF, MAX_TF, DOC_FREQ)FROM INV_LISTWHERE TERM = 'design') AS T2 (DOC_ID, B2)) AS T4 (DOC_ID, B4);Here BEL() is an external function which calculates the belief score for a record.3.5 Record-at-a-Time ProcessingIn contrast to term-at-a-time processing, where each query node is evaluated for all the records, in thismethod the entire query tree is evaluated for each record. This can be better because it avoids theexpensive special joins. The non-text query is used as a �lter to obtain the record set on which thetext query is evaluated. For each record in the �ltered record set, we do the following:Step 1: Calculate the belief value for all the leaf nodes (query terms) for this record. The belief valueis calculated from the inverted list (INV LIST) as discussed in Section 3.4.Step 2: Evaluate the entire query tree for this record. All the probabilistic query operators areimplemented as external functions [12]. These external functions take two belief values as theirarguments and return another belief value. Thus these external functions can be nested. Sincenesting can be done, the entire query is easily implemented. If b1, b2 and b3 are the belief scoresfor a speci�c record (say DOC ID = ID 1) at the leaf nodes for Example 1, the text component isevaluated as shown in the SQL statement below. Here PAND and POR are external functions. Itshould be noted that b1, b2, and b3 are themselves SQL statements which calculate belief scoresfrom the term statistics stored in INV LIST.Step 3: A threshold is applied on the �nal belief b (e.g., b > 0.5) to convert the probability into aboolean result similar to the method of Gu et al. [5].SELECT DOC_ID FROM DOCUMENTSWHERE DOC_ID = ID_1AND PAND (b1, POR (b2, b3)) > 0.5AND DATE_PUBLISHED > '04/30/1990';The result set is ranked in the descending order of belief using the ORDER BY SQL clause to obtain the�nal result. The SQL statement for the entire ESQL query is:31

SELECT DOCUMENTS.DOC_ID,PAND ((SELECT COALESCE (BEL(TF, MAX_TF, DOC_FREQ), 0.4)FROM INV_LISTWHERE TERM = 'operating'AND DOCUMENTS.DOCID = INV_LIST.DOCID), POR ((SELECT COALESCE (BEL(TF, MAX_TF, DOC_FREQ), 0.4)FROM INV_LISTWHERE TERM = 'system'AND DOCUMENTS.DOCID = INV_LIST.DOCID), (SELECT COALESCE (BEL(TF, MAX_TF, DOC_FREQ), 0.4)FROM INV_LISTWHERE TERM = 'design'AND DOCUMENTS.DOCID = INV_LIST.DOCID))) AS BELFROM DOCUMENTS;This SQL statement would generate a table of DOC ID and BEL for all the documents in the DOCU-MENTS table. It should also be noted here that the DOC FREQ in the above SQL statement is again anSQL statement likeSELECT COUNT(*) FROM INV_LIST WHERE TERM = 'operating';Even though both the term-at-a-time and record-at-a-time approaches return the same result set,the latter has an advantage in speed since there are no JOIN operations, which tend to be expensive.More optimization can be added in Step 2, by choosing a small set of records to evaluate the query on,depending on the operators in the query.3.6 Evaluating PROXIMITY OperatorsPROXIMITY operators are those which rely on the the relative positions of the terms in a document.Some examples of PROXIMITY operators [2] areP#n: A match occurs whenever all of the arguments are found, in order, with fewer than n wordsseparating adjacent arguments. For example A P#3 B matches \A B", \A c B" and \A c c B".PHRASE: Value is a function of the beliefs returned by the P#3 and PSUM operators. The intentis to rely upon full phrase occurrences when they are present, and to rely upon individual wordswhen full phrases are rare or absent.Evaluating proximity operators is much more complicated than evaluating the simple operators ex-plained in earlier sections. These operators require proximity lists for evaluation. A proximity listcontains statistical and proximity (term position) information by document for a particular term. Theproximity lists should be instantiated at the term nodes of the proximity operator nodes and propa-gated upwards. The proximity lists are converted into belief lists before being propogated to simpleoperators. Proximity lists are transformed into belief values using the information in the list, and arecombined using weighting or scoring functions. Belief lists may be computed from proximity lists butthe reverse derivation is not possible. Creating, merging, and transforming proximity lists can all beimplemented partly as external functions and partly in SQL.32

4 ConclusionAn RDBMS can handle text more e�ciently by storing inverted lists of the text �elds in cooperative in-dexes, and SQL can be used to support IR operators. An extended SQL can be de�ned with additionalIR operators. A pre-processor can be designed to transform the ESQL query into the correspondingSQL query. Performance completely depends on how e�ciently cooperative indexing is implemented.More e�cient implementations can be done by modifying the SQL engine to support the probabilisticoperators. In this paper, we have assumed that there exists only one text �eld, but there can be anynumber of text �elds, with one cooperative index for each text �eld. The corresponding cooperativeindex should be selected during ESQL processing. With such a system, both structured and unstruc-tured data can be handled e�ciently and e�ectively without designing a totally new system. We arepresently looking at allowing probabilistic operators anywhere in the query without the restrictionsthat they occur together, and the impact of such a design on precision and recall.References[1] David. C. Blair. An Extended Relational Retrieval Model. Information Processing and Management,24(3):349{371, 1988.[2] J. P. Callan, W. B. Croft, and S. M. Harding. The INQUERY retrieval system. In Proceedings of theThird International Conference on Database and Expert Systems Applications, 78{83, Valencia, Spain,1992. Springer-Verlag.[3] Samuel DeFazio, Amjad Daoud, Lisa Ann Smith, Jagadishan Srinivasan, Bruce Croft, and Jamie CallanIntegrating IR and RDBMS using cooperative indexing In Proceedings of SIGIR 95, ACM, July1995.[4] N. Fuhr. A probabilistic model for the integration of IR and databases. In Proceedings of SIGIR 93,309{317, ACM, June 1993.[5] Junzhong Gu, Ulrich Thiel, and Jian Zhao. E�cient Retrieval of Complex Objects: Query Processing in aHybrid DB and IR System. In GESELLSCHAFT FUR MATHEMATIK UND DATENVERARBEITUNGMBH.[6] L. A. Macleod and R. G. Crawford. Document Retrieval as a Database Application. In D. K. Harman,editor, Information Technology: Research and Development, 2:43{60, 1983.[7] A. Motro. VAGUE: A User Interface to Relational Database that Permits Vague Queries. In ACM Trans-actions on O�ce Information Systems, Vol 6, No 3, 187{214. July 1988.[8] G. Salton. Automatic Text Processing. Addison-Wesley Publishing Company, 1989.[9] H. J. Schek and P. Pistor. Data Structures for an Integrated Database Management and InformationSystem. Proceedings of the Eighth International Conference on Very Large Data Bases, 197{206. 1982.[10] Howard R. Turtle and W. Bruce Croft. E�cient probabilistic inference for text retrieval. In RIAO 3Conference Proceedings, 644{661, Barcelona, Spain, April 1991.[11] P. Cotton ISO-ANSI Working Draft SQL Multimedia Application Packages (SQL/MM) - Part 2: Full-text.ISO/IEC SC21/WG3 N1679, SQL/MM SOU-004, March 1994.[12] The DEC Rdb Version 6.0 Documentation Kit, Digital Equipment Corporation, 1995.33

